1 #ifndef __sctp_lock_bsd_h__ 2 #define __sctp_lock_bsd_h__ 3 /*- 4 * Copyright (c) 2001-2006, Cisco Systems, Inc. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * a) Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * b) Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in 14 * the documentation and/or other materials provided with the distribution. 15 * 16 * c) Neither the name of Cisco Systems, Inc. nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * General locking concepts: The goal of our locking is to of course provide 35 * consistency and yet minimize overhead. We will attempt to use 36 * non-recursive locks which are supposed to be quite inexpensive. Now in 37 * order to do this the goal is that most functions are not aware of locking. 38 * Once we have a TCB we lock it and unlock when we are through. This means 39 * that the TCB lock is kind-of a "global" lock when working on an 40 * association. Caution must be used when asserting a TCB_LOCK since if we 41 * recurse we deadlock. 42 * 43 * Most other locks (INP and INFO) attempt to localize the locking i.e. we try 44 * to contain the lock and unlock within the function that needs to lock it. 45 * This sometimes mean we do extra locks and unlocks and lose a bit of 46 * efficency, but if the performance statements about non-recursive locks are 47 * true this should not be a problem. One issue that arises with this only 48 * lock when needed is that if an implicit association setup is done we have 49 * a problem. If at the time I lookup an association I have NULL in the tcb 50 * return, by the time I call to create the association some other processor 51 * could have created it. This is what the CREATE lock on the endpoint. 52 * Places where we will be implicitly creating the association OR just 53 * creating an association (the connect call) will assert the CREATE_INP 54 * lock. This will assure us that during all the lookup of INP and INFO if 55 * another creator is also locking/looking up we can gate the two to 56 * synchronize. So the CREATE_INP lock is also another one we must use 57 * extreme caution in locking to make sure we don't hit a re-entrancy issue. 58 * 59 * For non FreeBSD 5.x we provide a bunch of EMPTY lock macros so we can 60 * blatantly put locks everywhere and they reduce to nothing on 61 * NetBSD/OpenBSD and FreeBSD 4.x 62 * 63 */ 64 65 /* 66 * When working with the global SCTP lists we lock and unlock the INP_INFO 67 * lock. So when we go to lookup an association we will want to do a 68 * SCTP_INP_INFO_RLOCK() and then when we want to add a new association to 69 * the sctppcbinfo list's we will do a SCTP_INP_INFO_WLOCK(). 70 */ 71 #include <sys/cdefs.h> 72 __FBSDID("$FreeBSD$"); 73 74 #define SCTP_IPI_COUNT_INIT() 75 76 #define SCTP_STATLOG_INIT_LOCK() 77 #define SCTP_STATLOG_LOCK() 78 #define SCTP_STATLOG_UNLOCK() 79 #define SCTP_STATLOG_DESTROY() 80 81 #define SCTP_STATLOG_GETREF(x) { \ 82 x = atomic_fetchadd_int(&global_sctp_cwnd_log_at, 1); \ 83 if(x == SCTP_STAT_LOG_SIZE) { \ 84 global_sctp_cwnd_log_at = 1; \ 85 x = 0; \ 86 global_sctp_cwnd_log_rolled = 1; \ 87 } \ 88 } 89 90 #define SCTP_INP_INFO_LOCK_INIT() \ 91 mtx_init(&sctppcbinfo.ipi_ep_mtx, "sctp-info", "inp_info", MTX_DEF) 92 93 94 #define SCTP_INP_INFO_RLOCK() do { \ 95 mtx_lock(&sctppcbinfo.ipi_ep_mtx); \ 96 } while (0) 97 98 99 #define SCTP_INP_INFO_WLOCK() do { \ 100 mtx_lock(&sctppcbinfo.ipi_ep_mtx); \ 101 } while (0) 102 103 104 105 #define SCTP_IPI_ADDR_INIT() \ 106 mtx_init(&sctppcbinfo.ipi_addr_mtx, "sctp-addr-wq", "sctp_addr_wq", MTX_DEF) 107 108 #define SCTP_IPI_ADDR_DESTROY() \ 109 mtx_destroy(&sctppcbinfo.ipi_addr_mtx) 110 111 #define SCTP_IPI_ADDR_LOCK() do { \ 112 mtx_lock(&sctppcbinfo.ipi_addr_mtx); \ 113 } while (0) 114 115 #define SCTP_IPI_ADDR_UNLOCK() mtx_unlock(&sctppcbinfo.ipi_addr_mtx) 116 117 #define SCTP_INP_INFO_RUNLOCK() mtx_unlock(&sctppcbinfo.ipi_ep_mtx) 118 #define SCTP_INP_INFO_WUNLOCK() mtx_unlock(&sctppcbinfo.ipi_ep_mtx) 119 120 /* 121 * The INP locks we will use for locking an SCTP endpoint, so for example if 122 * we want to change something at the endpoint level for example random_store 123 * or cookie secrets we lock the INP level. 124 */ 125 126 #define SCTP_INP_READ_INIT(_inp) \ 127 mtx_init(&(_inp)->inp_rdata_mtx, "sctp-read", "inpr", MTX_DEF | MTX_DUPOK) 128 129 #define SCTP_INP_READ_DESTROY(_inp) \ 130 mtx_destroy(&(_inp)->inp_rdata_mtx) 131 132 #define SCTP_INP_READ_LOCK(_inp) do { \ 133 mtx_lock(&(_inp)->inp_rdata_mtx); \ 134 } while (0) 135 136 137 #define SCTP_INP_READ_UNLOCK(_inp) mtx_unlock(&(_inp)->inp_rdata_mtx) 138 139 140 #define SCTP_INP_LOCK_INIT(_inp) \ 141 mtx_init(&(_inp)->inp_mtx, "sctp-inp", "inp", MTX_DEF | MTX_DUPOK) 142 #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) \ 143 mtx_init(&(_inp)->inp_create_mtx, "sctp-create", "inp_create", \ 144 MTX_DEF | MTX_DUPOK) 145 146 #define SCTP_INP_LOCK_DESTROY(_inp) \ 147 mtx_destroy(&(_inp)->inp_mtx) 148 149 #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) \ 150 mtx_destroy(&(_inp)->inp_create_mtx) 151 152 153 #ifdef SCTP_LOCK_LOGGING 154 #define SCTP_INP_RLOCK(_inp) do { \ 155 sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_INP);\ 156 mtx_lock(&(_inp)->inp_mtx); \ 157 } while (0) 158 159 #define SCTP_INP_WLOCK(_inp) do { \ 160 sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_INP);\ 161 mtx_lock(&(_inp)->inp_mtx); \ 162 } while (0) 163 164 #else 165 166 #define SCTP_INP_RLOCK(_inp) do { \ 167 mtx_lock(&(_inp)->inp_mtx); \ 168 } while (0) 169 170 #define SCTP_INP_WLOCK(_inp) do { \ 171 mtx_lock(&(_inp)->inp_mtx); \ 172 } while (0) 173 174 #endif 175 176 177 #define SCTP_TCB_SEND_LOCK_INIT(_tcb) \ 178 mtx_init(&(_tcb)->tcb_send_mtx, "sctp-send-tcb", "tcbs", MTX_DEF | MTX_DUPOK) 179 180 #define SCTP_TCB_SEND_LOCK_DESTROY(_tcb) mtx_destroy(&(_tcb)->tcb_send_mtx) 181 182 #define SCTP_TCB_SEND_LOCK(_tcb) do { \ 183 mtx_lock(&(_tcb)->tcb_send_mtx); \ 184 } while (0) 185 186 #define SCTP_TCB_SEND_UNLOCK(_tcb) mtx_unlock(&(_tcb)->tcb_send_mtx) 187 188 189 #define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1) 190 #define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1) 191 192 #ifdef SCTP_LOCK_LOGGING 193 #define SCTP_ASOC_CREATE_LOCK(_inp) \ 194 do { \ 195 sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_CREATE); \ 196 mtx_lock(&(_inp)->inp_create_mtx); \ 197 } while (0) 198 #else 199 200 #define SCTP_ASOC_CREATE_LOCK(_inp) \ 201 do { \ 202 mtx_lock(&(_inp)->inp_create_mtx); \ 203 } while (0) 204 #endif 205 206 #define SCTP_INP_RUNLOCK(_inp) mtx_unlock(&(_inp)->inp_mtx) 207 #define SCTP_INP_WUNLOCK(_inp) mtx_unlock(&(_inp)->inp_mtx) 208 #define SCTP_ASOC_CREATE_UNLOCK(_inp) mtx_unlock(&(_inp)->inp_create_mtx) 209 210 /* 211 * For the majority of things (once we have found the association) we will 212 * lock the actual association mutex. This will protect all the assoiciation 213 * level queues and streams and such. We will need to lock the socket layer 214 * when we stuff data up into the receiving sb_mb. I.e. we will need to do an 215 * extra SOCKBUF_LOCK(&so->so_rcv) even though the association is locked. 216 */ 217 218 #define SCTP_TCB_LOCK_INIT(_tcb) \ 219 mtx_init(&(_tcb)->tcb_mtx, "sctp-tcb", "tcb", MTX_DEF | MTX_DUPOK) 220 221 #define SCTP_TCB_LOCK_DESTROY(_tcb) mtx_destroy(&(_tcb)->tcb_mtx) 222 223 #ifdef SCTP_LOCK_LOGGING 224 #define SCTP_TCB_LOCK(_tcb) do { \ 225 sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB); \ 226 mtx_lock(&(_tcb)->tcb_mtx); \ 227 } while (0) 228 229 #else 230 #define SCTP_TCB_LOCK(_tcb) do { \ 231 mtx_lock(&(_tcb)->tcb_mtx); \ 232 } while (0) 233 234 #endif 235 236 237 #define SCTP_TCB_TRYLOCK(_tcb) mtx_trylock(&(_tcb)->tcb_mtx) 238 239 #define SCTP_TCB_UNLOCK(_tcb) mtx_unlock(&(_tcb)->tcb_mtx) 240 241 #define SCTP_TCB_UNLOCK_IFOWNED(_tcb) do { \ 242 if (mtx_owned(&(_tcb)->tcb_mtx)) \ 243 mtx_unlock(&(_tcb)->tcb_mtx); \ 244 } while (0) 245 246 247 248 #ifdef INVARIANTS 249 #define SCTP_TCB_LOCK_ASSERT(_tcb) do { \ 250 if (mtx_owned(&(_tcb)->tcb_mtx) == 0) \ 251 panic("Don't own TCB lock"); \ 252 } while (0) 253 #else 254 #define SCTP_TCB_LOCK_ASSERT(_tcb) 255 #endif 256 257 #define SCTP_ITERATOR_LOCK_INIT() \ 258 mtx_init(&sctppcbinfo.it_mtx, "sctp-it", "iterator", MTX_DEF) 259 260 #ifdef INVARIANTS 261 #define SCTP_ITERATOR_LOCK() \ 262 do { \ 263 if (mtx_owned(&sctppcbinfo.it_mtx)) \ 264 panic("Iterator Lock"); \ 265 mtx_lock(&sctppcbinfo.it_mtx); \ 266 } while (0) 267 #else 268 #define SCTP_ITERATOR_LOCK() \ 269 do { \ 270 mtx_lock(&sctppcbinfo.it_mtx); \ 271 } while (0) 272 273 #endif 274 275 #define SCTP_ITERATOR_UNLOCK() mtx_unlock(&sctppcbinfo.it_mtx) 276 #define SCTP_ITERATOR_LOCK_DESTROY() mtx_destroy(&sctppcbinfo.it_mtx) 277 278 279 #define SCTP_INCR_EP_COUNT() \ 280 do { \ 281 atomic_add_int(&sctppcbinfo.ipi_count_ep, 1); \ 282 } while (0) 283 284 #define SCTP_DECR_EP_COUNT() \ 285 do { \ 286 atomic_add_int(&sctppcbinfo.ipi_count_ep,-1); \ 287 } while (0) 288 289 #define SCTP_INCR_ASOC_COUNT() \ 290 do { \ 291 atomic_add_int(&sctppcbinfo.ipi_count_asoc, 1); \ 292 } while (0) 293 294 #define SCTP_DECR_ASOC_COUNT() \ 295 do { \ 296 atomic_add_int(&sctppcbinfo.ipi_count_asoc, -1); \ 297 } while (0) 298 299 #define SCTP_INCR_LADDR_COUNT() \ 300 do { \ 301 atomic_add_int(&sctppcbinfo.ipi_count_laddr, 1); \ 302 } while (0) 303 304 #define SCTP_DECR_LADDR_COUNT() \ 305 do { \ 306 atomic_add_int(&sctppcbinfo.ipi_count_laddr, -1); \ 307 } while (0) 308 309 #define SCTP_INCR_RADDR_COUNT() \ 310 do { \ 311 atomic_add_int(&sctppcbinfo.ipi_count_raddr,1); \ 312 } while (0) 313 314 #define SCTP_DECR_RADDR_COUNT() \ 315 do { \ 316 atomic_add_int(&sctppcbinfo.ipi_count_raddr,-1); \ 317 } while (0) 318 319 #define SCTP_INCR_CHK_COUNT() \ 320 do { \ 321 atomic_add_int(&sctppcbinfo.ipi_count_chunk, 1); \ 322 } while (0) 323 324 #define SCTP_DECR_CHK_COUNT() \ 325 do { \ 326 if(sctppcbinfo.ipi_count_chunk == 0) \ 327 panic("chunk count to 0?"); \ 328 atomic_add_int(&sctppcbinfo.ipi_count_chunk,-1); \ 329 } while (0) 330 331 #define SCTP_INCR_READQ_COUNT() \ 332 do { \ 333 atomic_add_int(&sctppcbinfo.ipi_count_readq,1); \ 334 } while (0) 335 336 #define SCTP_DECR_READQ_COUNT() \ 337 do { \ 338 atomic_add_int(&sctppcbinfo.ipi_count_readq, -1); \ 339 } while (0) 340 341 #define SCTP_INCR_STRMOQ_COUNT() \ 342 do { \ 343 atomic_add_int(&sctppcbinfo.ipi_count_strmoq, 1); \ 344 } while (0) 345 346 #define SCTP_DECR_STRMOQ_COUNT() \ 347 do { \ 348 atomic_add_int(&sctppcbinfo.ipi_count_strmoq,-1); \ 349 } while (0) 350 351 352 353 354 355 #endif 356