1 /*- 2 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. 3 * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. 4 * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * a) Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * b) Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in 14 * the documentation and/or other materials provided with the distribution. 15 * 16 * c) Neither the name of Cisco Systems, Inc. nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <netinet/sctp_os.h> 37 #include <netinet/sctp.h> 38 #include <netinet/sctp_header.h> 39 #include <netinet/sctp_pcb.h> 40 #include <netinet/sctp_var.h> 41 #include <netinet/sctp_sysctl.h> 42 #include <netinet/sctputil.h> 43 #include <netinet/sctp_indata.h> 44 #include <netinet/sctp_output.h> 45 #include <netinet/sctp_auth.h> 46 47 #ifdef SCTP_DEBUG 48 #define SCTP_AUTH_DEBUG (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1) 49 #define SCTP_AUTH_DEBUG2 (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2) 50 #endif /* SCTP_DEBUG */ 51 52 53 void 54 sctp_clear_chunklist(sctp_auth_chklist_t * chklist) 55 { 56 bzero(chklist, sizeof(*chklist)); 57 /* chklist->num_chunks = 0; */ 58 } 59 60 sctp_auth_chklist_t * 61 sctp_alloc_chunklist(void) 62 { 63 sctp_auth_chklist_t *chklist; 64 65 SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist), 66 SCTP_M_AUTH_CL); 67 if (chklist == NULL) { 68 SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n"); 69 } else { 70 sctp_clear_chunklist(chklist); 71 } 72 return (chklist); 73 } 74 75 void 76 sctp_free_chunklist(sctp_auth_chklist_t * list) 77 { 78 if (list != NULL) 79 SCTP_FREE(list, SCTP_M_AUTH_CL); 80 } 81 82 sctp_auth_chklist_t * 83 sctp_copy_chunklist(sctp_auth_chklist_t * list) 84 { 85 sctp_auth_chklist_t *new_list; 86 87 if (list == NULL) 88 return (NULL); 89 90 /* get a new list */ 91 new_list = sctp_alloc_chunklist(); 92 if (new_list == NULL) 93 return (NULL); 94 /* copy it */ 95 bcopy(list, new_list, sizeof(*new_list)); 96 97 return (new_list); 98 } 99 100 101 /* 102 * add a chunk to the required chunks list 103 */ 104 int 105 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t * list) 106 { 107 if (list == NULL) 108 return (-1); 109 110 /* is chunk restricted? */ 111 if ((chunk == SCTP_INITIATION) || 112 (chunk == SCTP_INITIATION_ACK) || 113 (chunk == SCTP_SHUTDOWN_COMPLETE) || 114 (chunk == SCTP_AUTHENTICATION)) { 115 return (-1); 116 } 117 if (list->chunks[chunk] == 0) { 118 list->chunks[chunk] = 1; 119 list->num_chunks++; 120 SCTPDBG(SCTP_DEBUG_AUTH1, 121 "SCTP: added chunk %u (0x%02x) to Auth list\n", 122 chunk, chunk); 123 } 124 return (0); 125 } 126 127 /* 128 * delete a chunk from the required chunks list 129 */ 130 int 131 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t * list) 132 { 133 if (list == NULL) 134 return (-1); 135 136 /* is chunk restricted? */ 137 if ((chunk == SCTP_ASCONF) || 138 (chunk == SCTP_ASCONF_ACK)) { 139 return (-1); 140 } 141 if (list->chunks[chunk] == 1) { 142 list->chunks[chunk] = 0; 143 list->num_chunks--; 144 SCTPDBG(SCTP_DEBUG_AUTH1, 145 "SCTP: deleted chunk %u (0x%02x) from Auth list\n", 146 chunk, chunk); 147 } 148 return (0); 149 } 150 151 size_t 152 sctp_auth_get_chklist_size(const sctp_auth_chklist_t * list) 153 { 154 if (list == NULL) 155 return (0); 156 else 157 return (list->num_chunks); 158 } 159 160 /* 161 * set the default list of chunks requiring AUTH 162 */ 163 void 164 sctp_auth_set_default_chunks(sctp_auth_chklist_t * list) 165 { 166 (void)sctp_auth_add_chunk(SCTP_ASCONF, list); 167 (void)sctp_auth_add_chunk(SCTP_ASCONF_ACK, list); 168 } 169 170 /* 171 * return the current number and list of required chunks caller must 172 * guarantee ptr has space for up to 256 bytes 173 */ 174 int 175 sctp_serialize_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr) 176 { 177 int i, count = 0; 178 179 if (list == NULL) 180 return (0); 181 182 for (i = 0; i < 256; i++) { 183 if (list->chunks[i] != 0) { 184 *ptr++ = i; 185 count++; 186 } 187 } 188 return (count); 189 } 190 191 int 192 sctp_pack_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr) 193 { 194 int i, size = 0; 195 196 if (list == NULL) 197 return (0); 198 199 if (list->num_chunks <= 32) { 200 /* just list them, one byte each */ 201 for (i = 0; i < 256; i++) { 202 if (list->chunks[i] != 0) { 203 *ptr++ = i; 204 size++; 205 } 206 } 207 } else { 208 int index, offset; 209 210 /* pack into a 32 byte bitfield */ 211 for (i = 0; i < 256; i++) { 212 if (list->chunks[i] != 0) { 213 index = i / 8; 214 offset = i % 8; 215 ptr[index] |= (1 << offset); 216 } 217 } 218 size = 32; 219 } 220 return (size); 221 } 222 223 int 224 sctp_unpack_auth_chunks(const uint8_t * ptr, uint8_t num_chunks, 225 sctp_auth_chklist_t * list) 226 { 227 int i; 228 int size; 229 230 if (list == NULL) 231 return (0); 232 233 if (num_chunks <= 32) { 234 /* just pull them, one byte each */ 235 for (i = 0; i < num_chunks; i++) { 236 (void)sctp_auth_add_chunk(*ptr++, list); 237 } 238 size = num_chunks; 239 } else { 240 int index, offset; 241 242 /* unpack from a 32 byte bitfield */ 243 for (index = 0; index < 32; index++) { 244 for (offset = 0; offset < 8; offset++) { 245 if (ptr[index] & (1 << offset)) { 246 (void)sctp_auth_add_chunk((index * 8) + offset, list); 247 } 248 } 249 } 250 size = 32; 251 } 252 return (size); 253 } 254 255 256 /* 257 * allocate structure space for a key of length keylen 258 */ 259 sctp_key_t * 260 sctp_alloc_key(uint32_t keylen) 261 { 262 sctp_key_t *new_key; 263 264 SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen, 265 SCTP_M_AUTH_KY); 266 if (new_key == NULL) { 267 /* out of memory */ 268 return (NULL); 269 } 270 new_key->keylen = keylen; 271 return (new_key); 272 } 273 274 void 275 sctp_free_key(sctp_key_t * key) 276 { 277 if (key != NULL) 278 SCTP_FREE(key, SCTP_M_AUTH_KY); 279 } 280 281 void 282 sctp_print_key(sctp_key_t * key, const char *str) 283 { 284 uint32_t i; 285 286 if (key == NULL) { 287 SCTP_PRINTF("%s: [Null key]\n", str); 288 return; 289 } 290 SCTP_PRINTF("%s: len %u, ", str, key->keylen); 291 if (key->keylen) { 292 for (i = 0; i < key->keylen; i++) 293 SCTP_PRINTF("%02x", key->key[i]); 294 SCTP_PRINTF("\n"); 295 } else { 296 SCTP_PRINTF("[Null key]\n"); 297 } 298 } 299 300 void 301 sctp_show_key(sctp_key_t * key, const char *str) 302 { 303 uint32_t i; 304 305 if (key == NULL) { 306 SCTP_PRINTF("%s: [Null key]\n", str); 307 return; 308 } 309 SCTP_PRINTF("%s: len %u, ", str, key->keylen); 310 if (key->keylen) { 311 for (i = 0; i < key->keylen; i++) 312 SCTP_PRINTF("%02x", key->key[i]); 313 SCTP_PRINTF("\n"); 314 } else { 315 SCTP_PRINTF("[Null key]\n"); 316 } 317 } 318 319 static uint32_t 320 sctp_get_keylen(sctp_key_t * key) 321 { 322 if (key != NULL) 323 return (key->keylen); 324 else 325 return (0); 326 } 327 328 /* 329 * generate a new random key of length 'keylen' 330 */ 331 sctp_key_t * 332 sctp_generate_random_key(uint32_t keylen) 333 { 334 sctp_key_t *new_key; 335 336 new_key = sctp_alloc_key(keylen); 337 if (new_key == NULL) { 338 /* out of memory */ 339 return (NULL); 340 } 341 SCTP_READ_RANDOM(new_key->key, keylen); 342 new_key->keylen = keylen; 343 return (new_key); 344 } 345 346 sctp_key_t * 347 sctp_set_key(uint8_t * key, uint32_t keylen) 348 { 349 sctp_key_t *new_key; 350 351 new_key = sctp_alloc_key(keylen); 352 if (new_key == NULL) { 353 /* out of memory */ 354 return (NULL); 355 } 356 bcopy(key, new_key->key, keylen); 357 return (new_key); 358 } 359 360 /*- 361 * given two keys of variable size, compute which key is "larger/smaller" 362 * returns: 1 if key1 > key2 363 * -1 if key1 < key2 364 * 0 if key1 = key2 365 */ 366 static int 367 sctp_compare_key(sctp_key_t * key1, sctp_key_t * key2) 368 { 369 uint32_t maxlen; 370 uint32_t i; 371 uint32_t key1len, key2len; 372 uint8_t *key_1, *key_2; 373 uint8_t val1, val2; 374 375 /* sanity/length check */ 376 key1len = sctp_get_keylen(key1); 377 key2len = sctp_get_keylen(key2); 378 if ((key1len == 0) && (key2len == 0)) 379 return (0); 380 else if (key1len == 0) 381 return (-1); 382 else if (key2len == 0) 383 return (1); 384 385 if (key1len < key2len) { 386 maxlen = key2len; 387 } else { 388 maxlen = key1len; 389 } 390 key_1 = key1->key; 391 key_2 = key2->key; 392 /* check for numeric equality */ 393 for (i = 0; i < maxlen; i++) { 394 /* left-pad with zeros */ 395 val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++); 396 val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++); 397 if (val1 > val2) { 398 return (1); 399 } else if (val1 < val2) { 400 return (-1); 401 } 402 } 403 /* keys are equal value, so check lengths */ 404 if (key1len == key2len) 405 return (0); 406 else if (key1len < key2len) 407 return (-1); 408 else 409 return (1); 410 } 411 412 /* 413 * generate the concatenated keying material based on the two keys and the 414 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific 415 * order for concatenation 416 */ 417 sctp_key_t * 418 sctp_compute_hashkey(sctp_key_t * key1, sctp_key_t * key2, sctp_key_t * shared) 419 { 420 uint32_t keylen; 421 sctp_key_t *new_key; 422 uint8_t *key_ptr; 423 424 keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) + 425 sctp_get_keylen(shared); 426 427 if (keylen > 0) { 428 /* get space for the new key */ 429 new_key = sctp_alloc_key(keylen); 430 if (new_key == NULL) { 431 /* out of memory */ 432 return (NULL); 433 } 434 new_key->keylen = keylen; 435 key_ptr = new_key->key; 436 } else { 437 /* all keys empty/null?! */ 438 return (NULL); 439 } 440 441 /* concatenate the keys */ 442 if (sctp_compare_key(key1, key2) <= 0) { 443 /* key is shared + key1 + key2 */ 444 if (sctp_get_keylen(shared)) { 445 bcopy(shared->key, key_ptr, shared->keylen); 446 key_ptr += shared->keylen; 447 } 448 if (sctp_get_keylen(key1)) { 449 bcopy(key1->key, key_ptr, key1->keylen); 450 key_ptr += key1->keylen; 451 } 452 if (sctp_get_keylen(key2)) { 453 bcopy(key2->key, key_ptr, key2->keylen); 454 } 455 } else { 456 /* key is shared + key2 + key1 */ 457 if (sctp_get_keylen(shared)) { 458 bcopy(shared->key, key_ptr, shared->keylen); 459 key_ptr += shared->keylen; 460 } 461 if (sctp_get_keylen(key2)) { 462 bcopy(key2->key, key_ptr, key2->keylen); 463 key_ptr += key2->keylen; 464 } 465 if (sctp_get_keylen(key1)) { 466 bcopy(key1->key, key_ptr, key1->keylen); 467 } 468 } 469 return (new_key); 470 } 471 472 473 sctp_sharedkey_t * 474 sctp_alloc_sharedkey(void) 475 { 476 sctp_sharedkey_t *new_key; 477 478 SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key), 479 SCTP_M_AUTH_KY); 480 if (new_key == NULL) { 481 /* out of memory */ 482 return (NULL); 483 } 484 new_key->keyid = 0; 485 new_key->key = NULL; 486 new_key->refcount = 1; 487 new_key->deactivated = 0; 488 return (new_key); 489 } 490 491 void 492 sctp_free_sharedkey(sctp_sharedkey_t * skey) 493 { 494 if (skey == NULL) 495 return; 496 497 if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) { 498 if (skey->key != NULL) 499 sctp_free_key(skey->key); 500 SCTP_FREE(skey, SCTP_M_AUTH_KY); 501 } 502 } 503 504 sctp_sharedkey_t * 505 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id) 506 { 507 sctp_sharedkey_t *skey; 508 509 LIST_FOREACH(skey, shared_keys, next) { 510 if (skey->keyid == key_id) 511 return (skey); 512 } 513 return (NULL); 514 } 515 516 int 517 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys, 518 sctp_sharedkey_t * new_skey) 519 { 520 sctp_sharedkey_t *skey; 521 522 if ((shared_keys == NULL) || (new_skey == NULL)) 523 return (EINVAL); 524 525 /* insert into an empty list? */ 526 if (LIST_EMPTY(shared_keys)) { 527 LIST_INSERT_HEAD(shared_keys, new_skey, next); 528 return (0); 529 } 530 /* insert into the existing list, ordered by key id */ 531 LIST_FOREACH(skey, shared_keys, next) { 532 if (new_skey->keyid < skey->keyid) { 533 /* insert it before here */ 534 LIST_INSERT_BEFORE(skey, new_skey, next); 535 return (0); 536 } else if (new_skey->keyid == skey->keyid) { 537 /* replace the existing key */ 538 /* verify this key *can* be replaced */ 539 if ((skey->deactivated) && (skey->refcount > 1)) { 540 SCTPDBG(SCTP_DEBUG_AUTH1, 541 "can't replace shared key id %u\n", 542 new_skey->keyid); 543 return (EBUSY); 544 } 545 SCTPDBG(SCTP_DEBUG_AUTH1, 546 "replacing shared key id %u\n", 547 new_skey->keyid); 548 LIST_INSERT_BEFORE(skey, new_skey, next); 549 LIST_REMOVE(skey, next); 550 sctp_free_sharedkey(skey); 551 return (0); 552 } 553 if (LIST_NEXT(skey, next) == NULL) { 554 /* belongs at the end of the list */ 555 LIST_INSERT_AFTER(skey, new_skey, next); 556 return (0); 557 } 558 } 559 /* shouldn't reach here */ 560 return (0); 561 } 562 563 void 564 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id) 565 { 566 sctp_sharedkey_t *skey; 567 568 /* find the shared key */ 569 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 570 571 /* bump the ref count */ 572 if (skey) { 573 atomic_add_int(&skey->refcount, 1); 574 SCTPDBG(SCTP_DEBUG_AUTH2, 575 "%s: stcb %p key %u refcount acquire to %d\n", 576 __FUNCTION__, (void *)stcb, key_id, skey->refcount); 577 } 578 } 579 580 void 581 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked 582 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) 583 SCTP_UNUSED 584 #endif 585 ) 586 { 587 sctp_sharedkey_t *skey; 588 589 /* find the shared key */ 590 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 591 592 /* decrement the ref count */ 593 if (skey) { 594 sctp_free_sharedkey(skey); 595 SCTPDBG(SCTP_DEBUG_AUTH2, 596 "%s: stcb %p key %u refcount release to %d\n", 597 __FUNCTION__, (void *)stcb, key_id, skey->refcount); 598 599 /* see if a notification should be generated */ 600 if ((skey->refcount <= 1) && (skey->deactivated)) { 601 /* notify ULP that key is no longer used */ 602 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, 603 key_id, 0, so_locked); 604 SCTPDBG(SCTP_DEBUG_AUTH2, 605 "%s: stcb %p key %u no longer used, %d\n", 606 __FUNCTION__, (void *)stcb, key_id, skey->refcount); 607 } 608 } 609 } 610 611 static sctp_sharedkey_t * 612 sctp_copy_sharedkey(const sctp_sharedkey_t * skey) 613 { 614 sctp_sharedkey_t *new_skey; 615 616 if (skey == NULL) 617 return (NULL); 618 new_skey = sctp_alloc_sharedkey(); 619 if (new_skey == NULL) 620 return (NULL); 621 if (skey->key != NULL) 622 new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen); 623 else 624 new_skey->key = NULL; 625 new_skey->keyid = skey->keyid; 626 return (new_skey); 627 } 628 629 int 630 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest) 631 { 632 sctp_sharedkey_t *skey, *new_skey; 633 int count = 0; 634 635 if ((src == NULL) || (dest == NULL)) 636 return (0); 637 LIST_FOREACH(skey, src, next) { 638 new_skey = sctp_copy_sharedkey(skey); 639 if (new_skey != NULL) { 640 (void)sctp_insert_sharedkey(dest, new_skey); 641 count++; 642 } 643 } 644 return (count); 645 } 646 647 648 sctp_hmaclist_t * 649 sctp_alloc_hmaclist(uint8_t num_hmacs) 650 { 651 sctp_hmaclist_t *new_list; 652 int alloc_size; 653 654 alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]); 655 SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size, 656 SCTP_M_AUTH_HL); 657 if (new_list == NULL) { 658 /* out of memory */ 659 return (NULL); 660 } 661 new_list->max_algo = num_hmacs; 662 new_list->num_algo = 0; 663 return (new_list); 664 } 665 666 void 667 sctp_free_hmaclist(sctp_hmaclist_t * list) 668 { 669 if (list != NULL) { 670 SCTP_FREE(list, SCTP_M_AUTH_HL); 671 list = NULL; 672 } 673 } 674 675 int 676 sctp_auth_add_hmacid(sctp_hmaclist_t * list, uint16_t hmac_id) 677 { 678 int i; 679 680 if (list == NULL) 681 return (-1); 682 if (list->num_algo == list->max_algo) { 683 SCTPDBG(SCTP_DEBUG_AUTH1, 684 "SCTP: HMAC id list full, ignoring add %u\n", hmac_id); 685 return (-1); 686 } 687 if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) && 688 (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) { 689 return (-1); 690 } 691 /* Now is it already in the list */ 692 for (i = 0; i < list->num_algo; i++) { 693 if (list->hmac[i] == hmac_id) { 694 /* already in list */ 695 return (-1); 696 } 697 } 698 SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id); 699 list->hmac[list->num_algo++] = hmac_id; 700 return (0); 701 } 702 703 sctp_hmaclist_t * 704 sctp_copy_hmaclist(sctp_hmaclist_t * list) 705 { 706 sctp_hmaclist_t *new_list; 707 int i; 708 709 if (list == NULL) 710 return (NULL); 711 /* get a new list */ 712 new_list = sctp_alloc_hmaclist(list->max_algo); 713 if (new_list == NULL) 714 return (NULL); 715 /* copy it */ 716 new_list->max_algo = list->max_algo; 717 new_list->num_algo = list->num_algo; 718 for (i = 0; i < list->num_algo; i++) 719 new_list->hmac[i] = list->hmac[i]; 720 return (new_list); 721 } 722 723 sctp_hmaclist_t * 724 sctp_default_supported_hmaclist(void) 725 { 726 sctp_hmaclist_t *new_list; 727 728 new_list = sctp_alloc_hmaclist(2); 729 if (new_list == NULL) 730 return (NULL); 731 /* We prefer SHA256, so list it first */ 732 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256); 733 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1); 734 return (new_list); 735 } 736 737 /*- 738 * HMAC algos are listed in priority/preference order 739 * find the best HMAC id to use for the peer based on local support 740 */ 741 uint16_t 742 sctp_negotiate_hmacid(sctp_hmaclist_t * peer, sctp_hmaclist_t * local) 743 { 744 int i, j; 745 746 if ((local == NULL) || (peer == NULL)) 747 return (SCTP_AUTH_HMAC_ID_RSVD); 748 749 for (i = 0; i < peer->num_algo; i++) { 750 for (j = 0; j < local->num_algo; j++) { 751 if (peer->hmac[i] == local->hmac[j]) { 752 /* found the "best" one */ 753 SCTPDBG(SCTP_DEBUG_AUTH1, 754 "SCTP: negotiated peer HMAC id %u\n", 755 peer->hmac[i]); 756 return (peer->hmac[i]); 757 } 758 } 759 } 760 /* didn't find one! */ 761 return (SCTP_AUTH_HMAC_ID_RSVD); 762 } 763 764 /*- 765 * serialize the HMAC algo list and return space used 766 * caller must guarantee ptr has appropriate space 767 */ 768 int 769 sctp_serialize_hmaclist(sctp_hmaclist_t * list, uint8_t * ptr) 770 { 771 int i; 772 uint16_t hmac_id; 773 774 if (list == NULL) 775 return (0); 776 777 for (i = 0; i < list->num_algo; i++) { 778 hmac_id = htons(list->hmac[i]); 779 bcopy(&hmac_id, ptr, sizeof(hmac_id)); 780 ptr += sizeof(hmac_id); 781 } 782 return (list->num_algo * sizeof(hmac_id)); 783 } 784 785 int 786 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs) 787 { 788 uint32_t i; 789 790 for (i = 0; i < num_hmacs; i++) { 791 if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) { 792 return (0); 793 } 794 } 795 return (-1); 796 } 797 798 sctp_authinfo_t * 799 sctp_alloc_authinfo(void) 800 { 801 sctp_authinfo_t *new_authinfo; 802 803 SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo), 804 SCTP_M_AUTH_IF); 805 806 if (new_authinfo == NULL) { 807 /* out of memory */ 808 return (NULL); 809 } 810 bzero(new_authinfo, sizeof(*new_authinfo)); 811 return (new_authinfo); 812 } 813 814 void 815 sctp_free_authinfo(sctp_authinfo_t * authinfo) 816 { 817 if (authinfo == NULL) 818 return; 819 820 if (authinfo->random != NULL) 821 sctp_free_key(authinfo->random); 822 if (authinfo->peer_random != NULL) 823 sctp_free_key(authinfo->peer_random); 824 if (authinfo->assoc_key != NULL) 825 sctp_free_key(authinfo->assoc_key); 826 if (authinfo->recv_key != NULL) 827 sctp_free_key(authinfo->recv_key); 828 829 /* We are NOT dynamically allocating authinfo's right now... */ 830 /* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */ 831 } 832 833 834 uint32_t 835 sctp_get_auth_chunk_len(uint16_t hmac_algo) 836 { 837 int size; 838 839 size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo); 840 return (SCTP_SIZE32(size)); 841 } 842 843 uint32_t 844 sctp_get_hmac_digest_len(uint16_t hmac_algo) 845 { 846 switch (hmac_algo) { 847 case SCTP_AUTH_HMAC_ID_SHA1: 848 return (SCTP_AUTH_DIGEST_LEN_SHA1); 849 case SCTP_AUTH_HMAC_ID_SHA256: 850 return (SCTP_AUTH_DIGEST_LEN_SHA256); 851 default: 852 /* unknown HMAC algorithm: can't do anything */ 853 return (0); 854 } /* end switch */ 855 } 856 857 static inline int 858 sctp_get_hmac_block_len(uint16_t hmac_algo) 859 { 860 switch (hmac_algo) { 861 case SCTP_AUTH_HMAC_ID_SHA1: 862 return (64); 863 case SCTP_AUTH_HMAC_ID_SHA256: 864 return (64); 865 case SCTP_AUTH_HMAC_ID_RSVD: 866 default: 867 /* unknown HMAC algorithm: can't do anything */ 868 return (0); 869 } /* end switch */ 870 } 871 872 static void 873 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t * ctx) 874 { 875 switch (hmac_algo) { 876 case SCTP_AUTH_HMAC_ID_SHA1: 877 SCTP_SHA1_INIT(&ctx->sha1); 878 break; 879 case SCTP_AUTH_HMAC_ID_SHA256: 880 SCTP_SHA256_INIT(&ctx->sha256); 881 break; 882 case SCTP_AUTH_HMAC_ID_RSVD: 883 default: 884 /* unknown HMAC algorithm: can't do anything */ 885 return; 886 } /* end switch */ 887 } 888 889 static void 890 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t * ctx, 891 uint8_t * text, uint32_t textlen) 892 { 893 switch (hmac_algo) { 894 case SCTP_AUTH_HMAC_ID_SHA1: 895 SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen); 896 break; 897 case SCTP_AUTH_HMAC_ID_SHA256: 898 SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen); 899 break; 900 case SCTP_AUTH_HMAC_ID_RSVD: 901 default: 902 /* unknown HMAC algorithm: can't do anything */ 903 return; 904 } /* end switch */ 905 } 906 907 static void 908 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t * ctx, 909 uint8_t * digest) 910 { 911 switch (hmac_algo) { 912 case SCTP_AUTH_HMAC_ID_SHA1: 913 SCTP_SHA1_FINAL(digest, &ctx->sha1); 914 break; 915 case SCTP_AUTH_HMAC_ID_SHA256: 916 SCTP_SHA256_FINAL(digest, &ctx->sha256); 917 break; 918 case SCTP_AUTH_HMAC_ID_RSVD: 919 default: 920 /* unknown HMAC algorithm: can't do anything */ 921 return; 922 } /* end switch */ 923 } 924 925 /*- 926 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104) 927 * 928 * Compute the HMAC digest using the desired hash key, text, and HMAC 929 * algorithm. Resulting digest is placed in 'digest' and digest length 930 * is returned, if the HMAC was performed. 931 * 932 * WARNING: it is up to the caller to supply sufficient space to hold the 933 * resultant digest. 934 */ 935 uint32_t 936 sctp_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen, 937 uint8_t * text, uint32_t textlen, uint8_t * digest) 938 { 939 uint32_t digestlen; 940 uint32_t blocklen; 941 sctp_hash_context_t ctx; 942 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 943 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 944 uint32_t i; 945 946 /* sanity check the material and length */ 947 if ((key == NULL) || (keylen == 0) || (text == NULL) || 948 (textlen == 0) || (digest == NULL)) { 949 /* can't do HMAC with empty key or text or digest store */ 950 return (0); 951 } 952 /* validate the hmac algo and get the digest length */ 953 digestlen = sctp_get_hmac_digest_len(hmac_algo); 954 if (digestlen == 0) 955 return (0); 956 957 /* hash the key if it is longer than the hash block size */ 958 blocklen = sctp_get_hmac_block_len(hmac_algo); 959 if (keylen > blocklen) { 960 sctp_hmac_init(hmac_algo, &ctx); 961 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 962 sctp_hmac_final(hmac_algo, &ctx, temp); 963 /* set the hashed key as the key */ 964 keylen = digestlen; 965 key = temp; 966 } 967 /* initialize the inner/outer pads with the key and "append" zeroes */ 968 bzero(ipad, blocklen); 969 bzero(opad, blocklen); 970 bcopy(key, ipad, keylen); 971 bcopy(key, opad, keylen); 972 973 /* XOR the key with ipad and opad values */ 974 for (i = 0; i < blocklen; i++) { 975 ipad[i] ^= 0x36; 976 opad[i] ^= 0x5c; 977 } 978 979 /* perform inner hash */ 980 sctp_hmac_init(hmac_algo, &ctx); 981 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 982 sctp_hmac_update(hmac_algo, &ctx, text, textlen); 983 sctp_hmac_final(hmac_algo, &ctx, temp); 984 985 /* perform outer hash */ 986 sctp_hmac_init(hmac_algo, &ctx); 987 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 988 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 989 sctp_hmac_final(hmac_algo, &ctx, digest); 990 991 return (digestlen); 992 } 993 994 /* mbuf version */ 995 uint32_t 996 sctp_hmac_m(uint16_t hmac_algo, uint8_t * key, uint32_t keylen, 997 struct mbuf *m, uint32_t m_offset, uint8_t * digest, uint32_t trailer) 998 { 999 uint32_t digestlen; 1000 uint32_t blocklen; 1001 sctp_hash_context_t ctx; 1002 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 1003 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1004 uint32_t i; 1005 struct mbuf *m_tmp; 1006 1007 /* sanity check the material and length */ 1008 if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) { 1009 /* can't do HMAC with empty key or text or digest store */ 1010 return (0); 1011 } 1012 /* validate the hmac algo and get the digest length */ 1013 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1014 if (digestlen == 0) 1015 return (0); 1016 1017 /* hash the key if it is longer than the hash block size */ 1018 blocklen = sctp_get_hmac_block_len(hmac_algo); 1019 if (keylen > blocklen) { 1020 sctp_hmac_init(hmac_algo, &ctx); 1021 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 1022 sctp_hmac_final(hmac_algo, &ctx, temp); 1023 /* set the hashed key as the key */ 1024 keylen = digestlen; 1025 key = temp; 1026 } 1027 /* initialize the inner/outer pads with the key and "append" zeroes */ 1028 bzero(ipad, blocklen); 1029 bzero(opad, blocklen); 1030 bcopy(key, ipad, keylen); 1031 bcopy(key, opad, keylen); 1032 1033 /* XOR the key with ipad and opad values */ 1034 for (i = 0; i < blocklen; i++) { 1035 ipad[i] ^= 0x36; 1036 opad[i] ^= 0x5c; 1037 } 1038 1039 /* perform inner hash */ 1040 sctp_hmac_init(hmac_algo, &ctx); 1041 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 1042 /* find the correct starting mbuf and offset (get start of text) */ 1043 m_tmp = m; 1044 while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) { 1045 m_offset -= SCTP_BUF_LEN(m_tmp); 1046 m_tmp = SCTP_BUF_NEXT(m_tmp); 1047 } 1048 /* now use the rest of the mbuf chain for the text */ 1049 while (m_tmp != NULL) { 1050 if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) { 1051 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset, 1052 SCTP_BUF_LEN(m_tmp) - (trailer + m_offset)); 1053 } else { 1054 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset, 1055 SCTP_BUF_LEN(m_tmp) - m_offset); 1056 } 1057 1058 /* clear the offset since it's only for the first mbuf */ 1059 m_offset = 0; 1060 m_tmp = SCTP_BUF_NEXT(m_tmp); 1061 } 1062 sctp_hmac_final(hmac_algo, &ctx, temp); 1063 1064 /* perform outer hash */ 1065 sctp_hmac_init(hmac_algo, &ctx); 1066 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 1067 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 1068 sctp_hmac_final(hmac_algo, &ctx, digest); 1069 1070 return (digestlen); 1071 } 1072 1073 /*- 1074 * verify the HMAC digest using the desired hash key, text, and HMAC 1075 * algorithm. 1076 * Returns -1 on error, 0 on success. 1077 */ 1078 int 1079 sctp_verify_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen, 1080 uint8_t * text, uint32_t textlen, 1081 uint8_t * digest, uint32_t digestlen) 1082 { 1083 uint32_t len; 1084 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1085 1086 /* sanity check the material and length */ 1087 if ((key == NULL) || (keylen == 0) || 1088 (text == NULL) || (textlen == 0) || (digest == NULL)) { 1089 /* can't do HMAC with empty key or text or digest */ 1090 return (-1); 1091 } 1092 len = sctp_get_hmac_digest_len(hmac_algo); 1093 if ((len == 0) || (digestlen != len)) 1094 return (-1); 1095 1096 /* compute the expected hash */ 1097 if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len) 1098 return (-1); 1099 1100 if (memcmp(digest, temp, digestlen) != 0) 1101 return (-1); 1102 else 1103 return (0); 1104 } 1105 1106 1107 /* 1108 * computes the requested HMAC using a key struct (which may be modified if 1109 * the keylen exceeds the HMAC block len). 1110 */ 1111 uint32_t 1112 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t * key, uint8_t * text, 1113 uint32_t textlen, uint8_t * digest) 1114 { 1115 uint32_t digestlen; 1116 uint32_t blocklen; 1117 sctp_hash_context_t ctx; 1118 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1119 1120 /* sanity check */ 1121 if ((key == NULL) || (text == NULL) || (textlen == 0) || 1122 (digest == NULL)) { 1123 /* can't do HMAC with empty key or text or digest store */ 1124 return (0); 1125 } 1126 /* validate the hmac algo and get the digest length */ 1127 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1128 if (digestlen == 0) 1129 return (0); 1130 1131 /* hash the key if it is longer than the hash block size */ 1132 blocklen = sctp_get_hmac_block_len(hmac_algo); 1133 if (key->keylen > blocklen) { 1134 sctp_hmac_init(hmac_algo, &ctx); 1135 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1136 sctp_hmac_final(hmac_algo, &ctx, temp); 1137 /* save the hashed key as the new key */ 1138 key->keylen = digestlen; 1139 bcopy(temp, key->key, key->keylen); 1140 } 1141 return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen, 1142 digest)); 1143 } 1144 1145 /* mbuf version */ 1146 uint32_t 1147 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t * key, struct mbuf *m, 1148 uint32_t m_offset, uint8_t * digest) 1149 { 1150 uint32_t digestlen; 1151 uint32_t blocklen; 1152 sctp_hash_context_t ctx; 1153 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1154 1155 /* sanity check */ 1156 if ((key == NULL) || (m == NULL) || (digest == NULL)) { 1157 /* can't do HMAC with empty key or text or digest store */ 1158 return (0); 1159 } 1160 /* validate the hmac algo and get the digest length */ 1161 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1162 if (digestlen == 0) 1163 return (0); 1164 1165 /* hash the key if it is longer than the hash block size */ 1166 blocklen = sctp_get_hmac_block_len(hmac_algo); 1167 if (key->keylen > blocklen) { 1168 sctp_hmac_init(hmac_algo, &ctx); 1169 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1170 sctp_hmac_final(hmac_algo, &ctx, temp); 1171 /* save the hashed key as the new key */ 1172 key->keylen = digestlen; 1173 bcopy(temp, key->key, key->keylen); 1174 } 1175 return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0)); 1176 } 1177 1178 int 1179 sctp_auth_is_supported_hmac(sctp_hmaclist_t * list, uint16_t id) 1180 { 1181 int i; 1182 1183 if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD)) 1184 return (0); 1185 1186 for (i = 0; i < list->num_algo; i++) 1187 if (list->hmac[i] == id) 1188 return (1); 1189 1190 /* not in the list */ 1191 return (0); 1192 } 1193 1194 1195 /*- 1196 * clear any cached key(s) if they match the given key id on an association. 1197 * the cached key(s) will be recomputed and re-cached at next use. 1198 * ASSUMES TCB_LOCK is already held 1199 */ 1200 void 1201 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid) 1202 { 1203 if (stcb == NULL) 1204 return; 1205 1206 if (keyid == stcb->asoc.authinfo.assoc_keyid) { 1207 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1208 stcb->asoc.authinfo.assoc_key = NULL; 1209 } 1210 if (keyid == stcb->asoc.authinfo.recv_keyid) { 1211 sctp_free_key(stcb->asoc.authinfo.recv_key); 1212 stcb->asoc.authinfo.recv_key = NULL; 1213 } 1214 } 1215 1216 /*- 1217 * clear any cached key(s) if they match the given key id for all assocs on 1218 * an endpoint. 1219 * ASSUMES INP_WLOCK is already held 1220 */ 1221 void 1222 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid) 1223 { 1224 struct sctp_tcb *stcb; 1225 1226 if (inp == NULL) 1227 return; 1228 1229 /* clear the cached keys on all assocs on this instance */ 1230 LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { 1231 SCTP_TCB_LOCK(stcb); 1232 sctp_clear_cachedkeys(stcb, keyid); 1233 SCTP_TCB_UNLOCK(stcb); 1234 } 1235 } 1236 1237 /*- 1238 * delete a shared key from an association 1239 * ASSUMES TCB_LOCK is already held 1240 */ 1241 int 1242 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1243 { 1244 sctp_sharedkey_t *skey; 1245 1246 if (stcb == NULL) 1247 return (-1); 1248 1249 /* is the keyid the assoc active sending key */ 1250 if (keyid == stcb->asoc.authinfo.active_keyid) 1251 return (-1); 1252 1253 /* does the key exist? */ 1254 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1255 if (skey == NULL) 1256 return (-1); 1257 1258 /* are there other refcount holders on the key? */ 1259 if (skey->refcount > 1) 1260 return (-1); 1261 1262 /* remove it */ 1263 LIST_REMOVE(skey, next); 1264 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1265 1266 /* clear any cached keys */ 1267 sctp_clear_cachedkeys(stcb, keyid); 1268 return (0); 1269 } 1270 1271 /*- 1272 * deletes a shared key from the endpoint 1273 * ASSUMES INP_WLOCK is already held 1274 */ 1275 int 1276 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1277 { 1278 sctp_sharedkey_t *skey; 1279 1280 if (inp == NULL) 1281 return (-1); 1282 1283 /* is the keyid the active sending key on the endpoint */ 1284 if (keyid == inp->sctp_ep.default_keyid) 1285 return (-1); 1286 1287 /* does the key exist? */ 1288 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1289 if (skey == NULL) 1290 return (-1); 1291 1292 /* endpoint keys are not refcounted */ 1293 1294 /* remove it */ 1295 LIST_REMOVE(skey, next); 1296 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1297 1298 /* clear any cached keys */ 1299 sctp_clear_cachedkeys_ep(inp, keyid); 1300 return (0); 1301 } 1302 1303 /*- 1304 * set the active key on an association 1305 * ASSUMES TCB_LOCK is already held 1306 */ 1307 int 1308 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid) 1309 { 1310 sctp_sharedkey_t *skey = NULL; 1311 1312 /* find the key on the assoc */ 1313 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1314 if (skey == NULL) { 1315 /* that key doesn't exist */ 1316 return (-1); 1317 } 1318 if ((skey->deactivated) && (skey->refcount > 1)) { 1319 /* can't reactivate a deactivated key with other refcounts */ 1320 return (-1); 1321 } 1322 /* set the (new) active key */ 1323 stcb->asoc.authinfo.active_keyid = keyid; 1324 /* reset the deactivated flag */ 1325 skey->deactivated = 0; 1326 1327 return (0); 1328 } 1329 1330 /*- 1331 * set the active key on an endpoint 1332 * ASSUMES INP_WLOCK is already held 1333 */ 1334 int 1335 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1336 { 1337 sctp_sharedkey_t *skey; 1338 1339 /* find the key */ 1340 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1341 if (skey == NULL) { 1342 /* that key doesn't exist */ 1343 return (-1); 1344 } 1345 inp->sctp_ep.default_keyid = keyid; 1346 return (0); 1347 } 1348 1349 /*- 1350 * deactivates a shared key from the association 1351 * ASSUMES INP_WLOCK is already held 1352 */ 1353 int 1354 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1355 { 1356 sctp_sharedkey_t *skey; 1357 1358 if (stcb == NULL) 1359 return (-1); 1360 1361 /* is the keyid the assoc active sending key */ 1362 if (keyid == stcb->asoc.authinfo.active_keyid) 1363 return (-1); 1364 1365 /* does the key exist? */ 1366 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1367 if (skey == NULL) 1368 return (-1); 1369 1370 /* are there other refcount holders on the key? */ 1371 if (skey->refcount == 1) { 1372 /* no other users, send a notification for this key */ 1373 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0, 1374 SCTP_SO_LOCKED); 1375 } 1376 /* mark the key as deactivated */ 1377 skey->deactivated = 1; 1378 1379 return (0); 1380 } 1381 1382 /*- 1383 * deactivates a shared key from the endpoint 1384 * ASSUMES INP_WLOCK is already held 1385 */ 1386 int 1387 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1388 { 1389 sctp_sharedkey_t *skey; 1390 1391 if (inp == NULL) 1392 return (-1); 1393 1394 /* is the keyid the active sending key on the endpoint */ 1395 if (keyid == inp->sctp_ep.default_keyid) 1396 return (-1); 1397 1398 /* does the key exist? */ 1399 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1400 if (skey == NULL) 1401 return (-1); 1402 1403 /* endpoint keys are not refcounted */ 1404 1405 /* remove it */ 1406 LIST_REMOVE(skey, next); 1407 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1408 1409 return (0); 1410 } 1411 1412 /* 1413 * get local authentication parameters from cookie (from INIT-ACK) 1414 */ 1415 void 1416 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m, 1417 uint32_t offset, uint32_t length) 1418 { 1419 struct sctp_paramhdr *phdr, tmp_param; 1420 uint16_t plen, ptype; 1421 uint8_t random_store[SCTP_PARAM_BUFFER_SIZE]; 1422 struct sctp_auth_random *p_random = NULL; 1423 uint16_t random_len = 0; 1424 uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE]; 1425 struct sctp_auth_hmac_algo *hmacs = NULL; 1426 uint16_t hmacs_len = 0; 1427 uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE]; 1428 struct sctp_auth_chunk_list *chunks = NULL; 1429 uint16_t num_chunks = 0; 1430 sctp_key_t *new_key; 1431 uint32_t keylen; 1432 1433 /* convert to upper bound */ 1434 length += offset; 1435 1436 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, 1437 sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param); 1438 while (phdr != NULL) { 1439 ptype = ntohs(phdr->param_type); 1440 plen = ntohs(phdr->param_length); 1441 1442 if ((plen == 0) || (offset + plen > length)) 1443 break; 1444 1445 if (ptype == SCTP_RANDOM) { 1446 if (plen > sizeof(random_store)) 1447 break; 1448 phdr = sctp_get_next_param(m, offset, 1449 (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store))); 1450 if (phdr == NULL) 1451 return; 1452 /* save the random and length for the key */ 1453 p_random = (struct sctp_auth_random *)phdr; 1454 random_len = plen - sizeof(*p_random); 1455 } else if (ptype == SCTP_HMAC_LIST) { 1456 int num_hmacs; 1457 int i; 1458 1459 if (plen > sizeof(hmacs_store)) 1460 break; 1461 phdr = sctp_get_next_param(m, offset, 1462 (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store))); 1463 if (phdr == NULL) 1464 return; 1465 /* save the hmacs list and num for the key */ 1466 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1467 hmacs_len = plen - sizeof(*hmacs); 1468 num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]); 1469 if (stcb->asoc.local_hmacs != NULL) 1470 sctp_free_hmaclist(stcb->asoc.local_hmacs); 1471 stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs); 1472 if (stcb->asoc.local_hmacs != NULL) { 1473 for (i = 0; i < num_hmacs; i++) { 1474 (void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs, 1475 ntohs(hmacs->hmac_ids[i])); 1476 } 1477 } 1478 } else if (ptype == SCTP_CHUNK_LIST) { 1479 int i; 1480 1481 if (plen > sizeof(chunks_store)) 1482 break; 1483 phdr = sctp_get_next_param(m, offset, 1484 (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store))); 1485 if (phdr == NULL) 1486 return; 1487 chunks = (struct sctp_auth_chunk_list *)phdr; 1488 num_chunks = plen - sizeof(*chunks); 1489 /* save chunks list and num for the key */ 1490 if (stcb->asoc.local_auth_chunks != NULL) 1491 sctp_clear_chunklist(stcb->asoc.local_auth_chunks); 1492 else 1493 stcb->asoc.local_auth_chunks = sctp_alloc_chunklist(); 1494 for (i = 0; i < num_chunks; i++) { 1495 (void)sctp_auth_add_chunk(chunks->chunk_types[i], 1496 stcb->asoc.local_auth_chunks); 1497 } 1498 } 1499 /* get next parameter */ 1500 offset += SCTP_SIZE32(plen); 1501 if (offset + sizeof(struct sctp_paramhdr) > length) 1502 break; 1503 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), 1504 (uint8_t *) & tmp_param); 1505 } 1506 /* concatenate the full random key */ 1507 keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len; 1508 if (chunks != NULL) { 1509 keylen += sizeof(*chunks) + num_chunks; 1510 } 1511 new_key = sctp_alloc_key(keylen); 1512 if (new_key != NULL) { 1513 /* copy in the RANDOM */ 1514 if (p_random != NULL) { 1515 keylen = sizeof(*p_random) + random_len; 1516 bcopy(p_random, new_key->key, keylen); 1517 } 1518 /* append in the AUTH chunks */ 1519 if (chunks != NULL) { 1520 bcopy(chunks, new_key->key + keylen, 1521 sizeof(*chunks) + num_chunks); 1522 keylen += sizeof(*chunks) + num_chunks; 1523 } 1524 /* append in the HMACs */ 1525 if (hmacs != NULL) { 1526 bcopy(hmacs, new_key->key + keylen, 1527 sizeof(*hmacs) + hmacs_len); 1528 } 1529 } 1530 if (stcb->asoc.authinfo.random != NULL) 1531 sctp_free_key(stcb->asoc.authinfo.random); 1532 stcb->asoc.authinfo.random = new_key; 1533 stcb->asoc.authinfo.random_len = random_len; 1534 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid); 1535 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid); 1536 1537 /* negotiate what HMAC to use for the peer */ 1538 stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs, 1539 stcb->asoc.local_hmacs); 1540 1541 /* copy defaults from the endpoint */ 1542 /* FIX ME: put in cookie? */ 1543 stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid; 1544 /* copy out the shared key list (by reference) from the endpoint */ 1545 (void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys, 1546 &stcb->asoc.shared_keys); 1547 } 1548 1549 /* 1550 * compute and fill in the HMAC digest for a packet 1551 */ 1552 void 1553 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset, 1554 struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid) 1555 { 1556 uint32_t digestlen; 1557 sctp_sharedkey_t *skey; 1558 sctp_key_t *key; 1559 1560 if ((stcb == NULL) || (auth == NULL)) 1561 return; 1562 1563 /* zero the digest + chunk padding */ 1564 digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id); 1565 bzero(auth->hmac, SCTP_SIZE32(digestlen)); 1566 1567 /* is the desired key cached? */ 1568 if ((keyid != stcb->asoc.authinfo.assoc_keyid) || 1569 (stcb->asoc.authinfo.assoc_key == NULL)) { 1570 if (stcb->asoc.authinfo.assoc_key != NULL) { 1571 /* free the old cached key */ 1572 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1573 } 1574 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1575 /* the only way skey is NULL is if null key id 0 is used */ 1576 if (skey != NULL) 1577 key = skey->key; 1578 else 1579 key = NULL; 1580 /* compute a new assoc key and cache it */ 1581 stcb->asoc.authinfo.assoc_key = 1582 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1583 stcb->asoc.authinfo.peer_random, key); 1584 stcb->asoc.authinfo.assoc_keyid = keyid; 1585 SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n", 1586 stcb->asoc.authinfo.assoc_keyid); 1587 #ifdef SCTP_DEBUG 1588 if (SCTP_AUTH_DEBUG) 1589 sctp_print_key(stcb->asoc.authinfo.assoc_key, 1590 "Assoc Key"); 1591 #endif 1592 } 1593 /* set in the active key id */ 1594 auth->shared_key_id = htons(keyid); 1595 1596 /* compute and fill in the digest */ 1597 (void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key, 1598 m, auth_offset, auth->hmac); 1599 } 1600 1601 1602 static void 1603 sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size) 1604 { 1605 struct mbuf *m_tmp; 1606 uint8_t *data; 1607 1608 /* sanity check */ 1609 if (m == NULL) 1610 return; 1611 1612 /* find the correct starting mbuf and offset (get start position) */ 1613 m_tmp = m; 1614 while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) { 1615 m_offset -= SCTP_BUF_LEN(m_tmp); 1616 m_tmp = SCTP_BUF_NEXT(m_tmp); 1617 } 1618 /* now use the rest of the mbuf chain */ 1619 while ((m_tmp != NULL) && (size > 0)) { 1620 data = mtod(m_tmp, uint8_t *) + m_offset; 1621 if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) { 1622 bzero(data, SCTP_BUF_LEN(m_tmp)); 1623 size -= SCTP_BUF_LEN(m_tmp); 1624 } else { 1625 bzero(data, size); 1626 size = 0; 1627 } 1628 /* clear the offset since it's only for the first mbuf */ 1629 m_offset = 0; 1630 m_tmp = SCTP_BUF_NEXT(m_tmp); 1631 } 1632 } 1633 1634 /*- 1635 * process the incoming Authentication chunk 1636 * return codes: 1637 * -1 on any authentication error 1638 * 0 on authentication verification 1639 */ 1640 int 1641 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth, 1642 struct mbuf *m, uint32_t offset) 1643 { 1644 uint16_t chunklen; 1645 uint16_t shared_key_id; 1646 uint16_t hmac_id; 1647 sctp_sharedkey_t *skey; 1648 uint32_t digestlen; 1649 uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1650 uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1651 1652 /* auth is checked for NULL by caller */ 1653 chunklen = ntohs(auth->ch.chunk_length); 1654 if (chunklen < sizeof(*auth)) { 1655 SCTP_STAT_INCR(sctps_recvauthfailed); 1656 return (-1); 1657 } 1658 SCTP_STAT_INCR(sctps_recvauth); 1659 1660 /* get the auth params */ 1661 shared_key_id = ntohs(auth->shared_key_id); 1662 hmac_id = ntohs(auth->hmac_id); 1663 SCTPDBG(SCTP_DEBUG_AUTH1, 1664 "SCTP AUTH Chunk: shared key %u, HMAC id %u\n", 1665 shared_key_id, hmac_id); 1666 1667 /* is the indicated HMAC supported? */ 1668 if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) { 1669 struct mbuf *m_err; 1670 struct sctp_auth_invalid_hmac *err; 1671 1672 SCTP_STAT_INCR(sctps_recvivalhmacid); 1673 SCTPDBG(SCTP_DEBUG_AUTH1, 1674 "SCTP Auth: unsupported HMAC id %u\n", 1675 hmac_id); 1676 /* 1677 * report this in an Error Chunk: Unsupported HMAC 1678 * Identifier 1679 */ 1680 m_err = sctp_get_mbuf_for_msg(sizeof(*err), 0, M_NOWAIT, 1681 1, MT_HEADER); 1682 if (m_err != NULL) { 1683 /* pre-reserve some space */ 1684 SCTP_BUF_RESV_UF(m_err, sizeof(struct sctp_chunkhdr)); 1685 /* fill in the error */ 1686 err = mtod(m_err, struct sctp_auth_invalid_hmac *); 1687 bzero(err, sizeof(*err)); 1688 err->ph.param_type = htons(SCTP_CAUSE_UNSUPPORTED_HMACID); 1689 err->ph.param_length = htons(sizeof(*err)); 1690 err->hmac_id = ntohs(hmac_id); 1691 SCTP_BUF_LEN(m_err) = sizeof(*err); 1692 /* queue it */ 1693 sctp_queue_op_err(stcb, m_err); 1694 } 1695 return (-1); 1696 } 1697 /* get the indicated shared key, if available */ 1698 if ((stcb->asoc.authinfo.recv_key == NULL) || 1699 (stcb->asoc.authinfo.recv_keyid != shared_key_id)) { 1700 /* find the shared key on the assoc first */ 1701 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, 1702 shared_key_id); 1703 /* if the shared key isn't found, discard the chunk */ 1704 if (skey == NULL) { 1705 SCTP_STAT_INCR(sctps_recvivalkeyid); 1706 SCTPDBG(SCTP_DEBUG_AUTH1, 1707 "SCTP Auth: unknown key id %u\n", 1708 shared_key_id); 1709 return (-1); 1710 } 1711 /* generate a notification if this is a new key id */ 1712 if (stcb->asoc.authinfo.recv_keyid != shared_key_id) 1713 /* 1714 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb, 1715 * shared_key_id, (void 1716 * *)stcb->asoc.authinfo.recv_keyid); 1717 */ 1718 sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY, 1719 shared_key_id, stcb->asoc.authinfo.recv_keyid, 1720 SCTP_SO_NOT_LOCKED); 1721 /* compute a new recv assoc key and cache it */ 1722 if (stcb->asoc.authinfo.recv_key != NULL) 1723 sctp_free_key(stcb->asoc.authinfo.recv_key); 1724 stcb->asoc.authinfo.recv_key = 1725 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1726 stcb->asoc.authinfo.peer_random, skey->key); 1727 stcb->asoc.authinfo.recv_keyid = shared_key_id; 1728 #ifdef SCTP_DEBUG 1729 if (SCTP_AUTH_DEBUG) 1730 sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key"); 1731 #endif 1732 } 1733 /* validate the digest length */ 1734 digestlen = sctp_get_hmac_digest_len(hmac_id); 1735 if (chunklen < (sizeof(*auth) + digestlen)) { 1736 /* invalid digest length */ 1737 SCTP_STAT_INCR(sctps_recvauthfailed); 1738 SCTPDBG(SCTP_DEBUG_AUTH1, 1739 "SCTP Auth: chunk too short for HMAC\n"); 1740 return (-1); 1741 } 1742 /* save a copy of the digest, zero the pseudo header, and validate */ 1743 bcopy(auth->hmac, digest, digestlen); 1744 sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen)); 1745 (void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key, 1746 m, offset, computed_digest); 1747 1748 /* compare the computed digest with the one in the AUTH chunk */ 1749 if (memcmp(digest, computed_digest, digestlen) != 0) { 1750 SCTP_STAT_INCR(sctps_recvauthfailed); 1751 SCTPDBG(SCTP_DEBUG_AUTH1, 1752 "SCTP Auth: HMAC digest check failed\n"); 1753 return (-1); 1754 } 1755 return (0); 1756 } 1757 1758 /* 1759 * Generate NOTIFICATION 1760 */ 1761 void 1762 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication, 1763 uint16_t keyid, uint16_t alt_keyid, int so_locked 1764 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) 1765 SCTP_UNUSED 1766 #endif 1767 ) 1768 { 1769 struct mbuf *m_notify; 1770 struct sctp_authkey_event *auth; 1771 struct sctp_queued_to_read *control; 1772 1773 if ((stcb == NULL) || 1774 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || 1775 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || 1776 (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) 1777 ) { 1778 /* If the socket is gone we are out of here */ 1779 return; 1780 } 1781 if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT)) 1782 /* event not enabled */ 1783 return; 1784 1785 m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event), 1786 0, M_NOWAIT, 1, MT_HEADER); 1787 if (m_notify == NULL) 1788 /* no space left */ 1789 return; 1790 1791 SCTP_BUF_LEN(m_notify) = 0; 1792 auth = mtod(m_notify, struct sctp_authkey_event *); 1793 auth->auth_type = SCTP_AUTHENTICATION_EVENT; 1794 auth->auth_flags = 0; 1795 auth->auth_length = sizeof(*auth); 1796 auth->auth_keynumber = keyid; 1797 auth->auth_altkeynumber = alt_keyid; 1798 auth->auth_indication = indication; 1799 auth->auth_assoc_id = sctp_get_associd(stcb); 1800 1801 SCTP_BUF_LEN(m_notify) = sizeof(*auth); 1802 SCTP_BUF_NEXT(m_notify) = NULL; 1803 1804 /* append to socket */ 1805 control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 1806 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); 1807 if (control == NULL) { 1808 /* no memory */ 1809 sctp_m_freem(m_notify); 1810 return; 1811 } 1812 control->spec_flags = M_NOTIFICATION; 1813 control->length = SCTP_BUF_LEN(m_notify); 1814 /* not that we need this */ 1815 control->tail_mbuf = m_notify; 1816 sctp_add_to_readq(stcb->sctp_ep, stcb, control, 1817 &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); 1818 } 1819 1820 1821 /*- 1822 * validates the AUTHentication related parameters in an INIT/INIT-ACK 1823 * Note: currently only used for INIT as INIT-ACK is handled inline 1824 * with sctp_load_addresses_from_init() 1825 */ 1826 int 1827 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit) 1828 { 1829 struct sctp_paramhdr *phdr, parm_buf; 1830 uint16_t ptype, plen; 1831 int peer_supports_asconf = 0; 1832 int peer_supports_auth = 0; 1833 int got_random = 0, got_hmacs = 0, got_chklist = 0; 1834 uint8_t saw_asconf = 0; 1835 uint8_t saw_asconf_ack = 0; 1836 1837 /* go through each of the params. */ 1838 phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf)); 1839 while (phdr) { 1840 ptype = ntohs(phdr->param_type); 1841 plen = ntohs(phdr->param_length); 1842 1843 if (offset + plen > limit) { 1844 break; 1845 } 1846 if (plen < sizeof(struct sctp_paramhdr)) { 1847 break; 1848 } 1849 if (ptype == SCTP_SUPPORTED_CHUNK_EXT) { 1850 /* A supported extension chunk */ 1851 struct sctp_supported_chunk_types_param *pr_supported; 1852 uint8_t local_store[SCTP_PARAM_BUFFER_SIZE]; 1853 int num_ent, i; 1854 1855 phdr = sctp_get_next_param(m, offset, 1856 (struct sctp_paramhdr *)&local_store, min(plen, sizeof(local_store))); 1857 if (phdr == NULL) { 1858 return (-1); 1859 } 1860 pr_supported = (struct sctp_supported_chunk_types_param *)phdr; 1861 num_ent = plen - sizeof(struct sctp_paramhdr); 1862 for (i = 0; i < num_ent; i++) { 1863 switch (pr_supported->chunk_types[i]) { 1864 case SCTP_ASCONF: 1865 case SCTP_ASCONF_ACK: 1866 peer_supports_asconf = 1; 1867 break; 1868 default: 1869 /* one we don't care about */ 1870 break; 1871 } 1872 } 1873 } else if (ptype == SCTP_RANDOM) { 1874 got_random = 1; 1875 /* enforce the random length */ 1876 if (plen != (sizeof(struct sctp_auth_random) + 1877 SCTP_AUTH_RANDOM_SIZE_REQUIRED)) { 1878 SCTPDBG(SCTP_DEBUG_AUTH1, 1879 "SCTP: invalid RANDOM len\n"); 1880 return (-1); 1881 } 1882 } else if (ptype == SCTP_HMAC_LIST) { 1883 uint8_t store[SCTP_PARAM_BUFFER_SIZE]; 1884 struct sctp_auth_hmac_algo *hmacs; 1885 int num_hmacs; 1886 1887 if (plen > sizeof(store)) 1888 break; 1889 phdr = sctp_get_next_param(m, offset, 1890 (struct sctp_paramhdr *)store, min(plen, sizeof(store))); 1891 if (phdr == NULL) 1892 return (-1); 1893 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1894 num_hmacs = (plen - sizeof(*hmacs)) / 1895 sizeof(hmacs->hmac_ids[0]); 1896 /* validate the hmac list */ 1897 if (sctp_verify_hmac_param(hmacs, num_hmacs)) { 1898 SCTPDBG(SCTP_DEBUG_AUTH1, 1899 "SCTP: invalid HMAC param\n"); 1900 return (-1); 1901 } 1902 got_hmacs = 1; 1903 } else if (ptype == SCTP_CHUNK_LIST) { 1904 int i, num_chunks; 1905 uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE]; 1906 1907 /* did the peer send a non-empty chunk list? */ 1908 struct sctp_auth_chunk_list *chunks = NULL; 1909 1910 phdr = sctp_get_next_param(m, offset, 1911 (struct sctp_paramhdr *)chunks_store, 1912 min(plen, sizeof(chunks_store))); 1913 if (phdr == NULL) 1914 return (-1); 1915 1916 /*- 1917 * Flip through the list and mark that the 1918 * peer supports asconf/asconf_ack. 1919 */ 1920 chunks = (struct sctp_auth_chunk_list *)phdr; 1921 num_chunks = plen - sizeof(*chunks); 1922 for (i = 0; i < num_chunks; i++) { 1923 /* record asconf/asconf-ack if listed */ 1924 if (chunks->chunk_types[i] == SCTP_ASCONF) 1925 saw_asconf = 1; 1926 if (chunks->chunk_types[i] == SCTP_ASCONF_ACK) 1927 saw_asconf_ack = 1; 1928 1929 } 1930 if (num_chunks) 1931 got_chklist = 1; 1932 } 1933 offset += SCTP_SIZE32(plen); 1934 if (offset >= limit) { 1935 break; 1936 } 1937 phdr = sctp_get_next_param(m, offset, &parm_buf, 1938 sizeof(parm_buf)); 1939 } 1940 /* validate authentication required parameters */ 1941 if (got_random && got_hmacs) { 1942 peer_supports_auth = 1; 1943 } else { 1944 peer_supports_auth = 0; 1945 } 1946 if (!peer_supports_auth && got_chklist) { 1947 SCTPDBG(SCTP_DEBUG_AUTH1, 1948 "SCTP: peer sent chunk list w/o AUTH\n"); 1949 return (-1); 1950 } 1951 if (!SCTP_BASE_SYSCTL(sctp_asconf_auth_nochk) && peer_supports_asconf && 1952 !peer_supports_auth) { 1953 SCTPDBG(SCTP_DEBUG_AUTH1, 1954 "SCTP: peer supports ASCONF but not AUTH\n"); 1955 return (-1); 1956 } else if ((peer_supports_asconf) && (peer_supports_auth) && 1957 ((saw_asconf == 0) || (saw_asconf_ack == 0))) { 1958 return (-2); 1959 } 1960 return (0); 1961 } 1962 1963 void 1964 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb) 1965 { 1966 uint16_t chunks_len = 0; 1967 uint16_t hmacs_len = 0; 1968 uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT; 1969 sctp_key_t *new_key; 1970 uint16_t keylen; 1971 1972 /* initialize hmac list from endpoint */ 1973 stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs); 1974 if (stcb->asoc.local_hmacs != NULL) { 1975 hmacs_len = stcb->asoc.local_hmacs->num_algo * 1976 sizeof(stcb->asoc.local_hmacs->hmac[0]); 1977 } 1978 /* initialize auth chunks list from endpoint */ 1979 stcb->asoc.local_auth_chunks = 1980 sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks); 1981 if (stcb->asoc.local_auth_chunks != NULL) { 1982 int i; 1983 1984 for (i = 0; i < 256; i++) { 1985 if (stcb->asoc.local_auth_chunks->chunks[i]) 1986 chunks_len++; 1987 } 1988 } 1989 /* copy defaults from the endpoint */ 1990 stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid; 1991 1992 /* copy out the shared key list (by reference) from the endpoint */ 1993 (void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys, 1994 &stcb->asoc.shared_keys); 1995 1996 /* now set the concatenated key (random + chunks + hmacs) */ 1997 /* key includes parameter headers */ 1998 keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len + 1999 hmacs_len; 2000 new_key = sctp_alloc_key(keylen); 2001 if (new_key != NULL) { 2002 struct sctp_paramhdr *ph; 2003 int plen; 2004 2005 /* generate and copy in the RANDOM */ 2006 ph = (struct sctp_paramhdr *)new_key->key; 2007 ph->param_type = htons(SCTP_RANDOM); 2008 plen = sizeof(*ph) + random_len; 2009 ph->param_length = htons(plen); 2010 SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len); 2011 keylen = plen; 2012 2013 /* append in the AUTH chunks */ 2014 /* NOTE: currently we always have chunks to list */ 2015 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 2016 ph->param_type = htons(SCTP_CHUNK_LIST); 2017 plen = sizeof(*ph) + chunks_len; 2018 ph->param_length = htons(plen); 2019 keylen += sizeof(*ph); 2020 if (stcb->asoc.local_auth_chunks) { 2021 int i; 2022 2023 for (i = 0; i < 256; i++) { 2024 if (stcb->asoc.local_auth_chunks->chunks[i]) 2025 new_key->key[keylen++] = i; 2026 } 2027 } 2028 /* append in the HMACs */ 2029 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 2030 ph->param_type = htons(SCTP_HMAC_LIST); 2031 plen = sizeof(*ph) + hmacs_len; 2032 ph->param_length = htons(plen); 2033 keylen += sizeof(*ph); 2034 (void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs, 2035 new_key->key + keylen); 2036 } 2037 if (stcb->asoc.authinfo.random != NULL) 2038 sctp_free_key(stcb->asoc.authinfo.random); 2039 stcb->asoc.authinfo.random = new_key; 2040 stcb->asoc.authinfo.random_len = random_len; 2041 } 2042