xref: /freebsd/sys/netinet/sctp_lock_bsd.h (revision 19261079b74319502c6ffa1249920079f0f69a72)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved.
5  * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
6  * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * a) Redistributions of source code must retain the above copyright notice,
12  *   this list of conditions and the following disclaimer.
13  *
14  * b) Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *   the documentation and/or other materials provided with the distribution.
17  *
18  * c) Neither the name of Cisco Systems, Inc. nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
24  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #ifndef _NETINET_SCTP_LOCK_BSD_H_
39 #define _NETINET_SCTP_LOCK_BSD_H_
40 
41 /*
42  * General locking concepts: The goal of our locking is to of course provide
43  * consistency and yet minimize overhead. We will attempt to use
44  * non-recursive locks which are supposed to be quite inexpensive. Now in
45  * order to do this the goal is that most functions are not aware of locking.
46  * Once we have a TCB we lock it and unlock when we are through. This means
47  * that the TCB lock is kind-of a "global" lock when working on an
48  * association. Caution must be used when asserting a TCB_LOCK since if we
49  * recurse we deadlock.
50  *
51  * Most other locks (INP and INFO) attempt to localize the locking i.e. we try
52  * to contain the lock and unlock within the function that needs to lock it.
53  * This sometimes mean we do extra locks and unlocks and lose a bit of
54  * efficiency, but if the performance statements about non-recursive locks are
55  * true this should not be a problem.  One issue that arises with this only
56  * lock when needed is that if an implicit association setup is done we have
57  * a problem. If at the time I lookup an association I have NULL in the tcb
58  * return, by the time I call to create the association some other processor
59  * could have created it. This is what the CREATE lock on the endpoint.
60  * Places where we will be implicitly creating the association OR just
61  * creating an association (the connect call) will assert the CREATE_INP
62  * lock. This will assure us that during all the lookup of INP and INFO if
63  * another creator is also locking/looking up we can gate the two to
64  * synchronize. So the CREATE_INP lock is also another one we must use
65  * extreme caution in locking to make sure we don't hit a re-entrancy issue.
66  *
67  */
68 
69 /*
70  * When working with the global SCTP lists we lock and unlock the INP_INFO
71  * lock. So when we go to lookup an association we will want to do a
72  * SCTP_INP_INFO_RLOCK() and then when we want to add a new association to
73  * the SCTP_BASE_INFO() list's we will do a SCTP_INP_INFO_WLOCK().
74  */
75 
76 #define SCTP_IPI_COUNT_INIT()
77 
78 #define SCTP_STATLOG_INIT_LOCK()
79 #define SCTP_STATLOG_DESTROY()
80 #define SCTP_STATLOG_LOCK()
81 #define SCTP_STATLOG_UNLOCK()
82 
83 #define SCTP_INP_INFO_LOCK_INIT() do {					\
84 	rw_init(&SCTP_BASE_INFO(ipi_ep_mtx), "sctp-info");		\
85 } while (0)
86 
87 #define SCTP_INP_INFO_LOCK_DESTROY() do { 				\
88 	if (rw_wowned(&SCTP_BASE_INFO(ipi_ep_mtx))) {			\
89 		rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx));		\
90 	}								\
91 	rw_destroy(&SCTP_BASE_INFO(ipi_ep_mtx));			\
92 } while (0)
93 
94 #define SCTP_INP_INFO_RLOCK() do { 					\
95 	rw_rlock(&SCTP_BASE_INFO(ipi_ep_mtx));				\
96 } while (0)
97 
98 #define SCTP_INP_INFO_WLOCK() do { 					\
99 	rw_wlock(&SCTP_BASE_INFO(ipi_ep_mtx));				\
100 } while (0)
101 
102 #define SCTP_INP_INFO_RUNLOCK() do {					\
103 	rw_runlock(&SCTP_BASE_INFO(ipi_ep_mtx));			\
104 } while (0)
105 
106 #define SCTP_INP_INFO_WUNLOCK() do {					\
107 	rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx));			\
108 } while (0)
109 
110 #define SCTP_INP_INFO_LOCK_ASSERT() do {				\
111 	rw_assert(&SCTP_BASE_INFO(ipi_ep_mtx), RA_LOCKED);		\
112 } while (0)
113 
114 #define SCTP_INP_INFO_RLOCK_ASSERT() do {				\
115 	rw_assert(&SCTP_BASE_INFO(ipi_ep_mtx), RA_RLOCKED);		\
116 } while (0)
117 
118 #define SCTP_INP_INFO_WLOCK_ASSERT() do {				\
119 	rw_assert(&SCTP_BASE_INFO(ipi_ep_mtx), RA_WLOCKED);		\
120 } while (0)
121 
122 #define SCTP_MCORE_QLOCK_INIT(cpstr) do {				\
123 	mtx_init(&(cpstr)->que_mtx, "sctp-mcore_queue","queue_lock",	\
124 	         MTX_DEF | MTX_DUPOK);					\
125 } while (0)
126 
127 #define SCTP_MCORE_QDESTROY(cpstr) do {					\
128 	if (mtx_owned(&(cpstr)->core_mtx)) {				\
129 		mtx_unlock(&(cpstr)->que_mtx);				\
130 	}								\
131 	mtx_destroy(&(cpstr)->que_mtx);					\
132 } while (0)
133 
134 #define SCTP_MCORE_QLOCK(cpstr) do {					\
135 	mtx_lock(&(cpstr)->que_mtx);					\
136 } while (0)
137 
138 #define SCTP_MCORE_QUNLOCK(cpstr) do {					\
139 	mtx_unlock(&(cpstr)->que_mtx);					\
140 } while (0)
141 
142 #define SCTP_MCORE_LOCK_INIT(cpstr) do {				\
143 	mtx_init(&(cpstr)->core_mtx, "sctp-cpulck","cpu_proc_lock",	\
144 	         MTX_DEF | MTX_DUPOK);					\
145 } while (0)
146 
147 #define SCTP_MCORE_DESTROY(cpstr) do {					\
148 	if (mtx_owned(&(cpstr)->core_mtx)) {				\
149 		mtx_unlock(&(cpstr)->core_mtx);				\
150 	}								\
151 	mtx_destroy(&(cpstr)->core_mtx);				\
152 } while (0)
153 
154 #define SCTP_MCORE_LOCK(cpstr) do {					\
155 	mtx_lock(&(cpstr)->core_mtx);					\
156 } while (0)
157 
158 #define SCTP_MCORE_UNLOCK(cpstr) do {					\
159 	mtx_unlock(&(cpstr)->core_mtx);					\
160 } while (0)
161 
162 #define SCTP_IPI_ADDR_INIT() do {					\
163 	rw_init(&SCTP_BASE_INFO(ipi_addr_mtx), "sctp-addr");		\
164 } while (0)
165 
166 #define SCTP_IPI_ADDR_DESTROY() do {					\
167 	if (rw_wowned(&SCTP_BASE_INFO(ipi_addr_mtx))) {			\
168 		rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx));		\
169 	}								\
170 	rw_destroy(&SCTP_BASE_INFO(ipi_addr_mtx));			\
171 } while (0)
172 
173 #define SCTP_IPI_ADDR_RLOCK()	do { 					\
174 	rw_rlock(&SCTP_BASE_INFO(ipi_addr_mtx));			\
175 } while (0)
176 
177 #define SCTP_IPI_ADDR_WLOCK()	do { 					\
178 	rw_wlock(&SCTP_BASE_INFO(ipi_addr_mtx));			\
179 } while (0)
180 
181 #define SCTP_IPI_ADDR_RUNLOCK() do {					\
182 	rw_runlock(&SCTP_BASE_INFO(ipi_addr_mtx));			\
183 } while (0)
184 
185 #define SCTP_IPI_ADDR_WUNLOCK() do {					\
186 	rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx));			\
187 } while (0)
188 
189 #define SCTP_IPI_ADDR_LOCK_ASSERT() do {				\
190 	rw_assert(&SCTP_BASE_INFO(ipi_addr_mtx), RA_LOCKED);		\
191 } while (0)
192 
193 #define SCTP_IPI_ADDR_WLOCK_ASSERT() do {				\
194 	rw_assert(&SCTP_BASE_INFO(ipi_addr_mtx), RA_WLOCKED);		\
195 } while (0)
196 
197 #define SCTP_IPI_ITERATOR_WQ_INIT() do {				\
198 	mtx_init(&sctp_it_ctl.ipi_iterator_wq_mtx, "sctp-it-wq",	\
199 	         "sctp_it_wq", MTX_DEF);				\
200 } while (0)
201 
202 #define SCTP_IPI_ITERATOR_WQ_DESTROY() do {				\
203 	mtx_destroy(&sctp_it_ctl.ipi_iterator_wq_mtx);			\
204 } while (0)
205 
206 #define SCTP_IPI_ITERATOR_WQ_LOCK() do { 				\
207 	mtx_lock(&sctp_it_ctl.ipi_iterator_wq_mtx);			\
208 } while (0)
209 
210 #define SCTP_IPI_ITERATOR_WQ_UNLOCK() do {				\
211 	mtx_unlock(&sctp_it_ctl.ipi_iterator_wq_mtx);			\
212 } while (0)
213 
214 #define SCTP_IP_PKTLOG_INIT() do {					\
215 	mtx_init(&SCTP_BASE_INFO(ipi_pktlog_mtx), "sctp-pktlog",	\
216 	         "packetlog", MTX_DEF);					\
217 } while (0)
218 
219 #define SCTP_IP_PKTLOG_DESTROY() do {					\
220 	mtx_destroy(&SCTP_BASE_INFO(ipi_pktlog_mtx));			\
221 } while (0)
222 
223 #define SCTP_IP_PKTLOG_LOCK()	do { 					\
224 	mtx_lock(&SCTP_BASE_INFO(ipi_pktlog_mtx));			\
225 } while (0)
226 
227 #define SCTP_IP_PKTLOG_UNLOCK() do {					\
228 	mtx_unlock(&SCTP_BASE_INFO(ipi_pktlog_mtx));			\
229 } while (0)
230 
231 /*
232  * The INP locks we will use for locking an SCTP endpoint, so for example if
233  * we want to change something at the endpoint level for example random_store
234  * or cookie secrets we lock the INP level.
235  */
236 
237 #define SCTP_INP_READ_INIT(_inp) do {					\
238 	mtx_init(&(_inp)->inp_rdata_mtx, "sctp-read", "inpr",		\
239 	         MTX_DEF | MTX_DUPOK);					\
240 } while (0)
241 
242 #define SCTP_INP_READ_DESTROY(_inp) do {				\
243 	mtx_destroy(&(_inp)->inp_rdata_mtx);				\
244 } while (0)
245 
246 #define SCTP_INP_READ_LOCK(_inp) do {					\
247 	mtx_lock(&(_inp)->inp_rdata_mtx);				\
248 } while (0)
249 
250 #define SCTP_INP_READ_UNLOCK(_inp) do {					\
251 	mtx_unlock(&(_inp)->inp_rdata_mtx);				\
252 } while (0)
253 
254 #define SCTP_INP_LOCK_INIT(_inp) do {					\
255 	mtx_init(&(_inp)->inp_mtx, "sctp-inp", "inp",			\
256 	         MTX_DEF | MTX_DUPOK);					\
257 } while (0)
258 
259 #define SCTP_INP_LOCK_DESTROY(_inp) do {				\
260 	mtx_destroy(&(_inp)->inp_mtx);					\
261 } while (0)
262 
263 #define SCTP_INP_LOCK_CONTENDED(_inp)					\
264 	((_inp)->inp_mtx.mtx_lock & MTX_CONTESTED)
265 
266 #define SCTP_INP_READ_CONTENDED(_inp)					\
267 	((_inp)->inp_rdata_mtx.mtx_lock & MTX_CONTESTED)
268 
269 #ifdef SCTP_LOCK_LOGGING
270 #define SCTP_INP_RLOCK(_inp)	do { 					\
271 	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
272 		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP);		\
273 	mtx_lock(&(_inp)->inp_mtx);					\
274 } while (0)
275 
276 #define SCTP_INP_WLOCK(_inp)	do { 					\
277 	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
278 		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP);		\
279 	mtx_lock(&(_inp)->inp_mtx);					\
280 } while (0)
281 #else
282 #define SCTP_INP_RLOCK(_inp) do { 					\
283 	mtx_lock(&(_inp)->inp_mtx);					\
284 } while (0)
285 
286 #define SCTP_INP_WLOCK(_inp) do { 					\
287 	mtx_lock(&(_inp)->inp_mtx);					\
288 } while (0)
289 #endif
290 
291 #define SCTP_INP_RUNLOCK(_inp) do {					\
292 	mtx_unlock(&(_inp)->inp_mtx);					\
293 } while (0)
294 
295 #define SCTP_INP_WUNLOCK(_inp) do {					\
296 	mtx_unlock(&(_inp)->inp_mtx);					\
297 } while (0)
298 
299 #define SCTP_INP_RLOCK_ASSERT(_inp) do {				\
300 	KASSERT(mtx_owned(&(_inp)->inp_mtx),				\
301 	        ("Don't own INP read lock"));				\
302 } while (0)
303 
304 #define SCTP_INP_WLOCK_ASSERT(_inp) do {				\
305 	KASSERT(mtx_owned(&(_inp)->inp_mtx),				\
306 	        ("Don't own INP write lock"));				\
307 } while (0)
308 
309 #define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1)
310 #define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1)
311 
312 #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) do {				\
313 	mtx_init(&(_inp)->inp_create_mtx, "sctp-create", "inp_create",	\
314 		 MTX_DEF | MTX_DUPOK);					\
315 } while (0)
316 
317 #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) do {			\
318 	mtx_destroy(&(_inp)->inp_create_mtx);				\
319 } while (0)
320 
321 #ifdef SCTP_LOCK_LOGGING
322 #define SCTP_ASOC_CREATE_LOCK(_inp) do {				\
323 	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
324 		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_CREATE);	\
325 	mtx_lock(&(_inp)->inp_create_mtx);				\
326 } while (0)
327 #else
328 #define SCTP_ASOC_CREATE_LOCK(_inp) do {				\
329 	mtx_lock(&(_inp)->inp_create_mtx);				\
330 } while (0)
331 #endif
332 
333 #define SCTP_ASOC_CREATE_UNLOCK(_inp) do {				\
334 	mtx_unlock(&(_inp)->inp_create_mtx);				\
335 } while (0)
336 
337 #define SCTP_ASOC_CREATE_LOCK_CONTENDED(_inp)				\
338 	((_inp)->inp_create_mtx.mtx_lock & MTX_CONTESTED)
339 
340 #define SCTP_TCB_SEND_LOCK_INIT(_tcb) do {				\
341 	mtx_init(&(_tcb)->tcb_send_mtx, "sctp-send-tcb", "tcbs",	\
342 	         MTX_DEF | MTX_DUPOK);					\
343 } while (0)
344 
345 #define SCTP_TCB_SEND_LOCK_DESTROY(_tcb) do {				\
346 	mtx_destroy(&(_tcb)->tcb_send_mtx);				\
347 } while (0)
348 
349 #define SCTP_TCB_SEND_LOCK(_tcb) do {					\
350 	mtx_lock(&(_tcb)->tcb_send_mtx);				\
351 } while (0)
352 
353 #define SCTP_TCB_SEND_UNLOCK(_tcb) do {					\
354 	mtx_unlock(&(_tcb)->tcb_send_mtx);				\
355 } while (0)
356 
357 /*
358  * For the majority of things (once we have found the association) we will
359  * lock the actual association mutex. This will protect all the assoiciation
360  * level queues and streams and such. We will need to lock the socket layer
361  * when we stuff data up into the receiving sb_mb. I.e. we will need to do an
362  * extra SOCKBUF_LOCK(&so->so_rcv) even though the association is locked.
363  */
364 
365 #define SCTP_TCB_LOCK_INIT(_tcb) do {					\
366 	mtx_init(&(_tcb)->tcb_mtx, "sctp-tcb", "tcb",			\
367 	         MTX_DEF | MTX_DUPOK);					\
368 } while (0)
369 
370 #define SCTP_TCB_LOCK_DESTROY(_tcb) do {				\
371 	mtx_destroy(&(_tcb)->tcb_mtx);					\
372 } while (0)
373 
374 #ifdef SCTP_LOCK_LOGGING
375 #define SCTP_TCB_LOCK(_tcb) do {					\
376 	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
377 		sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB);	\
378 	mtx_lock(&(_tcb)->tcb_mtx);					\
379 } while (0)
380 #else
381 #define SCTP_TCB_LOCK(_tcb) do {					\
382 	mtx_lock(&(_tcb)->tcb_mtx);					\
383 } while (0)
384 
385 #endif
386 
387 #define SCTP_TCB_TRYLOCK(_tcb) 						\
388 	mtx_trylock(&(_tcb)->tcb_mtx)
389 
390 #define SCTP_TCB_UNLOCK(_tcb) do {					\
391 	mtx_unlock(&(_tcb)->tcb_mtx);					\
392 } while (0)
393 
394 #define SCTP_TCB_UNLOCK_IFOWNED(_tcb) do {				\
395 	if (mtx_owned(&(_tcb)->tcb_mtx))				\
396 		mtx_unlock(&(_tcb)->tcb_mtx);				\
397 } while (0)
398 
399 #define SCTP_TCB_LOCK_ASSERT(_tcb) do {					\
400 	KASSERT(mtx_owned(&(_tcb)->tcb_mtx),				\
401 	        ("Don't own TCB lock"));				\
402 } while (0)
403 
404 #define SCTP_ITERATOR_LOCK_INIT() do {					\
405 	mtx_init(&sctp_it_ctl.it_mtx, "sctp-it", "iterator", MTX_DEF);	\
406 } while (0)
407 
408 #define SCTP_ITERATOR_LOCK_DESTROY() do {				\
409 	mtx_destroy(&sctp_it_ctl.it_mtx);				\
410 } while (0)
411 
412 #define SCTP_ITERATOR_LOCK() \
413 	do {								\
414 		KASSERT(!mtx_owned(&sctp_it_ctl.it_mtx),		\
415 		        ("Own the iterator lock"));			\
416 		mtx_lock(&sctp_it_ctl.it_mtx);				\
417 	} while (0)
418 
419 #define SCTP_ITERATOR_UNLOCK() do {					\
420 	mtx_unlock(&sctp_it_ctl.it_mtx);				\
421 } while (0)
422 
423 #define SCTP_WQ_ADDR_INIT() do {					\
424 	mtx_init(&SCTP_BASE_INFO(wq_addr_mtx),				\
425 	         "sctp-addr-wq","sctp_addr_wq", MTX_DEF);		\
426 } while (0)
427 
428 #define SCTP_WQ_ADDR_DESTROY() do  {					\
429 	if (mtx_owned(&SCTP_BASE_INFO(wq_addr_mtx))) {			\
430 		mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx));		\
431 	}								\
432 	mtx_destroy(&SCTP_BASE_INFO(wq_addr_mtx)); \
433 } while (0)
434 
435 #define SCTP_WQ_ADDR_LOCK()	do {					\
436 	mtx_lock(&SCTP_BASE_INFO(wq_addr_mtx));				\
437 } while (0)
438 
439 #define SCTP_WQ_ADDR_UNLOCK() do {					\
440 		mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx));		\
441 } while (0)
442 
443 #define SCTP_WQ_ADDR_LOCK_ASSERT() do {					\
444 	KASSERT(mtx_owned(&SCTP_BASE_INFO(wq_addr_mtx)),		\
445 	        ("Don't own the ADDR-WQ lock"));			\
446 } while (0)
447 
448 #define SCTP_INCR_EP_COUNT() do {					\
449 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_ep), 1);		\
450 } while (0)
451 
452 #define SCTP_DECR_EP_COUNT() do {					\
453 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ep), 1);		\
454 } while (0)
455 
456 #define SCTP_INCR_ASOC_COUNT() do {					\
457 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_asoc), 1);		\
458 } while (0)
459 
460 #define SCTP_DECR_ASOC_COUNT() do {					\
461 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_asoc), 1);	\
462 } while (0)
463 
464 #define SCTP_INCR_LADDR_COUNT() do {					\
465 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_laddr), 1);		\
466 } while (0)
467 
468 #define SCTP_DECR_LADDR_COUNT() do {					\
469 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_laddr), 1); 	\
470 } while (0)
471 
472 #define SCTP_INCR_RADDR_COUNT() do {					\
473 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_raddr), 1);		\
474 } while (0)
475 
476 #define SCTP_DECR_RADDR_COUNT() do {					\
477 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_raddr),1);	\
478 } while (0)
479 
480 #define SCTP_INCR_CHK_COUNT() do {					\
481 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_chunk), 1);		\
482 } while (0)
483 
484 #define SCTP_DECR_CHK_COUNT() do {					\
485 	KASSERT(SCTP_BASE_INFO(ipi_count_chunk) > 0,			\
486 	        ("ipi_count_chunk would become negative"));		\
487 	if (SCTP_BASE_INFO(ipi_count_chunk) != 0)			\
488 		atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_chunk),	\
489 		                    1);					\
490 } while (0)
491 
492 #define SCTP_INCR_READQ_COUNT() do {					\
493 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_readq), 1);		\
494 } while (0)
495 
496 #define SCTP_DECR_READQ_COUNT() do {					\
497 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_readq), 1);	\
498 } while (0)
499 
500 #define SCTP_INCR_STRMOQ_COUNT() do {					\
501 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1);		\
502 } while (0)
503 
504 #define SCTP_DECR_STRMOQ_COUNT() do {					\
505 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1);	\
506 } while (0)
507 
508 #if defined(SCTP_SO_LOCK_TESTING)
509 #define SCTP_INP_SO(sctpinp)						\
510 	(sctpinp)->ip_inp.inp.inp_socket
511 #define SCTP_SOCKET_LOCK(so, refcnt)
512 #define SCTP_SOCKET_UNLOCK(so, refcnt)
513 #endif
514 
515 #endif
516