1 /*- 2 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. 3 * Copyright (c) 2008-2011, by Randall Stewart. All rights reserved. 4 * Copyright (c) 2008-2011, by Michael Tuexen. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * a) Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * b) Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in 14 * the documentation and/or other materials provided with the distribution. 15 * 16 * c) Neither the name of Cisco Systems, Inc. nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <netinet/sctp_os.h> 37 #include <netinet/sctp.h> 38 #include <netinet/sctp_header.h> 39 #include <netinet/sctp_pcb.h> 40 #include <netinet/sctp_var.h> 41 #include <netinet/sctp_sysctl.h> 42 #include <netinet/sctputil.h> 43 #include <netinet/sctp_indata.h> 44 #include <netinet/sctp_output.h> 45 #include <netinet/sctp_auth.h> 46 47 #ifdef SCTP_DEBUG 48 #define SCTP_AUTH_DEBUG (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1) 49 #define SCTP_AUTH_DEBUG2 (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2) 50 #endif /* SCTP_DEBUG */ 51 52 53 void 54 sctp_clear_chunklist(sctp_auth_chklist_t * chklist) 55 { 56 bzero(chklist, sizeof(*chklist)); 57 /* chklist->num_chunks = 0; */ 58 } 59 60 sctp_auth_chklist_t * 61 sctp_alloc_chunklist(void) 62 { 63 sctp_auth_chklist_t *chklist; 64 65 SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist), 66 SCTP_M_AUTH_CL); 67 if (chklist == NULL) { 68 SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n"); 69 } else { 70 sctp_clear_chunklist(chklist); 71 } 72 return (chklist); 73 } 74 75 void 76 sctp_free_chunklist(sctp_auth_chklist_t * list) 77 { 78 if (list != NULL) 79 SCTP_FREE(list, SCTP_M_AUTH_CL); 80 } 81 82 sctp_auth_chklist_t * 83 sctp_copy_chunklist(sctp_auth_chklist_t * list) 84 { 85 sctp_auth_chklist_t *new_list; 86 87 if (list == NULL) 88 return (NULL); 89 90 /* get a new list */ 91 new_list = sctp_alloc_chunklist(); 92 if (new_list == NULL) 93 return (NULL); 94 /* copy it */ 95 bcopy(list, new_list, sizeof(*new_list)); 96 97 return (new_list); 98 } 99 100 101 /* 102 * add a chunk to the required chunks list 103 */ 104 int 105 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t * list) 106 { 107 if (list == NULL) 108 return (-1); 109 110 /* is chunk restricted? */ 111 if ((chunk == SCTP_INITIATION) || 112 (chunk == SCTP_INITIATION_ACK) || 113 (chunk == SCTP_SHUTDOWN_COMPLETE) || 114 (chunk == SCTP_AUTHENTICATION)) { 115 return (-1); 116 } 117 if (list->chunks[chunk] == 0) { 118 list->chunks[chunk] = 1; 119 list->num_chunks++; 120 SCTPDBG(SCTP_DEBUG_AUTH1, 121 "SCTP: added chunk %u (0x%02x) to Auth list\n", 122 chunk, chunk); 123 } 124 return (0); 125 } 126 127 /* 128 * delete a chunk from the required chunks list 129 */ 130 int 131 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t * list) 132 { 133 if (list == NULL) 134 return (-1); 135 136 /* is chunk restricted? */ 137 if ((chunk == SCTP_ASCONF) || 138 (chunk == SCTP_ASCONF_ACK)) { 139 return (-1); 140 } 141 if (list->chunks[chunk] == 1) { 142 list->chunks[chunk] = 0; 143 list->num_chunks--; 144 SCTPDBG(SCTP_DEBUG_AUTH1, 145 "SCTP: deleted chunk %u (0x%02x) from Auth list\n", 146 chunk, chunk); 147 } 148 return (0); 149 } 150 151 size_t 152 sctp_auth_get_chklist_size(const sctp_auth_chklist_t * list) 153 { 154 if (list == NULL) 155 return (0); 156 else 157 return (list->num_chunks); 158 } 159 160 /* 161 * set the default list of chunks requiring AUTH 162 */ 163 void 164 sctp_auth_set_default_chunks(sctp_auth_chklist_t * list) 165 { 166 (void)sctp_auth_add_chunk(SCTP_ASCONF, list); 167 (void)sctp_auth_add_chunk(SCTP_ASCONF_ACK, list); 168 } 169 170 /* 171 * return the current number and list of required chunks caller must 172 * guarantee ptr has space for up to 256 bytes 173 */ 174 int 175 sctp_serialize_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr) 176 { 177 int i, count = 0; 178 179 if (list == NULL) 180 return (0); 181 182 for (i = 0; i < 256; i++) { 183 if (list->chunks[i] != 0) { 184 *ptr++ = i; 185 count++; 186 } 187 } 188 return (count); 189 } 190 191 int 192 sctp_pack_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr) 193 { 194 int i, size = 0; 195 196 if (list == NULL) 197 return (0); 198 199 if (list->num_chunks <= 32) { 200 /* just list them, one byte each */ 201 for (i = 0; i < 256; i++) { 202 if (list->chunks[i] != 0) { 203 *ptr++ = i; 204 size++; 205 } 206 } 207 } else { 208 int index, offset; 209 210 /* pack into a 32 byte bitfield */ 211 for (i = 0; i < 256; i++) { 212 if (list->chunks[i] != 0) { 213 index = i / 8; 214 offset = i % 8; 215 ptr[index] |= (1 << offset); 216 } 217 } 218 size = 32; 219 } 220 return (size); 221 } 222 223 int 224 sctp_unpack_auth_chunks(const uint8_t * ptr, uint8_t num_chunks, 225 sctp_auth_chklist_t * list) 226 { 227 int i; 228 int size; 229 230 if (list == NULL) 231 return (0); 232 233 if (num_chunks <= 32) { 234 /* just pull them, one byte each */ 235 for (i = 0; i < num_chunks; i++) { 236 (void)sctp_auth_add_chunk(*ptr++, list); 237 } 238 size = num_chunks; 239 } else { 240 int index, offset; 241 242 /* unpack from a 32 byte bitfield */ 243 for (index = 0; index < 32; index++) { 244 for (offset = 0; offset < 8; offset++) { 245 if (ptr[index] & (1 << offset)) { 246 (void)sctp_auth_add_chunk((index * 8) + offset, list); 247 } 248 } 249 } 250 size = 32; 251 } 252 return (size); 253 } 254 255 256 /* 257 * allocate structure space for a key of length keylen 258 */ 259 sctp_key_t * 260 sctp_alloc_key(uint32_t keylen) 261 { 262 sctp_key_t *new_key; 263 264 SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen, 265 SCTP_M_AUTH_KY); 266 if (new_key == NULL) { 267 /* out of memory */ 268 return (NULL); 269 } 270 new_key->keylen = keylen; 271 return (new_key); 272 } 273 274 void 275 sctp_free_key(sctp_key_t * key) 276 { 277 if (key != NULL) 278 SCTP_FREE(key, SCTP_M_AUTH_KY); 279 } 280 281 void 282 sctp_print_key(sctp_key_t * key, const char *str) 283 { 284 uint32_t i; 285 286 if (key == NULL) { 287 printf("%s: [Null key]\n", str); 288 return; 289 } 290 printf("%s: len %u, ", str, key->keylen); 291 if (key->keylen) { 292 for (i = 0; i < key->keylen; i++) 293 printf("%02x", key->key[i]); 294 printf("\n"); 295 } else { 296 printf("[Null key]\n"); 297 } 298 } 299 300 void 301 sctp_show_key(sctp_key_t * key, const char *str) 302 { 303 uint32_t i; 304 305 if (key == NULL) { 306 printf("%s: [Null key]\n", str); 307 return; 308 } 309 printf("%s: len %u, ", str, key->keylen); 310 if (key->keylen) { 311 for (i = 0; i < key->keylen; i++) 312 printf("%02x", key->key[i]); 313 printf("\n"); 314 } else { 315 printf("[Null key]\n"); 316 } 317 } 318 319 static uint32_t 320 sctp_get_keylen(sctp_key_t * key) 321 { 322 if (key != NULL) 323 return (key->keylen); 324 else 325 return (0); 326 } 327 328 /* 329 * generate a new random key of length 'keylen' 330 */ 331 sctp_key_t * 332 sctp_generate_random_key(uint32_t keylen) 333 { 334 sctp_key_t *new_key; 335 336 /* validate keylen */ 337 if (keylen > SCTP_AUTH_RANDOM_SIZE_MAX) 338 keylen = SCTP_AUTH_RANDOM_SIZE_MAX; 339 340 new_key = sctp_alloc_key(keylen); 341 if (new_key == NULL) { 342 /* out of memory */ 343 return (NULL); 344 } 345 SCTP_READ_RANDOM(new_key->key, keylen); 346 new_key->keylen = keylen; 347 return (new_key); 348 } 349 350 sctp_key_t * 351 sctp_set_key(uint8_t * key, uint32_t keylen) 352 { 353 sctp_key_t *new_key; 354 355 new_key = sctp_alloc_key(keylen); 356 if (new_key == NULL) { 357 /* out of memory */ 358 return (NULL); 359 } 360 bcopy(key, new_key->key, keylen); 361 return (new_key); 362 } 363 364 /*- 365 * given two keys of variable size, compute which key is "larger/smaller" 366 * returns: 1 if key1 > key2 367 * -1 if key1 < key2 368 * 0 if key1 = key2 369 */ 370 static int 371 sctp_compare_key(sctp_key_t * key1, sctp_key_t * key2) 372 { 373 uint32_t maxlen; 374 uint32_t i; 375 uint32_t key1len, key2len; 376 uint8_t *key_1, *key_2; 377 uint8_t temp[SCTP_AUTH_RANDOM_SIZE_MAX]; 378 379 /* sanity/length check */ 380 key1len = sctp_get_keylen(key1); 381 key2len = sctp_get_keylen(key2); 382 if ((key1len == 0) && (key2len == 0)) 383 return (0); 384 else if (key1len == 0) 385 return (-1); 386 else if (key2len == 0) 387 return (1); 388 389 if (key1len != key2len) { 390 if (key1len >= key2len) 391 maxlen = key1len; 392 else 393 maxlen = key2len; 394 bzero(temp, maxlen); 395 if (key1len < maxlen) { 396 /* prepend zeroes to key1 */ 397 bcopy(key1->key, temp + (maxlen - key1len), key1len); 398 key_1 = temp; 399 key_2 = key2->key; 400 } else { 401 /* prepend zeroes to key2 */ 402 bcopy(key2->key, temp + (maxlen - key2len), key2len); 403 key_1 = key1->key; 404 key_2 = temp; 405 } 406 } else { 407 maxlen = key1len; 408 key_1 = key1->key; 409 key_2 = key2->key; 410 } 411 412 for (i = 0; i < maxlen; i++) { 413 if (*key_1 > *key_2) 414 return (1); 415 else if (*key_1 < *key_2) 416 return (-1); 417 key_1++; 418 key_2++; 419 } 420 421 /* keys are equal value, so check lengths */ 422 if (key1len == key2len) 423 return (0); 424 else if (key1len < key2len) 425 return (-1); 426 else 427 return (1); 428 } 429 430 /* 431 * generate the concatenated keying material based on the two keys and the 432 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific 433 * order for concatenation 434 */ 435 sctp_key_t * 436 sctp_compute_hashkey(sctp_key_t * key1, sctp_key_t * key2, sctp_key_t * shared) 437 { 438 uint32_t keylen; 439 sctp_key_t *new_key; 440 uint8_t *key_ptr; 441 442 keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) + 443 sctp_get_keylen(shared); 444 445 if (keylen > 0) { 446 /* get space for the new key */ 447 new_key = sctp_alloc_key(keylen); 448 if (new_key == NULL) { 449 /* out of memory */ 450 return (NULL); 451 } 452 new_key->keylen = keylen; 453 key_ptr = new_key->key; 454 } else { 455 /* all keys empty/null?! */ 456 return (NULL); 457 } 458 459 /* concatenate the keys */ 460 if (sctp_compare_key(key1, key2) <= 0) { 461 /* key is shared + key1 + key2 */ 462 if (sctp_get_keylen(shared)) { 463 bcopy(shared->key, key_ptr, shared->keylen); 464 key_ptr += shared->keylen; 465 } 466 if (sctp_get_keylen(key1)) { 467 bcopy(key1->key, key_ptr, key1->keylen); 468 key_ptr += key1->keylen; 469 } 470 if (sctp_get_keylen(key2)) { 471 bcopy(key2->key, key_ptr, key2->keylen); 472 } 473 } else { 474 /* key is shared + key2 + key1 */ 475 if (sctp_get_keylen(shared)) { 476 bcopy(shared->key, key_ptr, shared->keylen); 477 key_ptr += shared->keylen; 478 } 479 if (sctp_get_keylen(key2)) { 480 bcopy(key2->key, key_ptr, key2->keylen); 481 key_ptr += key2->keylen; 482 } 483 if (sctp_get_keylen(key1)) { 484 bcopy(key1->key, key_ptr, key1->keylen); 485 } 486 } 487 return (new_key); 488 } 489 490 491 sctp_sharedkey_t * 492 sctp_alloc_sharedkey(void) 493 { 494 sctp_sharedkey_t *new_key; 495 496 SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key), 497 SCTP_M_AUTH_KY); 498 if (new_key == NULL) { 499 /* out of memory */ 500 return (NULL); 501 } 502 new_key->keyid = 0; 503 new_key->key = NULL; 504 new_key->refcount = 1; 505 new_key->deactivated = 0; 506 return (new_key); 507 } 508 509 void 510 sctp_free_sharedkey(sctp_sharedkey_t * skey) 511 { 512 if (skey == NULL) 513 return; 514 515 if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) { 516 if (skey->key != NULL) 517 sctp_free_key(skey->key); 518 SCTP_FREE(skey, SCTP_M_AUTH_KY); 519 } 520 } 521 522 sctp_sharedkey_t * 523 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id) 524 { 525 sctp_sharedkey_t *skey; 526 527 LIST_FOREACH(skey, shared_keys, next) { 528 if (skey->keyid == key_id) 529 return (skey); 530 } 531 return (NULL); 532 } 533 534 int 535 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys, 536 sctp_sharedkey_t * new_skey) 537 { 538 sctp_sharedkey_t *skey; 539 540 if ((shared_keys == NULL) || (new_skey == NULL)) 541 return (EINVAL); 542 543 /* insert into an empty list? */ 544 if (LIST_EMPTY(shared_keys)) { 545 LIST_INSERT_HEAD(shared_keys, new_skey, next); 546 return (0); 547 } 548 /* insert into the existing list, ordered by key id */ 549 LIST_FOREACH(skey, shared_keys, next) { 550 if (new_skey->keyid < skey->keyid) { 551 /* insert it before here */ 552 LIST_INSERT_BEFORE(skey, new_skey, next); 553 return (0); 554 } else if (new_skey->keyid == skey->keyid) { 555 /* replace the existing key */ 556 /* verify this key *can* be replaced */ 557 if ((skey->deactivated) && (skey->refcount > 1)) { 558 SCTPDBG(SCTP_DEBUG_AUTH1, 559 "can't replace shared key id %u\n", 560 new_skey->keyid); 561 return (EBUSY); 562 } 563 SCTPDBG(SCTP_DEBUG_AUTH1, 564 "replacing shared key id %u\n", 565 new_skey->keyid); 566 LIST_INSERT_BEFORE(skey, new_skey, next); 567 LIST_REMOVE(skey, next); 568 sctp_free_sharedkey(skey); 569 return (0); 570 } 571 if (LIST_NEXT(skey, next) == NULL) { 572 /* belongs at the end of the list */ 573 LIST_INSERT_AFTER(skey, new_skey, next); 574 return (0); 575 } 576 } 577 /* shouldn't reach here */ 578 return (0); 579 } 580 581 void 582 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id) 583 { 584 sctp_sharedkey_t *skey; 585 586 /* find the shared key */ 587 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 588 589 /* bump the ref count */ 590 if (skey) { 591 atomic_add_int(&skey->refcount, 1); 592 SCTPDBG(SCTP_DEBUG_AUTH2, 593 "%s: stcb %p key %u refcount acquire to %d\n", 594 __FUNCTION__, stcb, key_id, skey->refcount); 595 } 596 } 597 598 void 599 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked 600 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) 601 SCTP_UNUSED 602 #endif 603 ) 604 { 605 sctp_sharedkey_t *skey; 606 607 /* find the shared key */ 608 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 609 610 /* decrement the ref count */ 611 if (skey) { 612 sctp_free_sharedkey(skey); 613 SCTPDBG(SCTP_DEBUG_AUTH2, 614 "%s: stcb %p key %u refcount release to %d\n", 615 __FUNCTION__, stcb, key_id, skey->refcount); 616 617 /* see if a notification should be generated */ 618 if ((skey->refcount <= 1) && (skey->deactivated)) { 619 /* notify ULP that key is no longer used */ 620 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, 621 key_id, 0, so_locked); 622 SCTPDBG(SCTP_DEBUG_AUTH2, 623 "%s: stcb %p key %u no longer used, %d\n", 624 __FUNCTION__, stcb, key_id, skey->refcount); 625 } 626 } 627 } 628 629 static sctp_sharedkey_t * 630 sctp_copy_sharedkey(const sctp_sharedkey_t * skey) 631 { 632 sctp_sharedkey_t *new_skey; 633 634 if (skey == NULL) 635 return (NULL); 636 new_skey = sctp_alloc_sharedkey(); 637 if (new_skey == NULL) 638 return (NULL); 639 if (skey->key != NULL) 640 new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen); 641 else 642 new_skey->key = NULL; 643 new_skey->keyid = skey->keyid; 644 return (new_skey); 645 } 646 647 int 648 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest) 649 { 650 sctp_sharedkey_t *skey, *new_skey; 651 int count = 0; 652 653 if ((src == NULL) || (dest == NULL)) 654 return (0); 655 LIST_FOREACH(skey, src, next) { 656 new_skey = sctp_copy_sharedkey(skey); 657 if (new_skey != NULL) { 658 (void)sctp_insert_sharedkey(dest, new_skey); 659 count++; 660 } 661 } 662 return (count); 663 } 664 665 666 sctp_hmaclist_t * 667 sctp_alloc_hmaclist(uint8_t num_hmacs) 668 { 669 sctp_hmaclist_t *new_list; 670 int alloc_size; 671 672 alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]); 673 SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size, 674 SCTP_M_AUTH_HL); 675 if (new_list == NULL) { 676 /* out of memory */ 677 return (NULL); 678 } 679 new_list->max_algo = num_hmacs; 680 new_list->num_algo = 0; 681 return (new_list); 682 } 683 684 void 685 sctp_free_hmaclist(sctp_hmaclist_t * list) 686 { 687 if (list != NULL) { 688 SCTP_FREE(list, SCTP_M_AUTH_HL); 689 list = NULL; 690 } 691 } 692 693 int 694 sctp_auth_add_hmacid(sctp_hmaclist_t * list, uint16_t hmac_id) 695 { 696 int i; 697 698 if (list == NULL) 699 return (-1); 700 if (list->num_algo == list->max_algo) { 701 SCTPDBG(SCTP_DEBUG_AUTH1, 702 "SCTP: HMAC id list full, ignoring add %u\n", hmac_id); 703 return (-1); 704 } 705 if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) && 706 #ifdef HAVE_SHA224 707 (hmac_id != SCTP_AUTH_HMAC_ID_SHA224) && 708 #endif 709 #ifdef HAVE_SHA2 710 (hmac_id != SCTP_AUTH_HMAC_ID_SHA256) && 711 (hmac_id != SCTP_AUTH_HMAC_ID_SHA384) && 712 (hmac_id != SCTP_AUTH_HMAC_ID_SHA512) && 713 #endif 714 1) { 715 return (-1); 716 } 717 /* Now is it already in the list */ 718 for (i = 0; i < list->num_algo; i++) { 719 if (list->hmac[i] == hmac_id) { 720 /* already in list */ 721 return (-1); 722 } 723 } 724 SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id); 725 list->hmac[list->num_algo++] = hmac_id; 726 return (0); 727 } 728 729 sctp_hmaclist_t * 730 sctp_copy_hmaclist(sctp_hmaclist_t * list) 731 { 732 sctp_hmaclist_t *new_list; 733 int i; 734 735 if (list == NULL) 736 return (NULL); 737 /* get a new list */ 738 new_list = sctp_alloc_hmaclist(list->max_algo); 739 if (new_list == NULL) 740 return (NULL); 741 /* copy it */ 742 new_list->max_algo = list->max_algo; 743 new_list->num_algo = list->num_algo; 744 for (i = 0; i < list->num_algo; i++) 745 new_list->hmac[i] = list->hmac[i]; 746 return (new_list); 747 } 748 749 sctp_hmaclist_t * 750 sctp_default_supported_hmaclist(void) 751 { 752 sctp_hmaclist_t *new_list; 753 754 new_list = sctp_alloc_hmaclist(2); 755 if (new_list == NULL) 756 return (NULL); 757 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1); 758 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256); 759 return (new_list); 760 } 761 762 /*- 763 * HMAC algos are listed in priority/preference order 764 * find the best HMAC id to use for the peer based on local support 765 */ 766 uint16_t 767 sctp_negotiate_hmacid(sctp_hmaclist_t * peer, sctp_hmaclist_t * local) 768 { 769 int i, j; 770 771 if ((local == NULL) || (peer == NULL)) 772 return (SCTP_AUTH_HMAC_ID_RSVD); 773 774 for (i = 0; i < peer->num_algo; i++) { 775 for (j = 0; j < local->num_algo; j++) { 776 if (peer->hmac[i] == local->hmac[j]) { 777 /* found the "best" one */ 778 SCTPDBG(SCTP_DEBUG_AUTH1, 779 "SCTP: negotiated peer HMAC id %u\n", 780 peer->hmac[i]); 781 return (peer->hmac[i]); 782 } 783 } 784 } 785 /* didn't find one! */ 786 return (SCTP_AUTH_HMAC_ID_RSVD); 787 } 788 789 /*- 790 * serialize the HMAC algo list and return space used 791 * caller must guarantee ptr has appropriate space 792 */ 793 int 794 sctp_serialize_hmaclist(sctp_hmaclist_t * list, uint8_t * ptr) 795 { 796 int i; 797 uint16_t hmac_id; 798 799 if (list == NULL) 800 return (0); 801 802 for (i = 0; i < list->num_algo; i++) { 803 hmac_id = htons(list->hmac[i]); 804 bcopy(&hmac_id, ptr, sizeof(hmac_id)); 805 ptr += sizeof(hmac_id); 806 } 807 return (list->num_algo * sizeof(hmac_id)); 808 } 809 810 int 811 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs) 812 { 813 uint32_t i; 814 uint16_t hmac_id; 815 uint32_t sha1_supported = 0; 816 817 for (i = 0; i < num_hmacs; i++) { 818 hmac_id = ntohs(hmacs->hmac_ids[i]); 819 if (hmac_id == SCTP_AUTH_HMAC_ID_SHA1) 820 sha1_supported = 1; 821 } 822 /* all HMAC id's are supported */ 823 if (sha1_supported == 0) 824 return (-1); 825 else 826 return (0); 827 } 828 829 sctp_authinfo_t * 830 sctp_alloc_authinfo(void) 831 { 832 sctp_authinfo_t *new_authinfo; 833 834 SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo), 835 SCTP_M_AUTH_IF); 836 837 if (new_authinfo == NULL) { 838 /* out of memory */ 839 return (NULL); 840 } 841 bzero(new_authinfo, sizeof(*new_authinfo)); 842 return (new_authinfo); 843 } 844 845 void 846 sctp_free_authinfo(sctp_authinfo_t * authinfo) 847 { 848 if (authinfo == NULL) 849 return; 850 851 if (authinfo->random != NULL) 852 sctp_free_key(authinfo->random); 853 if (authinfo->peer_random != NULL) 854 sctp_free_key(authinfo->peer_random); 855 if (authinfo->assoc_key != NULL) 856 sctp_free_key(authinfo->assoc_key); 857 if (authinfo->recv_key != NULL) 858 sctp_free_key(authinfo->recv_key); 859 860 /* We are NOT dynamically allocating authinfo's right now... */ 861 /* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */ 862 } 863 864 865 uint32_t 866 sctp_get_auth_chunk_len(uint16_t hmac_algo) 867 { 868 int size; 869 870 size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo); 871 return (SCTP_SIZE32(size)); 872 } 873 874 uint32_t 875 sctp_get_hmac_digest_len(uint16_t hmac_algo) 876 { 877 switch (hmac_algo) { 878 case SCTP_AUTH_HMAC_ID_SHA1: 879 return (SCTP_AUTH_DIGEST_LEN_SHA1); 880 #ifdef HAVE_SHA224 881 case SCTP_AUTH_HMAC_ID_SHA224: 882 return (SCTP_AUTH_DIGEST_LEN_SHA224); 883 #endif 884 #ifdef HAVE_SHA2 885 case SCTP_AUTH_HMAC_ID_SHA256: 886 return (SCTP_AUTH_DIGEST_LEN_SHA256); 887 case SCTP_AUTH_HMAC_ID_SHA384: 888 return (SCTP_AUTH_DIGEST_LEN_SHA384); 889 case SCTP_AUTH_HMAC_ID_SHA512: 890 return (SCTP_AUTH_DIGEST_LEN_SHA512); 891 #endif 892 default: 893 /* unknown HMAC algorithm: can't do anything */ 894 return (0); 895 } /* end switch */ 896 } 897 898 static inline int 899 sctp_get_hmac_block_len(uint16_t hmac_algo) 900 { 901 switch (hmac_algo) { 902 case SCTP_AUTH_HMAC_ID_SHA1: 903 #ifdef HAVE_SHA224 904 case SCTP_AUTH_HMAC_ID_SHA224: 905 #endif 906 return (64); 907 #ifdef HAVE_SHA2 908 case SCTP_AUTH_HMAC_ID_SHA256: 909 return (64); 910 case SCTP_AUTH_HMAC_ID_SHA384: 911 case SCTP_AUTH_HMAC_ID_SHA512: 912 return (128); 913 #endif 914 case SCTP_AUTH_HMAC_ID_RSVD: 915 default: 916 /* unknown HMAC algorithm: can't do anything */ 917 return (0); 918 } /* end switch */ 919 } 920 921 static void 922 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t * ctx) 923 { 924 switch (hmac_algo) { 925 case SCTP_AUTH_HMAC_ID_SHA1: 926 SHA1_Init(&ctx->sha1); 927 break; 928 #ifdef HAVE_SHA224 929 case SCTP_AUTH_HMAC_ID_SHA224: 930 break; 931 #endif 932 #ifdef HAVE_SHA2 933 case SCTP_AUTH_HMAC_ID_SHA256: 934 SHA256_Init(&ctx->sha256); 935 break; 936 case SCTP_AUTH_HMAC_ID_SHA384: 937 SHA384_Init(&ctx->sha384); 938 break; 939 case SCTP_AUTH_HMAC_ID_SHA512: 940 SHA512_Init(&ctx->sha512); 941 break; 942 #endif 943 case SCTP_AUTH_HMAC_ID_RSVD: 944 default: 945 /* unknown HMAC algorithm: can't do anything */ 946 return; 947 } /* end switch */ 948 } 949 950 static void 951 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t * ctx, 952 uint8_t * text, uint32_t textlen) 953 { 954 switch (hmac_algo) { 955 case SCTP_AUTH_HMAC_ID_SHA1: 956 SHA1_Update(&ctx->sha1, text, textlen); 957 break; 958 #ifdef HAVE_SHA224 959 case SCTP_AUTH_HMAC_ID_SHA224: 960 break; 961 #endif 962 #ifdef HAVE_SHA2 963 case SCTP_AUTH_HMAC_ID_SHA256: 964 SHA256_Update(&ctx->sha256, text, textlen); 965 break; 966 case SCTP_AUTH_HMAC_ID_SHA384: 967 SHA384_Update(&ctx->sha384, text, textlen); 968 break; 969 case SCTP_AUTH_HMAC_ID_SHA512: 970 SHA512_Update(&ctx->sha512, text, textlen); 971 break; 972 #endif 973 case SCTP_AUTH_HMAC_ID_RSVD: 974 default: 975 /* unknown HMAC algorithm: can't do anything */ 976 return; 977 } /* end switch */ 978 } 979 980 static void 981 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t * ctx, 982 uint8_t * digest) 983 { 984 switch (hmac_algo) { 985 case SCTP_AUTH_HMAC_ID_SHA1: 986 SHA1_Final(digest, &ctx->sha1); 987 break; 988 #ifdef HAVE_SHA224 989 case SCTP_AUTH_HMAC_ID_SHA224: 990 break; 991 #endif 992 #ifdef HAVE_SHA2 993 case SCTP_AUTH_HMAC_ID_SHA256: 994 SHA256_Final(digest, &ctx->sha256); 995 break; 996 case SCTP_AUTH_HMAC_ID_SHA384: 997 /* SHA384 is truncated SHA512 */ 998 SHA384_Final(digest, &ctx->sha384); 999 break; 1000 case SCTP_AUTH_HMAC_ID_SHA512: 1001 SHA512_Final(digest, &ctx->sha512); 1002 break; 1003 #endif 1004 case SCTP_AUTH_HMAC_ID_RSVD: 1005 default: 1006 /* unknown HMAC algorithm: can't do anything */ 1007 return; 1008 } /* end switch */ 1009 } 1010 1011 /*- 1012 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104) 1013 * 1014 * Compute the HMAC digest using the desired hash key, text, and HMAC 1015 * algorithm. Resulting digest is placed in 'digest' and digest length 1016 * is returned, if the HMAC was performed. 1017 * 1018 * WARNING: it is up to the caller to supply sufficient space to hold the 1019 * resultant digest. 1020 */ 1021 uint32_t 1022 sctp_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen, 1023 uint8_t * text, uint32_t textlen, uint8_t * digest) 1024 { 1025 uint32_t digestlen; 1026 uint32_t blocklen; 1027 sctp_hash_context_t ctx; 1028 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 1029 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1030 uint32_t i; 1031 1032 /* sanity check the material and length */ 1033 if ((key == NULL) || (keylen == 0) || (text == NULL) || 1034 (textlen == 0) || (digest == NULL)) { 1035 /* can't do HMAC with empty key or text or digest store */ 1036 return (0); 1037 } 1038 /* validate the hmac algo and get the digest length */ 1039 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1040 if (digestlen == 0) 1041 return (0); 1042 1043 /* hash the key if it is longer than the hash block size */ 1044 blocklen = sctp_get_hmac_block_len(hmac_algo); 1045 if (keylen > blocklen) { 1046 sctp_hmac_init(hmac_algo, &ctx); 1047 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 1048 sctp_hmac_final(hmac_algo, &ctx, temp); 1049 /* set the hashed key as the key */ 1050 keylen = digestlen; 1051 key = temp; 1052 } 1053 /* initialize the inner/outer pads with the key and "append" zeroes */ 1054 bzero(ipad, blocklen); 1055 bzero(opad, blocklen); 1056 bcopy(key, ipad, keylen); 1057 bcopy(key, opad, keylen); 1058 1059 /* XOR the key with ipad and opad values */ 1060 for (i = 0; i < blocklen; i++) { 1061 ipad[i] ^= 0x36; 1062 opad[i] ^= 0x5c; 1063 } 1064 1065 /* perform inner hash */ 1066 sctp_hmac_init(hmac_algo, &ctx); 1067 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 1068 sctp_hmac_update(hmac_algo, &ctx, text, textlen); 1069 sctp_hmac_final(hmac_algo, &ctx, temp); 1070 1071 /* perform outer hash */ 1072 sctp_hmac_init(hmac_algo, &ctx); 1073 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 1074 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 1075 sctp_hmac_final(hmac_algo, &ctx, digest); 1076 1077 return (digestlen); 1078 } 1079 1080 /* mbuf version */ 1081 uint32_t 1082 sctp_hmac_m(uint16_t hmac_algo, uint8_t * key, uint32_t keylen, 1083 struct mbuf *m, uint32_t m_offset, uint8_t * digest, uint32_t trailer) 1084 { 1085 uint32_t digestlen; 1086 uint32_t blocklen; 1087 sctp_hash_context_t ctx; 1088 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 1089 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1090 uint32_t i; 1091 struct mbuf *m_tmp; 1092 1093 /* sanity check the material and length */ 1094 if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) { 1095 /* can't do HMAC with empty key or text or digest store */ 1096 return (0); 1097 } 1098 /* validate the hmac algo and get the digest length */ 1099 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1100 if (digestlen == 0) 1101 return (0); 1102 1103 /* hash the key if it is longer than the hash block size */ 1104 blocklen = sctp_get_hmac_block_len(hmac_algo); 1105 if (keylen > blocklen) { 1106 sctp_hmac_init(hmac_algo, &ctx); 1107 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 1108 sctp_hmac_final(hmac_algo, &ctx, temp); 1109 /* set the hashed key as the key */ 1110 keylen = digestlen; 1111 key = temp; 1112 } 1113 /* initialize the inner/outer pads with the key and "append" zeroes */ 1114 bzero(ipad, blocklen); 1115 bzero(opad, blocklen); 1116 bcopy(key, ipad, keylen); 1117 bcopy(key, opad, keylen); 1118 1119 /* XOR the key with ipad and opad values */ 1120 for (i = 0; i < blocklen; i++) { 1121 ipad[i] ^= 0x36; 1122 opad[i] ^= 0x5c; 1123 } 1124 1125 /* perform inner hash */ 1126 sctp_hmac_init(hmac_algo, &ctx); 1127 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 1128 /* find the correct starting mbuf and offset (get start of text) */ 1129 m_tmp = m; 1130 while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) { 1131 m_offset -= SCTP_BUF_LEN(m_tmp); 1132 m_tmp = SCTP_BUF_NEXT(m_tmp); 1133 } 1134 /* now use the rest of the mbuf chain for the text */ 1135 while (m_tmp != NULL) { 1136 if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) { 1137 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset, 1138 SCTP_BUF_LEN(m_tmp) - (trailer + m_offset)); 1139 } else { 1140 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset, 1141 SCTP_BUF_LEN(m_tmp) - m_offset); 1142 } 1143 1144 /* clear the offset since it's only for the first mbuf */ 1145 m_offset = 0; 1146 m_tmp = SCTP_BUF_NEXT(m_tmp); 1147 } 1148 sctp_hmac_final(hmac_algo, &ctx, temp); 1149 1150 /* perform outer hash */ 1151 sctp_hmac_init(hmac_algo, &ctx); 1152 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 1153 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 1154 sctp_hmac_final(hmac_algo, &ctx, digest); 1155 1156 return (digestlen); 1157 } 1158 1159 /*- 1160 * verify the HMAC digest using the desired hash key, text, and HMAC 1161 * algorithm. 1162 * Returns -1 on error, 0 on success. 1163 */ 1164 int 1165 sctp_verify_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen, 1166 uint8_t * text, uint32_t textlen, 1167 uint8_t * digest, uint32_t digestlen) 1168 { 1169 uint32_t len; 1170 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1171 1172 /* sanity check the material and length */ 1173 if ((key == NULL) || (keylen == 0) || 1174 (text == NULL) || (textlen == 0) || (digest == NULL)) { 1175 /* can't do HMAC with empty key or text or digest */ 1176 return (-1); 1177 } 1178 len = sctp_get_hmac_digest_len(hmac_algo); 1179 if ((len == 0) || (digestlen != len)) 1180 return (-1); 1181 1182 /* compute the expected hash */ 1183 if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len) 1184 return (-1); 1185 1186 if (memcmp(digest, temp, digestlen) != 0) 1187 return (-1); 1188 else 1189 return (0); 1190 } 1191 1192 1193 /* 1194 * computes the requested HMAC using a key struct (which may be modified if 1195 * the keylen exceeds the HMAC block len). 1196 */ 1197 uint32_t 1198 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t * key, uint8_t * text, 1199 uint32_t textlen, uint8_t * digest) 1200 { 1201 uint32_t digestlen; 1202 uint32_t blocklen; 1203 sctp_hash_context_t ctx; 1204 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1205 1206 /* sanity check */ 1207 if ((key == NULL) || (text == NULL) || (textlen == 0) || 1208 (digest == NULL)) { 1209 /* can't do HMAC with empty key or text or digest store */ 1210 return (0); 1211 } 1212 /* validate the hmac algo and get the digest length */ 1213 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1214 if (digestlen == 0) 1215 return (0); 1216 1217 /* hash the key if it is longer than the hash block size */ 1218 blocklen = sctp_get_hmac_block_len(hmac_algo); 1219 if (key->keylen > blocklen) { 1220 sctp_hmac_init(hmac_algo, &ctx); 1221 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1222 sctp_hmac_final(hmac_algo, &ctx, temp); 1223 /* save the hashed key as the new key */ 1224 key->keylen = digestlen; 1225 bcopy(temp, key->key, key->keylen); 1226 } 1227 return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen, 1228 digest)); 1229 } 1230 1231 /* mbuf version */ 1232 uint32_t 1233 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t * key, struct mbuf *m, 1234 uint32_t m_offset, uint8_t * digest) 1235 { 1236 uint32_t digestlen; 1237 uint32_t blocklen; 1238 sctp_hash_context_t ctx; 1239 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1240 1241 /* sanity check */ 1242 if ((key == NULL) || (m == NULL) || (digest == NULL)) { 1243 /* can't do HMAC with empty key or text or digest store */ 1244 return (0); 1245 } 1246 /* validate the hmac algo and get the digest length */ 1247 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1248 if (digestlen == 0) 1249 return (0); 1250 1251 /* hash the key if it is longer than the hash block size */ 1252 blocklen = sctp_get_hmac_block_len(hmac_algo); 1253 if (key->keylen > blocklen) { 1254 sctp_hmac_init(hmac_algo, &ctx); 1255 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1256 sctp_hmac_final(hmac_algo, &ctx, temp); 1257 /* save the hashed key as the new key */ 1258 key->keylen = digestlen; 1259 bcopy(temp, key->key, key->keylen); 1260 } 1261 return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0)); 1262 } 1263 1264 int 1265 sctp_auth_is_supported_hmac(sctp_hmaclist_t * list, uint16_t id) 1266 { 1267 int i; 1268 1269 if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD)) 1270 return (0); 1271 1272 for (i = 0; i < list->num_algo; i++) 1273 if (list->hmac[i] == id) 1274 return (1); 1275 1276 /* not in the list */ 1277 return (0); 1278 } 1279 1280 1281 /*- 1282 * clear any cached key(s) if they match the given key id on an association. 1283 * the cached key(s) will be recomputed and re-cached at next use. 1284 * ASSUMES TCB_LOCK is already held 1285 */ 1286 void 1287 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid) 1288 { 1289 if (stcb == NULL) 1290 return; 1291 1292 if (keyid == stcb->asoc.authinfo.assoc_keyid) { 1293 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1294 stcb->asoc.authinfo.assoc_key = NULL; 1295 } 1296 if (keyid == stcb->asoc.authinfo.recv_keyid) { 1297 sctp_free_key(stcb->asoc.authinfo.recv_key); 1298 stcb->asoc.authinfo.recv_key = NULL; 1299 } 1300 } 1301 1302 /*- 1303 * clear any cached key(s) if they match the given key id for all assocs on 1304 * an endpoint. 1305 * ASSUMES INP_WLOCK is already held 1306 */ 1307 void 1308 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid) 1309 { 1310 struct sctp_tcb *stcb; 1311 1312 if (inp == NULL) 1313 return; 1314 1315 /* clear the cached keys on all assocs on this instance */ 1316 LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { 1317 SCTP_TCB_LOCK(stcb); 1318 sctp_clear_cachedkeys(stcb, keyid); 1319 SCTP_TCB_UNLOCK(stcb); 1320 } 1321 } 1322 1323 /*- 1324 * delete a shared key from an association 1325 * ASSUMES TCB_LOCK is already held 1326 */ 1327 int 1328 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1329 { 1330 sctp_sharedkey_t *skey; 1331 1332 if (stcb == NULL) 1333 return (-1); 1334 1335 /* is the keyid the assoc active sending key */ 1336 if (keyid == stcb->asoc.authinfo.active_keyid) 1337 return (-1); 1338 1339 /* does the key exist? */ 1340 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1341 if (skey == NULL) 1342 return (-1); 1343 1344 /* are there other refcount holders on the key? */ 1345 if (skey->refcount > 1) 1346 return (-1); 1347 1348 /* remove it */ 1349 LIST_REMOVE(skey, next); 1350 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1351 1352 /* clear any cached keys */ 1353 sctp_clear_cachedkeys(stcb, keyid); 1354 return (0); 1355 } 1356 1357 /*- 1358 * deletes a shared key from the endpoint 1359 * ASSUMES INP_WLOCK is already held 1360 */ 1361 int 1362 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1363 { 1364 sctp_sharedkey_t *skey; 1365 1366 if (inp == NULL) 1367 return (-1); 1368 1369 /* is the keyid the active sending key on the endpoint */ 1370 if (keyid == inp->sctp_ep.default_keyid) 1371 return (-1); 1372 1373 /* does the key exist? */ 1374 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1375 if (skey == NULL) 1376 return (-1); 1377 1378 /* endpoint keys are not refcounted */ 1379 1380 /* remove it */ 1381 LIST_REMOVE(skey, next); 1382 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1383 1384 /* clear any cached keys */ 1385 sctp_clear_cachedkeys_ep(inp, keyid); 1386 return (0); 1387 } 1388 1389 /*- 1390 * set the active key on an association 1391 * ASSUMES TCB_LOCK is already held 1392 */ 1393 int 1394 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid) 1395 { 1396 sctp_sharedkey_t *skey = NULL; 1397 1398 /* find the key on the assoc */ 1399 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1400 if (skey == NULL) { 1401 /* that key doesn't exist */ 1402 return (-1); 1403 } 1404 if ((skey->deactivated) && (skey->refcount > 1)) { 1405 /* can't reactivate a deactivated key with other refcounts */ 1406 return (-1); 1407 } 1408 /* set the (new) active key */ 1409 stcb->asoc.authinfo.active_keyid = keyid; 1410 /* reset the deactivated flag */ 1411 skey->deactivated = 0; 1412 1413 return (0); 1414 } 1415 1416 /*- 1417 * set the active key on an endpoint 1418 * ASSUMES INP_WLOCK is already held 1419 */ 1420 int 1421 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1422 { 1423 sctp_sharedkey_t *skey; 1424 1425 /* find the key */ 1426 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1427 if (skey == NULL) { 1428 /* that key doesn't exist */ 1429 return (-1); 1430 } 1431 inp->sctp_ep.default_keyid = keyid; 1432 return (0); 1433 } 1434 1435 /*- 1436 * deactivates a shared key from the association 1437 * ASSUMES INP_WLOCK is already held 1438 */ 1439 int 1440 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1441 { 1442 sctp_sharedkey_t *skey; 1443 1444 if (stcb == NULL) 1445 return (-1); 1446 1447 /* is the keyid the assoc active sending key */ 1448 if (keyid == stcb->asoc.authinfo.active_keyid) 1449 return (-1); 1450 1451 /* does the key exist? */ 1452 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1453 if (skey == NULL) 1454 return (-1); 1455 1456 /* are there other refcount holders on the key? */ 1457 if (skey->refcount == 1) { 1458 /* no other users, send a notification for this key */ 1459 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0, 1460 SCTP_SO_LOCKED); 1461 } 1462 /* mark the key as deactivated */ 1463 skey->deactivated = 1; 1464 1465 return (0); 1466 } 1467 1468 /*- 1469 * deactivates a shared key from the endpoint 1470 * ASSUMES INP_WLOCK is already held 1471 */ 1472 int 1473 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1474 { 1475 sctp_sharedkey_t *skey; 1476 1477 if (inp == NULL) 1478 return (-1); 1479 1480 /* is the keyid the active sending key on the endpoint */ 1481 if (keyid == inp->sctp_ep.default_keyid) 1482 return (-1); 1483 1484 /* does the key exist? */ 1485 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1486 if (skey == NULL) 1487 return (-1); 1488 1489 /* endpoint keys are not refcounted */ 1490 1491 /* remove it */ 1492 LIST_REMOVE(skey, next); 1493 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1494 1495 return (0); 1496 } 1497 1498 /* 1499 * get local authentication parameters from cookie (from INIT-ACK) 1500 */ 1501 void 1502 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m, 1503 uint32_t offset, uint32_t length) 1504 { 1505 struct sctp_paramhdr *phdr, tmp_param; 1506 uint16_t plen, ptype; 1507 uint8_t random_store[SCTP_PARAM_BUFFER_SIZE]; 1508 struct sctp_auth_random *p_random = NULL; 1509 uint16_t random_len = 0; 1510 uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE]; 1511 struct sctp_auth_hmac_algo *hmacs = NULL; 1512 uint16_t hmacs_len = 0; 1513 uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE]; 1514 struct sctp_auth_chunk_list *chunks = NULL; 1515 uint16_t num_chunks = 0; 1516 sctp_key_t *new_key; 1517 uint32_t keylen; 1518 1519 /* convert to upper bound */ 1520 length += offset; 1521 1522 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, 1523 sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param); 1524 while (phdr != NULL) { 1525 ptype = ntohs(phdr->param_type); 1526 plen = ntohs(phdr->param_length); 1527 1528 if ((plen == 0) || (offset + plen > length)) 1529 break; 1530 1531 if (ptype == SCTP_RANDOM) { 1532 if (plen > sizeof(random_store)) 1533 break; 1534 phdr = sctp_get_next_param(m, offset, 1535 (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store))); 1536 if (phdr == NULL) 1537 return; 1538 /* save the random and length for the key */ 1539 p_random = (struct sctp_auth_random *)phdr; 1540 random_len = plen - sizeof(*p_random); 1541 } else if (ptype == SCTP_HMAC_LIST) { 1542 int num_hmacs; 1543 int i; 1544 1545 if (plen > sizeof(hmacs_store)) 1546 break; 1547 phdr = sctp_get_next_param(m, offset, 1548 (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store))); 1549 if (phdr == NULL) 1550 return; 1551 /* save the hmacs list and num for the key */ 1552 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1553 hmacs_len = plen - sizeof(*hmacs); 1554 num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]); 1555 if (stcb->asoc.local_hmacs != NULL) 1556 sctp_free_hmaclist(stcb->asoc.local_hmacs); 1557 stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs); 1558 if (stcb->asoc.local_hmacs != NULL) { 1559 for (i = 0; i < num_hmacs; i++) { 1560 (void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs, 1561 ntohs(hmacs->hmac_ids[i])); 1562 } 1563 } 1564 } else if (ptype == SCTP_CHUNK_LIST) { 1565 int i; 1566 1567 if (plen > sizeof(chunks_store)) 1568 break; 1569 phdr = sctp_get_next_param(m, offset, 1570 (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store))); 1571 if (phdr == NULL) 1572 return; 1573 chunks = (struct sctp_auth_chunk_list *)phdr; 1574 num_chunks = plen - sizeof(*chunks); 1575 /* save chunks list and num for the key */ 1576 if (stcb->asoc.local_auth_chunks != NULL) 1577 sctp_clear_chunklist(stcb->asoc.local_auth_chunks); 1578 else 1579 stcb->asoc.local_auth_chunks = sctp_alloc_chunklist(); 1580 for (i = 0; i < num_chunks; i++) { 1581 (void)sctp_auth_add_chunk(chunks->chunk_types[i], 1582 stcb->asoc.local_auth_chunks); 1583 } 1584 } 1585 /* get next parameter */ 1586 offset += SCTP_SIZE32(plen); 1587 if (offset + sizeof(struct sctp_paramhdr) > length) 1588 break; 1589 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), 1590 (uint8_t *) & tmp_param); 1591 } 1592 /* concatenate the full random key */ 1593 keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len; 1594 if (chunks != NULL) { 1595 keylen += sizeof(*chunks) + num_chunks; 1596 } 1597 new_key = sctp_alloc_key(keylen); 1598 if (new_key != NULL) { 1599 /* copy in the RANDOM */ 1600 if (p_random != NULL) { 1601 keylen = sizeof(*p_random) + random_len; 1602 bcopy(p_random, new_key->key, keylen); 1603 } 1604 /* append in the AUTH chunks */ 1605 if (chunks != NULL) { 1606 bcopy(chunks, new_key->key + keylen, 1607 sizeof(*chunks) + num_chunks); 1608 keylen += sizeof(*chunks) + num_chunks; 1609 } 1610 /* append in the HMACs */ 1611 if (hmacs != NULL) { 1612 bcopy(hmacs, new_key->key + keylen, 1613 sizeof(*hmacs) + hmacs_len); 1614 } 1615 } 1616 if (stcb->asoc.authinfo.random != NULL) 1617 sctp_free_key(stcb->asoc.authinfo.random); 1618 stcb->asoc.authinfo.random = new_key; 1619 stcb->asoc.authinfo.random_len = random_len; 1620 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid); 1621 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid); 1622 1623 /* negotiate what HMAC to use for the peer */ 1624 stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs, 1625 stcb->asoc.local_hmacs); 1626 1627 /* copy defaults from the endpoint */ 1628 /* FIX ME: put in cookie? */ 1629 stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid; 1630 /* copy out the shared key list (by reference) from the endpoint */ 1631 (void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys, 1632 &stcb->asoc.shared_keys); 1633 } 1634 1635 /* 1636 * compute and fill in the HMAC digest for a packet 1637 */ 1638 void 1639 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset, 1640 struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid) 1641 { 1642 uint32_t digestlen; 1643 sctp_sharedkey_t *skey; 1644 sctp_key_t *key; 1645 1646 if ((stcb == NULL) || (auth == NULL)) 1647 return; 1648 1649 /* zero the digest + chunk padding */ 1650 digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id); 1651 bzero(auth->hmac, SCTP_SIZE32(digestlen)); 1652 1653 /* is the desired key cached? */ 1654 if ((keyid != stcb->asoc.authinfo.assoc_keyid) || 1655 (stcb->asoc.authinfo.assoc_key == NULL)) { 1656 if (stcb->asoc.authinfo.assoc_key != NULL) { 1657 /* free the old cached key */ 1658 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1659 } 1660 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1661 /* the only way skey is NULL is if null key id 0 is used */ 1662 if (skey != NULL) 1663 key = skey->key; 1664 else 1665 key = NULL; 1666 /* compute a new assoc key and cache it */ 1667 stcb->asoc.authinfo.assoc_key = 1668 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1669 stcb->asoc.authinfo.peer_random, key); 1670 stcb->asoc.authinfo.assoc_keyid = keyid; 1671 SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n", 1672 stcb->asoc.authinfo.assoc_keyid); 1673 #ifdef SCTP_DEBUG 1674 if (SCTP_AUTH_DEBUG) 1675 sctp_print_key(stcb->asoc.authinfo.assoc_key, 1676 "Assoc Key"); 1677 #endif 1678 } 1679 /* set in the active key id */ 1680 auth->shared_key_id = htons(keyid); 1681 1682 /* compute and fill in the digest */ 1683 (void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key, 1684 m, auth_offset, auth->hmac); 1685 } 1686 1687 1688 static void 1689 sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size) 1690 { 1691 struct mbuf *m_tmp; 1692 uint8_t *data; 1693 1694 /* sanity check */ 1695 if (m == NULL) 1696 return; 1697 1698 /* find the correct starting mbuf and offset (get start position) */ 1699 m_tmp = m; 1700 while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) { 1701 m_offset -= SCTP_BUF_LEN(m_tmp); 1702 m_tmp = SCTP_BUF_NEXT(m_tmp); 1703 } 1704 /* now use the rest of the mbuf chain */ 1705 while ((m_tmp != NULL) && (size > 0)) { 1706 data = mtod(m_tmp, uint8_t *) + m_offset; 1707 if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) { 1708 bzero(data, SCTP_BUF_LEN(m_tmp)); 1709 size -= SCTP_BUF_LEN(m_tmp); 1710 } else { 1711 bzero(data, size); 1712 size = 0; 1713 } 1714 /* clear the offset since it's only for the first mbuf */ 1715 m_offset = 0; 1716 m_tmp = SCTP_BUF_NEXT(m_tmp); 1717 } 1718 } 1719 1720 /*- 1721 * process the incoming Authentication chunk 1722 * return codes: 1723 * -1 on any authentication error 1724 * 0 on authentication verification 1725 */ 1726 int 1727 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth, 1728 struct mbuf *m, uint32_t offset) 1729 { 1730 uint16_t chunklen; 1731 uint16_t shared_key_id; 1732 uint16_t hmac_id; 1733 sctp_sharedkey_t *skey; 1734 uint32_t digestlen; 1735 uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1736 uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1737 1738 /* auth is checked for NULL by caller */ 1739 chunklen = ntohs(auth->ch.chunk_length); 1740 if (chunklen < sizeof(*auth)) { 1741 SCTP_STAT_INCR(sctps_recvauthfailed); 1742 return (-1); 1743 } 1744 SCTP_STAT_INCR(sctps_recvauth); 1745 1746 /* get the auth params */ 1747 shared_key_id = ntohs(auth->shared_key_id); 1748 hmac_id = ntohs(auth->hmac_id); 1749 SCTPDBG(SCTP_DEBUG_AUTH1, 1750 "SCTP AUTH Chunk: shared key %u, HMAC id %u\n", 1751 shared_key_id, hmac_id); 1752 1753 /* is the indicated HMAC supported? */ 1754 if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) { 1755 struct mbuf *m_err; 1756 struct sctp_auth_invalid_hmac *err; 1757 1758 SCTP_STAT_INCR(sctps_recvivalhmacid); 1759 SCTPDBG(SCTP_DEBUG_AUTH1, 1760 "SCTP Auth: unsupported HMAC id %u\n", 1761 hmac_id); 1762 /* 1763 * report this in an Error Chunk: Unsupported HMAC 1764 * Identifier 1765 */ 1766 m_err = sctp_get_mbuf_for_msg(sizeof(*err), 0, M_DONTWAIT, 1767 1, MT_HEADER); 1768 if (m_err != NULL) { 1769 /* pre-reserve some space */ 1770 SCTP_BUF_RESV_UF(m_err, sizeof(struct sctp_chunkhdr)); 1771 /* fill in the error */ 1772 err = mtod(m_err, struct sctp_auth_invalid_hmac *); 1773 bzero(err, sizeof(*err)); 1774 err->ph.param_type = htons(SCTP_CAUSE_UNSUPPORTED_HMACID); 1775 err->ph.param_length = htons(sizeof(*err)); 1776 err->hmac_id = ntohs(hmac_id); 1777 SCTP_BUF_LEN(m_err) = sizeof(*err); 1778 /* queue it */ 1779 sctp_queue_op_err(stcb, m_err); 1780 } 1781 return (-1); 1782 } 1783 /* get the indicated shared key, if available */ 1784 if ((stcb->asoc.authinfo.recv_key == NULL) || 1785 (stcb->asoc.authinfo.recv_keyid != shared_key_id)) { 1786 /* find the shared key on the assoc first */ 1787 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, 1788 shared_key_id); 1789 /* if the shared key isn't found, discard the chunk */ 1790 if (skey == NULL) { 1791 SCTP_STAT_INCR(sctps_recvivalkeyid); 1792 SCTPDBG(SCTP_DEBUG_AUTH1, 1793 "SCTP Auth: unknown key id %u\n", 1794 shared_key_id); 1795 return (-1); 1796 } 1797 /* generate a notification if this is a new key id */ 1798 if (stcb->asoc.authinfo.recv_keyid != shared_key_id) 1799 /* 1800 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb, 1801 * shared_key_id, (void 1802 * *)stcb->asoc.authinfo.recv_keyid); 1803 */ 1804 sctp_notify_authentication(stcb, SCTP_AUTH_NEWKEY, 1805 shared_key_id, stcb->asoc.authinfo.recv_keyid, 1806 SCTP_SO_NOT_LOCKED); 1807 /* compute a new recv assoc key and cache it */ 1808 if (stcb->asoc.authinfo.recv_key != NULL) 1809 sctp_free_key(stcb->asoc.authinfo.recv_key); 1810 stcb->asoc.authinfo.recv_key = 1811 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1812 stcb->asoc.authinfo.peer_random, skey->key); 1813 stcb->asoc.authinfo.recv_keyid = shared_key_id; 1814 #ifdef SCTP_DEBUG 1815 if (SCTP_AUTH_DEBUG) 1816 sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key"); 1817 #endif 1818 } 1819 /* validate the digest length */ 1820 digestlen = sctp_get_hmac_digest_len(hmac_id); 1821 if (chunklen < (sizeof(*auth) + digestlen)) { 1822 /* invalid digest length */ 1823 SCTP_STAT_INCR(sctps_recvauthfailed); 1824 SCTPDBG(SCTP_DEBUG_AUTH1, 1825 "SCTP Auth: chunk too short for HMAC\n"); 1826 return (-1); 1827 } 1828 /* save a copy of the digest, zero the pseudo header, and validate */ 1829 bcopy(auth->hmac, digest, digestlen); 1830 sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen)); 1831 (void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key, 1832 m, offset, computed_digest); 1833 1834 /* compare the computed digest with the one in the AUTH chunk */ 1835 if (memcmp(digest, computed_digest, digestlen) != 0) { 1836 SCTP_STAT_INCR(sctps_recvauthfailed); 1837 SCTPDBG(SCTP_DEBUG_AUTH1, 1838 "SCTP Auth: HMAC digest check failed\n"); 1839 return (-1); 1840 } 1841 return (0); 1842 } 1843 1844 /* 1845 * Generate NOTIFICATION 1846 */ 1847 void 1848 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication, 1849 uint16_t keyid, uint16_t alt_keyid, int so_locked 1850 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) 1851 SCTP_UNUSED 1852 #endif 1853 ) 1854 { 1855 struct mbuf *m_notify; 1856 struct sctp_authkey_event *auth; 1857 struct sctp_queued_to_read *control; 1858 1859 if ((stcb == NULL) || 1860 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || 1861 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || 1862 (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) 1863 ) { 1864 /* If the socket is gone we are out of here */ 1865 return; 1866 } 1867 if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT)) 1868 /* event not enabled */ 1869 return; 1870 1871 m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event), 1872 0, M_DONTWAIT, 1, MT_HEADER); 1873 if (m_notify == NULL) 1874 /* no space left */ 1875 return; 1876 1877 SCTP_BUF_LEN(m_notify) = 0; 1878 auth = mtod(m_notify, struct sctp_authkey_event *); 1879 auth->auth_type = SCTP_AUTHENTICATION_EVENT; 1880 auth->auth_flags = 0; 1881 auth->auth_length = sizeof(*auth); 1882 auth->auth_keynumber = keyid; 1883 auth->auth_altkeynumber = alt_keyid; 1884 auth->auth_indication = indication; 1885 auth->auth_assoc_id = sctp_get_associd(stcb); 1886 1887 SCTP_BUF_LEN(m_notify) = sizeof(*auth); 1888 SCTP_BUF_NEXT(m_notify) = NULL; 1889 1890 /* append to socket */ 1891 control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 1892 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); 1893 if (control == NULL) { 1894 /* no memory */ 1895 sctp_m_freem(m_notify); 1896 return; 1897 } 1898 control->spec_flags = M_NOTIFICATION; 1899 control->length = SCTP_BUF_LEN(m_notify); 1900 /* not that we need this */ 1901 control->tail_mbuf = m_notify; 1902 sctp_add_to_readq(stcb->sctp_ep, stcb, control, 1903 &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); 1904 } 1905 1906 1907 /*- 1908 * validates the AUTHentication related parameters in an INIT/INIT-ACK 1909 * Note: currently only used for INIT as INIT-ACK is handled inline 1910 * with sctp_load_addresses_from_init() 1911 */ 1912 int 1913 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit) 1914 { 1915 struct sctp_paramhdr *phdr, parm_buf; 1916 uint16_t ptype, plen; 1917 int peer_supports_asconf = 0; 1918 int peer_supports_auth = 0; 1919 int got_random = 0, got_hmacs = 0, got_chklist = 0; 1920 uint8_t saw_asconf = 0; 1921 uint8_t saw_asconf_ack = 0; 1922 1923 /* go through each of the params. */ 1924 phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf)); 1925 while (phdr) { 1926 ptype = ntohs(phdr->param_type); 1927 plen = ntohs(phdr->param_length); 1928 1929 if (offset + plen > limit) { 1930 break; 1931 } 1932 if (plen < sizeof(struct sctp_paramhdr)) { 1933 break; 1934 } 1935 if (ptype == SCTP_SUPPORTED_CHUNK_EXT) { 1936 /* A supported extension chunk */ 1937 struct sctp_supported_chunk_types_param *pr_supported; 1938 uint8_t local_store[SCTP_PARAM_BUFFER_SIZE]; 1939 int num_ent, i; 1940 1941 phdr = sctp_get_next_param(m, offset, 1942 (struct sctp_paramhdr *)&local_store, min(plen, sizeof(local_store))); 1943 if (phdr == NULL) { 1944 return (-1); 1945 } 1946 pr_supported = (struct sctp_supported_chunk_types_param *)phdr; 1947 num_ent = plen - sizeof(struct sctp_paramhdr); 1948 for (i = 0; i < num_ent; i++) { 1949 switch (pr_supported->chunk_types[i]) { 1950 case SCTP_ASCONF: 1951 case SCTP_ASCONF_ACK: 1952 peer_supports_asconf = 1; 1953 break; 1954 default: 1955 /* one we don't care about */ 1956 break; 1957 } 1958 } 1959 } else if (ptype == SCTP_RANDOM) { 1960 got_random = 1; 1961 /* enforce the random length */ 1962 if (plen != (sizeof(struct sctp_auth_random) + 1963 SCTP_AUTH_RANDOM_SIZE_REQUIRED)) { 1964 SCTPDBG(SCTP_DEBUG_AUTH1, 1965 "SCTP: invalid RANDOM len\n"); 1966 return (-1); 1967 } 1968 } else if (ptype == SCTP_HMAC_LIST) { 1969 uint8_t store[SCTP_PARAM_BUFFER_SIZE]; 1970 struct sctp_auth_hmac_algo *hmacs; 1971 int num_hmacs; 1972 1973 if (plen > sizeof(store)) 1974 break; 1975 phdr = sctp_get_next_param(m, offset, 1976 (struct sctp_paramhdr *)store, min(plen, sizeof(store))); 1977 if (phdr == NULL) 1978 return (-1); 1979 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1980 num_hmacs = (plen - sizeof(*hmacs)) / 1981 sizeof(hmacs->hmac_ids[0]); 1982 /* validate the hmac list */ 1983 if (sctp_verify_hmac_param(hmacs, num_hmacs)) { 1984 SCTPDBG(SCTP_DEBUG_AUTH1, 1985 "SCTP: invalid HMAC param\n"); 1986 return (-1); 1987 } 1988 got_hmacs = 1; 1989 } else if (ptype == SCTP_CHUNK_LIST) { 1990 int i, num_chunks; 1991 uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE]; 1992 1993 /* did the peer send a non-empty chunk list? */ 1994 struct sctp_auth_chunk_list *chunks = NULL; 1995 1996 phdr = sctp_get_next_param(m, offset, 1997 (struct sctp_paramhdr *)chunks_store, 1998 min(plen, sizeof(chunks_store))); 1999 if (phdr == NULL) 2000 return (-1); 2001 2002 /*- 2003 * Flip through the list and mark that the 2004 * peer supports asconf/asconf_ack. 2005 */ 2006 chunks = (struct sctp_auth_chunk_list *)phdr; 2007 num_chunks = plen - sizeof(*chunks); 2008 for (i = 0; i < num_chunks; i++) { 2009 /* record asconf/asconf-ack if listed */ 2010 if (chunks->chunk_types[i] == SCTP_ASCONF) 2011 saw_asconf = 1; 2012 if (chunks->chunk_types[i] == SCTP_ASCONF_ACK) 2013 saw_asconf_ack = 1; 2014 2015 } 2016 if (num_chunks) 2017 got_chklist = 1; 2018 } 2019 offset += SCTP_SIZE32(plen); 2020 if (offset >= limit) { 2021 break; 2022 } 2023 phdr = sctp_get_next_param(m, offset, &parm_buf, 2024 sizeof(parm_buf)); 2025 } 2026 /* validate authentication required parameters */ 2027 if (got_random && got_hmacs) { 2028 peer_supports_auth = 1; 2029 } else { 2030 peer_supports_auth = 0; 2031 } 2032 if (!peer_supports_auth && got_chklist) { 2033 SCTPDBG(SCTP_DEBUG_AUTH1, 2034 "SCTP: peer sent chunk list w/o AUTH\n"); 2035 return (-1); 2036 } 2037 if (!SCTP_BASE_SYSCTL(sctp_asconf_auth_nochk) && peer_supports_asconf && 2038 !peer_supports_auth) { 2039 SCTPDBG(SCTP_DEBUG_AUTH1, 2040 "SCTP: peer supports ASCONF but not AUTH\n"); 2041 return (-1); 2042 } else if ((peer_supports_asconf) && (peer_supports_auth) && 2043 ((saw_asconf == 0) || (saw_asconf_ack == 0))) { 2044 return (-2); 2045 } 2046 return (0); 2047 } 2048 2049 void 2050 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb) 2051 { 2052 uint16_t chunks_len = 0; 2053 uint16_t hmacs_len = 0; 2054 uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT; 2055 sctp_key_t *new_key; 2056 uint16_t keylen; 2057 2058 /* initialize hmac list from endpoint */ 2059 stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs); 2060 if (stcb->asoc.local_hmacs != NULL) { 2061 hmacs_len = stcb->asoc.local_hmacs->num_algo * 2062 sizeof(stcb->asoc.local_hmacs->hmac[0]); 2063 } 2064 /* initialize auth chunks list from endpoint */ 2065 stcb->asoc.local_auth_chunks = 2066 sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks); 2067 if (stcb->asoc.local_auth_chunks != NULL) { 2068 int i; 2069 2070 for (i = 0; i < 256; i++) { 2071 if (stcb->asoc.local_auth_chunks->chunks[i]) 2072 chunks_len++; 2073 } 2074 } 2075 /* copy defaults from the endpoint */ 2076 stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid; 2077 2078 /* copy out the shared key list (by reference) from the endpoint */ 2079 (void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys, 2080 &stcb->asoc.shared_keys); 2081 2082 /* now set the concatenated key (random + chunks + hmacs) */ 2083 /* key includes parameter headers */ 2084 keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len + 2085 hmacs_len; 2086 new_key = sctp_alloc_key(keylen); 2087 if (new_key != NULL) { 2088 struct sctp_paramhdr *ph; 2089 int plen; 2090 2091 /* generate and copy in the RANDOM */ 2092 ph = (struct sctp_paramhdr *)new_key->key; 2093 ph->param_type = htons(SCTP_RANDOM); 2094 plen = sizeof(*ph) + random_len; 2095 ph->param_length = htons(plen); 2096 SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len); 2097 keylen = plen; 2098 2099 /* append in the AUTH chunks */ 2100 /* NOTE: currently we always have chunks to list */ 2101 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 2102 ph->param_type = htons(SCTP_CHUNK_LIST); 2103 plen = sizeof(*ph) + chunks_len; 2104 ph->param_length = htons(plen); 2105 keylen += sizeof(*ph); 2106 if (stcb->asoc.local_auth_chunks) { 2107 int i; 2108 2109 for (i = 0; i < 256; i++) { 2110 if (stcb->asoc.local_auth_chunks->chunks[i]) 2111 new_key->key[keylen++] = i; 2112 } 2113 } 2114 /* append in the HMACs */ 2115 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 2116 ph->param_type = htons(SCTP_HMAC_LIST); 2117 plen = sizeof(*ph) + hmacs_len; 2118 ph->param_length = htons(plen); 2119 keylen += sizeof(*ph); 2120 (void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs, 2121 new_key->key + keylen); 2122 } 2123 if (stcb->asoc.authinfo.random != NULL) 2124 sctp_free_key(stcb->asoc.authinfo.random); 2125 stcb->asoc.authinfo.random = new_key; 2126 stcb->asoc.authinfo.random_len = random_len; 2127 } 2128