xref: /freebsd/sys/netinet/sctp_lock_bsd.h (revision 02e9120893770924227138ba49df1edb3896112a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved.
5  * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
6  * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * a) Redistributions of source code must retain the above copyright notice,
12  *   this list of conditions and the following disclaimer.
13  *
14  * b) Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *   the documentation and/or other materials provided with the distribution.
17  *
18  * c) Neither the name of Cisco Systems, Inc. nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
24  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #ifndef _NETINET_SCTP_LOCK_BSD_H_
36 #define _NETINET_SCTP_LOCK_BSD_H_
37 
38 /*
39  * General locking concepts: The goal of our locking is to of course provide
40  * consistency and yet minimize overhead. We will attempt to use
41  * non-recursive locks which are supposed to be quite inexpensive. Now in
42  * order to do this the goal is that most functions are not aware of locking.
43  * Once we have a TCB we lock it and unlock when we are through. This means
44  * that the TCB lock is kind-of a "global" lock when working on an
45  * association. Caution must be used when asserting a TCB_LOCK since if we
46  * recurse we deadlock.
47  *
48  * Most other locks (INP and INFO) attempt to localize the locking i.e. we try
49  * to contain the lock and unlock within the function that needs to lock it.
50  * This sometimes mean we do extra locks and unlocks and lose a bit of
51  * efficiency, but if the performance statements about non-recursive locks are
52  * true this should not be a problem.  One issue that arises with this only
53  * lock when needed is that if an implicit association setup is done we have
54  * a problem. If at the time I lookup an association I have NULL in the tcb
55  * return, by the time I call to create the association some other processor
56  * could have created it. This is what the CREATE lock on the endpoint.
57  * Places where we will be implicitly creating the association OR just
58  * creating an association (the connect call) will assert the CREATE_INP
59  * lock. This will assure us that during all the lookup of INP and INFO if
60  * another creator is also locking/looking up we can gate the two to
61  * synchronize. So the CREATE_INP lock is also another one we must use
62  * extreme caution in locking to make sure we don't hit a re-entrancy issue.
63  *
64  */
65 
66 /*
67  * When working with the global SCTP lists we lock and unlock the INP_INFO
68  * lock. So when we go to lookup an association we will want to do a
69  * SCTP_INP_INFO_RLOCK() and then when we want to add a new association to
70  * the SCTP_BASE_INFO() list's we will do a SCTP_INP_INFO_WLOCK().
71  */
72 
73 #define SCTP_IPI_COUNT_INIT()
74 
75 #define SCTP_STATLOG_INIT_LOCK()
76 #define SCTP_STATLOG_DESTROY()
77 #define SCTP_STATLOG_LOCK()
78 #define SCTP_STATLOG_UNLOCK()
79 
80 #define SCTP_INP_INFO_LOCK_INIT() do {					\
81 	rw_init(&SCTP_BASE_INFO(ipi_ep_mtx), "sctp-info");		\
82 } while (0)
83 
84 #define SCTP_INP_INFO_LOCK_DESTROY() do { 				\
85 	if (rw_wowned(&SCTP_BASE_INFO(ipi_ep_mtx))) {			\
86 		rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx));		\
87 	}								\
88 	rw_destroy(&SCTP_BASE_INFO(ipi_ep_mtx));			\
89 } while (0)
90 
91 #define SCTP_INP_INFO_RLOCK() do { 					\
92 	rw_rlock(&SCTP_BASE_INFO(ipi_ep_mtx));				\
93 } while (0)
94 
95 #define SCTP_INP_INFO_WLOCK() do { 					\
96 	rw_wlock(&SCTP_BASE_INFO(ipi_ep_mtx));				\
97 } while (0)
98 
99 #define SCTP_INP_INFO_RUNLOCK() do {					\
100 	rw_runlock(&SCTP_BASE_INFO(ipi_ep_mtx));			\
101 } while (0)
102 
103 #define SCTP_INP_INFO_WUNLOCK() do {					\
104 	rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx));			\
105 } while (0)
106 
107 #define SCTP_INP_INFO_LOCK_ASSERT() do {				\
108 	rw_assert(&SCTP_BASE_INFO(ipi_ep_mtx), RA_LOCKED);		\
109 } while (0)
110 
111 #define SCTP_INP_INFO_RLOCK_ASSERT() do {				\
112 	rw_assert(&SCTP_BASE_INFO(ipi_ep_mtx), RA_RLOCKED);		\
113 } while (0)
114 
115 #define SCTP_INP_INFO_WLOCK_ASSERT() do {				\
116 	rw_assert(&SCTP_BASE_INFO(ipi_ep_mtx), RA_WLOCKED);		\
117 } while (0)
118 
119 #define SCTP_MCORE_QLOCK_INIT(cpstr) do {				\
120 	mtx_init(&(cpstr)->que_mtx, "sctp-mcore_queue","queue_lock",	\
121 	         MTX_DEF | MTX_DUPOK);					\
122 } while (0)
123 
124 #define SCTP_MCORE_QDESTROY(cpstr) do {					\
125 	if (mtx_owned(&(cpstr)->core_mtx)) {				\
126 		mtx_unlock(&(cpstr)->que_mtx);				\
127 	}								\
128 	mtx_destroy(&(cpstr)->que_mtx);					\
129 } while (0)
130 
131 #define SCTP_MCORE_QLOCK(cpstr) do {					\
132 	mtx_lock(&(cpstr)->que_mtx);					\
133 } while (0)
134 
135 #define SCTP_MCORE_QUNLOCK(cpstr) do {					\
136 	mtx_unlock(&(cpstr)->que_mtx);					\
137 } while (0)
138 
139 #define SCTP_MCORE_LOCK_INIT(cpstr) do {				\
140 	mtx_init(&(cpstr)->core_mtx, "sctp-cpulck","cpu_proc_lock",	\
141 	         MTX_DEF | MTX_DUPOK);					\
142 } while (0)
143 
144 #define SCTP_MCORE_DESTROY(cpstr) do {					\
145 	if (mtx_owned(&(cpstr)->core_mtx)) {				\
146 		mtx_unlock(&(cpstr)->core_mtx);				\
147 	}								\
148 	mtx_destroy(&(cpstr)->core_mtx);				\
149 } while (0)
150 
151 #define SCTP_MCORE_LOCK(cpstr) do {					\
152 	mtx_lock(&(cpstr)->core_mtx);					\
153 } while (0)
154 
155 #define SCTP_MCORE_UNLOCK(cpstr) do {					\
156 	mtx_unlock(&(cpstr)->core_mtx);					\
157 } while (0)
158 
159 #define SCTP_IPI_ADDR_INIT() do {					\
160 	rw_init(&SCTP_BASE_INFO(ipi_addr_mtx), "sctp-addr");		\
161 } while (0)
162 
163 #define SCTP_IPI_ADDR_DESTROY() do {					\
164 	if (rw_wowned(&SCTP_BASE_INFO(ipi_addr_mtx))) {			\
165 		rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx));		\
166 	}								\
167 	rw_destroy(&SCTP_BASE_INFO(ipi_addr_mtx));			\
168 } while (0)
169 
170 #define SCTP_IPI_ADDR_RLOCK()	do { 					\
171 	rw_rlock(&SCTP_BASE_INFO(ipi_addr_mtx));			\
172 } while (0)
173 
174 #define SCTP_IPI_ADDR_WLOCK()	do { 					\
175 	rw_wlock(&SCTP_BASE_INFO(ipi_addr_mtx));			\
176 } while (0)
177 
178 #define SCTP_IPI_ADDR_RUNLOCK() do {					\
179 	rw_runlock(&SCTP_BASE_INFO(ipi_addr_mtx));			\
180 } while (0)
181 
182 #define SCTP_IPI_ADDR_WUNLOCK() do {					\
183 	rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx));			\
184 } while (0)
185 
186 #define SCTP_IPI_ADDR_LOCK_ASSERT() do {				\
187 	rw_assert(&SCTP_BASE_INFO(ipi_addr_mtx), RA_LOCKED);		\
188 } while (0)
189 
190 #define SCTP_IPI_ADDR_WLOCK_ASSERT() do {				\
191 	rw_assert(&SCTP_BASE_INFO(ipi_addr_mtx), RA_WLOCKED);		\
192 } while (0)
193 
194 #define SCTP_IPI_ITERATOR_WQ_INIT() do {				\
195 	mtx_init(&sctp_it_ctl.ipi_iterator_wq_mtx, "sctp-it-wq",	\
196 	         "sctp_it_wq", MTX_DEF);				\
197 } while (0)
198 
199 #define SCTP_IPI_ITERATOR_WQ_DESTROY() do {				\
200 	mtx_destroy(&sctp_it_ctl.ipi_iterator_wq_mtx);			\
201 } while (0)
202 
203 #define SCTP_IPI_ITERATOR_WQ_LOCK() do { 				\
204 	mtx_lock(&sctp_it_ctl.ipi_iterator_wq_mtx);			\
205 } while (0)
206 
207 #define SCTP_IPI_ITERATOR_WQ_UNLOCK() do {				\
208 	mtx_unlock(&sctp_it_ctl.ipi_iterator_wq_mtx);			\
209 } while (0)
210 
211 #define SCTP_IP_PKTLOG_INIT() do {					\
212 	mtx_init(&SCTP_BASE_INFO(ipi_pktlog_mtx), "sctp-pktlog",	\
213 	         "packetlog", MTX_DEF);					\
214 } while (0)
215 
216 #define SCTP_IP_PKTLOG_DESTROY() do {					\
217 	mtx_destroy(&SCTP_BASE_INFO(ipi_pktlog_mtx));			\
218 } while (0)
219 
220 #define SCTP_IP_PKTLOG_LOCK()	do { 					\
221 	mtx_lock(&SCTP_BASE_INFO(ipi_pktlog_mtx));			\
222 } while (0)
223 
224 #define SCTP_IP_PKTLOG_UNLOCK() do {					\
225 	mtx_unlock(&SCTP_BASE_INFO(ipi_pktlog_mtx));			\
226 } while (0)
227 
228 /*
229  * The INP locks we will use for locking an SCTP endpoint, so for example if
230  * we want to change something at the endpoint level for example random_store
231  * or cookie secrets we lock the INP level.
232  */
233 
234 #define SCTP_INP_READ_LOCK_INIT(_inp) do {				\
235 	mtx_init(&(_inp)->inp_rdata_mtx, "sctp-read", "inpr",		\
236 	         MTX_DEF | MTX_DUPOK);					\
237 } while (0)
238 
239 #define SCTP_INP_READ_LOCK_DESTROY(_inp) do {				\
240 	mtx_destroy(&(_inp)->inp_rdata_mtx);				\
241 } while (0)
242 
243 #define SCTP_INP_READ_LOCK(_inp) do {					\
244 	mtx_lock(&(_inp)->inp_rdata_mtx);				\
245 } while (0)
246 
247 #define SCTP_INP_READ_UNLOCK(_inp) do {					\
248 	mtx_unlock(&(_inp)->inp_rdata_mtx);				\
249 } while (0)
250 
251 #define SCTP_INP_READ_LOCK_ASSERT(_inp) do {				\
252 	KASSERT(mtx_owned(&(_inp)->inp_rdata_mtx),			\
253 	        ("Don't own INP read queue lock"));			\
254 } while (0)
255 
256 #define SCTP_INP_LOCK_INIT(_inp) do {					\
257 	mtx_init(&(_inp)->inp_mtx, "sctp-inp", "inp",			\
258 	         MTX_DEF | MTX_DUPOK);					\
259 } while (0)
260 
261 #define SCTP_INP_LOCK_DESTROY(_inp) do {				\
262 	mtx_destroy(&(_inp)->inp_mtx);					\
263 } while (0)
264 
265 #define SCTP_INP_LOCK_CONTENDED(_inp)					\
266 	((_inp)->inp_mtx.mtx_lock & MTX_CONTESTED)
267 
268 #define SCTP_INP_READ_CONTENDED(_inp)					\
269 	((_inp)->inp_rdata_mtx.mtx_lock & MTX_CONTESTED)
270 
271 #ifdef SCTP_LOCK_LOGGING
272 #define SCTP_INP_RLOCK(_inp)	do { 					\
273 	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
274 		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP);		\
275 	mtx_lock(&(_inp)->inp_mtx);					\
276 } while (0)
277 
278 #define SCTP_INP_WLOCK(_inp)	do { 					\
279 	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
280 		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP);		\
281 	mtx_lock(&(_inp)->inp_mtx);					\
282 } while (0)
283 #else
284 #define SCTP_INP_RLOCK(_inp) do { 					\
285 	mtx_lock(&(_inp)->inp_mtx);					\
286 } while (0)
287 
288 #define SCTP_INP_WLOCK(_inp) do { 					\
289 	mtx_lock(&(_inp)->inp_mtx);					\
290 } while (0)
291 #endif
292 
293 #define SCTP_INP_RUNLOCK(_inp) do {					\
294 	mtx_unlock(&(_inp)->inp_mtx);					\
295 } while (0)
296 
297 #define SCTP_INP_WUNLOCK(_inp) do {					\
298 	mtx_unlock(&(_inp)->inp_mtx);					\
299 } while (0)
300 
301 #define SCTP_INP_RLOCK_ASSERT(_inp) do {				\
302 	KASSERT(mtx_owned(&(_inp)->inp_mtx),				\
303 	        ("Don't own INP read lock"));				\
304 } while (0)
305 
306 #define SCTP_INP_WLOCK_ASSERT(_inp) do {				\
307 	KASSERT(mtx_owned(&(_inp)->inp_mtx),				\
308 	        ("Don't own INP write lock"));				\
309 } while (0)
310 
311 #define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1)
312 #define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1)
313 
314 #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) do {				\
315 	mtx_init(&(_inp)->inp_create_mtx, "sctp-create", "inp_create",	\
316 		 MTX_DEF | MTX_DUPOK);					\
317 } while (0)
318 
319 #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) do {			\
320 	mtx_destroy(&(_inp)->inp_create_mtx);				\
321 } while (0)
322 
323 #ifdef SCTP_LOCK_LOGGING
324 #define SCTP_ASOC_CREATE_LOCK(_inp) do {				\
325 	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
326 		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_CREATE);	\
327 	mtx_lock(&(_inp)->inp_create_mtx);				\
328 } while (0)
329 #else
330 #define SCTP_ASOC_CREATE_LOCK(_inp) do {				\
331 	mtx_lock(&(_inp)->inp_create_mtx);				\
332 } while (0)
333 #endif
334 
335 #define SCTP_ASOC_CREATE_UNLOCK(_inp) do {				\
336 	mtx_unlock(&(_inp)->inp_create_mtx);				\
337 } while (0)
338 
339 #define SCTP_ASOC_CREATE_LOCK_CONTENDED(_inp)				\
340 	((_inp)->inp_create_mtx.mtx_lock & MTX_CONTESTED)
341 
342 /*
343  * For the majority of things (once we have found the association) we will
344  * lock the actual association mutex. This will protect all the assoiciation
345  * level queues and streams and such. We will need to lock the socket layer
346  * when we stuff data up into the receiving sb_mb. I.e. we will need to do an
347  * extra SOCKBUF_LOCK(&so->so_rcv) even though the association is locked.
348  */
349 
350 #define SCTP_TCB_LOCK_INIT(_tcb) do {					\
351 	mtx_init(&(_tcb)->tcb_mtx, "sctp-tcb", "tcb",			\
352 	         MTX_DEF | MTX_DUPOK);					\
353 } while (0)
354 
355 #define SCTP_TCB_LOCK_DESTROY(_tcb) do {				\
356 	mtx_destroy(&(_tcb)->tcb_mtx);					\
357 } while (0)
358 
359 #ifdef SCTP_LOCK_LOGGING
360 #define SCTP_TCB_LOCK(_tcb) do {					\
361 	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
362 		sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB);	\
363 	mtx_lock(&(_tcb)->tcb_mtx);					\
364 } while (0)
365 #else
366 #define SCTP_TCB_LOCK(_tcb) do {					\
367 	mtx_lock(&(_tcb)->tcb_mtx);					\
368 } while (0)
369 
370 #endif
371 
372 #define SCTP_TCB_TRYLOCK(_tcb) 						\
373 	mtx_trylock(&(_tcb)->tcb_mtx)
374 
375 #define SCTP_TCB_UNLOCK(_tcb) do {					\
376 	mtx_unlock(&(_tcb)->tcb_mtx);					\
377 } while (0)
378 
379 #define SCTP_TCB_UNLOCK_IFOWNED(_tcb) do {				\
380 	if (mtx_owned(&(_tcb)->tcb_mtx))				\
381 		mtx_unlock(&(_tcb)->tcb_mtx);				\
382 } while (0)
383 
384 #define SCTP_TCB_LOCK_ASSERT(_tcb) do {					\
385 	KASSERT(mtx_owned(&(_tcb)->tcb_mtx),				\
386 	        ("Don't own TCB lock"));				\
387 } while (0)
388 
389 #define SCTP_ITERATOR_LOCK_INIT() do {					\
390 	mtx_init(&sctp_it_ctl.it_mtx, "sctp-it", "iterator", MTX_DEF);	\
391 } while (0)
392 
393 #define SCTP_ITERATOR_LOCK_DESTROY() do {				\
394 	mtx_destroy(&sctp_it_ctl.it_mtx);				\
395 } while (0)
396 
397 #define SCTP_ITERATOR_LOCK() \
398 	do {								\
399 		KASSERT(!mtx_owned(&sctp_it_ctl.it_mtx),		\
400 		        ("Own the iterator lock"));			\
401 		mtx_lock(&sctp_it_ctl.it_mtx);				\
402 	} while (0)
403 
404 #define SCTP_ITERATOR_UNLOCK() do {					\
405 	mtx_unlock(&sctp_it_ctl.it_mtx);				\
406 } while (0)
407 
408 #define SCTP_WQ_ADDR_INIT() do {					\
409 	mtx_init(&SCTP_BASE_INFO(wq_addr_mtx),				\
410 	         "sctp-addr-wq","sctp_addr_wq", MTX_DEF);		\
411 } while (0)
412 
413 #define SCTP_WQ_ADDR_DESTROY() do  {					\
414 	if (mtx_owned(&SCTP_BASE_INFO(wq_addr_mtx))) {			\
415 		mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx));		\
416 	}								\
417 	mtx_destroy(&SCTP_BASE_INFO(wq_addr_mtx)); \
418 } while (0)
419 
420 #define SCTP_WQ_ADDR_LOCK()	do {					\
421 	mtx_lock(&SCTP_BASE_INFO(wq_addr_mtx));				\
422 } while (0)
423 
424 #define SCTP_WQ_ADDR_UNLOCK() do {					\
425 		mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx));		\
426 } while (0)
427 
428 #define SCTP_WQ_ADDR_LOCK_ASSERT() do {					\
429 	KASSERT(mtx_owned(&SCTP_BASE_INFO(wq_addr_mtx)),		\
430 	        ("Don't own the ADDR-WQ lock"));			\
431 } while (0)
432 
433 #define SCTP_INCR_EP_COUNT() do {					\
434 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_ep), 1);		\
435 } while (0)
436 
437 #define SCTP_DECR_EP_COUNT() do {					\
438 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ep), 1);		\
439 } while (0)
440 
441 #define SCTP_INCR_ASOC_COUNT() do {					\
442 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_asoc), 1);		\
443 } while (0)
444 
445 #define SCTP_DECR_ASOC_COUNT() do {					\
446 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_asoc), 1);	\
447 } while (0)
448 
449 #define SCTP_INCR_LADDR_COUNT() do {					\
450 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_laddr), 1);		\
451 } while (0)
452 
453 #define SCTP_DECR_LADDR_COUNT() do {					\
454 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_laddr), 1); 	\
455 } while (0)
456 
457 #define SCTP_INCR_RADDR_COUNT() do {					\
458 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_raddr), 1);		\
459 } while (0)
460 
461 #define SCTP_DECR_RADDR_COUNT() do {					\
462 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_raddr),1);	\
463 } while (0)
464 
465 #define SCTP_INCR_CHK_COUNT() do {					\
466 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_chunk), 1);		\
467 } while (0)
468 
469 #define SCTP_DECR_CHK_COUNT() do {					\
470 	KASSERT(SCTP_BASE_INFO(ipi_count_chunk) > 0,			\
471 	        ("ipi_count_chunk would become negative"));		\
472 	if (SCTP_BASE_INFO(ipi_count_chunk) != 0)			\
473 		atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_chunk),	\
474 		                    1);					\
475 } while (0)
476 
477 #define SCTP_INCR_READQ_COUNT() do {					\
478 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_readq), 1);		\
479 } while (0)
480 
481 #define SCTP_DECR_READQ_COUNT() do {					\
482 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_readq), 1);	\
483 } while (0)
484 
485 #define SCTP_INCR_STRMOQ_COUNT() do {					\
486 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1);		\
487 } while (0)
488 
489 #define SCTP_DECR_STRMOQ_COUNT() do {					\
490 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1);	\
491 } while (0)
492 
493 #if defined(SCTP_SO_LOCK_TESTING)
494 #define SCTP_INP_SO(sctpinp)						\
495 	(sctpinp)->ip_inp.inp.inp_socket
496 #define SCTP_SOCKET_LOCK(so, refcnt)
497 #define SCTP_SOCKET_UNLOCK(so, refcnt)
498 #endif
499 
500 #endif
501