1 /*- 2 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. 3 * Copyright (c) 2008-2011, by Randall Stewart. All rights reserved. 4 * Copyright (c) 2008-2011, by Michael Tuexen. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * a) Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * b) Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in 14 * the documentation and/or other materials provided with the distribution. 15 * 16 * c) Neither the name of Cisco Systems, Inc. nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <netinet/sctp_os.h> 37 #include <netinet/sctp.h> 38 #include <netinet/sctp_header.h> 39 #include <netinet/sctp_pcb.h> 40 #include <netinet/sctp_var.h> 41 #include <netinet/sctp_sysctl.h> 42 #include <netinet/sctputil.h> 43 #include <netinet/sctp_indata.h> 44 #include <netinet/sctp_output.h> 45 #include <netinet/sctp_auth.h> 46 47 #ifdef SCTP_DEBUG 48 #define SCTP_AUTH_DEBUG (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1) 49 #define SCTP_AUTH_DEBUG2 (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2) 50 #endif /* SCTP_DEBUG */ 51 52 53 void 54 sctp_clear_chunklist(sctp_auth_chklist_t * chklist) 55 { 56 bzero(chklist, sizeof(*chklist)); 57 /* chklist->num_chunks = 0; */ 58 } 59 60 sctp_auth_chklist_t * 61 sctp_alloc_chunklist(void) 62 { 63 sctp_auth_chklist_t *chklist; 64 65 SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist), 66 SCTP_M_AUTH_CL); 67 if (chklist == NULL) { 68 SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n"); 69 } else { 70 sctp_clear_chunklist(chklist); 71 } 72 return (chklist); 73 } 74 75 void 76 sctp_free_chunklist(sctp_auth_chklist_t * list) 77 { 78 if (list != NULL) 79 SCTP_FREE(list, SCTP_M_AUTH_CL); 80 } 81 82 sctp_auth_chklist_t * 83 sctp_copy_chunklist(sctp_auth_chklist_t * list) 84 { 85 sctp_auth_chklist_t *new_list; 86 87 if (list == NULL) 88 return (NULL); 89 90 /* get a new list */ 91 new_list = sctp_alloc_chunklist(); 92 if (new_list == NULL) 93 return (NULL); 94 /* copy it */ 95 bcopy(list, new_list, sizeof(*new_list)); 96 97 return (new_list); 98 } 99 100 101 /* 102 * add a chunk to the required chunks list 103 */ 104 int 105 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t * list) 106 { 107 if (list == NULL) 108 return (-1); 109 110 /* is chunk restricted? */ 111 if ((chunk == SCTP_INITIATION) || 112 (chunk == SCTP_INITIATION_ACK) || 113 (chunk == SCTP_SHUTDOWN_COMPLETE) || 114 (chunk == SCTP_AUTHENTICATION)) { 115 return (-1); 116 } 117 if (list->chunks[chunk] == 0) { 118 list->chunks[chunk] = 1; 119 list->num_chunks++; 120 SCTPDBG(SCTP_DEBUG_AUTH1, 121 "SCTP: added chunk %u (0x%02x) to Auth list\n", 122 chunk, chunk); 123 } 124 return (0); 125 } 126 127 /* 128 * delete a chunk from the required chunks list 129 */ 130 int 131 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t * list) 132 { 133 if (list == NULL) 134 return (-1); 135 136 /* is chunk restricted? */ 137 if ((chunk == SCTP_ASCONF) || 138 (chunk == SCTP_ASCONF_ACK)) { 139 return (-1); 140 } 141 if (list->chunks[chunk] == 1) { 142 list->chunks[chunk] = 0; 143 list->num_chunks--; 144 SCTPDBG(SCTP_DEBUG_AUTH1, 145 "SCTP: deleted chunk %u (0x%02x) from Auth list\n", 146 chunk, chunk); 147 } 148 return (0); 149 } 150 151 size_t 152 sctp_auth_get_chklist_size(const sctp_auth_chklist_t * list) 153 { 154 if (list == NULL) 155 return (0); 156 else 157 return (list->num_chunks); 158 } 159 160 /* 161 * set the default list of chunks requiring AUTH 162 */ 163 void 164 sctp_auth_set_default_chunks(sctp_auth_chklist_t * list) 165 { 166 (void)sctp_auth_add_chunk(SCTP_ASCONF, list); 167 (void)sctp_auth_add_chunk(SCTP_ASCONF_ACK, list); 168 } 169 170 /* 171 * return the current number and list of required chunks caller must 172 * guarantee ptr has space for up to 256 bytes 173 */ 174 int 175 sctp_serialize_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr) 176 { 177 int i, count = 0; 178 179 if (list == NULL) 180 return (0); 181 182 for (i = 0; i < 256; i++) { 183 if (list->chunks[i] != 0) { 184 *ptr++ = i; 185 count++; 186 } 187 } 188 return (count); 189 } 190 191 int 192 sctp_pack_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr) 193 { 194 int i, size = 0; 195 196 if (list == NULL) 197 return (0); 198 199 if (list->num_chunks <= 32) { 200 /* just list them, one byte each */ 201 for (i = 0; i < 256; i++) { 202 if (list->chunks[i] != 0) { 203 *ptr++ = i; 204 size++; 205 } 206 } 207 } else { 208 int index, offset; 209 210 /* pack into a 32 byte bitfield */ 211 for (i = 0; i < 256; i++) { 212 if (list->chunks[i] != 0) { 213 index = i / 8; 214 offset = i % 8; 215 ptr[index] |= (1 << offset); 216 } 217 } 218 size = 32; 219 } 220 return (size); 221 } 222 223 int 224 sctp_unpack_auth_chunks(const uint8_t * ptr, uint8_t num_chunks, 225 sctp_auth_chklist_t * list) 226 { 227 int i; 228 int size; 229 230 if (list == NULL) 231 return (0); 232 233 if (num_chunks <= 32) { 234 /* just pull them, one byte each */ 235 for (i = 0; i < num_chunks; i++) { 236 (void)sctp_auth_add_chunk(*ptr++, list); 237 } 238 size = num_chunks; 239 } else { 240 int index, offset; 241 242 /* unpack from a 32 byte bitfield */ 243 for (index = 0; index < 32; index++) { 244 for (offset = 0; offset < 8; offset++) { 245 if (ptr[index] & (1 << offset)) { 246 (void)sctp_auth_add_chunk((index * 8) + offset, list); 247 } 248 } 249 } 250 size = 32; 251 } 252 return (size); 253 } 254 255 256 /* 257 * allocate structure space for a key of length keylen 258 */ 259 sctp_key_t * 260 sctp_alloc_key(uint32_t keylen) 261 { 262 sctp_key_t *new_key; 263 264 SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen, 265 SCTP_M_AUTH_KY); 266 if (new_key == NULL) { 267 /* out of memory */ 268 return (NULL); 269 } 270 new_key->keylen = keylen; 271 return (new_key); 272 } 273 274 void 275 sctp_free_key(sctp_key_t * key) 276 { 277 if (key != NULL) 278 SCTP_FREE(key, SCTP_M_AUTH_KY); 279 } 280 281 void 282 sctp_print_key(sctp_key_t * key, const char *str) 283 { 284 uint32_t i; 285 286 if (key == NULL) { 287 printf("%s: [Null key]\n", str); 288 return; 289 } 290 printf("%s: len %u, ", str, key->keylen); 291 if (key->keylen) { 292 for (i = 0; i < key->keylen; i++) 293 printf("%02x", key->key[i]); 294 printf("\n"); 295 } else { 296 printf("[Null key]\n"); 297 } 298 } 299 300 void 301 sctp_show_key(sctp_key_t * key, const char *str) 302 { 303 uint32_t i; 304 305 if (key == NULL) { 306 printf("%s: [Null key]\n", str); 307 return; 308 } 309 printf("%s: len %u, ", str, key->keylen); 310 if (key->keylen) { 311 for (i = 0; i < key->keylen; i++) 312 printf("%02x", key->key[i]); 313 printf("\n"); 314 } else { 315 printf("[Null key]\n"); 316 } 317 } 318 319 static uint32_t 320 sctp_get_keylen(sctp_key_t * key) 321 { 322 if (key != NULL) 323 return (key->keylen); 324 else 325 return (0); 326 } 327 328 /* 329 * generate a new random key of length 'keylen' 330 */ 331 sctp_key_t * 332 sctp_generate_random_key(uint32_t keylen) 333 { 334 sctp_key_t *new_key; 335 336 /* validate keylen */ 337 if (keylen > SCTP_AUTH_RANDOM_SIZE_MAX) 338 keylen = SCTP_AUTH_RANDOM_SIZE_MAX; 339 340 new_key = sctp_alloc_key(keylen); 341 if (new_key == NULL) { 342 /* out of memory */ 343 return (NULL); 344 } 345 SCTP_READ_RANDOM(new_key->key, keylen); 346 new_key->keylen = keylen; 347 return (new_key); 348 } 349 350 sctp_key_t * 351 sctp_set_key(uint8_t * key, uint32_t keylen) 352 { 353 sctp_key_t *new_key; 354 355 new_key = sctp_alloc_key(keylen); 356 if (new_key == NULL) { 357 /* out of memory */ 358 return (NULL); 359 } 360 bcopy(key, new_key->key, keylen); 361 return (new_key); 362 } 363 364 /*- 365 * given two keys of variable size, compute which key is "larger/smaller" 366 * returns: 1 if key1 > key2 367 * -1 if key1 < key2 368 * 0 if key1 = key2 369 */ 370 static int 371 sctp_compare_key(sctp_key_t * key1, sctp_key_t * key2) 372 { 373 uint32_t maxlen; 374 uint32_t i; 375 uint32_t key1len, key2len; 376 uint8_t *key_1, *key_2; 377 uint8_t temp[SCTP_AUTH_RANDOM_SIZE_MAX]; 378 379 /* sanity/length check */ 380 key1len = sctp_get_keylen(key1); 381 key2len = sctp_get_keylen(key2); 382 if ((key1len == 0) && (key2len == 0)) 383 return (0); 384 else if (key1len == 0) 385 return (-1); 386 else if (key2len == 0) 387 return (1); 388 389 if (key1len != key2len) { 390 if (key1len >= key2len) 391 maxlen = key1len; 392 else 393 maxlen = key2len; 394 bzero(temp, maxlen); 395 if (key1len < maxlen) { 396 /* prepend zeroes to key1 */ 397 bcopy(key1->key, temp + (maxlen - key1len), key1len); 398 key_1 = temp; 399 key_2 = key2->key; 400 } else { 401 /* prepend zeroes to key2 */ 402 bcopy(key2->key, temp + (maxlen - key2len), key2len); 403 key_1 = key1->key; 404 key_2 = temp; 405 } 406 } else { 407 maxlen = key1len; 408 key_1 = key1->key; 409 key_2 = key2->key; 410 } 411 412 for (i = 0; i < maxlen; i++) { 413 if (*key_1 > *key_2) 414 return (1); 415 else if (*key_1 < *key_2) 416 return (-1); 417 key_1++; 418 key_2++; 419 } 420 421 /* keys are equal value, so check lengths */ 422 if (key1len == key2len) 423 return (0); 424 else if (key1len < key2len) 425 return (-1); 426 else 427 return (1); 428 } 429 430 /* 431 * generate the concatenated keying material based on the two keys and the 432 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific 433 * order for concatenation 434 */ 435 sctp_key_t * 436 sctp_compute_hashkey(sctp_key_t * key1, sctp_key_t * key2, sctp_key_t * shared) 437 { 438 uint32_t keylen; 439 sctp_key_t *new_key; 440 uint8_t *key_ptr; 441 442 keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) + 443 sctp_get_keylen(shared); 444 445 if (keylen > 0) { 446 /* get space for the new key */ 447 new_key = sctp_alloc_key(keylen); 448 if (new_key == NULL) { 449 /* out of memory */ 450 return (NULL); 451 } 452 new_key->keylen = keylen; 453 key_ptr = new_key->key; 454 } else { 455 /* all keys empty/null?! */ 456 return (NULL); 457 } 458 459 /* concatenate the keys */ 460 if (sctp_compare_key(key1, key2) <= 0) { 461 /* key is shared + key1 + key2 */ 462 if (sctp_get_keylen(shared)) { 463 bcopy(shared->key, key_ptr, shared->keylen); 464 key_ptr += shared->keylen; 465 } 466 if (sctp_get_keylen(key1)) { 467 bcopy(key1->key, key_ptr, key1->keylen); 468 key_ptr += key1->keylen; 469 } 470 if (sctp_get_keylen(key2)) { 471 bcopy(key2->key, key_ptr, key2->keylen); 472 key_ptr += key2->keylen; 473 } 474 } else { 475 /* key is shared + key2 + key1 */ 476 if (sctp_get_keylen(shared)) { 477 bcopy(shared->key, key_ptr, shared->keylen); 478 key_ptr += shared->keylen; 479 } 480 if (sctp_get_keylen(key2)) { 481 bcopy(key2->key, key_ptr, key2->keylen); 482 key_ptr += key2->keylen; 483 } 484 if (sctp_get_keylen(key1)) { 485 bcopy(key1->key, key_ptr, key1->keylen); 486 key_ptr += key1->keylen; 487 } 488 } 489 return (new_key); 490 } 491 492 493 sctp_sharedkey_t * 494 sctp_alloc_sharedkey(void) 495 { 496 sctp_sharedkey_t *new_key; 497 498 SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key), 499 SCTP_M_AUTH_KY); 500 if (new_key == NULL) { 501 /* out of memory */ 502 return (NULL); 503 } 504 new_key->keyid = 0; 505 new_key->key = NULL; 506 new_key->refcount = 1; 507 new_key->deactivated = 0; 508 return (new_key); 509 } 510 511 void 512 sctp_free_sharedkey(sctp_sharedkey_t * skey) 513 { 514 if (skey == NULL) 515 return; 516 517 if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) { 518 if (skey->key != NULL) 519 sctp_free_key(skey->key); 520 SCTP_FREE(skey, SCTP_M_AUTH_KY); 521 } 522 } 523 524 sctp_sharedkey_t * 525 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id) 526 { 527 sctp_sharedkey_t *skey; 528 529 LIST_FOREACH(skey, shared_keys, next) { 530 if (skey->keyid == key_id) 531 return (skey); 532 } 533 return (NULL); 534 } 535 536 int 537 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys, 538 sctp_sharedkey_t * new_skey) 539 { 540 sctp_sharedkey_t *skey; 541 542 if ((shared_keys == NULL) || (new_skey == NULL)) 543 return (EINVAL); 544 545 /* insert into an empty list? */ 546 if (LIST_EMPTY(shared_keys)) { 547 LIST_INSERT_HEAD(shared_keys, new_skey, next); 548 return (0); 549 } 550 /* insert into the existing list, ordered by key id */ 551 LIST_FOREACH(skey, shared_keys, next) { 552 if (new_skey->keyid < skey->keyid) { 553 /* insert it before here */ 554 LIST_INSERT_BEFORE(skey, new_skey, next); 555 return (0); 556 } else if (new_skey->keyid == skey->keyid) { 557 /* replace the existing key */ 558 /* verify this key *can* be replaced */ 559 if ((skey->deactivated) && (skey->refcount > 1)) { 560 SCTPDBG(SCTP_DEBUG_AUTH1, 561 "can't replace shared key id %u\n", 562 new_skey->keyid); 563 return (EBUSY); 564 } 565 SCTPDBG(SCTP_DEBUG_AUTH1, 566 "replacing shared key id %u\n", 567 new_skey->keyid); 568 LIST_INSERT_BEFORE(skey, new_skey, next); 569 LIST_REMOVE(skey, next); 570 sctp_free_sharedkey(skey); 571 return (0); 572 } 573 if (LIST_NEXT(skey, next) == NULL) { 574 /* belongs at the end of the list */ 575 LIST_INSERT_AFTER(skey, new_skey, next); 576 return (0); 577 } 578 } 579 /* shouldn't reach here */ 580 return (0); 581 } 582 583 void 584 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id) 585 { 586 sctp_sharedkey_t *skey; 587 588 /* find the shared key */ 589 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 590 591 /* bump the ref count */ 592 if (skey) { 593 atomic_add_int(&skey->refcount, 1); 594 SCTPDBG(SCTP_DEBUG_AUTH2, 595 "%s: stcb %p key %u refcount acquire to %d\n", 596 __FUNCTION__, stcb, key_id, skey->refcount); 597 } 598 } 599 600 void 601 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked 602 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) 603 SCTP_UNUSED 604 #endif 605 ) 606 { 607 sctp_sharedkey_t *skey; 608 609 /* find the shared key */ 610 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 611 612 /* decrement the ref count */ 613 if (skey) { 614 sctp_free_sharedkey(skey); 615 SCTPDBG(SCTP_DEBUG_AUTH2, 616 "%s: stcb %p key %u refcount release to %d\n", 617 __FUNCTION__, stcb, key_id, skey->refcount); 618 619 /* see if a notification should be generated */ 620 if ((skey->refcount <= 1) && (skey->deactivated)) { 621 /* notify ULP that key is no longer used */ 622 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, 623 key_id, 0, so_locked); 624 SCTPDBG(SCTP_DEBUG_AUTH2, 625 "%s: stcb %p key %u no longer used, %d\n", 626 __FUNCTION__, stcb, key_id, skey->refcount); 627 } 628 } 629 } 630 631 static sctp_sharedkey_t * 632 sctp_copy_sharedkey(const sctp_sharedkey_t * skey) 633 { 634 sctp_sharedkey_t *new_skey; 635 636 if (skey == NULL) 637 return (NULL); 638 new_skey = sctp_alloc_sharedkey(); 639 if (new_skey == NULL) 640 return (NULL); 641 if (skey->key != NULL) 642 new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen); 643 else 644 new_skey->key = NULL; 645 new_skey->keyid = skey->keyid; 646 return (new_skey); 647 } 648 649 int 650 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest) 651 { 652 sctp_sharedkey_t *skey, *new_skey; 653 int count = 0; 654 655 if ((src == NULL) || (dest == NULL)) 656 return (0); 657 LIST_FOREACH(skey, src, next) { 658 new_skey = sctp_copy_sharedkey(skey); 659 if (new_skey != NULL) { 660 (void)sctp_insert_sharedkey(dest, new_skey); 661 count++; 662 } 663 } 664 return (count); 665 } 666 667 668 sctp_hmaclist_t * 669 sctp_alloc_hmaclist(uint8_t num_hmacs) 670 { 671 sctp_hmaclist_t *new_list; 672 int alloc_size; 673 674 alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]); 675 SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size, 676 SCTP_M_AUTH_HL); 677 if (new_list == NULL) { 678 /* out of memory */ 679 return (NULL); 680 } 681 new_list->max_algo = num_hmacs; 682 new_list->num_algo = 0; 683 return (new_list); 684 } 685 686 void 687 sctp_free_hmaclist(sctp_hmaclist_t * list) 688 { 689 if (list != NULL) { 690 SCTP_FREE(list, SCTP_M_AUTH_HL); 691 list = NULL; 692 } 693 } 694 695 int 696 sctp_auth_add_hmacid(sctp_hmaclist_t * list, uint16_t hmac_id) 697 { 698 int i; 699 700 if (list == NULL) 701 return (-1); 702 if (list->num_algo == list->max_algo) { 703 SCTPDBG(SCTP_DEBUG_AUTH1, 704 "SCTP: HMAC id list full, ignoring add %u\n", hmac_id); 705 return (-1); 706 } 707 if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) && 708 #ifdef HAVE_SHA224 709 (hmac_id != SCTP_AUTH_HMAC_ID_SHA224) && 710 #endif 711 #ifdef HAVE_SHA2 712 (hmac_id != SCTP_AUTH_HMAC_ID_SHA256) && 713 (hmac_id != SCTP_AUTH_HMAC_ID_SHA384) && 714 (hmac_id != SCTP_AUTH_HMAC_ID_SHA512) && 715 #endif 716 1) { 717 return (-1); 718 } 719 /* Now is it already in the list */ 720 for (i = 0; i < list->num_algo; i++) { 721 if (list->hmac[i] == hmac_id) { 722 /* already in list */ 723 return (-1); 724 } 725 } 726 SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id); 727 list->hmac[list->num_algo++] = hmac_id; 728 return (0); 729 } 730 731 sctp_hmaclist_t * 732 sctp_copy_hmaclist(sctp_hmaclist_t * list) 733 { 734 sctp_hmaclist_t *new_list; 735 int i; 736 737 if (list == NULL) 738 return (NULL); 739 /* get a new list */ 740 new_list = sctp_alloc_hmaclist(list->max_algo); 741 if (new_list == NULL) 742 return (NULL); 743 /* copy it */ 744 new_list->max_algo = list->max_algo; 745 new_list->num_algo = list->num_algo; 746 for (i = 0; i < list->num_algo; i++) 747 new_list->hmac[i] = list->hmac[i]; 748 return (new_list); 749 } 750 751 sctp_hmaclist_t * 752 sctp_default_supported_hmaclist(void) 753 { 754 sctp_hmaclist_t *new_list; 755 756 new_list = sctp_alloc_hmaclist(2); 757 if (new_list == NULL) 758 return (NULL); 759 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1); 760 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256); 761 return (new_list); 762 } 763 764 /*- 765 * HMAC algos are listed in priority/preference order 766 * find the best HMAC id to use for the peer based on local support 767 */ 768 uint16_t 769 sctp_negotiate_hmacid(sctp_hmaclist_t * peer, sctp_hmaclist_t * local) 770 { 771 int i, j; 772 773 if ((local == NULL) || (peer == NULL)) 774 return (SCTP_AUTH_HMAC_ID_RSVD); 775 776 for (i = 0; i < peer->num_algo; i++) { 777 for (j = 0; j < local->num_algo; j++) { 778 if (peer->hmac[i] == local->hmac[j]) { 779 /* found the "best" one */ 780 SCTPDBG(SCTP_DEBUG_AUTH1, 781 "SCTP: negotiated peer HMAC id %u\n", 782 peer->hmac[i]); 783 return (peer->hmac[i]); 784 } 785 } 786 } 787 /* didn't find one! */ 788 return (SCTP_AUTH_HMAC_ID_RSVD); 789 } 790 791 /*- 792 * serialize the HMAC algo list and return space used 793 * caller must guarantee ptr has appropriate space 794 */ 795 int 796 sctp_serialize_hmaclist(sctp_hmaclist_t * list, uint8_t * ptr) 797 { 798 int i; 799 uint16_t hmac_id; 800 801 if (list == NULL) 802 return (0); 803 804 for (i = 0; i < list->num_algo; i++) { 805 hmac_id = htons(list->hmac[i]); 806 bcopy(&hmac_id, ptr, sizeof(hmac_id)); 807 ptr += sizeof(hmac_id); 808 } 809 return (list->num_algo * sizeof(hmac_id)); 810 } 811 812 int 813 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs) 814 { 815 uint32_t i; 816 uint16_t hmac_id; 817 uint32_t sha1_supported = 0; 818 819 for (i = 0; i < num_hmacs; i++) { 820 hmac_id = ntohs(hmacs->hmac_ids[i]); 821 if (hmac_id == SCTP_AUTH_HMAC_ID_SHA1) 822 sha1_supported = 1; 823 } 824 /* all HMAC id's are supported */ 825 if (sha1_supported == 0) 826 return (-1); 827 else 828 return (0); 829 } 830 831 sctp_authinfo_t * 832 sctp_alloc_authinfo(void) 833 { 834 sctp_authinfo_t *new_authinfo; 835 836 SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo), 837 SCTP_M_AUTH_IF); 838 839 if (new_authinfo == NULL) { 840 /* out of memory */ 841 return (NULL); 842 } 843 bzero(new_authinfo, sizeof(*new_authinfo)); 844 return (new_authinfo); 845 } 846 847 void 848 sctp_free_authinfo(sctp_authinfo_t * authinfo) 849 { 850 if (authinfo == NULL) 851 return; 852 853 if (authinfo->random != NULL) 854 sctp_free_key(authinfo->random); 855 if (authinfo->peer_random != NULL) 856 sctp_free_key(authinfo->peer_random); 857 if (authinfo->assoc_key != NULL) 858 sctp_free_key(authinfo->assoc_key); 859 if (authinfo->recv_key != NULL) 860 sctp_free_key(authinfo->recv_key); 861 862 /* We are NOT dynamically allocating authinfo's right now... */ 863 /* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */ 864 } 865 866 867 uint32_t 868 sctp_get_auth_chunk_len(uint16_t hmac_algo) 869 { 870 int size; 871 872 size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo); 873 return (SCTP_SIZE32(size)); 874 } 875 876 uint32_t 877 sctp_get_hmac_digest_len(uint16_t hmac_algo) 878 { 879 switch (hmac_algo) { 880 case SCTP_AUTH_HMAC_ID_SHA1: 881 return (SCTP_AUTH_DIGEST_LEN_SHA1); 882 #ifdef HAVE_SHA224 883 case SCTP_AUTH_HMAC_ID_SHA224: 884 return (SCTP_AUTH_DIGEST_LEN_SHA224); 885 #endif 886 #ifdef HAVE_SHA2 887 case SCTP_AUTH_HMAC_ID_SHA256: 888 return (SCTP_AUTH_DIGEST_LEN_SHA256); 889 case SCTP_AUTH_HMAC_ID_SHA384: 890 return (SCTP_AUTH_DIGEST_LEN_SHA384); 891 case SCTP_AUTH_HMAC_ID_SHA512: 892 return (SCTP_AUTH_DIGEST_LEN_SHA512); 893 #endif 894 default: 895 /* unknown HMAC algorithm: can't do anything */ 896 return (0); 897 } /* end switch */ 898 } 899 900 static inline int 901 sctp_get_hmac_block_len(uint16_t hmac_algo) 902 { 903 switch (hmac_algo) { 904 case SCTP_AUTH_HMAC_ID_SHA1: 905 #ifdef HAVE_SHA224 906 case SCTP_AUTH_HMAC_ID_SHA224: 907 #endif 908 return (64); 909 #ifdef HAVE_SHA2 910 case SCTP_AUTH_HMAC_ID_SHA256: 911 return (64); 912 case SCTP_AUTH_HMAC_ID_SHA384: 913 case SCTP_AUTH_HMAC_ID_SHA512: 914 return (128); 915 #endif 916 case SCTP_AUTH_HMAC_ID_RSVD: 917 default: 918 /* unknown HMAC algorithm: can't do anything */ 919 return (0); 920 } /* end switch */ 921 } 922 923 static void 924 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t * ctx) 925 { 926 switch (hmac_algo) { 927 case SCTP_AUTH_HMAC_ID_SHA1: 928 SHA1_Init(&ctx->sha1); 929 break; 930 #ifdef HAVE_SHA224 931 case SCTP_AUTH_HMAC_ID_SHA224: 932 break; 933 #endif 934 #ifdef HAVE_SHA2 935 case SCTP_AUTH_HMAC_ID_SHA256: 936 SHA256_Init(&ctx->sha256); 937 break; 938 case SCTP_AUTH_HMAC_ID_SHA384: 939 SHA384_Init(&ctx->sha384); 940 break; 941 case SCTP_AUTH_HMAC_ID_SHA512: 942 SHA512_Init(&ctx->sha512); 943 break; 944 #endif 945 case SCTP_AUTH_HMAC_ID_RSVD: 946 default: 947 /* unknown HMAC algorithm: can't do anything */ 948 return; 949 } /* end switch */ 950 } 951 952 static void 953 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t * ctx, 954 uint8_t * text, uint32_t textlen) 955 { 956 switch (hmac_algo) { 957 case SCTP_AUTH_HMAC_ID_SHA1: 958 SHA1_Update(&ctx->sha1, text, textlen); 959 break; 960 #ifdef HAVE_SHA224 961 case SCTP_AUTH_HMAC_ID_SHA224: 962 break; 963 #endif 964 #ifdef HAVE_SHA2 965 case SCTP_AUTH_HMAC_ID_SHA256: 966 SHA256_Update(&ctx->sha256, text, textlen); 967 break; 968 case SCTP_AUTH_HMAC_ID_SHA384: 969 SHA384_Update(&ctx->sha384, text, textlen); 970 break; 971 case SCTP_AUTH_HMAC_ID_SHA512: 972 SHA512_Update(&ctx->sha512, text, textlen); 973 break; 974 #endif 975 case SCTP_AUTH_HMAC_ID_RSVD: 976 default: 977 /* unknown HMAC algorithm: can't do anything */ 978 return; 979 } /* end switch */ 980 } 981 982 static void 983 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t * ctx, 984 uint8_t * digest) 985 { 986 switch (hmac_algo) { 987 case SCTP_AUTH_HMAC_ID_SHA1: 988 SHA1_Final(digest, &ctx->sha1); 989 break; 990 #ifdef HAVE_SHA224 991 case SCTP_AUTH_HMAC_ID_SHA224: 992 break; 993 #endif 994 #ifdef HAVE_SHA2 995 case SCTP_AUTH_HMAC_ID_SHA256: 996 SHA256_Final(digest, &ctx->sha256); 997 break; 998 case SCTP_AUTH_HMAC_ID_SHA384: 999 /* SHA384 is truncated SHA512 */ 1000 SHA384_Final(digest, &ctx->sha384); 1001 break; 1002 case SCTP_AUTH_HMAC_ID_SHA512: 1003 SHA512_Final(digest, &ctx->sha512); 1004 break; 1005 #endif 1006 case SCTP_AUTH_HMAC_ID_RSVD: 1007 default: 1008 /* unknown HMAC algorithm: can't do anything */ 1009 return; 1010 } /* end switch */ 1011 } 1012 1013 /*- 1014 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104) 1015 * 1016 * Compute the HMAC digest using the desired hash key, text, and HMAC 1017 * algorithm. Resulting digest is placed in 'digest' and digest length 1018 * is returned, if the HMAC was performed. 1019 * 1020 * WARNING: it is up to the caller to supply sufficient space to hold the 1021 * resultant digest. 1022 */ 1023 uint32_t 1024 sctp_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen, 1025 uint8_t * text, uint32_t textlen, uint8_t * digest) 1026 { 1027 uint32_t digestlen; 1028 uint32_t blocklen; 1029 sctp_hash_context_t ctx; 1030 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 1031 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1032 uint32_t i; 1033 1034 /* sanity check the material and length */ 1035 if ((key == NULL) || (keylen == 0) || (text == NULL) || 1036 (textlen == 0) || (digest == NULL)) { 1037 /* can't do HMAC with empty key or text or digest store */ 1038 return (0); 1039 } 1040 /* validate the hmac algo and get the digest length */ 1041 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1042 if (digestlen == 0) 1043 return (0); 1044 1045 /* hash the key if it is longer than the hash block size */ 1046 blocklen = sctp_get_hmac_block_len(hmac_algo); 1047 if (keylen > blocklen) { 1048 sctp_hmac_init(hmac_algo, &ctx); 1049 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 1050 sctp_hmac_final(hmac_algo, &ctx, temp); 1051 /* set the hashed key as the key */ 1052 keylen = digestlen; 1053 key = temp; 1054 } 1055 /* initialize the inner/outer pads with the key and "append" zeroes */ 1056 bzero(ipad, blocklen); 1057 bzero(opad, blocklen); 1058 bcopy(key, ipad, keylen); 1059 bcopy(key, opad, keylen); 1060 1061 /* XOR the key with ipad and opad values */ 1062 for (i = 0; i < blocklen; i++) { 1063 ipad[i] ^= 0x36; 1064 opad[i] ^= 0x5c; 1065 } 1066 1067 /* perform inner hash */ 1068 sctp_hmac_init(hmac_algo, &ctx); 1069 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 1070 sctp_hmac_update(hmac_algo, &ctx, text, textlen); 1071 sctp_hmac_final(hmac_algo, &ctx, temp); 1072 1073 /* perform outer hash */ 1074 sctp_hmac_init(hmac_algo, &ctx); 1075 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 1076 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 1077 sctp_hmac_final(hmac_algo, &ctx, digest); 1078 1079 return (digestlen); 1080 } 1081 1082 /* mbuf version */ 1083 uint32_t 1084 sctp_hmac_m(uint16_t hmac_algo, uint8_t * key, uint32_t keylen, 1085 struct mbuf *m, uint32_t m_offset, uint8_t * digest, uint32_t trailer) 1086 { 1087 uint32_t digestlen; 1088 uint32_t blocklen; 1089 sctp_hash_context_t ctx; 1090 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 1091 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1092 uint32_t i; 1093 struct mbuf *m_tmp; 1094 1095 /* sanity check the material and length */ 1096 if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) { 1097 /* can't do HMAC with empty key or text or digest store */ 1098 return (0); 1099 } 1100 /* validate the hmac algo and get the digest length */ 1101 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1102 if (digestlen == 0) 1103 return (0); 1104 1105 /* hash the key if it is longer than the hash block size */ 1106 blocklen = sctp_get_hmac_block_len(hmac_algo); 1107 if (keylen > blocklen) { 1108 sctp_hmac_init(hmac_algo, &ctx); 1109 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 1110 sctp_hmac_final(hmac_algo, &ctx, temp); 1111 /* set the hashed key as the key */ 1112 keylen = digestlen; 1113 key = temp; 1114 } 1115 /* initialize the inner/outer pads with the key and "append" zeroes */ 1116 bzero(ipad, blocklen); 1117 bzero(opad, blocklen); 1118 bcopy(key, ipad, keylen); 1119 bcopy(key, opad, keylen); 1120 1121 /* XOR the key with ipad and opad values */ 1122 for (i = 0; i < blocklen; i++) { 1123 ipad[i] ^= 0x36; 1124 opad[i] ^= 0x5c; 1125 } 1126 1127 /* perform inner hash */ 1128 sctp_hmac_init(hmac_algo, &ctx); 1129 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 1130 /* find the correct starting mbuf and offset (get start of text) */ 1131 m_tmp = m; 1132 while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) { 1133 m_offset -= SCTP_BUF_LEN(m_tmp); 1134 m_tmp = SCTP_BUF_NEXT(m_tmp); 1135 } 1136 /* now use the rest of the mbuf chain for the text */ 1137 while (m_tmp != NULL) { 1138 if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) { 1139 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset, 1140 SCTP_BUF_LEN(m_tmp) - (trailer + m_offset)); 1141 } else { 1142 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset, 1143 SCTP_BUF_LEN(m_tmp) - m_offset); 1144 } 1145 1146 /* clear the offset since it's only for the first mbuf */ 1147 m_offset = 0; 1148 m_tmp = SCTP_BUF_NEXT(m_tmp); 1149 } 1150 sctp_hmac_final(hmac_algo, &ctx, temp); 1151 1152 /* perform outer hash */ 1153 sctp_hmac_init(hmac_algo, &ctx); 1154 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 1155 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 1156 sctp_hmac_final(hmac_algo, &ctx, digest); 1157 1158 return (digestlen); 1159 } 1160 1161 /*- 1162 * verify the HMAC digest using the desired hash key, text, and HMAC 1163 * algorithm. 1164 * Returns -1 on error, 0 on success. 1165 */ 1166 int 1167 sctp_verify_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen, 1168 uint8_t * text, uint32_t textlen, 1169 uint8_t * digest, uint32_t digestlen) 1170 { 1171 uint32_t len; 1172 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1173 1174 /* sanity check the material and length */ 1175 if ((key == NULL) || (keylen == 0) || 1176 (text == NULL) || (textlen == 0) || (digest == NULL)) { 1177 /* can't do HMAC with empty key or text or digest */ 1178 return (-1); 1179 } 1180 len = sctp_get_hmac_digest_len(hmac_algo); 1181 if ((len == 0) || (digestlen != len)) 1182 return (-1); 1183 1184 /* compute the expected hash */ 1185 if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len) 1186 return (-1); 1187 1188 if (memcmp(digest, temp, digestlen) != 0) 1189 return (-1); 1190 else 1191 return (0); 1192 } 1193 1194 1195 /* 1196 * computes the requested HMAC using a key struct (which may be modified if 1197 * the keylen exceeds the HMAC block len). 1198 */ 1199 uint32_t 1200 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t * key, uint8_t * text, 1201 uint32_t textlen, uint8_t * digest) 1202 { 1203 uint32_t digestlen; 1204 uint32_t blocklen; 1205 sctp_hash_context_t ctx; 1206 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1207 1208 /* sanity check */ 1209 if ((key == NULL) || (text == NULL) || (textlen == 0) || 1210 (digest == NULL)) { 1211 /* can't do HMAC with empty key or text or digest store */ 1212 return (0); 1213 } 1214 /* validate the hmac algo and get the digest length */ 1215 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1216 if (digestlen == 0) 1217 return (0); 1218 1219 /* hash the key if it is longer than the hash block size */ 1220 blocklen = sctp_get_hmac_block_len(hmac_algo); 1221 if (key->keylen > blocklen) { 1222 sctp_hmac_init(hmac_algo, &ctx); 1223 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1224 sctp_hmac_final(hmac_algo, &ctx, temp); 1225 /* save the hashed key as the new key */ 1226 key->keylen = digestlen; 1227 bcopy(temp, key->key, key->keylen); 1228 } 1229 return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen, 1230 digest)); 1231 } 1232 1233 /* mbuf version */ 1234 uint32_t 1235 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t * key, struct mbuf *m, 1236 uint32_t m_offset, uint8_t * digest) 1237 { 1238 uint32_t digestlen; 1239 uint32_t blocklen; 1240 sctp_hash_context_t ctx; 1241 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1242 1243 /* sanity check */ 1244 if ((key == NULL) || (m == NULL) || (digest == NULL)) { 1245 /* can't do HMAC with empty key or text or digest store */ 1246 return (0); 1247 } 1248 /* validate the hmac algo and get the digest length */ 1249 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1250 if (digestlen == 0) 1251 return (0); 1252 1253 /* hash the key if it is longer than the hash block size */ 1254 blocklen = sctp_get_hmac_block_len(hmac_algo); 1255 if (key->keylen > blocklen) { 1256 sctp_hmac_init(hmac_algo, &ctx); 1257 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1258 sctp_hmac_final(hmac_algo, &ctx, temp); 1259 /* save the hashed key as the new key */ 1260 key->keylen = digestlen; 1261 bcopy(temp, key->key, key->keylen); 1262 } 1263 return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0)); 1264 } 1265 1266 int 1267 sctp_auth_is_supported_hmac(sctp_hmaclist_t * list, uint16_t id) 1268 { 1269 int i; 1270 1271 if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD)) 1272 return (0); 1273 1274 for (i = 0; i < list->num_algo; i++) 1275 if (list->hmac[i] == id) 1276 return (1); 1277 1278 /* not in the list */ 1279 return (0); 1280 } 1281 1282 1283 /*- 1284 * clear any cached key(s) if they match the given key id on an association. 1285 * the cached key(s) will be recomputed and re-cached at next use. 1286 * ASSUMES TCB_LOCK is already held 1287 */ 1288 void 1289 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid) 1290 { 1291 if (stcb == NULL) 1292 return; 1293 1294 if (keyid == stcb->asoc.authinfo.assoc_keyid) { 1295 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1296 stcb->asoc.authinfo.assoc_key = NULL; 1297 } 1298 if (keyid == stcb->asoc.authinfo.recv_keyid) { 1299 sctp_free_key(stcb->asoc.authinfo.recv_key); 1300 stcb->asoc.authinfo.recv_key = NULL; 1301 } 1302 } 1303 1304 /*- 1305 * clear any cached key(s) if they match the given key id for all assocs on 1306 * an endpoint. 1307 * ASSUMES INP_WLOCK is already held 1308 */ 1309 void 1310 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid) 1311 { 1312 struct sctp_tcb *stcb; 1313 1314 if (inp == NULL) 1315 return; 1316 1317 /* clear the cached keys on all assocs on this instance */ 1318 LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { 1319 SCTP_TCB_LOCK(stcb); 1320 sctp_clear_cachedkeys(stcb, keyid); 1321 SCTP_TCB_UNLOCK(stcb); 1322 } 1323 } 1324 1325 /*- 1326 * delete a shared key from an association 1327 * ASSUMES TCB_LOCK is already held 1328 */ 1329 int 1330 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1331 { 1332 sctp_sharedkey_t *skey; 1333 1334 if (stcb == NULL) 1335 return (-1); 1336 1337 /* is the keyid the assoc active sending key */ 1338 if (keyid == stcb->asoc.authinfo.active_keyid) 1339 return (-1); 1340 1341 /* does the key exist? */ 1342 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1343 if (skey == NULL) 1344 return (-1); 1345 1346 /* are there other refcount holders on the key? */ 1347 if (skey->refcount > 1) 1348 return (-1); 1349 1350 /* remove it */ 1351 LIST_REMOVE(skey, next); 1352 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1353 1354 /* clear any cached keys */ 1355 sctp_clear_cachedkeys(stcb, keyid); 1356 return (0); 1357 } 1358 1359 /*- 1360 * deletes a shared key from the endpoint 1361 * ASSUMES INP_WLOCK is already held 1362 */ 1363 int 1364 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1365 { 1366 sctp_sharedkey_t *skey; 1367 1368 if (inp == NULL) 1369 return (-1); 1370 1371 /* is the keyid the active sending key on the endpoint */ 1372 if (keyid == inp->sctp_ep.default_keyid) 1373 return (-1); 1374 1375 /* does the key exist? */ 1376 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1377 if (skey == NULL) 1378 return (-1); 1379 1380 /* endpoint keys are not refcounted */ 1381 1382 /* remove it */ 1383 LIST_REMOVE(skey, next); 1384 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1385 1386 /* clear any cached keys */ 1387 sctp_clear_cachedkeys_ep(inp, keyid); 1388 return (0); 1389 } 1390 1391 /*- 1392 * set the active key on an association 1393 * ASSUMES TCB_LOCK is already held 1394 */ 1395 int 1396 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid) 1397 { 1398 sctp_sharedkey_t *skey = NULL; 1399 1400 /* find the key on the assoc */ 1401 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1402 if (skey == NULL) { 1403 /* that key doesn't exist */ 1404 return (-1); 1405 } 1406 if ((skey->deactivated) && (skey->refcount > 1)) { 1407 /* can't reactivate a deactivated key with other refcounts */ 1408 return (-1); 1409 } 1410 /* set the (new) active key */ 1411 stcb->asoc.authinfo.active_keyid = keyid; 1412 /* reset the deactivated flag */ 1413 skey->deactivated = 0; 1414 1415 return (0); 1416 } 1417 1418 /*- 1419 * set the active key on an endpoint 1420 * ASSUMES INP_WLOCK is already held 1421 */ 1422 int 1423 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1424 { 1425 sctp_sharedkey_t *skey; 1426 1427 /* find the key */ 1428 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1429 if (skey == NULL) { 1430 /* that key doesn't exist */ 1431 return (-1); 1432 } 1433 inp->sctp_ep.default_keyid = keyid; 1434 return (0); 1435 } 1436 1437 /*- 1438 * deactivates a shared key from the association 1439 * ASSUMES INP_WLOCK is already held 1440 */ 1441 int 1442 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1443 { 1444 sctp_sharedkey_t *skey; 1445 1446 if (stcb == NULL) 1447 return (-1); 1448 1449 /* is the keyid the assoc active sending key */ 1450 if (keyid == stcb->asoc.authinfo.active_keyid) 1451 return (-1); 1452 1453 /* does the key exist? */ 1454 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1455 if (skey == NULL) 1456 return (-1); 1457 1458 /* are there other refcount holders on the key? */ 1459 if (skey->refcount == 1) { 1460 /* no other users, send a notification for this key */ 1461 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0, 1462 SCTP_SO_LOCKED); 1463 } 1464 /* mark the key as deactivated */ 1465 skey->deactivated = 1; 1466 1467 return (0); 1468 } 1469 1470 /*- 1471 * deactivates a shared key from the endpoint 1472 * ASSUMES INP_WLOCK is already held 1473 */ 1474 int 1475 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1476 { 1477 sctp_sharedkey_t *skey; 1478 1479 if (inp == NULL) 1480 return (-1); 1481 1482 /* is the keyid the active sending key on the endpoint */ 1483 if (keyid == inp->sctp_ep.default_keyid) 1484 return (-1); 1485 1486 /* does the key exist? */ 1487 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1488 if (skey == NULL) 1489 return (-1); 1490 1491 /* endpoint keys are not refcounted */ 1492 1493 /* remove it */ 1494 LIST_REMOVE(skey, next); 1495 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1496 1497 return (0); 1498 } 1499 1500 /* 1501 * get local authentication parameters from cookie (from INIT-ACK) 1502 */ 1503 void 1504 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m, 1505 uint32_t offset, uint32_t length) 1506 { 1507 struct sctp_paramhdr *phdr, tmp_param; 1508 uint16_t plen, ptype; 1509 uint8_t random_store[SCTP_PARAM_BUFFER_SIZE]; 1510 struct sctp_auth_random *p_random = NULL; 1511 uint16_t random_len = 0; 1512 uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE]; 1513 struct sctp_auth_hmac_algo *hmacs = NULL; 1514 uint16_t hmacs_len = 0; 1515 uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE]; 1516 struct sctp_auth_chunk_list *chunks = NULL; 1517 uint16_t num_chunks = 0; 1518 sctp_key_t *new_key; 1519 uint32_t keylen; 1520 1521 /* convert to upper bound */ 1522 length += offset; 1523 1524 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, 1525 sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param); 1526 while (phdr != NULL) { 1527 ptype = ntohs(phdr->param_type); 1528 plen = ntohs(phdr->param_length); 1529 1530 if ((plen == 0) || (offset + plen > length)) 1531 break; 1532 1533 if (ptype == SCTP_RANDOM) { 1534 if (plen > sizeof(random_store)) 1535 break; 1536 phdr = sctp_get_next_param(m, offset, 1537 (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store))); 1538 if (phdr == NULL) 1539 return; 1540 /* save the random and length for the key */ 1541 p_random = (struct sctp_auth_random *)phdr; 1542 random_len = plen - sizeof(*p_random); 1543 } else if (ptype == SCTP_HMAC_LIST) { 1544 int num_hmacs; 1545 int i; 1546 1547 if (plen > sizeof(hmacs_store)) 1548 break; 1549 phdr = sctp_get_next_param(m, offset, 1550 (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store))); 1551 if (phdr == NULL) 1552 return; 1553 /* save the hmacs list and num for the key */ 1554 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1555 hmacs_len = plen - sizeof(*hmacs); 1556 num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]); 1557 if (stcb->asoc.local_hmacs != NULL) 1558 sctp_free_hmaclist(stcb->asoc.local_hmacs); 1559 stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs); 1560 if (stcb->asoc.local_hmacs != NULL) { 1561 for (i = 0; i < num_hmacs; i++) { 1562 (void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs, 1563 ntohs(hmacs->hmac_ids[i])); 1564 } 1565 } 1566 } else if (ptype == SCTP_CHUNK_LIST) { 1567 int i; 1568 1569 if (plen > sizeof(chunks_store)) 1570 break; 1571 phdr = sctp_get_next_param(m, offset, 1572 (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store))); 1573 if (phdr == NULL) 1574 return; 1575 chunks = (struct sctp_auth_chunk_list *)phdr; 1576 num_chunks = plen - sizeof(*chunks); 1577 /* save chunks list and num for the key */ 1578 if (stcb->asoc.local_auth_chunks != NULL) 1579 sctp_clear_chunklist(stcb->asoc.local_auth_chunks); 1580 else 1581 stcb->asoc.local_auth_chunks = sctp_alloc_chunklist(); 1582 for (i = 0; i < num_chunks; i++) { 1583 (void)sctp_auth_add_chunk(chunks->chunk_types[i], 1584 stcb->asoc.local_auth_chunks); 1585 } 1586 } 1587 /* get next parameter */ 1588 offset += SCTP_SIZE32(plen); 1589 if (offset + sizeof(struct sctp_paramhdr) > length) 1590 break; 1591 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), 1592 (uint8_t *) & tmp_param); 1593 } 1594 /* concatenate the full random key */ 1595 keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len; 1596 if (chunks != NULL) { 1597 keylen += sizeof(*chunks) + num_chunks; 1598 } 1599 new_key = sctp_alloc_key(keylen); 1600 if (new_key != NULL) { 1601 /* copy in the RANDOM */ 1602 if (p_random != NULL) { 1603 keylen = sizeof(*p_random) + random_len; 1604 bcopy(p_random, new_key->key, keylen); 1605 } 1606 /* append in the AUTH chunks */ 1607 if (chunks != NULL) { 1608 bcopy(chunks, new_key->key + keylen, 1609 sizeof(*chunks) + num_chunks); 1610 keylen += sizeof(*chunks) + num_chunks; 1611 } 1612 /* append in the HMACs */ 1613 if (hmacs != NULL) { 1614 bcopy(hmacs, new_key->key + keylen, 1615 sizeof(*hmacs) + hmacs_len); 1616 } 1617 } 1618 if (stcb->asoc.authinfo.random != NULL) 1619 sctp_free_key(stcb->asoc.authinfo.random); 1620 stcb->asoc.authinfo.random = new_key; 1621 stcb->asoc.authinfo.random_len = random_len; 1622 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid); 1623 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid); 1624 1625 /* negotiate what HMAC to use for the peer */ 1626 stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs, 1627 stcb->asoc.local_hmacs); 1628 1629 /* copy defaults from the endpoint */ 1630 /* FIX ME: put in cookie? */ 1631 stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid; 1632 /* copy out the shared key list (by reference) from the endpoint */ 1633 (void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys, 1634 &stcb->asoc.shared_keys); 1635 } 1636 1637 /* 1638 * compute and fill in the HMAC digest for a packet 1639 */ 1640 void 1641 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset, 1642 struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid) 1643 { 1644 uint32_t digestlen; 1645 sctp_sharedkey_t *skey; 1646 sctp_key_t *key; 1647 1648 if ((stcb == NULL) || (auth == NULL)) 1649 return; 1650 1651 /* zero the digest + chunk padding */ 1652 digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id); 1653 bzero(auth->hmac, SCTP_SIZE32(digestlen)); 1654 1655 /* is the desired key cached? */ 1656 if ((keyid != stcb->asoc.authinfo.assoc_keyid) || 1657 (stcb->asoc.authinfo.assoc_key == NULL)) { 1658 if (stcb->asoc.authinfo.assoc_key != NULL) { 1659 /* free the old cached key */ 1660 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1661 } 1662 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1663 /* the only way skey is NULL is if null key id 0 is used */ 1664 if (skey != NULL) 1665 key = skey->key; 1666 else 1667 key = NULL; 1668 /* compute a new assoc key and cache it */ 1669 stcb->asoc.authinfo.assoc_key = 1670 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1671 stcb->asoc.authinfo.peer_random, key); 1672 stcb->asoc.authinfo.assoc_keyid = keyid; 1673 SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n", 1674 stcb->asoc.authinfo.assoc_keyid); 1675 #ifdef SCTP_DEBUG 1676 if (SCTP_AUTH_DEBUG) 1677 sctp_print_key(stcb->asoc.authinfo.assoc_key, 1678 "Assoc Key"); 1679 #endif 1680 } 1681 /* set in the active key id */ 1682 auth->shared_key_id = htons(keyid); 1683 1684 /* compute and fill in the digest */ 1685 (void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key, 1686 m, auth_offset, auth->hmac); 1687 } 1688 1689 1690 static void 1691 sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size) 1692 { 1693 struct mbuf *m_tmp; 1694 uint8_t *data; 1695 1696 /* sanity check */ 1697 if (m == NULL) 1698 return; 1699 1700 /* find the correct starting mbuf and offset (get start position) */ 1701 m_tmp = m; 1702 while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) { 1703 m_offset -= SCTP_BUF_LEN(m_tmp); 1704 m_tmp = SCTP_BUF_NEXT(m_tmp); 1705 } 1706 /* now use the rest of the mbuf chain */ 1707 while ((m_tmp != NULL) && (size > 0)) { 1708 data = mtod(m_tmp, uint8_t *) + m_offset; 1709 if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) { 1710 bzero(data, SCTP_BUF_LEN(m_tmp)); 1711 size -= SCTP_BUF_LEN(m_tmp); 1712 } else { 1713 bzero(data, size); 1714 size = 0; 1715 } 1716 /* clear the offset since it's only for the first mbuf */ 1717 m_offset = 0; 1718 m_tmp = SCTP_BUF_NEXT(m_tmp); 1719 } 1720 } 1721 1722 /*- 1723 * process the incoming Authentication chunk 1724 * return codes: 1725 * -1 on any authentication error 1726 * 0 on authentication verification 1727 */ 1728 int 1729 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth, 1730 struct mbuf *m, uint32_t offset) 1731 { 1732 uint16_t chunklen; 1733 uint16_t shared_key_id; 1734 uint16_t hmac_id; 1735 sctp_sharedkey_t *skey; 1736 uint32_t digestlen; 1737 uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1738 uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1739 1740 /* auth is checked for NULL by caller */ 1741 chunklen = ntohs(auth->ch.chunk_length); 1742 if (chunklen < sizeof(*auth)) { 1743 SCTP_STAT_INCR(sctps_recvauthfailed); 1744 return (-1); 1745 } 1746 SCTP_STAT_INCR(sctps_recvauth); 1747 1748 /* get the auth params */ 1749 shared_key_id = ntohs(auth->shared_key_id); 1750 hmac_id = ntohs(auth->hmac_id); 1751 SCTPDBG(SCTP_DEBUG_AUTH1, 1752 "SCTP AUTH Chunk: shared key %u, HMAC id %u\n", 1753 shared_key_id, hmac_id); 1754 1755 /* is the indicated HMAC supported? */ 1756 if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) { 1757 struct mbuf *m_err; 1758 struct sctp_auth_invalid_hmac *err; 1759 1760 SCTP_STAT_INCR(sctps_recvivalhmacid); 1761 SCTPDBG(SCTP_DEBUG_AUTH1, 1762 "SCTP Auth: unsupported HMAC id %u\n", 1763 hmac_id); 1764 /* 1765 * report this in an Error Chunk: Unsupported HMAC 1766 * Identifier 1767 */ 1768 m_err = sctp_get_mbuf_for_msg(sizeof(*err), 0, M_DONTWAIT, 1769 1, MT_HEADER); 1770 if (m_err != NULL) { 1771 /* pre-reserve some space */ 1772 SCTP_BUF_RESV_UF(m_err, sizeof(struct sctp_chunkhdr)); 1773 /* fill in the error */ 1774 err = mtod(m_err, struct sctp_auth_invalid_hmac *); 1775 bzero(err, sizeof(*err)); 1776 err->ph.param_type = htons(SCTP_CAUSE_UNSUPPORTED_HMACID); 1777 err->ph.param_length = htons(sizeof(*err)); 1778 err->hmac_id = ntohs(hmac_id); 1779 SCTP_BUF_LEN(m_err) = sizeof(*err); 1780 /* queue it */ 1781 sctp_queue_op_err(stcb, m_err); 1782 } 1783 return (-1); 1784 } 1785 /* get the indicated shared key, if available */ 1786 if ((stcb->asoc.authinfo.recv_key == NULL) || 1787 (stcb->asoc.authinfo.recv_keyid != shared_key_id)) { 1788 /* find the shared key on the assoc first */ 1789 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, 1790 shared_key_id); 1791 /* if the shared key isn't found, discard the chunk */ 1792 if (skey == NULL) { 1793 SCTP_STAT_INCR(sctps_recvivalkeyid); 1794 SCTPDBG(SCTP_DEBUG_AUTH1, 1795 "SCTP Auth: unknown key id %u\n", 1796 shared_key_id); 1797 return (-1); 1798 } 1799 /* generate a notification if this is a new key id */ 1800 if (stcb->asoc.authinfo.recv_keyid != shared_key_id) 1801 /* 1802 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb, 1803 * shared_key_id, (void 1804 * *)stcb->asoc.authinfo.recv_keyid); 1805 */ 1806 sctp_notify_authentication(stcb, SCTP_AUTH_NEWKEY, 1807 shared_key_id, stcb->asoc.authinfo.recv_keyid, 1808 SCTP_SO_NOT_LOCKED); 1809 /* compute a new recv assoc key and cache it */ 1810 if (stcb->asoc.authinfo.recv_key != NULL) 1811 sctp_free_key(stcb->asoc.authinfo.recv_key); 1812 stcb->asoc.authinfo.recv_key = 1813 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1814 stcb->asoc.authinfo.peer_random, skey->key); 1815 stcb->asoc.authinfo.recv_keyid = shared_key_id; 1816 #ifdef SCTP_DEBUG 1817 if (SCTP_AUTH_DEBUG) 1818 sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key"); 1819 #endif 1820 } 1821 /* validate the digest length */ 1822 digestlen = sctp_get_hmac_digest_len(hmac_id); 1823 if (chunklen < (sizeof(*auth) + digestlen)) { 1824 /* invalid digest length */ 1825 SCTP_STAT_INCR(sctps_recvauthfailed); 1826 SCTPDBG(SCTP_DEBUG_AUTH1, 1827 "SCTP Auth: chunk too short for HMAC\n"); 1828 return (-1); 1829 } 1830 /* save a copy of the digest, zero the pseudo header, and validate */ 1831 bcopy(auth->hmac, digest, digestlen); 1832 sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen)); 1833 (void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key, 1834 m, offset, computed_digest); 1835 1836 /* compare the computed digest with the one in the AUTH chunk */ 1837 if (memcmp(digest, computed_digest, digestlen) != 0) { 1838 SCTP_STAT_INCR(sctps_recvauthfailed); 1839 SCTPDBG(SCTP_DEBUG_AUTH1, 1840 "SCTP Auth: HMAC digest check failed\n"); 1841 return (-1); 1842 } 1843 return (0); 1844 } 1845 1846 /* 1847 * Generate NOTIFICATION 1848 */ 1849 void 1850 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication, 1851 uint16_t keyid, uint16_t alt_keyid, int so_locked 1852 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) 1853 SCTP_UNUSED 1854 #endif 1855 ) 1856 { 1857 struct mbuf *m_notify; 1858 struct sctp_authkey_event *auth; 1859 struct sctp_queued_to_read *control; 1860 1861 if ((stcb == NULL) || 1862 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || 1863 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || 1864 (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) 1865 ) { 1866 /* If the socket is gone we are out of here */ 1867 return; 1868 } 1869 if (sctp_is_feature_off(stcb->sctp_ep, SCTP_PCB_FLAGS_AUTHEVNT)) 1870 /* event not enabled */ 1871 return; 1872 1873 m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event), 1874 0, M_DONTWAIT, 1, MT_HEADER); 1875 if (m_notify == NULL) 1876 /* no space left */ 1877 return; 1878 1879 SCTP_BUF_LEN(m_notify) = 0; 1880 auth = mtod(m_notify, struct sctp_authkey_event *); 1881 auth->auth_type = SCTP_AUTHENTICATION_EVENT; 1882 auth->auth_flags = 0; 1883 auth->auth_length = sizeof(*auth); 1884 auth->auth_keynumber = keyid; 1885 auth->auth_altkeynumber = alt_keyid; 1886 auth->auth_indication = indication; 1887 auth->auth_assoc_id = sctp_get_associd(stcb); 1888 1889 SCTP_BUF_LEN(m_notify) = sizeof(*auth); 1890 SCTP_BUF_NEXT(m_notify) = NULL; 1891 1892 /* append to socket */ 1893 control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 1894 0, 0, 0, 0, 0, 0, m_notify); 1895 if (control == NULL) { 1896 /* no memory */ 1897 sctp_m_freem(m_notify); 1898 return; 1899 } 1900 control->spec_flags = M_NOTIFICATION; 1901 control->length = SCTP_BUF_LEN(m_notify); 1902 /* not that we need this */ 1903 control->tail_mbuf = m_notify; 1904 sctp_add_to_readq(stcb->sctp_ep, stcb, control, 1905 &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); 1906 } 1907 1908 1909 /*- 1910 * validates the AUTHentication related parameters in an INIT/INIT-ACK 1911 * Note: currently only used for INIT as INIT-ACK is handled inline 1912 * with sctp_load_addresses_from_init() 1913 */ 1914 int 1915 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit) 1916 { 1917 struct sctp_paramhdr *phdr, parm_buf; 1918 uint16_t ptype, plen; 1919 int peer_supports_asconf = 0; 1920 int peer_supports_auth = 0; 1921 int got_random = 0, got_hmacs = 0, got_chklist = 0; 1922 uint8_t saw_asconf = 0; 1923 uint8_t saw_asconf_ack = 0; 1924 1925 /* go through each of the params. */ 1926 phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf)); 1927 while (phdr) { 1928 ptype = ntohs(phdr->param_type); 1929 plen = ntohs(phdr->param_length); 1930 1931 if (offset + plen > limit) { 1932 break; 1933 } 1934 if (plen < sizeof(struct sctp_paramhdr)) { 1935 break; 1936 } 1937 if (ptype == SCTP_SUPPORTED_CHUNK_EXT) { 1938 /* A supported extension chunk */ 1939 struct sctp_supported_chunk_types_param *pr_supported; 1940 uint8_t local_store[SCTP_PARAM_BUFFER_SIZE]; 1941 int num_ent, i; 1942 1943 phdr = sctp_get_next_param(m, offset, 1944 (struct sctp_paramhdr *)&local_store, min(plen, sizeof(local_store))); 1945 if (phdr == NULL) { 1946 return (-1); 1947 } 1948 pr_supported = (struct sctp_supported_chunk_types_param *)phdr; 1949 num_ent = plen - sizeof(struct sctp_paramhdr); 1950 for (i = 0; i < num_ent; i++) { 1951 switch (pr_supported->chunk_types[i]) { 1952 case SCTP_ASCONF: 1953 case SCTP_ASCONF_ACK: 1954 peer_supports_asconf = 1; 1955 break; 1956 default: 1957 /* one we don't care about */ 1958 break; 1959 } 1960 } 1961 } else if (ptype == SCTP_RANDOM) { 1962 got_random = 1; 1963 /* enforce the random length */ 1964 if (plen != (sizeof(struct sctp_auth_random) + 1965 SCTP_AUTH_RANDOM_SIZE_REQUIRED)) { 1966 SCTPDBG(SCTP_DEBUG_AUTH1, 1967 "SCTP: invalid RANDOM len\n"); 1968 return (-1); 1969 } 1970 } else if (ptype == SCTP_HMAC_LIST) { 1971 uint8_t store[SCTP_PARAM_BUFFER_SIZE]; 1972 struct sctp_auth_hmac_algo *hmacs; 1973 int num_hmacs; 1974 1975 if (plen > sizeof(store)) 1976 break; 1977 phdr = sctp_get_next_param(m, offset, 1978 (struct sctp_paramhdr *)store, min(plen, sizeof(store))); 1979 if (phdr == NULL) 1980 return (-1); 1981 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1982 num_hmacs = (plen - sizeof(*hmacs)) / 1983 sizeof(hmacs->hmac_ids[0]); 1984 /* validate the hmac list */ 1985 if (sctp_verify_hmac_param(hmacs, num_hmacs)) { 1986 SCTPDBG(SCTP_DEBUG_AUTH1, 1987 "SCTP: invalid HMAC param\n"); 1988 return (-1); 1989 } 1990 got_hmacs = 1; 1991 } else if (ptype == SCTP_CHUNK_LIST) { 1992 int i, num_chunks; 1993 uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE]; 1994 1995 /* did the peer send a non-empty chunk list? */ 1996 struct sctp_auth_chunk_list *chunks = NULL; 1997 1998 phdr = sctp_get_next_param(m, offset, 1999 (struct sctp_paramhdr *)chunks_store, 2000 min(plen, sizeof(chunks_store))); 2001 if (phdr == NULL) 2002 return (-1); 2003 2004 /*- 2005 * Flip through the list and mark that the 2006 * peer supports asconf/asconf_ack. 2007 */ 2008 chunks = (struct sctp_auth_chunk_list *)phdr; 2009 num_chunks = plen - sizeof(*chunks); 2010 for (i = 0; i < num_chunks; i++) { 2011 /* record asconf/asconf-ack if listed */ 2012 if (chunks->chunk_types[i] == SCTP_ASCONF) 2013 saw_asconf = 1; 2014 if (chunks->chunk_types[i] == SCTP_ASCONF_ACK) 2015 saw_asconf_ack = 1; 2016 2017 } 2018 if (num_chunks) 2019 got_chklist = 1; 2020 } 2021 offset += SCTP_SIZE32(plen); 2022 if (offset >= limit) { 2023 break; 2024 } 2025 phdr = sctp_get_next_param(m, offset, &parm_buf, 2026 sizeof(parm_buf)); 2027 } 2028 /* validate authentication required parameters */ 2029 if (got_random && got_hmacs) { 2030 peer_supports_auth = 1; 2031 } else { 2032 peer_supports_auth = 0; 2033 } 2034 if (!peer_supports_auth && got_chklist) { 2035 SCTPDBG(SCTP_DEBUG_AUTH1, 2036 "SCTP: peer sent chunk list w/o AUTH\n"); 2037 return (-1); 2038 } 2039 if (!SCTP_BASE_SYSCTL(sctp_asconf_auth_nochk) && peer_supports_asconf && 2040 !peer_supports_auth) { 2041 SCTPDBG(SCTP_DEBUG_AUTH1, 2042 "SCTP: peer supports ASCONF but not AUTH\n"); 2043 return (-1); 2044 } else if ((peer_supports_asconf) && (peer_supports_auth) && 2045 ((saw_asconf == 0) || (saw_asconf_ack == 0))) { 2046 return (-2); 2047 } 2048 return (0); 2049 } 2050 2051 void 2052 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb) 2053 { 2054 uint16_t chunks_len = 0; 2055 uint16_t hmacs_len = 0; 2056 uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT; 2057 sctp_key_t *new_key; 2058 uint16_t keylen; 2059 2060 /* initialize hmac list from endpoint */ 2061 stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs); 2062 if (stcb->asoc.local_hmacs != NULL) { 2063 hmacs_len = stcb->asoc.local_hmacs->num_algo * 2064 sizeof(stcb->asoc.local_hmacs->hmac[0]); 2065 } 2066 /* initialize auth chunks list from endpoint */ 2067 stcb->asoc.local_auth_chunks = 2068 sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks); 2069 if (stcb->asoc.local_auth_chunks != NULL) { 2070 int i; 2071 2072 for (i = 0; i < 256; i++) { 2073 if (stcb->asoc.local_auth_chunks->chunks[i]) 2074 chunks_len++; 2075 } 2076 } 2077 /* copy defaults from the endpoint */ 2078 stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid; 2079 2080 /* copy out the shared key list (by reference) from the endpoint */ 2081 (void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys, 2082 &stcb->asoc.shared_keys); 2083 2084 /* now set the concatenated key (random + chunks + hmacs) */ 2085 /* key includes parameter headers */ 2086 keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len + 2087 hmacs_len; 2088 new_key = sctp_alloc_key(keylen); 2089 if (new_key != NULL) { 2090 struct sctp_paramhdr *ph; 2091 int plen; 2092 2093 /* generate and copy in the RANDOM */ 2094 ph = (struct sctp_paramhdr *)new_key->key; 2095 ph->param_type = htons(SCTP_RANDOM); 2096 plen = sizeof(*ph) + random_len; 2097 ph->param_length = htons(plen); 2098 SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len); 2099 keylen = plen; 2100 2101 /* append in the AUTH chunks */ 2102 /* NOTE: currently we always have chunks to list */ 2103 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 2104 ph->param_type = htons(SCTP_CHUNK_LIST); 2105 plen = sizeof(*ph) + chunks_len; 2106 ph->param_length = htons(plen); 2107 keylen += sizeof(*ph); 2108 if (stcb->asoc.local_auth_chunks) { 2109 int i; 2110 2111 for (i = 0; i < 256; i++) { 2112 if (stcb->asoc.local_auth_chunks->chunks[i]) 2113 new_key->key[keylen++] = i; 2114 } 2115 } 2116 /* append in the HMACs */ 2117 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 2118 ph->param_type = htons(SCTP_HMAC_LIST); 2119 plen = sizeof(*ph) + hmacs_len; 2120 ph->param_length = htons(plen); 2121 keylen += sizeof(*ph); 2122 (void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs, 2123 new_key->key + keylen); 2124 } 2125 if (stcb->asoc.authinfo.random != NULL) 2126 sctp_free_key(stcb->asoc.authinfo.random); 2127 stcb->asoc.authinfo.random = new_key; 2128 stcb->asoc.authinfo.random_len = random_len; 2129 } 2130