xref: /freebsd/sys/netinet/sctp_auth.c (revision e39e854e27f53a784c3982cbeb68f4ad1cfd9162)
1 /*-
2  * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
3  * Copyright (c) 2008-2011, by Randall Stewart. All rights reserved.
4  * Copyright (c) 2008-2011, by Michael Tuexen. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * a) Redistributions of source code must retain the above copyright notice,
10  *    this list of conditions and the following disclaimer.
11  *
12  * b) Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the distribution.
15  *
16  * c) Neither the name of Cisco Systems, Inc. nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <netinet/sctp_os.h>
37 #include <netinet/sctp.h>
38 #include <netinet/sctp_header.h>
39 #include <netinet/sctp_pcb.h>
40 #include <netinet/sctp_var.h>
41 #include <netinet/sctp_sysctl.h>
42 #include <netinet/sctputil.h>
43 #include <netinet/sctp_indata.h>
44 #include <netinet/sctp_output.h>
45 #include <netinet/sctp_auth.h>
46 
47 #ifdef SCTP_DEBUG
48 #define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
49 #define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
50 #endif				/* SCTP_DEBUG */
51 
52 
53 void
54 sctp_clear_chunklist(sctp_auth_chklist_t * chklist)
55 {
56 	bzero(chklist, sizeof(*chklist));
57 	/* chklist->num_chunks = 0; */
58 }
59 
60 sctp_auth_chklist_t *
61 sctp_alloc_chunklist(void)
62 {
63 	sctp_auth_chklist_t *chklist;
64 
65 	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
66 	    SCTP_M_AUTH_CL);
67 	if (chklist == NULL) {
68 		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
69 	} else {
70 		sctp_clear_chunklist(chklist);
71 	}
72 	return (chklist);
73 }
74 
75 void
76 sctp_free_chunklist(sctp_auth_chklist_t * list)
77 {
78 	if (list != NULL)
79 		SCTP_FREE(list, SCTP_M_AUTH_CL);
80 }
81 
82 sctp_auth_chklist_t *
83 sctp_copy_chunklist(sctp_auth_chklist_t * list)
84 {
85 	sctp_auth_chklist_t *new_list;
86 
87 	if (list == NULL)
88 		return (NULL);
89 
90 	/* get a new list */
91 	new_list = sctp_alloc_chunklist();
92 	if (new_list == NULL)
93 		return (NULL);
94 	/* copy it */
95 	bcopy(list, new_list, sizeof(*new_list));
96 
97 	return (new_list);
98 }
99 
100 
101 /*
102  * add a chunk to the required chunks list
103  */
104 int
105 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
106 {
107 	if (list == NULL)
108 		return (-1);
109 
110 	/* is chunk restricted? */
111 	if ((chunk == SCTP_INITIATION) ||
112 	    (chunk == SCTP_INITIATION_ACK) ||
113 	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
114 	    (chunk == SCTP_AUTHENTICATION)) {
115 		return (-1);
116 	}
117 	if (list->chunks[chunk] == 0) {
118 		list->chunks[chunk] = 1;
119 		list->num_chunks++;
120 		SCTPDBG(SCTP_DEBUG_AUTH1,
121 		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
122 		    chunk, chunk);
123 	}
124 	return (0);
125 }
126 
127 /*
128  * delete a chunk from the required chunks list
129  */
130 int
131 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
132 {
133 	if (list == NULL)
134 		return (-1);
135 
136 	/* is chunk restricted? */
137 	if ((chunk == SCTP_ASCONF) ||
138 	    (chunk == SCTP_ASCONF_ACK)) {
139 		return (-1);
140 	}
141 	if (list->chunks[chunk] == 1) {
142 		list->chunks[chunk] = 0;
143 		list->num_chunks--;
144 		SCTPDBG(SCTP_DEBUG_AUTH1,
145 		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
146 		    chunk, chunk);
147 	}
148 	return (0);
149 }
150 
151 size_t
152 sctp_auth_get_chklist_size(const sctp_auth_chklist_t * list)
153 {
154 	if (list == NULL)
155 		return (0);
156 	else
157 		return (list->num_chunks);
158 }
159 
160 /*
161  * set the default list of chunks requiring AUTH
162  */
163 void
164 sctp_auth_set_default_chunks(sctp_auth_chklist_t * list)
165 {
166 	(void)sctp_auth_add_chunk(SCTP_ASCONF, list);
167 	(void)sctp_auth_add_chunk(SCTP_ASCONF_ACK, list);
168 }
169 
170 /*
171  * return the current number and list of required chunks caller must
172  * guarantee ptr has space for up to 256 bytes
173  */
174 int
175 sctp_serialize_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
176 {
177 	int i, count = 0;
178 
179 	if (list == NULL)
180 		return (0);
181 
182 	for (i = 0; i < 256; i++) {
183 		if (list->chunks[i] != 0) {
184 			*ptr++ = i;
185 			count++;
186 		}
187 	}
188 	return (count);
189 }
190 
191 int
192 sctp_pack_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
193 {
194 	int i, size = 0;
195 
196 	if (list == NULL)
197 		return (0);
198 
199 	if (list->num_chunks <= 32) {
200 		/* just list them, one byte each */
201 		for (i = 0; i < 256; i++) {
202 			if (list->chunks[i] != 0) {
203 				*ptr++ = i;
204 				size++;
205 			}
206 		}
207 	} else {
208 		int index, offset;
209 
210 		/* pack into a 32 byte bitfield */
211 		for (i = 0; i < 256; i++) {
212 			if (list->chunks[i] != 0) {
213 				index = i / 8;
214 				offset = i % 8;
215 				ptr[index] |= (1 << offset);
216 			}
217 		}
218 		size = 32;
219 	}
220 	return (size);
221 }
222 
223 int
224 sctp_unpack_auth_chunks(const uint8_t * ptr, uint8_t num_chunks,
225     sctp_auth_chklist_t * list)
226 {
227 	int i;
228 	int size;
229 
230 	if (list == NULL)
231 		return (0);
232 
233 	if (num_chunks <= 32) {
234 		/* just pull them, one byte each */
235 		for (i = 0; i < num_chunks; i++) {
236 			(void)sctp_auth_add_chunk(*ptr++, list);
237 		}
238 		size = num_chunks;
239 	} else {
240 		int index, offset;
241 
242 		/* unpack from a 32 byte bitfield */
243 		for (index = 0; index < 32; index++) {
244 			for (offset = 0; offset < 8; offset++) {
245 				if (ptr[index] & (1 << offset)) {
246 					(void)sctp_auth_add_chunk((index * 8) + offset, list);
247 				}
248 			}
249 		}
250 		size = 32;
251 	}
252 	return (size);
253 }
254 
255 
256 /*
257  * allocate structure space for a key of length keylen
258  */
259 sctp_key_t *
260 sctp_alloc_key(uint32_t keylen)
261 {
262 	sctp_key_t *new_key;
263 
264 	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
265 	    SCTP_M_AUTH_KY);
266 	if (new_key == NULL) {
267 		/* out of memory */
268 		return (NULL);
269 	}
270 	new_key->keylen = keylen;
271 	return (new_key);
272 }
273 
274 void
275 sctp_free_key(sctp_key_t * key)
276 {
277 	if (key != NULL)
278 		SCTP_FREE(key, SCTP_M_AUTH_KY);
279 }
280 
281 void
282 sctp_print_key(sctp_key_t * key, const char *str)
283 {
284 	uint32_t i;
285 
286 	if (key == NULL) {
287 		SCTP_PRINTF("%s: [Null key]\n", str);
288 		return;
289 	}
290 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
291 	if (key->keylen) {
292 		for (i = 0; i < key->keylen; i++)
293 			SCTP_PRINTF("%02x", key->key[i]);
294 		SCTP_PRINTF("\n");
295 	} else {
296 		SCTP_PRINTF("[Null key]\n");
297 	}
298 }
299 
300 void
301 sctp_show_key(sctp_key_t * key, const char *str)
302 {
303 	uint32_t i;
304 
305 	if (key == NULL) {
306 		SCTP_PRINTF("%s: [Null key]\n", str);
307 		return;
308 	}
309 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
310 	if (key->keylen) {
311 		for (i = 0; i < key->keylen; i++)
312 			SCTP_PRINTF("%02x", key->key[i]);
313 		SCTP_PRINTF("\n");
314 	} else {
315 		SCTP_PRINTF("[Null key]\n");
316 	}
317 }
318 
319 static uint32_t
320 sctp_get_keylen(sctp_key_t * key)
321 {
322 	if (key != NULL)
323 		return (key->keylen);
324 	else
325 		return (0);
326 }
327 
328 /*
329  * generate a new random key of length 'keylen'
330  */
331 sctp_key_t *
332 sctp_generate_random_key(uint32_t keylen)
333 {
334 	sctp_key_t *new_key;
335 
336 	/* validate keylen */
337 	if (keylen > SCTP_AUTH_RANDOM_SIZE_MAX)
338 		keylen = SCTP_AUTH_RANDOM_SIZE_MAX;
339 
340 	new_key = sctp_alloc_key(keylen);
341 	if (new_key == NULL) {
342 		/* out of memory */
343 		return (NULL);
344 	}
345 	SCTP_READ_RANDOM(new_key->key, keylen);
346 	new_key->keylen = keylen;
347 	return (new_key);
348 }
349 
350 sctp_key_t *
351 sctp_set_key(uint8_t * key, uint32_t keylen)
352 {
353 	sctp_key_t *new_key;
354 
355 	new_key = sctp_alloc_key(keylen);
356 	if (new_key == NULL) {
357 		/* out of memory */
358 		return (NULL);
359 	}
360 	bcopy(key, new_key->key, keylen);
361 	return (new_key);
362 }
363 
364 /*-
365  * given two keys of variable size, compute which key is "larger/smaller"
366  * returns:  1 if key1 > key2
367  *          -1 if key1 < key2
368  *           0 if key1 = key2
369  */
370 static int
371 sctp_compare_key(sctp_key_t * key1, sctp_key_t * key2)
372 {
373 	uint32_t maxlen;
374 	uint32_t i;
375 	uint32_t key1len, key2len;
376 	uint8_t *key_1, *key_2;
377 	uint8_t temp[SCTP_AUTH_RANDOM_SIZE_MAX];
378 
379 	/* sanity/length check */
380 	key1len = sctp_get_keylen(key1);
381 	key2len = sctp_get_keylen(key2);
382 	if ((key1len == 0) && (key2len == 0))
383 		return (0);
384 	else if (key1len == 0)
385 		return (-1);
386 	else if (key2len == 0)
387 		return (1);
388 
389 	if (key1len != key2len) {
390 		if (key1len >= key2len)
391 			maxlen = key1len;
392 		else
393 			maxlen = key2len;
394 		bzero(temp, maxlen);
395 		if (key1len < maxlen) {
396 			/* prepend zeroes to key1 */
397 			bcopy(key1->key, temp + (maxlen - key1len), key1len);
398 			key_1 = temp;
399 			key_2 = key2->key;
400 		} else {
401 			/* prepend zeroes to key2 */
402 			bcopy(key2->key, temp + (maxlen - key2len), key2len);
403 			key_1 = key1->key;
404 			key_2 = temp;
405 		}
406 	} else {
407 		maxlen = key1len;
408 		key_1 = key1->key;
409 		key_2 = key2->key;
410 	}
411 
412 	for (i = 0; i < maxlen; i++) {
413 		if (*key_1 > *key_2)
414 			return (1);
415 		else if (*key_1 < *key_2)
416 			return (-1);
417 		key_1++;
418 		key_2++;
419 	}
420 
421 	/* keys are equal value, so check lengths */
422 	if (key1len == key2len)
423 		return (0);
424 	else if (key1len < key2len)
425 		return (-1);
426 	else
427 		return (1);
428 }
429 
430 /*
431  * generate the concatenated keying material based on the two keys and the
432  * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
433  * order for concatenation
434  */
435 sctp_key_t *
436 sctp_compute_hashkey(sctp_key_t * key1, sctp_key_t * key2, sctp_key_t * shared)
437 {
438 	uint32_t keylen;
439 	sctp_key_t *new_key;
440 	uint8_t *key_ptr;
441 
442 	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
443 	    sctp_get_keylen(shared);
444 
445 	if (keylen > 0) {
446 		/* get space for the new key */
447 		new_key = sctp_alloc_key(keylen);
448 		if (new_key == NULL) {
449 			/* out of memory */
450 			return (NULL);
451 		}
452 		new_key->keylen = keylen;
453 		key_ptr = new_key->key;
454 	} else {
455 		/* all keys empty/null?! */
456 		return (NULL);
457 	}
458 
459 	/* concatenate the keys */
460 	if (sctp_compare_key(key1, key2) <= 0) {
461 		/* key is shared + key1 + key2 */
462 		if (sctp_get_keylen(shared)) {
463 			bcopy(shared->key, key_ptr, shared->keylen);
464 			key_ptr += shared->keylen;
465 		}
466 		if (sctp_get_keylen(key1)) {
467 			bcopy(key1->key, key_ptr, key1->keylen);
468 			key_ptr += key1->keylen;
469 		}
470 		if (sctp_get_keylen(key2)) {
471 			bcopy(key2->key, key_ptr, key2->keylen);
472 		}
473 	} else {
474 		/* key is shared + key2 + key1 */
475 		if (sctp_get_keylen(shared)) {
476 			bcopy(shared->key, key_ptr, shared->keylen);
477 			key_ptr += shared->keylen;
478 		}
479 		if (sctp_get_keylen(key2)) {
480 			bcopy(key2->key, key_ptr, key2->keylen);
481 			key_ptr += key2->keylen;
482 		}
483 		if (sctp_get_keylen(key1)) {
484 			bcopy(key1->key, key_ptr, key1->keylen);
485 		}
486 	}
487 	return (new_key);
488 }
489 
490 
491 sctp_sharedkey_t *
492 sctp_alloc_sharedkey(void)
493 {
494 	sctp_sharedkey_t *new_key;
495 
496 	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
497 	    SCTP_M_AUTH_KY);
498 	if (new_key == NULL) {
499 		/* out of memory */
500 		return (NULL);
501 	}
502 	new_key->keyid = 0;
503 	new_key->key = NULL;
504 	new_key->refcount = 1;
505 	new_key->deactivated = 0;
506 	return (new_key);
507 }
508 
509 void
510 sctp_free_sharedkey(sctp_sharedkey_t * skey)
511 {
512 	if (skey == NULL)
513 		return;
514 
515 	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
516 		if (skey->key != NULL)
517 			sctp_free_key(skey->key);
518 		SCTP_FREE(skey, SCTP_M_AUTH_KY);
519 	}
520 }
521 
522 sctp_sharedkey_t *
523 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
524 {
525 	sctp_sharedkey_t *skey;
526 
527 	LIST_FOREACH(skey, shared_keys, next) {
528 		if (skey->keyid == key_id)
529 			return (skey);
530 	}
531 	return (NULL);
532 }
533 
534 int
535 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
536     sctp_sharedkey_t * new_skey)
537 {
538 	sctp_sharedkey_t *skey;
539 
540 	if ((shared_keys == NULL) || (new_skey == NULL))
541 		return (EINVAL);
542 
543 	/* insert into an empty list? */
544 	if (LIST_EMPTY(shared_keys)) {
545 		LIST_INSERT_HEAD(shared_keys, new_skey, next);
546 		return (0);
547 	}
548 	/* insert into the existing list, ordered by key id */
549 	LIST_FOREACH(skey, shared_keys, next) {
550 		if (new_skey->keyid < skey->keyid) {
551 			/* insert it before here */
552 			LIST_INSERT_BEFORE(skey, new_skey, next);
553 			return (0);
554 		} else if (new_skey->keyid == skey->keyid) {
555 			/* replace the existing key */
556 			/* verify this key *can* be replaced */
557 			if ((skey->deactivated) && (skey->refcount > 1)) {
558 				SCTPDBG(SCTP_DEBUG_AUTH1,
559 				    "can't replace shared key id %u\n",
560 				    new_skey->keyid);
561 				return (EBUSY);
562 			}
563 			SCTPDBG(SCTP_DEBUG_AUTH1,
564 			    "replacing shared key id %u\n",
565 			    new_skey->keyid);
566 			LIST_INSERT_BEFORE(skey, new_skey, next);
567 			LIST_REMOVE(skey, next);
568 			sctp_free_sharedkey(skey);
569 			return (0);
570 		}
571 		if (LIST_NEXT(skey, next) == NULL) {
572 			/* belongs at the end of the list */
573 			LIST_INSERT_AFTER(skey, new_skey, next);
574 			return (0);
575 		}
576 	}
577 	/* shouldn't reach here */
578 	return (0);
579 }
580 
581 void
582 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
583 {
584 	sctp_sharedkey_t *skey;
585 
586 	/* find the shared key */
587 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
588 
589 	/* bump the ref count */
590 	if (skey) {
591 		atomic_add_int(&skey->refcount, 1);
592 		SCTPDBG(SCTP_DEBUG_AUTH2,
593 		    "%s: stcb %p key %u refcount acquire to %d\n",
594 		    __FUNCTION__, stcb, key_id, skey->refcount);
595 	}
596 }
597 
598 void
599 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked
600 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
601     SCTP_UNUSED
602 #endif
603 )
604 {
605 	sctp_sharedkey_t *skey;
606 
607 	/* find the shared key */
608 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
609 
610 	/* decrement the ref count */
611 	if (skey) {
612 		sctp_free_sharedkey(skey);
613 		SCTPDBG(SCTP_DEBUG_AUTH2,
614 		    "%s: stcb %p key %u refcount release to %d\n",
615 		    __FUNCTION__, stcb, key_id, skey->refcount);
616 
617 		/* see if a notification should be generated */
618 		if ((skey->refcount <= 1) && (skey->deactivated)) {
619 			/* notify ULP that key is no longer used */
620 			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
621 			    key_id, 0, so_locked);
622 			SCTPDBG(SCTP_DEBUG_AUTH2,
623 			    "%s: stcb %p key %u no longer used, %d\n",
624 			    __FUNCTION__, stcb, key_id, skey->refcount);
625 		}
626 	}
627 }
628 
629 static sctp_sharedkey_t *
630 sctp_copy_sharedkey(const sctp_sharedkey_t * skey)
631 {
632 	sctp_sharedkey_t *new_skey;
633 
634 	if (skey == NULL)
635 		return (NULL);
636 	new_skey = sctp_alloc_sharedkey();
637 	if (new_skey == NULL)
638 		return (NULL);
639 	if (skey->key != NULL)
640 		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
641 	else
642 		new_skey->key = NULL;
643 	new_skey->keyid = skey->keyid;
644 	return (new_skey);
645 }
646 
647 int
648 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
649 {
650 	sctp_sharedkey_t *skey, *new_skey;
651 	int count = 0;
652 
653 	if ((src == NULL) || (dest == NULL))
654 		return (0);
655 	LIST_FOREACH(skey, src, next) {
656 		new_skey = sctp_copy_sharedkey(skey);
657 		if (new_skey != NULL) {
658 			(void)sctp_insert_sharedkey(dest, new_skey);
659 			count++;
660 		}
661 	}
662 	return (count);
663 }
664 
665 
666 sctp_hmaclist_t *
667 sctp_alloc_hmaclist(uint8_t num_hmacs)
668 {
669 	sctp_hmaclist_t *new_list;
670 	int alloc_size;
671 
672 	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
673 	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
674 	    SCTP_M_AUTH_HL);
675 	if (new_list == NULL) {
676 		/* out of memory */
677 		return (NULL);
678 	}
679 	new_list->max_algo = num_hmacs;
680 	new_list->num_algo = 0;
681 	return (new_list);
682 }
683 
684 void
685 sctp_free_hmaclist(sctp_hmaclist_t * list)
686 {
687 	if (list != NULL) {
688 		SCTP_FREE(list, SCTP_M_AUTH_HL);
689 		list = NULL;
690 	}
691 }
692 
693 int
694 sctp_auth_add_hmacid(sctp_hmaclist_t * list, uint16_t hmac_id)
695 {
696 	int i;
697 
698 	if (list == NULL)
699 		return (-1);
700 	if (list->num_algo == list->max_algo) {
701 		SCTPDBG(SCTP_DEBUG_AUTH1,
702 		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
703 		return (-1);
704 	}
705 	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
706 #ifdef HAVE_SHA224
707 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA224) &&
708 #endif
709 #ifdef HAVE_SHA2
710 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256) &&
711 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA384) &&
712 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA512) &&
713 #endif
714 	    1) {
715 		return (-1);
716 	}
717 	/* Now is it already in the list */
718 	for (i = 0; i < list->num_algo; i++) {
719 		if (list->hmac[i] == hmac_id) {
720 			/* already in list */
721 			return (-1);
722 		}
723 	}
724 	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
725 	list->hmac[list->num_algo++] = hmac_id;
726 	return (0);
727 }
728 
729 sctp_hmaclist_t *
730 sctp_copy_hmaclist(sctp_hmaclist_t * list)
731 {
732 	sctp_hmaclist_t *new_list;
733 	int i;
734 
735 	if (list == NULL)
736 		return (NULL);
737 	/* get a new list */
738 	new_list = sctp_alloc_hmaclist(list->max_algo);
739 	if (new_list == NULL)
740 		return (NULL);
741 	/* copy it */
742 	new_list->max_algo = list->max_algo;
743 	new_list->num_algo = list->num_algo;
744 	for (i = 0; i < list->num_algo; i++)
745 		new_list->hmac[i] = list->hmac[i];
746 	return (new_list);
747 }
748 
749 sctp_hmaclist_t *
750 sctp_default_supported_hmaclist(void)
751 {
752 	sctp_hmaclist_t *new_list;
753 
754 	new_list = sctp_alloc_hmaclist(2);
755 	if (new_list == NULL)
756 		return (NULL);
757 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
758 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
759 	return (new_list);
760 }
761 
762 /*-
763  * HMAC algos are listed in priority/preference order
764  * find the best HMAC id to use for the peer based on local support
765  */
766 uint16_t
767 sctp_negotiate_hmacid(sctp_hmaclist_t * peer, sctp_hmaclist_t * local)
768 {
769 	int i, j;
770 
771 	if ((local == NULL) || (peer == NULL))
772 		return (SCTP_AUTH_HMAC_ID_RSVD);
773 
774 	for (i = 0; i < peer->num_algo; i++) {
775 		for (j = 0; j < local->num_algo; j++) {
776 			if (peer->hmac[i] == local->hmac[j]) {
777 				/* found the "best" one */
778 				SCTPDBG(SCTP_DEBUG_AUTH1,
779 				    "SCTP: negotiated peer HMAC id %u\n",
780 				    peer->hmac[i]);
781 				return (peer->hmac[i]);
782 			}
783 		}
784 	}
785 	/* didn't find one! */
786 	return (SCTP_AUTH_HMAC_ID_RSVD);
787 }
788 
789 /*-
790  * serialize the HMAC algo list and return space used
791  * caller must guarantee ptr has appropriate space
792  */
793 int
794 sctp_serialize_hmaclist(sctp_hmaclist_t * list, uint8_t * ptr)
795 {
796 	int i;
797 	uint16_t hmac_id;
798 
799 	if (list == NULL)
800 		return (0);
801 
802 	for (i = 0; i < list->num_algo; i++) {
803 		hmac_id = htons(list->hmac[i]);
804 		bcopy(&hmac_id, ptr, sizeof(hmac_id));
805 		ptr += sizeof(hmac_id);
806 	}
807 	return (list->num_algo * sizeof(hmac_id));
808 }
809 
810 int
811 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
812 {
813 	uint32_t i;
814 	uint16_t hmac_id;
815 	uint32_t sha1_supported = 0;
816 
817 	for (i = 0; i < num_hmacs; i++) {
818 		hmac_id = ntohs(hmacs->hmac_ids[i]);
819 		if (hmac_id == SCTP_AUTH_HMAC_ID_SHA1)
820 			sha1_supported = 1;
821 	}
822 	/* all HMAC id's are supported */
823 	if (sha1_supported == 0)
824 		return (-1);
825 	else
826 		return (0);
827 }
828 
829 sctp_authinfo_t *
830 sctp_alloc_authinfo(void)
831 {
832 	sctp_authinfo_t *new_authinfo;
833 
834 	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
835 	    SCTP_M_AUTH_IF);
836 
837 	if (new_authinfo == NULL) {
838 		/* out of memory */
839 		return (NULL);
840 	}
841 	bzero(new_authinfo, sizeof(*new_authinfo));
842 	return (new_authinfo);
843 }
844 
845 void
846 sctp_free_authinfo(sctp_authinfo_t * authinfo)
847 {
848 	if (authinfo == NULL)
849 		return;
850 
851 	if (authinfo->random != NULL)
852 		sctp_free_key(authinfo->random);
853 	if (authinfo->peer_random != NULL)
854 		sctp_free_key(authinfo->peer_random);
855 	if (authinfo->assoc_key != NULL)
856 		sctp_free_key(authinfo->assoc_key);
857 	if (authinfo->recv_key != NULL)
858 		sctp_free_key(authinfo->recv_key);
859 
860 	/* We are NOT dynamically allocating authinfo's right now... */
861 	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
862 }
863 
864 
865 uint32_t
866 sctp_get_auth_chunk_len(uint16_t hmac_algo)
867 {
868 	int size;
869 
870 	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
871 	return (SCTP_SIZE32(size));
872 }
873 
874 uint32_t
875 sctp_get_hmac_digest_len(uint16_t hmac_algo)
876 {
877 	switch (hmac_algo) {
878 	case SCTP_AUTH_HMAC_ID_SHA1:
879 		return (SCTP_AUTH_DIGEST_LEN_SHA1);
880 #ifdef HAVE_SHA224
881 	case SCTP_AUTH_HMAC_ID_SHA224:
882 		return (SCTP_AUTH_DIGEST_LEN_SHA224);
883 #endif
884 #ifdef HAVE_SHA2
885 	case SCTP_AUTH_HMAC_ID_SHA256:
886 		return (SCTP_AUTH_DIGEST_LEN_SHA256);
887 	case SCTP_AUTH_HMAC_ID_SHA384:
888 		return (SCTP_AUTH_DIGEST_LEN_SHA384);
889 	case SCTP_AUTH_HMAC_ID_SHA512:
890 		return (SCTP_AUTH_DIGEST_LEN_SHA512);
891 #endif
892 	default:
893 		/* unknown HMAC algorithm: can't do anything */
894 		return (0);
895 	}			/* end switch */
896 }
897 
898 static inline int
899 sctp_get_hmac_block_len(uint16_t hmac_algo)
900 {
901 	switch (hmac_algo) {
902 	case SCTP_AUTH_HMAC_ID_SHA1:
903 #ifdef HAVE_SHA224
904 	case SCTP_AUTH_HMAC_ID_SHA224:
905 #endif
906 		return (64);
907 #ifdef HAVE_SHA2
908 	case SCTP_AUTH_HMAC_ID_SHA256:
909 		return (64);
910 	case SCTP_AUTH_HMAC_ID_SHA384:
911 	case SCTP_AUTH_HMAC_ID_SHA512:
912 		return (128);
913 #endif
914 	case SCTP_AUTH_HMAC_ID_RSVD:
915 	default:
916 		/* unknown HMAC algorithm: can't do anything */
917 		return (0);
918 	}			/* end switch */
919 }
920 
921 static void
922 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t * ctx)
923 {
924 	switch (hmac_algo) {
925 	case SCTP_AUTH_HMAC_ID_SHA1:
926 		SHA1_Init(&ctx->sha1);
927 		break;
928 #ifdef HAVE_SHA224
929 	case SCTP_AUTH_HMAC_ID_SHA224:
930 		break;
931 #endif
932 #ifdef HAVE_SHA2
933 	case SCTP_AUTH_HMAC_ID_SHA256:
934 		SHA256_Init(&ctx->sha256);
935 		break;
936 	case SCTP_AUTH_HMAC_ID_SHA384:
937 		SHA384_Init(&ctx->sha384);
938 		break;
939 	case SCTP_AUTH_HMAC_ID_SHA512:
940 		SHA512_Init(&ctx->sha512);
941 		break;
942 #endif
943 	case SCTP_AUTH_HMAC_ID_RSVD:
944 	default:
945 		/* unknown HMAC algorithm: can't do anything */
946 		return;
947 	}			/* end switch */
948 }
949 
950 static void
951 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t * ctx,
952     uint8_t * text, uint32_t textlen)
953 {
954 	switch (hmac_algo) {
955 	case SCTP_AUTH_HMAC_ID_SHA1:
956 		SHA1_Update(&ctx->sha1, text, textlen);
957 		break;
958 #ifdef HAVE_SHA224
959 	case SCTP_AUTH_HMAC_ID_SHA224:
960 		break;
961 #endif
962 #ifdef HAVE_SHA2
963 	case SCTP_AUTH_HMAC_ID_SHA256:
964 		SHA256_Update(&ctx->sha256, text, textlen);
965 		break;
966 	case SCTP_AUTH_HMAC_ID_SHA384:
967 		SHA384_Update(&ctx->sha384, text, textlen);
968 		break;
969 	case SCTP_AUTH_HMAC_ID_SHA512:
970 		SHA512_Update(&ctx->sha512, text, textlen);
971 		break;
972 #endif
973 	case SCTP_AUTH_HMAC_ID_RSVD:
974 	default:
975 		/* unknown HMAC algorithm: can't do anything */
976 		return;
977 	}			/* end switch */
978 }
979 
980 static void
981 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t * ctx,
982     uint8_t * digest)
983 {
984 	switch (hmac_algo) {
985 	case SCTP_AUTH_HMAC_ID_SHA1:
986 		SHA1_Final(digest, &ctx->sha1);
987 		break;
988 #ifdef HAVE_SHA224
989 	case SCTP_AUTH_HMAC_ID_SHA224:
990 		break;
991 #endif
992 #ifdef HAVE_SHA2
993 	case SCTP_AUTH_HMAC_ID_SHA256:
994 		SHA256_Final(digest, &ctx->sha256);
995 		break;
996 	case SCTP_AUTH_HMAC_ID_SHA384:
997 		/* SHA384 is truncated SHA512 */
998 		SHA384_Final(digest, &ctx->sha384);
999 		break;
1000 	case SCTP_AUTH_HMAC_ID_SHA512:
1001 		SHA512_Final(digest, &ctx->sha512);
1002 		break;
1003 #endif
1004 	case SCTP_AUTH_HMAC_ID_RSVD:
1005 	default:
1006 		/* unknown HMAC algorithm: can't do anything */
1007 		return;
1008 	}			/* end switch */
1009 }
1010 
1011 /*-
1012  * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
1013  *
1014  * Compute the HMAC digest using the desired hash key, text, and HMAC
1015  * algorithm.  Resulting digest is placed in 'digest' and digest length
1016  * is returned, if the HMAC was performed.
1017  *
1018  * WARNING: it is up to the caller to supply sufficient space to hold the
1019  * resultant digest.
1020  */
1021 uint32_t
1022 sctp_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1023     uint8_t * text, uint32_t textlen, uint8_t * digest)
1024 {
1025 	uint32_t digestlen;
1026 	uint32_t blocklen;
1027 	sctp_hash_context_t ctx;
1028 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
1029 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1030 	uint32_t i;
1031 
1032 	/* sanity check the material and length */
1033 	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
1034 	    (textlen == 0) || (digest == NULL)) {
1035 		/* can't do HMAC with empty key or text or digest store */
1036 		return (0);
1037 	}
1038 	/* validate the hmac algo and get the digest length */
1039 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1040 	if (digestlen == 0)
1041 		return (0);
1042 
1043 	/* hash the key if it is longer than the hash block size */
1044 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1045 	if (keylen > blocklen) {
1046 		sctp_hmac_init(hmac_algo, &ctx);
1047 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1048 		sctp_hmac_final(hmac_algo, &ctx, temp);
1049 		/* set the hashed key as the key */
1050 		keylen = digestlen;
1051 		key = temp;
1052 	}
1053 	/* initialize the inner/outer pads with the key and "append" zeroes */
1054 	bzero(ipad, blocklen);
1055 	bzero(opad, blocklen);
1056 	bcopy(key, ipad, keylen);
1057 	bcopy(key, opad, keylen);
1058 
1059 	/* XOR the key with ipad and opad values */
1060 	for (i = 0; i < blocklen; i++) {
1061 		ipad[i] ^= 0x36;
1062 		opad[i] ^= 0x5c;
1063 	}
1064 
1065 	/* perform inner hash */
1066 	sctp_hmac_init(hmac_algo, &ctx);
1067 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1068 	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
1069 	sctp_hmac_final(hmac_algo, &ctx, temp);
1070 
1071 	/* perform outer hash */
1072 	sctp_hmac_init(hmac_algo, &ctx);
1073 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1074 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1075 	sctp_hmac_final(hmac_algo, &ctx, digest);
1076 
1077 	return (digestlen);
1078 }
1079 
1080 /* mbuf version */
1081 uint32_t
1082 sctp_hmac_m(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1083     struct mbuf *m, uint32_t m_offset, uint8_t * digest, uint32_t trailer)
1084 {
1085 	uint32_t digestlen;
1086 	uint32_t blocklen;
1087 	sctp_hash_context_t ctx;
1088 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
1089 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1090 	uint32_t i;
1091 	struct mbuf *m_tmp;
1092 
1093 	/* sanity check the material and length */
1094 	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
1095 		/* can't do HMAC with empty key or text or digest store */
1096 		return (0);
1097 	}
1098 	/* validate the hmac algo and get the digest length */
1099 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1100 	if (digestlen == 0)
1101 		return (0);
1102 
1103 	/* hash the key if it is longer than the hash block size */
1104 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1105 	if (keylen > blocklen) {
1106 		sctp_hmac_init(hmac_algo, &ctx);
1107 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1108 		sctp_hmac_final(hmac_algo, &ctx, temp);
1109 		/* set the hashed key as the key */
1110 		keylen = digestlen;
1111 		key = temp;
1112 	}
1113 	/* initialize the inner/outer pads with the key and "append" zeroes */
1114 	bzero(ipad, blocklen);
1115 	bzero(opad, blocklen);
1116 	bcopy(key, ipad, keylen);
1117 	bcopy(key, opad, keylen);
1118 
1119 	/* XOR the key with ipad and opad values */
1120 	for (i = 0; i < blocklen; i++) {
1121 		ipad[i] ^= 0x36;
1122 		opad[i] ^= 0x5c;
1123 	}
1124 
1125 	/* perform inner hash */
1126 	sctp_hmac_init(hmac_algo, &ctx);
1127 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1128 	/* find the correct starting mbuf and offset (get start of text) */
1129 	m_tmp = m;
1130 	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1131 		m_offset -= SCTP_BUF_LEN(m_tmp);
1132 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1133 	}
1134 	/* now use the rest of the mbuf chain for the text */
1135 	while (m_tmp != NULL) {
1136 		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1137 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1138 			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1139 		} else {
1140 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1141 			    SCTP_BUF_LEN(m_tmp) - m_offset);
1142 		}
1143 
1144 		/* clear the offset since it's only for the first mbuf */
1145 		m_offset = 0;
1146 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1147 	}
1148 	sctp_hmac_final(hmac_algo, &ctx, temp);
1149 
1150 	/* perform outer hash */
1151 	sctp_hmac_init(hmac_algo, &ctx);
1152 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1153 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1154 	sctp_hmac_final(hmac_algo, &ctx, digest);
1155 
1156 	return (digestlen);
1157 }
1158 
1159 /*-
1160  * verify the HMAC digest using the desired hash key, text, and HMAC
1161  * algorithm.
1162  * Returns -1 on error, 0 on success.
1163  */
1164 int
1165 sctp_verify_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1166     uint8_t * text, uint32_t textlen,
1167     uint8_t * digest, uint32_t digestlen)
1168 {
1169 	uint32_t len;
1170 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1171 
1172 	/* sanity check the material and length */
1173 	if ((key == NULL) || (keylen == 0) ||
1174 	    (text == NULL) || (textlen == 0) || (digest == NULL)) {
1175 		/* can't do HMAC with empty key or text or digest */
1176 		return (-1);
1177 	}
1178 	len = sctp_get_hmac_digest_len(hmac_algo);
1179 	if ((len == 0) || (digestlen != len))
1180 		return (-1);
1181 
1182 	/* compute the expected hash */
1183 	if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len)
1184 		return (-1);
1185 
1186 	if (memcmp(digest, temp, digestlen) != 0)
1187 		return (-1);
1188 	else
1189 		return (0);
1190 }
1191 
1192 
1193 /*
1194  * computes the requested HMAC using a key struct (which may be modified if
1195  * the keylen exceeds the HMAC block len).
1196  */
1197 uint32_t
1198 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t * key, uint8_t * text,
1199     uint32_t textlen, uint8_t * digest)
1200 {
1201 	uint32_t digestlen;
1202 	uint32_t blocklen;
1203 	sctp_hash_context_t ctx;
1204 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1205 
1206 	/* sanity check */
1207 	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1208 	    (digest == NULL)) {
1209 		/* can't do HMAC with empty key or text or digest store */
1210 		return (0);
1211 	}
1212 	/* validate the hmac algo and get the digest length */
1213 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1214 	if (digestlen == 0)
1215 		return (0);
1216 
1217 	/* hash the key if it is longer than the hash block size */
1218 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1219 	if (key->keylen > blocklen) {
1220 		sctp_hmac_init(hmac_algo, &ctx);
1221 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1222 		sctp_hmac_final(hmac_algo, &ctx, temp);
1223 		/* save the hashed key as the new key */
1224 		key->keylen = digestlen;
1225 		bcopy(temp, key->key, key->keylen);
1226 	}
1227 	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1228 	    digest));
1229 }
1230 
1231 /* mbuf version */
1232 uint32_t
1233 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t * key, struct mbuf *m,
1234     uint32_t m_offset, uint8_t * digest)
1235 {
1236 	uint32_t digestlen;
1237 	uint32_t blocklen;
1238 	sctp_hash_context_t ctx;
1239 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1240 
1241 	/* sanity check */
1242 	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1243 		/* can't do HMAC with empty key or text or digest store */
1244 		return (0);
1245 	}
1246 	/* validate the hmac algo and get the digest length */
1247 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1248 	if (digestlen == 0)
1249 		return (0);
1250 
1251 	/* hash the key if it is longer than the hash block size */
1252 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1253 	if (key->keylen > blocklen) {
1254 		sctp_hmac_init(hmac_algo, &ctx);
1255 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1256 		sctp_hmac_final(hmac_algo, &ctx, temp);
1257 		/* save the hashed key as the new key */
1258 		key->keylen = digestlen;
1259 		bcopy(temp, key->key, key->keylen);
1260 	}
1261 	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1262 }
1263 
1264 int
1265 sctp_auth_is_supported_hmac(sctp_hmaclist_t * list, uint16_t id)
1266 {
1267 	int i;
1268 
1269 	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1270 		return (0);
1271 
1272 	for (i = 0; i < list->num_algo; i++)
1273 		if (list->hmac[i] == id)
1274 			return (1);
1275 
1276 	/* not in the list */
1277 	return (0);
1278 }
1279 
1280 
1281 /*-
1282  * clear any cached key(s) if they match the given key id on an association.
1283  * the cached key(s) will be recomputed and re-cached at next use.
1284  * ASSUMES TCB_LOCK is already held
1285  */
1286 void
1287 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1288 {
1289 	if (stcb == NULL)
1290 		return;
1291 
1292 	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1293 		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1294 		stcb->asoc.authinfo.assoc_key = NULL;
1295 	}
1296 	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1297 		sctp_free_key(stcb->asoc.authinfo.recv_key);
1298 		stcb->asoc.authinfo.recv_key = NULL;
1299 	}
1300 }
1301 
1302 /*-
1303  * clear any cached key(s) if they match the given key id for all assocs on
1304  * an endpoint.
1305  * ASSUMES INP_WLOCK is already held
1306  */
1307 void
1308 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1309 {
1310 	struct sctp_tcb *stcb;
1311 
1312 	if (inp == NULL)
1313 		return;
1314 
1315 	/* clear the cached keys on all assocs on this instance */
1316 	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1317 		SCTP_TCB_LOCK(stcb);
1318 		sctp_clear_cachedkeys(stcb, keyid);
1319 		SCTP_TCB_UNLOCK(stcb);
1320 	}
1321 }
1322 
1323 /*-
1324  * delete a shared key from an association
1325  * ASSUMES TCB_LOCK is already held
1326  */
1327 int
1328 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1329 {
1330 	sctp_sharedkey_t *skey;
1331 
1332 	if (stcb == NULL)
1333 		return (-1);
1334 
1335 	/* is the keyid the assoc active sending key */
1336 	if (keyid == stcb->asoc.authinfo.active_keyid)
1337 		return (-1);
1338 
1339 	/* does the key exist? */
1340 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1341 	if (skey == NULL)
1342 		return (-1);
1343 
1344 	/* are there other refcount holders on the key? */
1345 	if (skey->refcount > 1)
1346 		return (-1);
1347 
1348 	/* remove it */
1349 	LIST_REMOVE(skey, next);
1350 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1351 
1352 	/* clear any cached keys */
1353 	sctp_clear_cachedkeys(stcb, keyid);
1354 	return (0);
1355 }
1356 
1357 /*-
1358  * deletes a shared key from the endpoint
1359  * ASSUMES INP_WLOCK is already held
1360  */
1361 int
1362 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1363 {
1364 	sctp_sharedkey_t *skey;
1365 
1366 	if (inp == NULL)
1367 		return (-1);
1368 
1369 	/* is the keyid the active sending key on the endpoint */
1370 	if (keyid == inp->sctp_ep.default_keyid)
1371 		return (-1);
1372 
1373 	/* does the key exist? */
1374 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1375 	if (skey == NULL)
1376 		return (-1);
1377 
1378 	/* endpoint keys are not refcounted */
1379 
1380 	/* remove it */
1381 	LIST_REMOVE(skey, next);
1382 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1383 
1384 	/* clear any cached keys */
1385 	sctp_clear_cachedkeys_ep(inp, keyid);
1386 	return (0);
1387 }
1388 
1389 /*-
1390  * set the active key on an association
1391  * ASSUMES TCB_LOCK is already held
1392  */
1393 int
1394 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1395 {
1396 	sctp_sharedkey_t *skey = NULL;
1397 
1398 	/* find the key on the assoc */
1399 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1400 	if (skey == NULL) {
1401 		/* that key doesn't exist */
1402 		return (-1);
1403 	}
1404 	if ((skey->deactivated) && (skey->refcount > 1)) {
1405 		/* can't reactivate a deactivated key with other refcounts */
1406 		return (-1);
1407 	}
1408 	/* set the (new) active key */
1409 	stcb->asoc.authinfo.active_keyid = keyid;
1410 	/* reset the deactivated flag */
1411 	skey->deactivated = 0;
1412 
1413 	return (0);
1414 }
1415 
1416 /*-
1417  * set the active key on an endpoint
1418  * ASSUMES INP_WLOCK is already held
1419  */
1420 int
1421 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1422 {
1423 	sctp_sharedkey_t *skey;
1424 
1425 	/* find the key */
1426 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1427 	if (skey == NULL) {
1428 		/* that key doesn't exist */
1429 		return (-1);
1430 	}
1431 	inp->sctp_ep.default_keyid = keyid;
1432 	return (0);
1433 }
1434 
1435 /*-
1436  * deactivates a shared key from the association
1437  * ASSUMES INP_WLOCK is already held
1438  */
1439 int
1440 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1441 {
1442 	sctp_sharedkey_t *skey;
1443 
1444 	if (stcb == NULL)
1445 		return (-1);
1446 
1447 	/* is the keyid the assoc active sending key */
1448 	if (keyid == stcb->asoc.authinfo.active_keyid)
1449 		return (-1);
1450 
1451 	/* does the key exist? */
1452 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1453 	if (skey == NULL)
1454 		return (-1);
1455 
1456 	/* are there other refcount holders on the key? */
1457 	if (skey->refcount == 1) {
1458 		/* no other users, send a notification for this key */
1459 		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1460 		    SCTP_SO_LOCKED);
1461 	}
1462 	/* mark the key as deactivated */
1463 	skey->deactivated = 1;
1464 
1465 	return (0);
1466 }
1467 
1468 /*-
1469  * deactivates a shared key from the endpoint
1470  * ASSUMES INP_WLOCK is already held
1471  */
1472 int
1473 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1474 {
1475 	sctp_sharedkey_t *skey;
1476 
1477 	if (inp == NULL)
1478 		return (-1);
1479 
1480 	/* is the keyid the active sending key on the endpoint */
1481 	if (keyid == inp->sctp_ep.default_keyid)
1482 		return (-1);
1483 
1484 	/* does the key exist? */
1485 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1486 	if (skey == NULL)
1487 		return (-1);
1488 
1489 	/* endpoint keys are not refcounted */
1490 
1491 	/* remove it */
1492 	LIST_REMOVE(skey, next);
1493 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1494 
1495 	return (0);
1496 }
1497 
1498 /*
1499  * get local authentication parameters from cookie (from INIT-ACK)
1500  */
1501 void
1502 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1503     uint32_t offset, uint32_t length)
1504 {
1505 	struct sctp_paramhdr *phdr, tmp_param;
1506 	uint16_t plen, ptype;
1507 	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1508 	struct sctp_auth_random *p_random = NULL;
1509 	uint16_t random_len = 0;
1510 	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1511 	struct sctp_auth_hmac_algo *hmacs = NULL;
1512 	uint16_t hmacs_len = 0;
1513 	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1514 	struct sctp_auth_chunk_list *chunks = NULL;
1515 	uint16_t num_chunks = 0;
1516 	sctp_key_t *new_key;
1517 	uint32_t keylen;
1518 
1519 	/* convert to upper bound */
1520 	length += offset;
1521 
1522 	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1523 	    sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param);
1524 	while (phdr != NULL) {
1525 		ptype = ntohs(phdr->param_type);
1526 		plen = ntohs(phdr->param_length);
1527 
1528 		if ((plen == 0) || (offset + plen > length))
1529 			break;
1530 
1531 		if (ptype == SCTP_RANDOM) {
1532 			if (plen > sizeof(random_store))
1533 				break;
1534 			phdr = sctp_get_next_param(m, offset,
1535 			    (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store)));
1536 			if (phdr == NULL)
1537 				return;
1538 			/* save the random and length for the key */
1539 			p_random = (struct sctp_auth_random *)phdr;
1540 			random_len = plen - sizeof(*p_random);
1541 		} else if (ptype == SCTP_HMAC_LIST) {
1542 			int num_hmacs;
1543 			int i;
1544 
1545 			if (plen > sizeof(hmacs_store))
1546 				break;
1547 			phdr = sctp_get_next_param(m, offset,
1548 			    (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store)));
1549 			if (phdr == NULL)
1550 				return;
1551 			/* save the hmacs list and num for the key */
1552 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1553 			hmacs_len = plen - sizeof(*hmacs);
1554 			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1555 			if (stcb->asoc.local_hmacs != NULL)
1556 				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1557 			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1558 			if (stcb->asoc.local_hmacs != NULL) {
1559 				for (i = 0; i < num_hmacs; i++) {
1560 					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1561 					    ntohs(hmacs->hmac_ids[i]));
1562 				}
1563 			}
1564 		} else if (ptype == SCTP_CHUNK_LIST) {
1565 			int i;
1566 
1567 			if (plen > sizeof(chunks_store))
1568 				break;
1569 			phdr = sctp_get_next_param(m, offset,
1570 			    (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store)));
1571 			if (phdr == NULL)
1572 				return;
1573 			chunks = (struct sctp_auth_chunk_list *)phdr;
1574 			num_chunks = plen - sizeof(*chunks);
1575 			/* save chunks list and num for the key */
1576 			if (stcb->asoc.local_auth_chunks != NULL)
1577 				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1578 			else
1579 				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1580 			for (i = 0; i < num_chunks; i++) {
1581 				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1582 				    stcb->asoc.local_auth_chunks);
1583 			}
1584 		}
1585 		/* get next parameter */
1586 		offset += SCTP_SIZE32(plen);
1587 		if (offset + sizeof(struct sctp_paramhdr) > length)
1588 			break;
1589 		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1590 		    (uint8_t *) & tmp_param);
1591 	}
1592 	/* concatenate the full random key */
1593 	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1594 	if (chunks != NULL) {
1595 		keylen += sizeof(*chunks) + num_chunks;
1596 	}
1597 	new_key = sctp_alloc_key(keylen);
1598 	if (new_key != NULL) {
1599 		/* copy in the RANDOM */
1600 		if (p_random != NULL) {
1601 			keylen = sizeof(*p_random) + random_len;
1602 			bcopy(p_random, new_key->key, keylen);
1603 		}
1604 		/* append in the AUTH chunks */
1605 		if (chunks != NULL) {
1606 			bcopy(chunks, new_key->key + keylen,
1607 			    sizeof(*chunks) + num_chunks);
1608 			keylen += sizeof(*chunks) + num_chunks;
1609 		}
1610 		/* append in the HMACs */
1611 		if (hmacs != NULL) {
1612 			bcopy(hmacs, new_key->key + keylen,
1613 			    sizeof(*hmacs) + hmacs_len);
1614 		}
1615 	}
1616 	if (stcb->asoc.authinfo.random != NULL)
1617 		sctp_free_key(stcb->asoc.authinfo.random);
1618 	stcb->asoc.authinfo.random = new_key;
1619 	stcb->asoc.authinfo.random_len = random_len;
1620 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1621 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1622 
1623 	/* negotiate what HMAC to use for the peer */
1624 	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1625 	    stcb->asoc.local_hmacs);
1626 
1627 	/* copy defaults from the endpoint */
1628 	/* FIX ME: put in cookie? */
1629 	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1630 	/* copy out the shared key list (by reference) from the endpoint */
1631 	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1632 	    &stcb->asoc.shared_keys);
1633 }
1634 
1635 /*
1636  * compute and fill in the HMAC digest for a packet
1637  */
1638 void
1639 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1640     struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1641 {
1642 	uint32_t digestlen;
1643 	sctp_sharedkey_t *skey;
1644 	sctp_key_t *key;
1645 
1646 	if ((stcb == NULL) || (auth == NULL))
1647 		return;
1648 
1649 	/* zero the digest + chunk padding */
1650 	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1651 	bzero(auth->hmac, SCTP_SIZE32(digestlen));
1652 
1653 	/* is the desired key cached? */
1654 	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1655 	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1656 		if (stcb->asoc.authinfo.assoc_key != NULL) {
1657 			/* free the old cached key */
1658 			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1659 		}
1660 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1661 		/* the only way skey is NULL is if null key id 0 is used */
1662 		if (skey != NULL)
1663 			key = skey->key;
1664 		else
1665 			key = NULL;
1666 		/* compute a new assoc key and cache it */
1667 		stcb->asoc.authinfo.assoc_key =
1668 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1669 		    stcb->asoc.authinfo.peer_random, key);
1670 		stcb->asoc.authinfo.assoc_keyid = keyid;
1671 		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1672 		    stcb->asoc.authinfo.assoc_keyid);
1673 #ifdef SCTP_DEBUG
1674 		if (SCTP_AUTH_DEBUG)
1675 			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1676 			    "Assoc Key");
1677 #endif
1678 	}
1679 	/* set in the active key id */
1680 	auth->shared_key_id = htons(keyid);
1681 
1682 	/* compute and fill in the digest */
1683 	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1684 	    m, auth_offset, auth->hmac);
1685 }
1686 
1687 
1688 static void
1689 sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1690 {
1691 	struct mbuf *m_tmp;
1692 	uint8_t *data;
1693 
1694 	/* sanity check */
1695 	if (m == NULL)
1696 		return;
1697 
1698 	/* find the correct starting mbuf and offset (get start position) */
1699 	m_tmp = m;
1700 	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1701 		m_offset -= SCTP_BUF_LEN(m_tmp);
1702 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1703 	}
1704 	/* now use the rest of the mbuf chain */
1705 	while ((m_tmp != NULL) && (size > 0)) {
1706 		data = mtod(m_tmp, uint8_t *) + m_offset;
1707 		if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) {
1708 			bzero(data, SCTP_BUF_LEN(m_tmp));
1709 			size -= SCTP_BUF_LEN(m_tmp);
1710 		} else {
1711 			bzero(data, size);
1712 			size = 0;
1713 		}
1714 		/* clear the offset since it's only for the first mbuf */
1715 		m_offset = 0;
1716 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1717 	}
1718 }
1719 
1720 /*-
1721  * process the incoming Authentication chunk
1722  * return codes:
1723  *   -1 on any authentication error
1724  *    0 on authentication verification
1725  */
1726 int
1727 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1728     struct mbuf *m, uint32_t offset)
1729 {
1730 	uint16_t chunklen;
1731 	uint16_t shared_key_id;
1732 	uint16_t hmac_id;
1733 	sctp_sharedkey_t *skey;
1734 	uint32_t digestlen;
1735 	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1736 	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1737 
1738 	/* auth is checked for NULL by caller */
1739 	chunklen = ntohs(auth->ch.chunk_length);
1740 	if (chunklen < sizeof(*auth)) {
1741 		SCTP_STAT_INCR(sctps_recvauthfailed);
1742 		return (-1);
1743 	}
1744 	SCTP_STAT_INCR(sctps_recvauth);
1745 
1746 	/* get the auth params */
1747 	shared_key_id = ntohs(auth->shared_key_id);
1748 	hmac_id = ntohs(auth->hmac_id);
1749 	SCTPDBG(SCTP_DEBUG_AUTH1,
1750 	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1751 	    shared_key_id, hmac_id);
1752 
1753 	/* is the indicated HMAC supported? */
1754 	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1755 		struct mbuf *m_err;
1756 		struct sctp_auth_invalid_hmac *err;
1757 
1758 		SCTP_STAT_INCR(sctps_recvivalhmacid);
1759 		SCTPDBG(SCTP_DEBUG_AUTH1,
1760 		    "SCTP Auth: unsupported HMAC id %u\n",
1761 		    hmac_id);
1762 		/*
1763 		 * report this in an Error Chunk: Unsupported HMAC
1764 		 * Identifier
1765 		 */
1766 		m_err = sctp_get_mbuf_for_msg(sizeof(*err), 0, M_DONTWAIT,
1767 		    1, MT_HEADER);
1768 		if (m_err != NULL) {
1769 			/* pre-reserve some space */
1770 			SCTP_BUF_RESV_UF(m_err, sizeof(struct sctp_chunkhdr));
1771 			/* fill in the error */
1772 			err = mtod(m_err, struct sctp_auth_invalid_hmac *);
1773 			bzero(err, sizeof(*err));
1774 			err->ph.param_type = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1775 			err->ph.param_length = htons(sizeof(*err));
1776 			err->hmac_id = ntohs(hmac_id);
1777 			SCTP_BUF_LEN(m_err) = sizeof(*err);
1778 			/* queue it */
1779 			sctp_queue_op_err(stcb, m_err);
1780 		}
1781 		return (-1);
1782 	}
1783 	/* get the indicated shared key, if available */
1784 	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1785 	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1786 		/* find the shared key on the assoc first */
1787 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1788 		    shared_key_id);
1789 		/* if the shared key isn't found, discard the chunk */
1790 		if (skey == NULL) {
1791 			SCTP_STAT_INCR(sctps_recvivalkeyid);
1792 			SCTPDBG(SCTP_DEBUG_AUTH1,
1793 			    "SCTP Auth: unknown key id %u\n",
1794 			    shared_key_id);
1795 			return (-1);
1796 		}
1797 		/* generate a notification if this is a new key id */
1798 		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1799 			/*
1800 			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1801 			 * shared_key_id, (void
1802 			 * *)stcb->asoc.authinfo.recv_keyid);
1803 			 */
1804 			sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY,
1805 			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1806 			    SCTP_SO_NOT_LOCKED);
1807 		/* compute a new recv assoc key and cache it */
1808 		if (stcb->asoc.authinfo.recv_key != NULL)
1809 			sctp_free_key(stcb->asoc.authinfo.recv_key);
1810 		stcb->asoc.authinfo.recv_key =
1811 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1812 		    stcb->asoc.authinfo.peer_random, skey->key);
1813 		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1814 #ifdef SCTP_DEBUG
1815 		if (SCTP_AUTH_DEBUG)
1816 			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1817 #endif
1818 	}
1819 	/* validate the digest length */
1820 	digestlen = sctp_get_hmac_digest_len(hmac_id);
1821 	if (chunklen < (sizeof(*auth) + digestlen)) {
1822 		/* invalid digest length */
1823 		SCTP_STAT_INCR(sctps_recvauthfailed);
1824 		SCTPDBG(SCTP_DEBUG_AUTH1,
1825 		    "SCTP Auth: chunk too short for HMAC\n");
1826 		return (-1);
1827 	}
1828 	/* save a copy of the digest, zero the pseudo header, and validate */
1829 	bcopy(auth->hmac, digest, digestlen);
1830 	sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1831 	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1832 	    m, offset, computed_digest);
1833 
1834 	/* compare the computed digest with the one in the AUTH chunk */
1835 	if (memcmp(digest, computed_digest, digestlen) != 0) {
1836 		SCTP_STAT_INCR(sctps_recvauthfailed);
1837 		SCTPDBG(SCTP_DEBUG_AUTH1,
1838 		    "SCTP Auth: HMAC digest check failed\n");
1839 		return (-1);
1840 	}
1841 	return (0);
1842 }
1843 
1844 /*
1845  * Generate NOTIFICATION
1846  */
1847 void
1848 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1849     uint16_t keyid, uint16_t alt_keyid, int so_locked
1850 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
1851     SCTP_UNUSED
1852 #endif
1853 )
1854 {
1855 	struct mbuf *m_notify;
1856 	struct sctp_authkey_event *auth;
1857 	struct sctp_queued_to_read *control;
1858 
1859 	if ((stcb == NULL) ||
1860 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1861 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1862 	    (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1863 	    ) {
1864 		/* If the socket is gone we are out of here */
1865 		return;
1866 	}
1867 	if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT))
1868 		/* event not enabled */
1869 		return;
1870 
1871 	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1872 	    0, M_DONTWAIT, 1, MT_HEADER);
1873 	if (m_notify == NULL)
1874 		/* no space left */
1875 		return;
1876 
1877 	SCTP_BUF_LEN(m_notify) = 0;
1878 	auth = mtod(m_notify, struct sctp_authkey_event *);
1879 	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1880 	auth->auth_flags = 0;
1881 	auth->auth_length = sizeof(*auth);
1882 	auth->auth_keynumber = keyid;
1883 	auth->auth_altkeynumber = alt_keyid;
1884 	auth->auth_indication = indication;
1885 	auth->auth_assoc_id = sctp_get_associd(stcb);
1886 
1887 	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1888 	SCTP_BUF_NEXT(m_notify) = NULL;
1889 
1890 	/* append to socket */
1891 	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1892 	    0, 0, stcb->asoc.context, 0, 0, 0, m_notify);
1893 	if (control == NULL) {
1894 		/* no memory */
1895 		sctp_m_freem(m_notify);
1896 		return;
1897 	}
1898 	control->spec_flags = M_NOTIFICATION;
1899 	control->length = SCTP_BUF_LEN(m_notify);
1900 	/* not that we need this */
1901 	control->tail_mbuf = m_notify;
1902 	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1903 	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1904 }
1905 
1906 
1907 /*-
1908  * validates the AUTHentication related parameters in an INIT/INIT-ACK
1909  * Note: currently only used for INIT as INIT-ACK is handled inline
1910  * with sctp_load_addresses_from_init()
1911  */
1912 int
1913 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1914 {
1915 	struct sctp_paramhdr *phdr, parm_buf;
1916 	uint16_t ptype, plen;
1917 	int peer_supports_asconf = 0;
1918 	int peer_supports_auth = 0;
1919 	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1920 	uint8_t saw_asconf = 0;
1921 	uint8_t saw_asconf_ack = 0;
1922 
1923 	/* go through each of the params. */
1924 	phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf));
1925 	while (phdr) {
1926 		ptype = ntohs(phdr->param_type);
1927 		plen = ntohs(phdr->param_length);
1928 
1929 		if (offset + plen > limit) {
1930 			break;
1931 		}
1932 		if (plen < sizeof(struct sctp_paramhdr)) {
1933 			break;
1934 		}
1935 		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1936 			/* A supported extension chunk */
1937 			struct sctp_supported_chunk_types_param *pr_supported;
1938 			uint8_t local_store[SCTP_PARAM_BUFFER_SIZE];
1939 			int num_ent, i;
1940 
1941 			phdr = sctp_get_next_param(m, offset,
1942 			    (struct sctp_paramhdr *)&local_store, min(plen, sizeof(local_store)));
1943 			if (phdr == NULL) {
1944 				return (-1);
1945 			}
1946 			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1947 			num_ent = plen - sizeof(struct sctp_paramhdr);
1948 			for (i = 0; i < num_ent; i++) {
1949 				switch (pr_supported->chunk_types[i]) {
1950 				case SCTP_ASCONF:
1951 				case SCTP_ASCONF_ACK:
1952 					peer_supports_asconf = 1;
1953 					break;
1954 				default:
1955 					/* one we don't care about */
1956 					break;
1957 				}
1958 			}
1959 		} else if (ptype == SCTP_RANDOM) {
1960 			got_random = 1;
1961 			/* enforce the random length */
1962 			if (plen != (sizeof(struct sctp_auth_random) +
1963 			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1964 				SCTPDBG(SCTP_DEBUG_AUTH1,
1965 				    "SCTP: invalid RANDOM len\n");
1966 				return (-1);
1967 			}
1968 		} else if (ptype == SCTP_HMAC_LIST) {
1969 			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1970 			struct sctp_auth_hmac_algo *hmacs;
1971 			int num_hmacs;
1972 
1973 			if (plen > sizeof(store))
1974 				break;
1975 			phdr = sctp_get_next_param(m, offset,
1976 			    (struct sctp_paramhdr *)store, min(plen, sizeof(store)));
1977 			if (phdr == NULL)
1978 				return (-1);
1979 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1980 			num_hmacs = (plen - sizeof(*hmacs)) /
1981 			    sizeof(hmacs->hmac_ids[0]);
1982 			/* validate the hmac list */
1983 			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1984 				SCTPDBG(SCTP_DEBUG_AUTH1,
1985 				    "SCTP: invalid HMAC param\n");
1986 				return (-1);
1987 			}
1988 			got_hmacs = 1;
1989 		} else if (ptype == SCTP_CHUNK_LIST) {
1990 			int i, num_chunks;
1991 			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1992 
1993 			/* did the peer send a non-empty chunk list? */
1994 			struct sctp_auth_chunk_list *chunks = NULL;
1995 
1996 			phdr = sctp_get_next_param(m, offset,
1997 			    (struct sctp_paramhdr *)chunks_store,
1998 			    min(plen, sizeof(chunks_store)));
1999 			if (phdr == NULL)
2000 				return (-1);
2001 
2002 			/*-
2003 			 * Flip through the list and mark that the
2004 			 * peer supports asconf/asconf_ack.
2005 			 */
2006 			chunks = (struct sctp_auth_chunk_list *)phdr;
2007 			num_chunks = plen - sizeof(*chunks);
2008 			for (i = 0; i < num_chunks; i++) {
2009 				/* record asconf/asconf-ack if listed */
2010 				if (chunks->chunk_types[i] == SCTP_ASCONF)
2011 					saw_asconf = 1;
2012 				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
2013 					saw_asconf_ack = 1;
2014 
2015 			}
2016 			if (num_chunks)
2017 				got_chklist = 1;
2018 		}
2019 		offset += SCTP_SIZE32(plen);
2020 		if (offset >= limit) {
2021 			break;
2022 		}
2023 		phdr = sctp_get_next_param(m, offset, &parm_buf,
2024 		    sizeof(parm_buf));
2025 	}
2026 	/* validate authentication required parameters */
2027 	if (got_random && got_hmacs) {
2028 		peer_supports_auth = 1;
2029 	} else {
2030 		peer_supports_auth = 0;
2031 	}
2032 	if (!peer_supports_auth && got_chklist) {
2033 		SCTPDBG(SCTP_DEBUG_AUTH1,
2034 		    "SCTP: peer sent chunk list w/o AUTH\n");
2035 		return (-1);
2036 	}
2037 	if (!SCTP_BASE_SYSCTL(sctp_asconf_auth_nochk) && peer_supports_asconf &&
2038 	    !peer_supports_auth) {
2039 		SCTPDBG(SCTP_DEBUG_AUTH1,
2040 		    "SCTP: peer supports ASCONF but not AUTH\n");
2041 		return (-1);
2042 	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
2043 	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
2044 		return (-2);
2045 	}
2046 	return (0);
2047 }
2048 
2049 void
2050 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
2051 {
2052 	uint16_t chunks_len = 0;
2053 	uint16_t hmacs_len = 0;
2054 	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
2055 	sctp_key_t *new_key;
2056 	uint16_t keylen;
2057 
2058 	/* initialize hmac list from endpoint */
2059 	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
2060 	if (stcb->asoc.local_hmacs != NULL) {
2061 		hmacs_len = stcb->asoc.local_hmacs->num_algo *
2062 		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
2063 	}
2064 	/* initialize auth chunks list from endpoint */
2065 	stcb->asoc.local_auth_chunks =
2066 	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
2067 	if (stcb->asoc.local_auth_chunks != NULL) {
2068 		int i;
2069 
2070 		for (i = 0; i < 256; i++) {
2071 			if (stcb->asoc.local_auth_chunks->chunks[i])
2072 				chunks_len++;
2073 		}
2074 	}
2075 	/* copy defaults from the endpoint */
2076 	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
2077 
2078 	/* copy out the shared key list (by reference) from the endpoint */
2079 	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
2080 	    &stcb->asoc.shared_keys);
2081 
2082 	/* now set the concatenated key (random + chunks + hmacs) */
2083 	/* key includes parameter headers */
2084 	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
2085 	    hmacs_len;
2086 	new_key = sctp_alloc_key(keylen);
2087 	if (new_key != NULL) {
2088 		struct sctp_paramhdr *ph;
2089 		int plen;
2090 
2091 		/* generate and copy in the RANDOM */
2092 		ph = (struct sctp_paramhdr *)new_key->key;
2093 		ph->param_type = htons(SCTP_RANDOM);
2094 		plen = sizeof(*ph) + random_len;
2095 		ph->param_length = htons(plen);
2096 		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
2097 		keylen = plen;
2098 
2099 		/* append in the AUTH chunks */
2100 		/* NOTE: currently we always have chunks to list */
2101 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2102 		ph->param_type = htons(SCTP_CHUNK_LIST);
2103 		plen = sizeof(*ph) + chunks_len;
2104 		ph->param_length = htons(plen);
2105 		keylen += sizeof(*ph);
2106 		if (stcb->asoc.local_auth_chunks) {
2107 			int i;
2108 
2109 			for (i = 0; i < 256; i++) {
2110 				if (stcb->asoc.local_auth_chunks->chunks[i])
2111 					new_key->key[keylen++] = i;
2112 			}
2113 		}
2114 		/* append in the HMACs */
2115 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2116 		ph->param_type = htons(SCTP_HMAC_LIST);
2117 		plen = sizeof(*ph) + hmacs_len;
2118 		ph->param_length = htons(plen);
2119 		keylen += sizeof(*ph);
2120 		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
2121 		    new_key->key + keylen);
2122 	}
2123 	if (stcb->asoc.authinfo.random != NULL)
2124 		sctp_free_key(stcb->asoc.authinfo.random);
2125 	stcb->asoc.authinfo.random = new_key;
2126 	stcb->asoc.authinfo.random_len = random_len;
2127 }
2128