xref: /freebsd/sys/netinet/sctp_lock_bsd.h (revision 57c4583f70ab9d25b3aed17f20ec7843f9673539)
1 #ifndef __sctp_lock_bsd_h__
2 #define __sctp_lock_bsd_h__
3 /*-
4  * Copyright (c) 2001-2006, Cisco Systems, Inc. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * a) Redistributions of source code must retain the above copyright notice,
10  *   this list of conditions and the following disclaimer.
11  *
12  * b) Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *   the documentation and/or other materials provided with the distribution.
15  *
16  * c) Neither the name of Cisco Systems, Inc. nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * General locking concepts: The goal of our locking is to of course provide
35  * consistency and yet minimize overhead. We will attempt to use
36  * non-recursive locks which are supposed to be quite inexpensive. Now in
37  * order to do this the goal is that most functions are not aware of locking.
38  * Once we have a TCB we lock it and unlock when we are through. This means
39  * that the TCB lock is kind-of a "global" lock when working on an
40  * association. Caution must be used when asserting a TCB_LOCK since if we
41  * recurse we deadlock.
42  *
43  * Most other locks (INP and INFO) attempt to localize the locking i.e. we try
44  * to contain the lock and unlock within the function that needs to lock it.
45  * This sometimes mean we do extra locks and unlocks and lose a bit of
46  * efficency, but if the performance statements about non-recursive locks are
47  * true this should not be a problem.  One issue that arises with this only
48  * lock when needed is that if an implicit association setup is done we have
49  * a problem. If at the time I lookup an association I have NULL in the tcb
50  * return, by the time I call to create the association some other processor
51  * could have created it. This is what the CREATE lock on the endpoint.
52  * Places where we will be implicitly creating the association OR just
53  * creating an association (the connect call) will assert the CREATE_INP
54  * lock. This will assure us that during all the lookup of INP and INFO if
55  * another creator is also locking/looking up we can gate the two to
56  * synchronize. So the CREATE_INP lock is also another one we must use
57  * extreme caution in locking to make sure we don't hit a re-entrancy issue.
58  *
59  * For non FreeBSD 5.x we provide a bunch of EMPTY lock macros so we can
60  * blatantly put locks everywhere and they reduce to nothing on
61  * NetBSD/OpenBSD and FreeBSD 4.x
62  *
63  */
64 
65 /*
66  * When working with the global SCTP lists we lock and unlock the INP_INFO
67  * lock. So when we go to lookup an association we will want to do a
68  * SCTP_INP_INFO_RLOCK() and then when we want to add a new association to
69  * the sctppcbinfo list's we will do a SCTP_INP_INFO_WLOCK().
70  */
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #define SCTP_IPI_COUNT_INIT()
75 
76 #define SCTP_STATLOG_INIT_LOCK()
77 #define SCTP_STATLOG_LOCK()
78 #define SCTP_STATLOG_UNLOCK()
79 #define SCTP_STATLOG_DESTROY()
80 
81 #define SCTP_STATLOG_GETREF(x) { \
82         x = atomic_fetchadd_int(&global_sctp_cwnd_log_at, 1); \
83         if(x == SCTP_STAT_LOG_SIZE) { \
84            global_sctp_cwnd_log_at = 1; \
85            x = 0; \
86            global_sctp_cwnd_log_rolled = 1; \
87         } \
88 }
89 
90 #define SCTP_INP_INFO_LOCK_INIT() \
91         mtx_init(&sctppcbinfo.ipi_ep_mtx, "sctp-info", "inp_info", MTX_DEF)
92 
93 
94 #define SCTP_INP_INFO_RLOCK()	do { 					\
95              mtx_lock(&sctppcbinfo.ipi_ep_mtx);                         \
96 } while (0)
97 
98 
99 #define SCTP_INP_INFO_WLOCK()	do { 					\
100              mtx_lock(&sctppcbinfo.ipi_ep_mtx);                         \
101 } while (0)
102 
103 
104 
105 #define SCTP_IPI_ADDR_INIT() \
106         mtx_init(&sctppcbinfo.ipi_addr_mtx, "sctp-addr-wq", "sctp_addr_wq", MTX_DEF)
107 
108 #define SCTP_IPI_ADDR_DESTROY() \
109 	mtx_destroy(&sctppcbinfo.ipi_addr_mtx)
110 
111 #define SCTP_IPI_ADDR_LOCK()	do { 					\
112              mtx_lock(&sctppcbinfo.ipi_addr_mtx);                         \
113 } while (0)
114 
115 #define SCTP_IPI_ADDR_UNLOCK()		mtx_unlock(&sctppcbinfo.ipi_addr_mtx)
116 
117 #define SCTP_INP_INFO_RUNLOCK()		mtx_unlock(&sctppcbinfo.ipi_ep_mtx)
118 #define SCTP_INP_INFO_WUNLOCK()		mtx_unlock(&sctppcbinfo.ipi_ep_mtx)
119 
120 /*
121  * The INP locks we will use for locking an SCTP endpoint, so for example if
122  * we want to change something at the endpoint level for example random_store
123  * or cookie secrets we lock the INP level.
124  */
125 
126 #define SCTP_INP_READ_INIT(_inp) \
127 	mtx_init(&(_inp)->inp_rdata_mtx, "sctp-read", "inpr", MTX_DEF | MTX_DUPOK)
128 
129 #define SCTP_INP_READ_DESTROY(_inp) \
130 	mtx_destroy(&(_inp)->inp_rdata_mtx)
131 
132 #define SCTP_INP_READ_LOCK(_inp)	do { \
133         mtx_lock(&(_inp)->inp_rdata_mtx);    \
134 } while (0)
135 
136 
137 #define SCTP_INP_READ_UNLOCK(_inp) mtx_unlock(&(_inp)->inp_rdata_mtx)
138 
139 
140 #define SCTP_INP_LOCK_INIT(_inp) \
141 	mtx_init(&(_inp)->inp_mtx, "sctp-inp", "inp", MTX_DEF | MTX_DUPOK)
142 #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) \
143 	mtx_init(&(_inp)->inp_create_mtx, "sctp-create", "inp_create", \
144 		 MTX_DEF | MTX_DUPOK)
145 
146 #define SCTP_INP_LOCK_DESTROY(_inp) \
147 	mtx_destroy(&(_inp)->inp_mtx)
148 
149 #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) \
150 	mtx_destroy(&(_inp)->inp_create_mtx)
151 
152 
153 #ifdef SCTP_LOCK_LOGGING
154 #define SCTP_INP_RLOCK(_inp)	do { 					\
155 	sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_INP);\
156         mtx_lock(&(_inp)->inp_mtx);                                     \
157 } while (0)
158 
159 #define SCTP_INP_WLOCK(_inp)	do { 					\
160 	sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_INP);\
161         mtx_lock(&(_inp)->inp_mtx);                                     \
162 } while (0)
163 
164 #else
165 
166 #define SCTP_INP_RLOCK(_inp)	do { 					\
167         mtx_lock(&(_inp)->inp_mtx);                                     \
168 } while (0)
169 
170 #define SCTP_INP_WLOCK(_inp)	do { 					\
171         mtx_lock(&(_inp)->inp_mtx);                                     \
172 } while (0)
173 
174 #endif
175 
176 
177 #define SCTP_TCB_SEND_LOCK_INIT(_tcb) \
178 	mtx_init(&(_tcb)->tcb_send_mtx, "sctp-send-tcb", "tcbs", MTX_DEF | MTX_DUPOK)
179 
180 #define SCTP_TCB_SEND_LOCK_DESTROY(_tcb) mtx_destroy(&(_tcb)->tcb_send_mtx)
181 
182 #define SCTP_TCB_SEND_LOCK(_tcb)  do { \
183 	mtx_lock(&(_tcb)->tcb_send_mtx); \
184 } while (0)
185 
186 #define SCTP_TCB_SEND_UNLOCK(_tcb) mtx_unlock(&(_tcb)->tcb_send_mtx)
187 
188 
189 #define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1)
190 #define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1)
191 
192 #ifdef SCTP_LOCK_LOGGING
193 #define SCTP_ASOC_CREATE_LOCK(_inp) \
194 	do {								\
195                 sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_CREATE); \
196 		mtx_lock(&(_inp)->inp_create_mtx);			\
197 	} while (0)
198 #else
199 
200 #define SCTP_ASOC_CREATE_LOCK(_inp) \
201 	do {								\
202 		mtx_lock(&(_inp)->inp_create_mtx);			\
203 	} while (0)
204 #endif
205 
206 #define SCTP_INP_RUNLOCK(_inp)		mtx_unlock(&(_inp)->inp_mtx)
207 #define SCTP_INP_WUNLOCK(_inp)		mtx_unlock(&(_inp)->inp_mtx)
208 #define SCTP_ASOC_CREATE_UNLOCK(_inp)	mtx_unlock(&(_inp)->inp_create_mtx)
209 
210 /*
211  * For the majority of things (once we have found the association) we will
212  * lock the actual association mutex. This will protect all the assoiciation
213  * level queues and streams and such. We will need to lock the socket layer
214  * when we stuff data up into the receiving sb_mb. I.e. we will need to do an
215  * extra SOCKBUF_LOCK(&so->so_rcv) even though the association is locked.
216  */
217 
218 #define SCTP_TCB_LOCK_INIT(_tcb) \
219 	mtx_init(&(_tcb)->tcb_mtx, "sctp-tcb", "tcb", MTX_DEF | MTX_DUPOK)
220 
221 #define SCTP_TCB_LOCK_DESTROY(_tcb)	mtx_destroy(&(_tcb)->tcb_mtx)
222 
223 #ifdef SCTP_LOCK_LOGGING
224 #define SCTP_TCB_LOCK(_tcb)  do {					\
225         sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB);          \
226 	mtx_lock(&(_tcb)->tcb_mtx);                                     \
227 } while (0)
228 
229 #else
230 #define SCTP_TCB_LOCK(_tcb)  do {					\
231 	mtx_lock(&(_tcb)->tcb_mtx);                                     \
232 } while (0)
233 
234 #endif
235 
236 
237 #define SCTP_TCB_TRYLOCK(_tcb) 	mtx_trylock(&(_tcb)->tcb_mtx)
238 
239 #define SCTP_TCB_UNLOCK(_tcb)		mtx_unlock(&(_tcb)->tcb_mtx)
240 
241 #define SCTP_TCB_UNLOCK_IFOWNED(_tcb)	      do { \
242                                                 if (mtx_owned(&(_tcb)->tcb_mtx)) \
243                                                      mtx_unlock(&(_tcb)->tcb_mtx); \
244                                               } while (0)
245 
246 
247 
248 #ifdef INVARIANTS
249 #define SCTP_TCB_LOCK_ASSERT(_tcb) do { \
250                             if (mtx_owned(&(_tcb)->tcb_mtx) == 0) \
251                                 panic("Don't own TCB lock"); \
252                             } while (0)
253 #else
254 #define SCTP_TCB_LOCK_ASSERT(_tcb)
255 #endif
256 
257 #define SCTP_ITERATOR_LOCK_INIT() \
258         mtx_init(&sctppcbinfo.it_mtx, "sctp-it", "iterator", MTX_DEF)
259 
260 #ifdef INVARIANTS
261 #define SCTP_ITERATOR_LOCK() \
262 	do {								\
263 		if (mtx_owned(&sctppcbinfo.it_mtx))			\
264 			panic("Iterator Lock");				\
265 		mtx_lock(&sctppcbinfo.it_mtx);				\
266 	} while (0)
267 #else
268 #define SCTP_ITERATOR_LOCK() \
269 	do {								\
270 		mtx_lock(&sctppcbinfo.it_mtx);				\
271 	} while (0)
272 
273 #endif
274 
275 #define SCTP_ITERATOR_UNLOCK()	        mtx_unlock(&sctppcbinfo.it_mtx)
276 #define SCTP_ITERATOR_LOCK_DESTROY()	mtx_destroy(&sctppcbinfo.it_mtx)
277 
278 
279 #define SCTP_INCR_EP_COUNT() \
280                 do { \
281 		       atomic_add_int(&sctppcbinfo.ipi_count_ep, 1); \
282 	        } while (0)
283 
284 #define SCTP_DECR_EP_COUNT() \
285                 do { \
286 		       atomic_add_int(&sctppcbinfo.ipi_count_ep,-1); \
287 	        } while (0)
288 
289 #define SCTP_INCR_ASOC_COUNT() \
290                 do { \
291 	               atomic_add_int(&sctppcbinfo.ipi_count_asoc, 1); \
292 	        } while (0)
293 
294 #define SCTP_DECR_ASOC_COUNT() \
295                 do { \
296 	               atomic_add_int(&sctppcbinfo.ipi_count_asoc, -1); \
297 	        } while (0)
298 
299 #define SCTP_INCR_LADDR_COUNT() \
300                 do { \
301 	               atomic_add_int(&sctppcbinfo.ipi_count_laddr, 1); \
302 	        } while (0)
303 
304 #define SCTP_DECR_LADDR_COUNT() \
305                 do { \
306 	               atomic_add_int(&sctppcbinfo.ipi_count_laddr, -1); \
307 	        } while (0)
308 
309 #define SCTP_INCR_RADDR_COUNT() \
310                 do { \
311  	               atomic_add_int(&sctppcbinfo.ipi_count_raddr,1); \
312 	        } while (0)
313 
314 #define SCTP_DECR_RADDR_COUNT() \
315                 do { \
316  	               atomic_add_int(&sctppcbinfo.ipi_count_raddr,-1); \
317 	        } while (0)
318 
319 #define SCTP_INCR_CHK_COUNT() \
320                 do { \
321   	               atomic_add_int(&sctppcbinfo.ipi_count_chunk, 1); \
322 	        } while (0)
323 
324 #define SCTP_DECR_CHK_COUNT() \
325                 do { \
326                        if(sctppcbinfo.ipi_count_chunk == 0) \
327                              panic("chunk count to 0?");    \
328   	               atomic_add_int(&sctppcbinfo.ipi_count_chunk,-1); \
329 	        } while (0)
330 
331 #define SCTP_INCR_READQ_COUNT() \
332                 do { \
333 		       atomic_add_int(&sctppcbinfo.ipi_count_readq,1); \
334 	        } while (0)
335 
336 #define SCTP_DECR_READQ_COUNT() \
337                 do { \
338 		       atomic_add_int(&sctppcbinfo.ipi_count_readq, -1); \
339 	        } while (0)
340 
341 #define SCTP_INCR_STRMOQ_COUNT() \
342                 do { \
343 		       atomic_add_int(&sctppcbinfo.ipi_count_strmoq, 1); \
344 	        } while (0)
345 
346 #define SCTP_DECR_STRMOQ_COUNT() \
347                 do { \
348 		       atomic_add_int(&sctppcbinfo.ipi_count_strmoq,-1); \
349 	        } while (0)
350 
351 
352 
353 
354 
355 #endif
356