1 /*- 2 * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. 3 * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. 4 * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * a) Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * b) Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in 14 * the documentation and/or other materials provided with the distribution. 15 * 16 * c) Neither the name of Cisco Systems, Inc. nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #ifndef _NETINET_SCTP_LOCK_BSD_H_ 37 #define _NETINET_SCTP_LOCK_BSD_H_ 38 39 /* 40 * General locking concepts: The goal of our locking is to of course provide 41 * consistency and yet minimize overhead. We will attempt to use 42 * non-recursive locks which are supposed to be quite inexpensive. Now in 43 * order to do this the goal is that most functions are not aware of locking. 44 * Once we have a TCB we lock it and unlock when we are through. This means 45 * that the TCB lock is kind-of a "global" lock when working on an 46 * association. Caution must be used when asserting a TCB_LOCK since if we 47 * recurse we deadlock. 48 * 49 * Most other locks (INP and INFO) attempt to localize the locking i.e. we try 50 * to contain the lock and unlock within the function that needs to lock it. 51 * This sometimes mean we do extra locks and unlocks and lose a bit of 52 * efficency, but if the performance statements about non-recursive locks are 53 * true this should not be a problem. One issue that arises with this only 54 * lock when needed is that if an implicit association setup is done we have 55 * a problem. If at the time I lookup an association I have NULL in the tcb 56 * return, by the time I call to create the association some other processor 57 * could have created it. This is what the CREATE lock on the endpoint. 58 * Places where we will be implicitly creating the association OR just 59 * creating an association (the connect call) will assert the CREATE_INP 60 * lock. This will assure us that during all the lookup of INP and INFO if 61 * another creator is also locking/looking up we can gate the two to 62 * synchronize. So the CREATE_INP lock is also another one we must use 63 * extreme caution in locking to make sure we don't hit a re-entrancy issue. 64 * 65 * For non FreeBSD 5.x we provide a bunch of EMPTY lock macros so we can 66 * blatantly put locks everywhere and they reduce to nothing on 67 * NetBSD/OpenBSD and FreeBSD 4.x 68 * 69 */ 70 71 /* 72 * When working with the global SCTP lists we lock and unlock the INP_INFO 73 * lock. So when we go to lookup an association we will want to do a 74 * SCTP_INP_INFO_RLOCK() and then when we want to add a new association to 75 * the SCTP_BASE_INFO() list's we will do a SCTP_INP_INFO_WLOCK(). 76 */ 77 78 extern struct sctp_foo_stuff sctp_logoff[]; 79 extern int sctp_logoff_stuff; 80 81 #define SCTP_IPI_COUNT_INIT() 82 83 #define SCTP_STATLOG_INIT_LOCK() 84 #define SCTP_STATLOG_LOCK() 85 #define SCTP_STATLOG_UNLOCK() 86 #define SCTP_STATLOG_DESTROY() 87 88 #define SCTP_INP_INFO_LOCK_DESTROY() do { \ 89 if(rw_wowned(&SCTP_BASE_INFO(ipi_ep_mtx))) { \ 90 rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx)); \ 91 } \ 92 rw_destroy(&SCTP_BASE_INFO(ipi_ep_mtx)); \ 93 } while (0) 94 95 #define SCTP_INP_INFO_LOCK_INIT() \ 96 rw_init(&SCTP_BASE_INFO(ipi_ep_mtx), "sctp-info"); 97 98 99 #define SCTP_INP_INFO_RLOCK() do { \ 100 rw_rlock(&SCTP_BASE_INFO(ipi_ep_mtx)); \ 101 } while (0) 102 103 #define SCTP_MCORE_QLOCK_INIT(cpstr) do { \ 104 mtx_init(&(cpstr)->que_mtx, \ 105 "sctp-mcore_queue","queue_lock", \ 106 MTX_DEF|MTX_DUPOK); \ 107 } while (0) 108 109 #define SCTP_MCORE_QLOCK(cpstr) do { \ 110 mtx_lock(&(cpstr)->que_mtx); \ 111 } while (0) 112 113 #define SCTP_MCORE_QUNLOCK(cpstr) do { \ 114 mtx_unlock(&(cpstr)->que_mtx); \ 115 } while (0) 116 117 #define SCTP_MCORE_QDESTROY(cpstr) do { \ 118 if(mtx_owned(&(cpstr)->core_mtx)) { \ 119 mtx_unlock(&(cpstr)->que_mtx); \ 120 } \ 121 mtx_destroy(&(cpstr)->que_mtx); \ 122 } while (0) 123 124 125 #define SCTP_MCORE_LOCK_INIT(cpstr) do { \ 126 mtx_init(&(cpstr)->core_mtx, \ 127 "sctp-cpulck","cpu_proc_lock", \ 128 MTX_DEF|MTX_DUPOK); \ 129 } while (0) 130 131 #define SCTP_MCORE_LOCK(cpstr) do { \ 132 mtx_lock(&(cpstr)->core_mtx); \ 133 } while (0) 134 135 #define SCTP_MCORE_UNLOCK(cpstr) do { \ 136 mtx_unlock(&(cpstr)->core_mtx); \ 137 } while (0) 138 139 #define SCTP_MCORE_DESTROY(cpstr) do { \ 140 if(mtx_owned(&(cpstr)->core_mtx)) { \ 141 mtx_unlock(&(cpstr)->core_mtx); \ 142 } \ 143 mtx_destroy(&(cpstr)->core_mtx); \ 144 } while (0) 145 146 #define SCTP_INP_INFO_WLOCK() do { \ 147 rw_wlock(&SCTP_BASE_INFO(ipi_ep_mtx)); \ 148 } while (0) 149 150 151 #define SCTP_INP_INFO_RUNLOCK() rw_runlock(&SCTP_BASE_INFO(ipi_ep_mtx)) 152 #define SCTP_INP_INFO_WUNLOCK() rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx)) 153 154 155 #define SCTP_IPI_ADDR_INIT() \ 156 rw_init(&SCTP_BASE_INFO(ipi_addr_mtx), "sctp-addr") 157 #define SCTP_IPI_ADDR_DESTROY() do { \ 158 if(rw_wowned(&SCTP_BASE_INFO(ipi_addr_mtx))) { \ 159 rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx)); \ 160 } \ 161 rw_destroy(&SCTP_BASE_INFO(ipi_addr_mtx)); \ 162 } while (0) 163 #define SCTP_IPI_ADDR_RLOCK() do { \ 164 rw_rlock(&SCTP_BASE_INFO(ipi_addr_mtx)); \ 165 } while (0) 166 #define SCTP_IPI_ADDR_WLOCK() do { \ 167 rw_wlock(&SCTP_BASE_INFO(ipi_addr_mtx)); \ 168 } while (0) 169 170 #define SCTP_IPI_ADDR_RUNLOCK() rw_runlock(&SCTP_BASE_INFO(ipi_addr_mtx)) 171 #define SCTP_IPI_ADDR_WUNLOCK() rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx)) 172 173 174 #define SCTP_IPI_ITERATOR_WQ_INIT() \ 175 mtx_init(&sctp_it_ctl.ipi_iterator_wq_mtx, "sctp-it-wq", "sctp_it_wq", MTX_DEF) 176 177 #define SCTP_IPI_ITERATOR_WQ_DESTROY() \ 178 mtx_destroy(&sctp_it_ctl.ipi_iterator_wq_mtx) 179 180 #define SCTP_IPI_ITERATOR_WQ_LOCK() do { \ 181 mtx_lock(&sctp_it_ctl.ipi_iterator_wq_mtx); \ 182 } while (0) 183 184 #define SCTP_IPI_ITERATOR_WQ_UNLOCK() mtx_unlock(&sctp_it_ctl.ipi_iterator_wq_mtx) 185 186 187 #define SCTP_IP_PKTLOG_INIT() \ 188 mtx_init(&SCTP_BASE_INFO(ipi_pktlog_mtx), "sctp-pktlog", "packetlog", MTX_DEF) 189 190 191 #define SCTP_IP_PKTLOG_LOCK() do { \ 192 mtx_lock(&SCTP_BASE_INFO(ipi_pktlog_mtx)); \ 193 } while (0) 194 195 #define SCTP_IP_PKTLOG_UNLOCK() mtx_unlock(&SCTP_BASE_INFO(ipi_pktlog_mtx)) 196 197 #define SCTP_IP_PKTLOG_DESTROY() \ 198 mtx_destroy(&SCTP_BASE_INFO(ipi_pktlog_mtx)) 199 200 201 202 203 204 /* 205 * The INP locks we will use for locking an SCTP endpoint, so for example if 206 * we want to change something at the endpoint level for example random_store 207 * or cookie secrets we lock the INP level. 208 */ 209 210 #define SCTP_INP_READ_INIT(_inp) \ 211 mtx_init(&(_inp)->inp_rdata_mtx, "sctp-read", "inpr", MTX_DEF | MTX_DUPOK) 212 213 #define SCTP_INP_READ_DESTROY(_inp) \ 214 mtx_destroy(&(_inp)->inp_rdata_mtx) 215 216 #define SCTP_INP_READ_LOCK(_inp) do { \ 217 mtx_lock(&(_inp)->inp_rdata_mtx); \ 218 } while (0) 219 220 221 #define SCTP_INP_READ_UNLOCK(_inp) mtx_unlock(&(_inp)->inp_rdata_mtx) 222 223 224 #define SCTP_INP_LOCK_INIT(_inp) \ 225 mtx_init(&(_inp)->inp_mtx, "sctp-inp", "inp", MTX_DEF | MTX_DUPOK) 226 #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) \ 227 mtx_init(&(_inp)->inp_create_mtx, "sctp-create", "inp_create", \ 228 MTX_DEF | MTX_DUPOK) 229 230 #define SCTP_INP_LOCK_DESTROY(_inp) \ 231 mtx_destroy(&(_inp)->inp_mtx) 232 233 #define SCTP_INP_LOCK_CONTENDED(_inp) ((_inp)->inp_mtx.mtx_lock & MTX_CONTESTED) 234 235 #define SCTP_INP_READ_CONTENDED(_inp) ((_inp)->inp_rdata_mtx.mtx_lock & MTX_CONTESTED) 236 237 #define SCTP_ASOC_CREATE_LOCK_CONTENDED(_inp) ((_inp)->inp_create_mtx.mtx_lock & MTX_CONTESTED) 238 239 240 #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) \ 241 mtx_destroy(&(_inp)->inp_create_mtx) 242 243 244 #ifdef SCTP_LOCK_LOGGING 245 #define SCTP_INP_RLOCK(_inp) do { \ 246 if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_INP);\ 247 mtx_lock(&(_inp)->inp_mtx); \ 248 } while (0) 249 250 #define SCTP_INP_WLOCK(_inp) do { \ 251 if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_INP);\ 252 mtx_lock(&(_inp)->inp_mtx); \ 253 } while (0) 254 255 #else 256 257 #define SCTP_INP_RLOCK(_inp) do { \ 258 mtx_lock(&(_inp)->inp_mtx); \ 259 } while (0) 260 261 #define SCTP_INP_WLOCK(_inp) do { \ 262 mtx_lock(&(_inp)->inp_mtx); \ 263 } while (0) 264 265 #endif 266 267 268 #define SCTP_TCB_SEND_LOCK_INIT(_tcb) \ 269 mtx_init(&(_tcb)->tcb_send_mtx, "sctp-send-tcb", "tcbs", MTX_DEF | MTX_DUPOK) 270 271 #define SCTP_TCB_SEND_LOCK_DESTROY(_tcb) mtx_destroy(&(_tcb)->tcb_send_mtx) 272 273 #define SCTP_TCB_SEND_LOCK(_tcb) do { \ 274 mtx_lock(&(_tcb)->tcb_send_mtx); \ 275 } while (0) 276 277 #define SCTP_TCB_SEND_UNLOCK(_tcb) mtx_unlock(&(_tcb)->tcb_send_mtx) 278 279 #define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1) 280 #define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1) 281 282 283 #ifdef SCTP_LOCK_LOGGING 284 #define SCTP_ASOC_CREATE_LOCK(_inp) \ 285 do { \ 286 if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_CREATE); \ 287 mtx_lock(&(_inp)->inp_create_mtx); \ 288 } while (0) 289 #else 290 291 #define SCTP_ASOC_CREATE_LOCK(_inp) \ 292 do { \ 293 mtx_lock(&(_inp)->inp_create_mtx); \ 294 } while (0) 295 #endif 296 297 #define SCTP_INP_RUNLOCK(_inp) mtx_unlock(&(_inp)->inp_mtx) 298 #define SCTP_INP_WUNLOCK(_inp) mtx_unlock(&(_inp)->inp_mtx) 299 #define SCTP_ASOC_CREATE_UNLOCK(_inp) mtx_unlock(&(_inp)->inp_create_mtx) 300 301 /* 302 * For the majority of things (once we have found the association) we will 303 * lock the actual association mutex. This will protect all the assoiciation 304 * level queues and streams and such. We will need to lock the socket layer 305 * when we stuff data up into the receiving sb_mb. I.e. we will need to do an 306 * extra SOCKBUF_LOCK(&so->so_rcv) even though the association is locked. 307 */ 308 309 #define SCTP_TCB_LOCK_INIT(_tcb) \ 310 mtx_init(&(_tcb)->tcb_mtx, "sctp-tcb", "tcb", MTX_DEF | MTX_DUPOK) 311 312 #define SCTP_TCB_LOCK_DESTROY(_tcb) mtx_destroy(&(_tcb)->tcb_mtx) 313 314 #ifdef SCTP_LOCK_LOGGING 315 #define SCTP_TCB_LOCK(_tcb) do { \ 316 if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB); \ 317 mtx_lock(&(_tcb)->tcb_mtx); \ 318 } while (0) 319 320 #else 321 #define SCTP_TCB_LOCK(_tcb) do { \ 322 mtx_lock(&(_tcb)->tcb_mtx); \ 323 } while (0) 324 325 #endif 326 327 328 #define SCTP_TCB_TRYLOCK(_tcb) mtx_trylock(&(_tcb)->tcb_mtx) 329 330 #define SCTP_TCB_UNLOCK(_tcb) mtx_unlock(&(_tcb)->tcb_mtx) 331 332 #define SCTP_TCB_UNLOCK_IFOWNED(_tcb) do { \ 333 if (mtx_owned(&(_tcb)->tcb_mtx)) \ 334 mtx_unlock(&(_tcb)->tcb_mtx); \ 335 } while (0) 336 337 338 339 #ifdef INVARIANTS 340 #define SCTP_TCB_LOCK_ASSERT(_tcb) do { \ 341 if (mtx_owned(&(_tcb)->tcb_mtx) == 0) \ 342 panic("Don't own TCB lock"); \ 343 } while (0) 344 #else 345 #define SCTP_TCB_LOCK_ASSERT(_tcb) 346 #endif 347 348 #define SCTP_ITERATOR_LOCK_INIT() \ 349 mtx_init(&sctp_it_ctl.it_mtx, "sctp-it", "iterator", MTX_DEF) 350 351 #ifdef INVARIANTS 352 #define SCTP_ITERATOR_LOCK() \ 353 do { \ 354 if (mtx_owned(&sctp_it_ctl.it_mtx)) \ 355 panic("Iterator Lock"); \ 356 mtx_lock(&sctp_it_ctl.it_mtx); \ 357 } while (0) 358 #else 359 #define SCTP_ITERATOR_LOCK() \ 360 do { \ 361 mtx_lock(&sctp_it_ctl.it_mtx); \ 362 } while (0) 363 364 #endif 365 366 #define SCTP_ITERATOR_UNLOCK() mtx_unlock(&sctp_it_ctl.it_mtx) 367 #define SCTP_ITERATOR_LOCK_DESTROY() mtx_destroy(&sctp_it_ctl.it_mtx) 368 369 370 #define SCTP_WQ_ADDR_INIT() do { \ 371 mtx_init(&SCTP_BASE_INFO(wq_addr_mtx), "sctp-addr-wq","sctp_addr_wq",MTX_DEF); \ 372 } while (0) 373 374 #define SCTP_WQ_ADDR_DESTROY() do { \ 375 if(mtx_owned(&SCTP_BASE_INFO(wq_addr_mtx))) { \ 376 mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx)); \ 377 } \ 378 mtx_destroy(&SCTP_BASE_INFO(wq_addr_mtx)); \ 379 } while (0) 380 381 #define SCTP_WQ_ADDR_LOCK() do { \ 382 mtx_lock(&SCTP_BASE_INFO(wq_addr_mtx)); \ 383 } while (0) 384 #define SCTP_WQ_ADDR_UNLOCK() do { \ 385 mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx)); \ 386 } while (0) 387 388 389 390 #define SCTP_INCR_EP_COUNT() \ 391 do { \ 392 atomic_add_int(&SCTP_BASE_INFO(ipi_count_ep), 1); \ 393 } while (0) 394 395 #define SCTP_DECR_EP_COUNT() \ 396 do { \ 397 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ep), 1); \ 398 } while (0) 399 400 #define SCTP_INCR_ASOC_COUNT() \ 401 do { \ 402 atomic_add_int(&SCTP_BASE_INFO(ipi_count_asoc), 1); \ 403 } while (0) 404 405 #define SCTP_DECR_ASOC_COUNT() \ 406 do { \ 407 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_asoc), 1); \ 408 } while (0) 409 410 #define SCTP_INCR_LADDR_COUNT() \ 411 do { \ 412 atomic_add_int(&SCTP_BASE_INFO(ipi_count_laddr), 1); \ 413 } while (0) 414 415 #define SCTP_DECR_LADDR_COUNT() \ 416 do { \ 417 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_laddr), 1); \ 418 } while (0) 419 420 #define SCTP_INCR_RADDR_COUNT() \ 421 do { \ 422 atomic_add_int(&SCTP_BASE_INFO(ipi_count_raddr), 1); \ 423 } while (0) 424 425 #define SCTP_DECR_RADDR_COUNT() \ 426 do { \ 427 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_raddr),1); \ 428 } while (0) 429 430 #define SCTP_INCR_CHK_COUNT() \ 431 do { \ 432 atomic_add_int(&SCTP_BASE_INFO(ipi_count_chunk), 1); \ 433 } while (0) 434 #ifdef INVARIANTS 435 #define SCTP_DECR_CHK_COUNT() \ 436 do { \ 437 if(SCTP_BASE_INFO(ipi_count_chunk) == 0) \ 438 panic("chunk count to 0?"); \ 439 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_chunk), 1); \ 440 } while (0) 441 #else 442 #define SCTP_DECR_CHK_COUNT() \ 443 do { \ 444 if(SCTP_BASE_INFO(ipi_count_chunk) != 0) \ 445 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_chunk), 1); \ 446 } while (0) 447 #endif 448 #define SCTP_INCR_READQ_COUNT() \ 449 do { \ 450 atomic_add_int(&SCTP_BASE_INFO(ipi_count_readq),1); \ 451 } while (0) 452 453 #define SCTP_DECR_READQ_COUNT() \ 454 do { \ 455 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_readq), 1); \ 456 } while (0) 457 458 #define SCTP_INCR_STRMOQ_COUNT() \ 459 do { \ 460 atomic_add_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1); \ 461 } while (0) 462 463 #define SCTP_DECR_STRMOQ_COUNT() \ 464 do { \ 465 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1); \ 466 } while (0) 467 468 469 #if defined(SCTP_SO_LOCK_TESTING) 470 #define SCTP_INP_SO(sctpinp) (sctpinp)->ip_inp.inp.inp_socket 471 #define SCTP_SOCKET_LOCK(so, refcnt) 472 #define SCTP_SOCKET_UNLOCK(so, refcnt) 473 #endif 474 475 #endif 476