xref: /freebsd/sys/netinet/sctp_auth.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
3  * Copyright (c) 2008-2011, by Randall Stewart. All rights reserved.
4  * Copyright (c) 2008-2011, by Michael Tuexen. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * a) Redistributions of source code must retain the above copyright notice,
10  *   this list of conditions and the following disclaimer.
11  *
12  * b) Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *   the documentation and/or other materials provided with the distribution.
15  *
16  * c) Neither the name of Cisco Systems, Inc. nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <netinet/sctp_os.h>
37 #include <netinet/sctp.h>
38 #include <netinet/sctp_header.h>
39 #include <netinet/sctp_pcb.h>
40 #include <netinet/sctp_var.h>
41 #include <netinet/sctp_sysctl.h>
42 #include <netinet/sctputil.h>
43 #include <netinet/sctp_indata.h>
44 #include <netinet/sctp_output.h>
45 #include <netinet/sctp_auth.h>
46 
47 #ifdef SCTP_DEBUG
48 #define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
49 #define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
50 #endif				/* SCTP_DEBUG */
51 
52 
53 void
54 sctp_clear_chunklist(sctp_auth_chklist_t * chklist)
55 {
56 	bzero(chklist, sizeof(*chklist));
57 	/* chklist->num_chunks = 0; */
58 }
59 
60 sctp_auth_chklist_t *
61 sctp_alloc_chunklist(void)
62 {
63 	sctp_auth_chklist_t *chklist;
64 
65 	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
66 	    SCTP_M_AUTH_CL);
67 	if (chklist == NULL) {
68 		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
69 	} else {
70 		sctp_clear_chunklist(chklist);
71 	}
72 	return (chklist);
73 }
74 
75 void
76 sctp_free_chunklist(sctp_auth_chklist_t * list)
77 {
78 	if (list != NULL)
79 		SCTP_FREE(list, SCTP_M_AUTH_CL);
80 }
81 
82 sctp_auth_chklist_t *
83 sctp_copy_chunklist(sctp_auth_chklist_t * list)
84 {
85 	sctp_auth_chklist_t *new_list;
86 
87 	if (list == NULL)
88 		return (NULL);
89 
90 	/* get a new list */
91 	new_list = sctp_alloc_chunklist();
92 	if (new_list == NULL)
93 		return (NULL);
94 	/* copy it */
95 	bcopy(list, new_list, sizeof(*new_list));
96 
97 	return (new_list);
98 }
99 
100 
101 /*
102  * add a chunk to the required chunks list
103  */
104 int
105 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
106 {
107 	if (list == NULL)
108 		return (-1);
109 
110 	/* is chunk restricted? */
111 	if ((chunk == SCTP_INITIATION) ||
112 	    (chunk == SCTP_INITIATION_ACK) ||
113 	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
114 	    (chunk == SCTP_AUTHENTICATION)) {
115 		return (-1);
116 	}
117 	if (list->chunks[chunk] == 0) {
118 		list->chunks[chunk] = 1;
119 		list->num_chunks++;
120 		SCTPDBG(SCTP_DEBUG_AUTH1,
121 		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
122 		    chunk, chunk);
123 	}
124 	return (0);
125 }
126 
127 /*
128  * delete a chunk from the required chunks list
129  */
130 int
131 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
132 {
133 	if (list == NULL)
134 		return (-1);
135 
136 	/* is chunk restricted? */
137 	if ((chunk == SCTP_ASCONF) ||
138 	    (chunk == SCTP_ASCONF_ACK)) {
139 		return (-1);
140 	}
141 	if (list->chunks[chunk] == 1) {
142 		list->chunks[chunk] = 0;
143 		list->num_chunks--;
144 		SCTPDBG(SCTP_DEBUG_AUTH1,
145 		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
146 		    chunk, chunk);
147 	}
148 	return (0);
149 }
150 
151 size_t
152 sctp_auth_get_chklist_size(const sctp_auth_chklist_t * list)
153 {
154 	if (list == NULL)
155 		return (0);
156 	else
157 		return (list->num_chunks);
158 }
159 
160 /*
161  * set the default list of chunks requiring AUTH
162  */
163 void
164 sctp_auth_set_default_chunks(sctp_auth_chklist_t * list)
165 {
166 	(void)sctp_auth_add_chunk(SCTP_ASCONF, list);
167 	(void)sctp_auth_add_chunk(SCTP_ASCONF_ACK, list);
168 }
169 
170 /*
171  * return the current number and list of required chunks caller must
172  * guarantee ptr has space for up to 256 bytes
173  */
174 int
175 sctp_serialize_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
176 {
177 	int i, count = 0;
178 
179 	if (list == NULL)
180 		return (0);
181 
182 	for (i = 0; i < 256; i++) {
183 		if (list->chunks[i] != 0) {
184 			*ptr++ = i;
185 			count++;
186 		}
187 	}
188 	return (count);
189 }
190 
191 int
192 sctp_pack_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
193 {
194 	int i, size = 0;
195 
196 	if (list == NULL)
197 		return (0);
198 
199 	if (list->num_chunks <= 32) {
200 		/* just list them, one byte each */
201 		for (i = 0; i < 256; i++) {
202 			if (list->chunks[i] != 0) {
203 				*ptr++ = i;
204 				size++;
205 			}
206 		}
207 	} else {
208 		int index, offset;
209 
210 		/* pack into a 32 byte bitfield */
211 		for (i = 0; i < 256; i++) {
212 			if (list->chunks[i] != 0) {
213 				index = i / 8;
214 				offset = i % 8;
215 				ptr[index] |= (1 << offset);
216 			}
217 		}
218 		size = 32;
219 	}
220 	return (size);
221 }
222 
223 int
224 sctp_unpack_auth_chunks(const uint8_t * ptr, uint8_t num_chunks,
225     sctp_auth_chklist_t * list)
226 {
227 	int i;
228 	int size;
229 
230 	if (list == NULL)
231 		return (0);
232 
233 	if (num_chunks <= 32) {
234 		/* just pull them, one byte each */
235 		for (i = 0; i < num_chunks; i++) {
236 			(void)sctp_auth_add_chunk(*ptr++, list);
237 		}
238 		size = num_chunks;
239 	} else {
240 		int index, offset;
241 
242 		/* unpack from a 32 byte bitfield */
243 		for (index = 0; index < 32; index++) {
244 			for (offset = 0; offset < 8; offset++) {
245 				if (ptr[index] & (1 << offset)) {
246 					(void)sctp_auth_add_chunk((index * 8) + offset, list);
247 				}
248 			}
249 		}
250 		size = 32;
251 	}
252 	return (size);
253 }
254 
255 
256 /*
257  * allocate structure space for a key of length keylen
258  */
259 sctp_key_t *
260 sctp_alloc_key(uint32_t keylen)
261 {
262 	sctp_key_t *new_key;
263 
264 	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
265 	    SCTP_M_AUTH_KY);
266 	if (new_key == NULL) {
267 		/* out of memory */
268 		return (NULL);
269 	}
270 	new_key->keylen = keylen;
271 	return (new_key);
272 }
273 
274 void
275 sctp_free_key(sctp_key_t * key)
276 {
277 	if (key != NULL)
278 		SCTP_FREE(key, SCTP_M_AUTH_KY);
279 }
280 
281 void
282 sctp_print_key(sctp_key_t * key, const char *str)
283 {
284 	uint32_t i;
285 
286 	if (key == NULL) {
287 		printf("%s: [Null key]\n", str);
288 		return;
289 	}
290 	printf("%s: len %u, ", str, key->keylen);
291 	if (key->keylen) {
292 		for (i = 0; i < key->keylen; i++)
293 			printf("%02x", key->key[i]);
294 		printf("\n");
295 	} else {
296 		printf("[Null key]\n");
297 	}
298 }
299 
300 void
301 sctp_show_key(sctp_key_t * key, const char *str)
302 {
303 	uint32_t i;
304 
305 	if (key == NULL) {
306 		printf("%s: [Null key]\n", str);
307 		return;
308 	}
309 	printf("%s: len %u, ", str, key->keylen);
310 	if (key->keylen) {
311 		for (i = 0; i < key->keylen; i++)
312 			printf("%02x", key->key[i]);
313 		printf("\n");
314 	} else {
315 		printf("[Null key]\n");
316 	}
317 }
318 
319 static uint32_t
320 sctp_get_keylen(sctp_key_t * key)
321 {
322 	if (key != NULL)
323 		return (key->keylen);
324 	else
325 		return (0);
326 }
327 
328 /*
329  * generate a new random key of length 'keylen'
330  */
331 sctp_key_t *
332 sctp_generate_random_key(uint32_t keylen)
333 {
334 	sctp_key_t *new_key;
335 
336 	/* validate keylen */
337 	if (keylen > SCTP_AUTH_RANDOM_SIZE_MAX)
338 		keylen = SCTP_AUTH_RANDOM_SIZE_MAX;
339 
340 	new_key = sctp_alloc_key(keylen);
341 	if (new_key == NULL) {
342 		/* out of memory */
343 		return (NULL);
344 	}
345 	SCTP_READ_RANDOM(new_key->key, keylen);
346 	new_key->keylen = keylen;
347 	return (new_key);
348 }
349 
350 sctp_key_t *
351 sctp_set_key(uint8_t * key, uint32_t keylen)
352 {
353 	sctp_key_t *new_key;
354 
355 	new_key = sctp_alloc_key(keylen);
356 	if (new_key == NULL) {
357 		/* out of memory */
358 		return (NULL);
359 	}
360 	bcopy(key, new_key->key, keylen);
361 	return (new_key);
362 }
363 
364 /*-
365  * given two keys of variable size, compute which key is "larger/smaller"
366  * returns:  1 if key1 > key2
367  *          -1 if key1 < key2
368  *           0 if key1 = key2
369  */
370 static int
371 sctp_compare_key(sctp_key_t * key1, sctp_key_t * key2)
372 {
373 	uint32_t maxlen;
374 	uint32_t i;
375 	uint32_t key1len, key2len;
376 	uint8_t *key_1, *key_2;
377 	uint8_t temp[SCTP_AUTH_RANDOM_SIZE_MAX];
378 
379 	/* sanity/length check */
380 	key1len = sctp_get_keylen(key1);
381 	key2len = sctp_get_keylen(key2);
382 	if ((key1len == 0) && (key2len == 0))
383 		return (0);
384 	else if (key1len == 0)
385 		return (-1);
386 	else if (key2len == 0)
387 		return (1);
388 
389 	if (key1len != key2len) {
390 		if (key1len >= key2len)
391 			maxlen = key1len;
392 		else
393 			maxlen = key2len;
394 		bzero(temp, maxlen);
395 		if (key1len < maxlen) {
396 			/* prepend zeroes to key1 */
397 			bcopy(key1->key, temp + (maxlen - key1len), key1len);
398 			key_1 = temp;
399 			key_2 = key2->key;
400 		} else {
401 			/* prepend zeroes to key2 */
402 			bcopy(key2->key, temp + (maxlen - key2len), key2len);
403 			key_1 = key1->key;
404 			key_2 = temp;
405 		}
406 	} else {
407 		maxlen = key1len;
408 		key_1 = key1->key;
409 		key_2 = key2->key;
410 	}
411 
412 	for (i = 0; i < maxlen; i++) {
413 		if (*key_1 > *key_2)
414 			return (1);
415 		else if (*key_1 < *key_2)
416 			return (-1);
417 		key_1++;
418 		key_2++;
419 	}
420 
421 	/* keys are equal value, so check lengths */
422 	if (key1len == key2len)
423 		return (0);
424 	else if (key1len < key2len)
425 		return (-1);
426 	else
427 		return (1);
428 }
429 
430 /*
431  * generate the concatenated keying material based on the two keys and the
432  * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
433  * order for concatenation
434  */
435 sctp_key_t *
436 sctp_compute_hashkey(sctp_key_t * key1, sctp_key_t * key2, sctp_key_t * shared)
437 {
438 	uint32_t keylen;
439 	sctp_key_t *new_key;
440 	uint8_t *key_ptr;
441 
442 	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
443 	    sctp_get_keylen(shared);
444 
445 	if (keylen > 0) {
446 		/* get space for the new key */
447 		new_key = sctp_alloc_key(keylen);
448 		if (new_key == NULL) {
449 			/* out of memory */
450 			return (NULL);
451 		}
452 		new_key->keylen = keylen;
453 		key_ptr = new_key->key;
454 	} else {
455 		/* all keys empty/null?! */
456 		return (NULL);
457 	}
458 
459 	/* concatenate the keys */
460 	if (sctp_compare_key(key1, key2) <= 0) {
461 		/* key is shared + key1 + key2 */
462 		if (sctp_get_keylen(shared)) {
463 			bcopy(shared->key, key_ptr, shared->keylen);
464 			key_ptr += shared->keylen;
465 		}
466 		if (sctp_get_keylen(key1)) {
467 			bcopy(key1->key, key_ptr, key1->keylen);
468 			key_ptr += key1->keylen;
469 		}
470 		if (sctp_get_keylen(key2)) {
471 			bcopy(key2->key, key_ptr, key2->keylen);
472 			key_ptr += key2->keylen;
473 		}
474 	} else {
475 		/* key is shared + key2 + key1 */
476 		if (sctp_get_keylen(shared)) {
477 			bcopy(shared->key, key_ptr, shared->keylen);
478 			key_ptr += shared->keylen;
479 		}
480 		if (sctp_get_keylen(key2)) {
481 			bcopy(key2->key, key_ptr, key2->keylen);
482 			key_ptr += key2->keylen;
483 		}
484 		if (sctp_get_keylen(key1)) {
485 			bcopy(key1->key, key_ptr, key1->keylen);
486 			key_ptr += key1->keylen;
487 		}
488 	}
489 	return (new_key);
490 }
491 
492 
493 sctp_sharedkey_t *
494 sctp_alloc_sharedkey(void)
495 {
496 	sctp_sharedkey_t *new_key;
497 
498 	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
499 	    SCTP_M_AUTH_KY);
500 	if (new_key == NULL) {
501 		/* out of memory */
502 		return (NULL);
503 	}
504 	new_key->keyid = 0;
505 	new_key->key = NULL;
506 	new_key->refcount = 1;
507 	new_key->deactivated = 0;
508 	return (new_key);
509 }
510 
511 void
512 sctp_free_sharedkey(sctp_sharedkey_t * skey)
513 {
514 	if (skey == NULL)
515 		return;
516 
517 	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
518 		if (skey->key != NULL)
519 			sctp_free_key(skey->key);
520 		SCTP_FREE(skey, SCTP_M_AUTH_KY);
521 	}
522 }
523 
524 sctp_sharedkey_t *
525 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
526 {
527 	sctp_sharedkey_t *skey;
528 
529 	LIST_FOREACH(skey, shared_keys, next) {
530 		if (skey->keyid == key_id)
531 			return (skey);
532 	}
533 	return (NULL);
534 }
535 
536 int
537 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
538     sctp_sharedkey_t * new_skey)
539 {
540 	sctp_sharedkey_t *skey;
541 
542 	if ((shared_keys == NULL) || (new_skey == NULL))
543 		return (EINVAL);
544 
545 	/* insert into an empty list? */
546 	if (LIST_EMPTY(shared_keys)) {
547 		LIST_INSERT_HEAD(shared_keys, new_skey, next);
548 		return (0);
549 	}
550 	/* insert into the existing list, ordered by key id */
551 	LIST_FOREACH(skey, shared_keys, next) {
552 		if (new_skey->keyid < skey->keyid) {
553 			/* insert it before here */
554 			LIST_INSERT_BEFORE(skey, new_skey, next);
555 			return (0);
556 		} else if (new_skey->keyid == skey->keyid) {
557 			/* replace the existing key */
558 			/* verify this key *can* be replaced */
559 			if ((skey->deactivated) && (skey->refcount > 1)) {
560 				SCTPDBG(SCTP_DEBUG_AUTH1,
561 				    "can't replace shared key id %u\n",
562 				    new_skey->keyid);
563 				return (EBUSY);
564 			}
565 			SCTPDBG(SCTP_DEBUG_AUTH1,
566 			    "replacing shared key id %u\n",
567 			    new_skey->keyid);
568 			LIST_INSERT_BEFORE(skey, new_skey, next);
569 			LIST_REMOVE(skey, next);
570 			sctp_free_sharedkey(skey);
571 			return (0);
572 		}
573 		if (LIST_NEXT(skey, next) == NULL) {
574 			/* belongs at the end of the list */
575 			LIST_INSERT_AFTER(skey, new_skey, next);
576 			return (0);
577 		}
578 	}
579 	/* shouldn't reach here */
580 	return (0);
581 }
582 
583 void
584 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
585 {
586 	sctp_sharedkey_t *skey;
587 
588 	/* find the shared key */
589 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
590 
591 	/* bump the ref count */
592 	if (skey) {
593 		atomic_add_int(&skey->refcount, 1);
594 		SCTPDBG(SCTP_DEBUG_AUTH2,
595 		    "%s: stcb %p key %u refcount acquire to %d\n",
596 		    __FUNCTION__, stcb, key_id, skey->refcount);
597 	}
598 }
599 
600 void
601 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked
602 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
603     SCTP_UNUSED
604 #endif
605 )
606 {
607 	sctp_sharedkey_t *skey;
608 
609 	/* find the shared key */
610 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
611 
612 	/* decrement the ref count */
613 	if (skey) {
614 		sctp_free_sharedkey(skey);
615 		SCTPDBG(SCTP_DEBUG_AUTH2,
616 		    "%s: stcb %p key %u refcount release to %d\n",
617 		    __FUNCTION__, stcb, key_id, skey->refcount);
618 
619 		/* see if a notification should be generated */
620 		if ((skey->refcount <= 1) && (skey->deactivated)) {
621 			/* notify ULP that key is no longer used */
622 			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
623 			    key_id, 0, so_locked);
624 			SCTPDBG(SCTP_DEBUG_AUTH2,
625 			    "%s: stcb %p key %u no longer used, %d\n",
626 			    __FUNCTION__, stcb, key_id, skey->refcount);
627 		}
628 	}
629 }
630 
631 static sctp_sharedkey_t *
632 sctp_copy_sharedkey(const sctp_sharedkey_t * skey)
633 {
634 	sctp_sharedkey_t *new_skey;
635 
636 	if (skey == NULL)
637 		return (NULL);
638 	new_skey = sctp_alloc_sharedkey();
639 	if (new_skey == NULL)
640 		return (NULL);
641 	if (skey->key != NULL)
642 		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
643 	else
644 		new_skey->key = NULL;
645 	new_skey->keyid = skey->keyid;
646 	return (new_skey);
647 }
648 
649 int
650 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
651 {
652 	sctp_sharedkey_t *skey, *new_skey;
653 	int count = 0;
654 
655 	if ((src == NULL) || (dest == NULL))
656 		return (0);
657 	LIST_FOREACH(skey, src, next) {
658 		new_skey = sctp_copy_sharedkey(skey);
659 		if (new_skey != NULL) {
660 			(void)sctp_insert_sharedkey(dest, new_skey);
661 			count++;
662 		}
663 	}
664 	return (count);
665 }
666 
667 
668 sctp_hmaclist_t *
669 sctp_alloc_hmaclist(uint8_t num_hmacs)
670 {
671 	sctp_hmaclist_t *new_list;
672 	int alloc_size;
673 
674 	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
675 	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
676 	    SCTP_M_AUTH_HL);
677 	if (new_list == NULL) {
678 		/* out of memory */
679 		return (NULL);
680 	}
681 	new_list->max_algo = num_hmacs;
682 	new_list->num_algo = 0;
683 	return (new_list);
684 }
685 
686 void
687 sctp_free_hmaclist(sctp_hmaclist_t * list)
688 {
689 	if (list != NULL) {
690 		SCTP_FREE(list, SCTP_M_AUTH_HL);
691 		list = NULL;
692 	}
693 }
694 
695 int
696 sctp_auth_add_hmacid(sctp_hmaclist_t * list, uint16_t hmac_id)
697 {
698 	int i;
699 
700 	if (list == NULL)
701 		return (-1);
702 	if (list->num_algo == list->max_algo) {
703 		SCTPDBG(SCTP_DEBUG_AUTH1,
704 		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
705 		return (-1);
706 	}
707 	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
708 #ifdef HAVE_SHA224
709 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA224) &&
710 #endif
711 #ifdef HAVE_SHA2
712 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256) &&
713 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA384) &&
714 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA512) &&
715 #endif
716 	    1) {
717 		return (-1);
718 	}
719 	/* Now is it already in the list */
720 	for (i = 0; i < list->num_algo; i++) {
721 		if (list->hmac[i] == hmac_id) {
722 			/* already in list */
723 			return (-1);
724 		}
725 	}
726 	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
727 	list->hmac[list->num_algo++] = hmac_id;
728 	return (0);
729 }
730 
731 sctp_hmaclist_t *
732 sctp_copy_hmaclist(sctp_hmaclist_t * list)
733 {
734 	sctp_hmaclist_t *new_list;
735 	int i;
736 
737 	if (list == NULL)
738 		return (NULL);
739 	/* get a new list */
740 	new_list = sctp_alloc_hmaclist(list->max_algo);
741 	if (new_list == NULL)
742 		return (NULL);
743 	/* copy it */
744 	new_list->max_algo = list->max_algo;
745 	new_list->num_algo = list->num_algo;
746 	for (i = 0; i < list->num_algo; i++)
747 		new_list->hmac[i] = list->hmac[i];
748 	return (new_list);
749 }
750 
751 sctp_hmaclist_t *
752 sctp_default_supported_hmaclist(void)
753 {
754 	sctp_hmaclist_t *new_list;
755 
756 	new_list = sctp_alloc_hmaclist(2);
757 	if (new_list == NULL)
758 		return (NULL);
759 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
760 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
761 	return (new_list);
762 }
763 
764 /*-
765  * HMAC algos are listed in priority/preference order
766  * find the best HMAC id to use for the peer based on local support
767  */
768 uint16_t
769 sctp_negotiate_hmacid(sctp_hmaclist_t * peer, sctp_hmaclist_t * local)
770 {
771 	int i, j;
772 
773 	if ((local == NULL) || (peer == NULL))
774 		return (SCTP_AUTH_HMAC_ID_RSVD);
775 
776 	for (i = 0; i < peer->num_algo; i++) {
777 		for (j = 0; j < local->num_algo; j++) {
778 			if (peer->hmac[i] == local->hmac[j]) {
779 				/* found the "best" one */
780 				SCTPDBG(SCTP_DEBUG_AUTH1,
781 				    "SCTP: negotiated peer HMAC id %u\n",
782 				    peer->hmac[i]);
783 				return (peer->hmac[i]);
784 			}
785 		}
786 	}
787 	/* didn't find one! */
788 	return (SCTP_AUTH_HMAC_ID_RSVD);
789 }
790 
791 /*-
792  * serialize the HMAC algo list and return space used
793  * caller must guarantee ptr has appropriate space
794  */
795 int
796 sctp_serialize_hmaclist(sctp_hmaclist_t * list, uint8_t * ptr)
797 {
798 	int i;
799 	uint16_t hmac_id;
800 
801 	if (list == NULL)
802 		return (0);
803 
804 	for (i = 0; i < list->num_algo; i++) {
805 		hmac_id = htons(list->hmac[i]);
806 		bcopy(&hmac_id, ptr, sizeof(hmac_id));
807 		ptr += sizeof(hmac_id);
808 	}
809 	return (list->num_algo * sizeof(hmac_id));
810 }
811 
812 int
813 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
814 {
815 	uint32_t i;
816 	uint16_t hmac_id;
817 	uint32_t sha1_supported = 0;
818 
819 	for (i = 0; i < num_hmacs; i++) {
820 		hmac_id = ntohs(hmacs->hmac_ids[i]);
821 		if (hmac_id == SCTP_AUTH_HMAC_ID_SHA1)
822 			sha1_supported = 1;
823 	}
824 	/* all HMAC id's are supported */
825 	if (sha1_supported == 0)
826 		return (-1);
827 	else
828 		return (0);
829 }
830 
831 sctp_authinfo_t *
832 sctp_alloc_authinfo(void)
833 {
834 	sctp_authinfo_t *new_authinfo;
835 
836 	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
837 	    SCTP_M_AUTH_IF);
838 
839 	if (new_authinfo == NULL) {
840 		/* out of memory */
841 		return (NULL);
842 	}
843 	bzero(new_authinfo, sizeof(*new_authinfo));
844 	return (new_authinfo);
845 }
846 
847 void
848 sctp_free_authinfo(sctp_authinfo_t * authinfo)
849 {
850 	if (authinfo == NULL)
851 		return;
852 
853 	if (authinfo->random != NULL)
854 		sctp_free_key(authinfo->random);
855 	if (authinfo->peer_random != NULL)
856 		sctp_free_key(authinfo->peer_random);
857 	if (authinfo->assoc_key != NULL)
858 		sctp_free_key(authinfo->assoc_key);
859 	if (authinfo->recv_key != NULL)
860 		sctp_free_key(authinfo->recv_key);
861 
862 	/* We are NOT dynamically allocating authinfo's right now... */
863 	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
864 }
865 
866 
867 uint32_t
868 sctp_get_auth_chunk_len(uint16_t hmac_algo)
869 {
870 	int size;
871 
872 	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
873 	return (SCTP_SIZE32(size));
874 }
875 
876 uint32_t
877 sctp_get_hmac_digest_len(uint16_t hmac_algo)
878 {
879 	switch (hmac_algo) {
880 	case SCTP_AUTH_HMAC_ID_SHA1:
881 		return (SCTP_AUTH_DIGEST_LEN_SHA1);
882 #ifdef HAVE_SHA224
883 	case SCTP_AUTH_HMAC_ID_SHA224:
884 		return (SCTP_AUTH_DIGEST_LEN_SHA224);
885 #endif
886 #ifdef HAVE_SHA2
887 	case SCTP_AUTH_HMAC_ID_SHA256:
888 		return (SCTP_AUTH_DIGEST_LEN_SHA256);
889 	case SCTP_AUTH_HMAC_ID_SHA384:
890 		return (SCTP_AUTH_DIGEST_LEN_SHA384);
891 	case SCTP_AUTH_HMAC_ID_SHA512:
892 		return (SCTP_AUTH_DIGEST_LEN_SHA512);
893 #endif
894 	default:
895 		/* unknown HMAC algorithm: can't do anything */
896 		return (0);
897 	}			/* end switch */
898 }
899 
900 static inline int
901 sctp_get_hmac_block_len(uint16_t hmac_algo)
902 {
903 	switch (hmac_algo) {
904 	case SCTP_AUTH_HMAC_ID_SHA1:
905 #ifdef HAVE_SHA224
906 	case SCTP_AUTH_HMAC_ID_SHA224:
907 #endif
908 		return (64);
909 #ifdef HAVE_SHA2
910 	case SCTP_AUTH_HMAC_ID_SHA256:
911 		return (64);
912 	case SCTP_AUTH_HMAC_ID_SHA384:
913 	case SCTP_AUTH_HMAC_ID_SHA512:
914 		return (128);
915 #endif
916 	case SCTP_AUTH_HMAC_ID_RSVD:
917 	default:
918 		/* unknown HMAC algorithm: can't do anything */
919 		return (0);
920 	}			/* end switch */
921 }
922 
923 static void
924 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t * ctx)
925 {
926 	switch (hmac_algo) {
927 	case SCTP_AUTH_HMAC_ID_SHA1:
928 		SHA1_Init(&ctx->sha1);
929 		break;
930 #ifdef HAVE_SHA224
931 	case SCTP_AUTH_HMAC_ID_SHA224:
932 		break;
933 #endif
934 #ifdef HAVE_SHA2
935 	case SCTP_AUTH_HMAC_ID_SHA256:
936 		SHA256_Init(&ctx->sha256);
937 		break;
938 	case SCTP_AUTH_HMAC_ID_SHA384:
939 		SHA384_Init(&ctx->sha384);
940 		break;
941 	case SCTP_AUTH_HMAC_ID_SHA512:
942 		SHA512_Init(&ctx->sha512);
943 		break;
944 #endif
945 	case SCTP_AUTH_HMAC_ID_RSVD:
946 	default:
947 		/* unknown HMAC algorithm: can't do anything */
948 		return;
949 	}			/* end switch */
950 }
951 
952 static void
953 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t * ctx,
954     uint8_t * text, uint32_t textlen)
955 {
956 	switch (hmac_algo) {
957 	case SCTP_AUTH_HMAC_ID_SHA1:
958 		SHA1_Update(&ctx->sha1, text, textlen);
959 		break;
960 #ifdef HAVE_SHA224
961 	case SCTP_AUTH_HMAC_ID_SHA224:
962 		break;
963 #endif
964 #ifdef HAVE_SHA2
965 	case SCTP_AUTH_HMAC_ID_SHA256:
966 		SHA256_Update(&ctx->sha256, text, textlen);
967 		break;
968 	case SCTP_AUTH_HMAC_ID_SHA384:
969 		SHA384_Update(&ctx->sha384, text, textlen);
970 		break;
971 	case SCTP_AUTH_HMAC_ID_SHA512:
972 		SHA512_Update(&ctx->sha512, text, textlen);
973 		break;
974 #endif
975 	case SCTP_AUTH_HMAC_ID_RSVD:
976 	default:
977 		/* unknown HMAC algorithm: can't do anything */
978 		return;
979 	}			/* end switch */
980 }
981 
982 static void
983 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t * ctx,
984     uint8_t * digest)
985 {
986 	switch (hmac_algo) {
987 	case SCTP_AUTH_HMAC_ID_SHA1:
988 		SHA1_Final(digest, &ctx->sha1);
989 		break;
990 #ifdef HAVE_SHA224
991 	case SCTP_AUTH_HMAC_ID_SHA224:
992 		break;
993 #endif
994 #ifdef HAVE_SHA2
995 	case SCTP_AUTH_HMAC_ID_SHA256:
996 		SHA256_Final(digest, &ctx->sha256);
997 		break;
998 	case SCTP_AUTH_HMAC_ID_SHA384:
999 		/* SHA384 is truncated SHA512 */
1000 		SHA384_Final(digest, &ctx->sha384);
1001 		break;
1002 	case SCTP_AUTH_HMAC_ID_SHA512:
1003 		SHA512_Final(digest, &ctx->sha512);
1004 		break;
1005 #endif
1006 	case SCTP_AUTH_HMAC_ID_RSVD:
1007 	default:
1008 		/* unknown HMAC algorithm: can't do anything */
1009 		return;
1010 	}			/* end switch */
1011 }
1012 
1013 /*-
1014  * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
1015  *
1016  * Compute the HMAC digest using the desired hash key, text, and HMAC
1017  * algorithm.  Resulting digest is placed in 'digest' and digest length
1018  * is returned, if the HMAC was performed.
1019  *
1020  * WARNING: it is up to the caller to supply sufficient space to hold the
1021  * resultant digest.
1022  */
1023 uint32_t
1024 sctp_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1025     uint8_t * text, uint32_t textlen, uint8_t * digest)
1026 {
1027 	uint32_t digestlen;
1028 	uint32_t blocklen;
1029 	sctp_hash_context_t ctx;
1030 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
1031 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1032 	uint32_t i;
1033 
1034 	/* sanity check the material and length */
1035 	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
1036 	    (textlen == 0) || (digest == NULL)) {
1037 		/* can't do HMAC with empty key or text or digest store */
1038 		return (0);
1039 	}
1040 	/* validate the hmac algo and get the digest length */
1041 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1042 	if (digestlen == 0)
1043 		return (0);
1044 
1045 	/* hash the key if it is longer than the hash block size */
1046 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1047 	if (keylen > blocklen) {
1048 		sctp_hmac_init(hmac_algo, &ctx);
1049 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1050 		sctp_hmac_final(hmac_algo, &ctx, temp);
1051 		/* set the hashed key as the key */
1052 		keylen = digestlen;
1053 		key = temp;
1054 	}
1055 	/* initialize the inner/outer pads with the key and "append" zeroes */
1056 	bzero(ipad, blocklen);
1057 	bzero(opad, blocklen);
1058 	bcopy(key, ipad, keylen);
1059 	bcopy(key, opad, keylen);
1060 
1061 	/* XOR the key with ipad and opad values */
1062 	for (i = 0; i < blocklen; i++) {
1063 		ipad[i] ^= 0x36;
1064 		opad[i] ^= 0x5c;
1065 	}
1066 
1067 	/* perform inner hash */
1068 	sctp_hmac_init(hmac_algo, &ctx);
1069 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1070 	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
1071 	sctp_hmac_final(hmac_algo, &ctx, temp);
1072 
1073 	/* perform outer hash */
1074 	sctp_hmac_init(hmac_algo, &ctx);
1075 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1076 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1077 	sctp_hmac_final(hmac_algo, &ctx, digest);
1078 
1079 	return (digestlen);
1080 }
1081 
1082 /* mbuf version */
1083 uint32_t
1084 sctp_hmac_m(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1085     struct mbuf *m, uint32_t m_offset, uint8_t * digest, uint32_t trailer)
1086 {
1087 	uint32_t digestlen;
1088 	uint32_t blocklen;
1089 	sctp_hash_context_t ctx;
1090 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
1091 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1092 	uint32_t i;
1093 	struct mbuf *m_tmp;
1094 
1095 	/* sanity check the material and length */
1096 	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
1097 		/* can't do HMAC with empty key or text or digest store */
1098 		return (0);
1099 	}
1100 	/* validate the hmac algo and get the digest length */
1101 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1102 	if (digestlen == 0)
1103 		return (0);
1104 
1105 	/* hash the key if it is longer than the hash block size */
1106 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1107 	if (keylen > blocklen) {
1108 		sctp_hmac_init(hmac_algo, &ctx);
1109 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1110 		sctp_hmac_final(hmac_algo, &ctx, temp);
1111 		/* set the hashed key as the key */
1112 		keylen = digestlen;
1113 		key = temp;
1114 	}
1115 	/* initialize the inner/outer pads with the key and "append" zeroes */
1116 	bzero(ipad, blocklen);
1117 	bzero(opad, blocklen);
1118 	bcopy(key, ipad, keylen);
1119 	bcopy(key, opad, keylen);
1120 
1121 	/* XOR the key with ipad and opad values */
1122 	for (i = 0; i < blocklen; i++) {
1123 		ipad[i] ^= 0x36;
1124 		opad[i] ^= 0x5c;
1125 	}
1126 
1127 	/* perform inner hash */
1128 	sctp_hmac_init(hmac_algo, &ctx);
1129 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1130 	/* find the correct starting mbuf and offset (get start of text) */
1131 	m_tmp = m;
1132 	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1133 		m_offset -= SCTP_BUF_LEN(m_tmp);
1134 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1135 	}
1136 	/* now use the rest of the mbuf chain for the text */
1137 	while (m_tmp != NULL) {
1138 		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1139 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1140 			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1141 		} else {
1142 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1143 			    SCTP_BUF_LEN(m_tmp) - m_offset);
1144 		}
1145 
1146 		/* clear the offset since it's only for the first mbuf */
1147 		m_offset = 0;
1148 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1149 	}
1150 	sctp_hmac_final(hmac_algo, &ctx, temp);
1151 
1152 	/* perform outer hash */
1153 	sctp_hmac_init(hmac_algo, &ctx);
1154 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1155 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1156 	sctp_hmac_final(hmac_algo, &ctx, digest);
1157 
1158 	return (digestlen);
1159 }
1160 
1161 /*-
1162  * verify the HMAC digest using the desired hash key, text, and HMAC
1163  * algorithm.
1164  * Returns -1 on error, 0 on success.
1165  */
1166 int
1167 sctp_verify_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1168     uint8_t * text, uint32_t textlen,
1169     uint8_t * digest, uint32_t digestlen)
1170 {
1171 	uint32_t len;
1172 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1173 
1174 	/* sanity check the material and length */
1175 	if ((key == NULL) || (keylen == 0) ||
1176 	    (text == NULL) || (textlen == 0) || (digest == NULL)) {
1177 		/* can't do HMAC with empty key or text or digest */
1178 		return (-1);
1179 	}
1180 	len = sctp_get_hmac_digest_len(hmac_algo);
1181 	if ((len == 0) || (digestlen != len))
1182 		return (-1);
1183 
1184 	/* compute the expected hash */
1185 	if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len)
1186 		return (-1);
1187 
1188 	if (memcmp(digest, temp, digestlen) != 0)
1189 		return (-1);
1190 	else
1191 		return (0);
1192 }
1193 
1194 
1195 /*
1196  * computes the requested HMAC using a key struct (which may be modified if
1197  * the keylen exceeds the HMAC block len).
1198  */
1199 uint32_t
1200 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t * key, uint8_t * text,
1201     uint32_t textlen, uint8_t * digest)
1202 {
1203 	uint32_t digestlen;
1204 	uint32_t blocklen;
1205 	sctp_hash_context_t ctx;
1206 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1207 
1208 	/* sanity check */
1209 	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1210 	    (digest == NULL)) {
1211 		/* can't do HMAC with empty key or text or digest store */
1212 		return (0);
1213 	}
1214 	/* validate the hmac algo and get the digest length */
1215 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1216 	if (digestlen == 0)
1217 		return (0);
1218 
1219 	/* hash the key if it is longer than the hash block size */
1220 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1221 	if (key->keylen > blocklen) {
1222 		sctp_hmac_init(hmac_algo, &ctx);
1223 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1224 		sctp_hmac_final(hmac_algo, &ctx, temp);
1225 		/* save the hashed key as the new key */
1226 		key->keylen = digestlen;
1227 		bcopy(temp, key->key, key->keylen);
1228 	}
1229 	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1230 	    digest));
1231 }
1232 
1233 /* mbuf version */
1234 uint32_t
1235 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t * key, struct mbuf *m,
1236     uint32_t m_offset, uint8_t * digest)
1237 {
1238 	uint32_t digestlen;
1239 	uint32_t blocklen;
1240 	sctp_hash_context_t ctx;
1241 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1242 
1243 	/* sanity check */
1244 	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1245 		/* can't do HMAC with empty key or text or digest store */
1246 		return (0);
1247 	}
1248 	/* validate the hmac algo and get the digest length */
1249 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1250 	if (digestlen == 0)
1251 		return (0);
1252 
1253 	/* hash the key if it is longer than the hash block size */
1254 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1255 	if (key->keylen > blocklen) {
1256 		sctp_hmac_init(hmac_algo, &ctx);
1257 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1258 		sctp_hmac_final(hmac_algo, &ctx, temp);
1259 		/* save the hashed key as the new key */
1260 		key->keylen = digestlen;
1261 		bcopy(temp, key->key, key->keylen);
1262 	}
1263 	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1264 }
1265 
1266 int
1267 sctp_auth_is_supported_hmac(sctp_hmaclist_t * list, uint16_t id)
1268 {
1269 	int i;
1270 
1271 	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1272 		return (0);
1273 
1274 	for (i = 0; i < list->num_algo; i++)
1275 		if (list->hmac[i] == id)
1276 			return (1);
1277 
1278 	/* not in the list */
1279 	return (0);
1280 }
1281 
1282 
1283 /*-
1284  * clear any cached key(s) if they match the given key id on an association.
1285  * the cached key(s) will be recomputed and re-cached at next use.
1286  * ASSUMES TCB_LOCK is already held
1287  */
1288 void
1289 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1290 {
1291 	if (stcb == NULL)
1292 		return;
1293 
1294 	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1295 		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1296 		stcb->asoc.authinfo.assoc_key = NULL;
1297 	}
1298 	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1299 		sctp_free_key(stcb->asoc.authinfo.recv_key);
1300 		stcb->asoc.authinfo.recv_key = NULL;
1301 	}
1302 }
1303 
1304 /*-
1305  * clear any cached key(s) if they match the given key id for all assocs on
1306  * an endpoint.
1307  * ASSUMES INP_WLOCK is already held
1308  */
1309 void
1310 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1311 {
1312 	struct sctp_tcb *stcb;
1313 
1314 	if (inp == NULL)
1315 		return;
1316 
1317 	/* clear the cached keys on all assocs on this instance */
1318 	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1319 		SCTP_TCB_LOCK(stcb);
1320 		sctp_clear_cachedkeys(stcb, keyid);
1321 		SCTP_TCB_UNLOCK(stcb);
1322 	}
1323 }
1324 
1325 /*-
1326  * delete a shared key from an association
1327  * ASSUMES TCB_LOCK is already held
1328  */
1329 int
1330 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1331 {
1332 	sctp_sharedkey_t *skey;
1333 
1334 	if (stcb == NULL)
1335 		return (-1);
1336 
1337 	/* is the keyid the assoc active sending key */
1338 	if (keyid == stcb->asoc.authinfo.active_keyid)
1339 		return (-1);
1340 
1341 	/* does the key exist? */
1342 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1343 	if (skey == NULL)
1344 		return (-1);
1345 
1346 	/* are there other refcount holders on the key? */
1347 	if (skey->refcount > 1)
1348 		return (-1);
1349 
1350 	/* remove it */
1351 	LIST_REMOVE(skey, next);
1352 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1353 
1354 	/* clear any cached keys */
1355 	sctp_clear_cachedkeys(stcb, keyid);
1356 	return (0);
1357 }
1358 
1359 /*-
1360  * deletes a shared key from the endpoint
1361  * ASSUMES INP_WLOCK is already held
1362  */
1363 int
1364 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1365 {
1366 	sctp_sharedkey_t *skey;
1367 
1368 	if (inp == NULL)
1369 		return (-1);
1370 
1371 	/* is the keyid the active sending key on the endpoint */
1372 	if (keyid == inp->sctp_ep.default_keyid)
1373 		return (-1);
1374 
1375 	/* does the key exist? */
1376 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1377 	if (skey == NULL)
1378 		return (-1);
1379 
1380 	/* endpoint keys are not refcounted */
1381 
1382 	/* remove it */
1383 	LIST_REMOVE(skey, next);
1384 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1385 
1386 	/* clear any cached keys */
1387 	sctp_clear_cachedkeys_ep(inp, keyid);
1388 	return (0);
1389 }
1390 
1391 /*-
1392  * set the active key on an association
1393  * ASSUMES TCB_LOCK is already held
1394  */
1395 int
1396 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1397 {
1398 	sctp_sharedkey_t *skey = NULL;
1399 
1400 	/* find the key on the assoc */
1401 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1402 	if (skey == NULL) {
1403 		/* that key doesn't exist */
1404 		return (-1);
1405 	}
1406 	if ((skey->deactivated) && (skey->refcount > 1)) {
1407 		/* can't reactivate a deactivated key with other refcounts */
1408 		return (-1);
1409 	}
1410 	/* set the (new) active key */
1411 	stcb->asoc.authinfo.active_keyid = keyid;
1412 	/* reset the deactivated flag */
1413 	skey->deactivated = 0;
1414 
1415 	return (0);
1416 }
1417 
1418 /*-
1419  * set the active key on an endpoint
1420  * ASSUMES INP_WLOCK is already held
1421  */
1422 int
1423 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1424 {
1425 	sctp_sharedkey_t *skey;
1426 
1427 	/* find the key */
1428 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1429 	if (skey == NULL) {
1430 		/* that key doesn't exist */
1431 		return (-1);
1432 	}
1433 	inp->sctp_ep.default_keyid = keyid;
1434 	return (0);
1435 }
1436 
1437 /*-
1438  * deactivates a shared key from the association
1439  * ASSUMES INP_WLOCK is already held
1440  */
1441 int
1442 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1443 {
1444 	sctp_sharedkey_t *skey;
1445 
1446 	if (stcb == NULL)
1447 		return (-1);
1448 
1449 	/* is the keyid the assoc active sending key */
1450 	if (keyid == stcb->asoc.authinfo.active_keyid)
1451 		return (-1);
1452 
1453 	/* does the key exist? */
1454 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1455 	if (skey == NULL)
1456 		return (-1);
1457 
1458 	/* are there other refcount holders on the key? */
1459 	if (skey->refcount == 1) {
1460 		/* no other users, send a notification for this key */
1461 		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1462 		    SCTP_SO_LOCKED);
1463 	}
1464 	/* mark the key as deactivated */
1465 	skey->deactivated = 1;
1466 
1467 	return (0);
1468 }
1469 
1470 /*-
1471  * deactivates a shared key from the endpoint
1472  * ASSUMES INP_WLOCK is already held
1473  */
1474 int
1475 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1476 {
1477 	sctp_sharedkey_t *skey;
1478 
1479 	if (inp == NULL)
1480 		return (-1);
1481 
1482 	/* is the keyid the active sending key on the endpoint */
1483 	if (keyid == inp->sctp_ep.default_keyid)
1484 		return (-1);
1485 
1486 	/* does the key exist? */
1487 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1488 	if (skey == NULL)
1489 		return (-1);
1490 
1491 	/* endpoint keys are not refcounted */
1492 
1493 	/* remove it */
1494 	LIST_REMOVE(skey, next);
1495 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1496 
1497 	return (0);
1498 }
1499 
1500 /*
1501  * get local authentication parameters from cookie (from INIT-ACK)
1502  */
1503 void
1504 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1505     uint32_t offset, uint32_t length)
1506 {
1507 	struct sctp_paramhdr *phdr, tmp_param;
1508 	uint16_t plen, ptype;
1509 	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1510 	struct sctp_auth_random *p_random = NULL;
1511 	uint16_t random_len = 0;
1512 	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1513 	struct sctp_auth_hmac_algo *hmacs = NULL;
1514 	uint16_t hmacs_len = 0;
1515 	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1516 	struct sctp_auth_chunk_list *chunks = NULL;
1517 	uint16_t num_chunks = 0;
1518 	sctp_key_t *new_key;
1519 	uint32_t keylen;
1520 
1521 	/* convert to upper bound */
1522 	length += offset;
1523 
1524 	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1525 	    sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param);
1526 	while (phdr != NULL) {
1527 		ptype = ntohs(phdr->param_type);
1528 		plen = ntohs(phdr->param_length);
1529 
1530 		if ((plen == 0) || (offset + plen > length))
1531 			break;
1532 
1533 		if (ptype == SCTP_RANDOM) {
1534 			if (plen > sizeof(random_store))
1535 				break;
1536 			phdr = sctp_get_next_param(m, offset,
1537 			    (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store)));
1538 			if (phdr == NULL)
1539 				return;
1540 			/* save the random and length for the key */
1541 			p_random = (struct sctp_auth_random *)phdr;
1542 			random_len = plen - sizeof(*p_random);
1543 		} else if (ptype == SCTP_HMAC_LIST) {
1544 			int num_hmacs;
1545 			int i;
1546 
1547 			if (plen > sizeof(hmacs_store))
1548 				break;
1549 			phdr = sctp_get_next_param(m, offset,
1550 			    (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store)));
1551 			if (phdr == NULL)
1552 				return;
1553 			/* save the hmacs list and num for the key */
1554 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1555 			hmacs_len = plen - sizeof(*hmacs);
1556 			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1557 			if (stcb->asoc.local_hmacs != NULL)
1558 				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1559 			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1560 			if (stcb->asoc.local_hmacs != NULL) {
1561 				for (i = 0; i < num_hmacs; i++) {
1562 					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1563 					    ntohs(hmacs->hmac_ids[i]));
1564 				}
1565 			}
1566 		} else if (ptype == SCTP_CHUNK_LIST) {
1567 			int i;
1568 
1569 			if (plen > sizeof(chunks_store))
1570 				break;
1571 			phdr = sctp_get_next_param(m, offset,
1572 			    (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store)));
1573 			if (phdr == NULL)
1574 				return;
1575 			chunks = (struct sctp_auth_chunk_list *)phdr;
1576 			num_chunks = plen - sizeof(*chunks);
1577 			/* save chunks list and num for the key */
1578 			if (stcb->asoc.local_auth_chunks != NULL)
1579 				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1580 			else
1581 				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1582 			for (i = 0; i < num_chunks; i++) {
1583 				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1584 				    stcb->asoc.local_auth_chunks);
1585 			}
1586 		}
1587 		/* get next parameter */
1588 		offset += SCTP_SIZE32(plen);
1589 		if (offset + sizeof(struct sctp_paramhdr) > length)
1590 			break;
1591 		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1592 		    (uint8_t *) & tmp_param);
1593 	}
1594 	/* concatenate the full random key */
1595 	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1596 	if (chunks != NULL) {
1597 		keylen += sizeof(*chunks) + num_chunks;
1598 	}
1599 	new_key = sctp_alloc_key(keylen);
1600 	if (new_key != NULL) {
1601 		/* copy in the RANDOM */
1602 		if (p_random != NULL) {
1603 			keylen = sizeof(*p_random) + random_len;
1604 			bcopy(p_random, new_key->key, keylen);
1605 		}
1606 		/* append in the AUTH chunks */
1607 		if (chunks != NULL) {
1608 			bcopy(chunks, new_key->key + keylen,
1609 			    sizeof(*chunks) + num_chunks);
1610 			keylen += sizeof(*chunks) + num_chunks;
1611 		}
1612 		/* append in the HMACs */
1613 		if (hmacs != NULL) {
1614 			bcopy(hmacs, new_key->key + keylen,
1615 			    sizeof(*hmacs) + hmacs_len);
1616 		}
1617 	}
1618 	if (stcb->asoc.authinfo.random != NULL)
1619 		sctp_free_key(stcb->asoc.authinfo.random);
1620 	stcb->asoc.authinfo.random = new_key;
1621 	stcb->asoc.authinfo.random_len = random_len;
1622 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1623 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1624 
1625 	/* negotiate what HMAC to use for the peer */
1626 	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1627 	    stcb->asoc.local_hmacs);
1628 
1629 	/* copy defaults from the endpoint */
1630 	/* FIX ME: put in cookie? */
1631 	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1632 	/* copy out the shared key list (by reference) from the endpoint */
1633 	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1634 	    &stcb->asoc.shared_keys);
1635 }
1636 
1637 /*
1638  * compute and fill in the HMAC digest for a packet
1639  */
1640 void
1641 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1642     struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1643 {
1644 	uint32_t digestlen;
1645 	sctp_sharedkey_t *skey;
1646 	sctp_key_t *key;
1647 
1648 	if ((stcb == NULL) || (auth == NULL))
1649 		return;
1650 
1651 	/* zero the digest + chunk padding */
1652 	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1653 	bzero(auth->hmac, SCTP_SIZE32(digestlen));
1654 
1655 	/* is the desired key cached? */
1656 	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1657 	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1658 		if (stcb->asoc.authinfo.assoc_key != NULL) {
1659 			/* free the old cached key */
1660 			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1661 		}
1662 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1663 		/* the only way skey is NULL is if null key id 0 is used */
1664 		if (skey != NULL)
1665 			key = skey->key;
1666 		else
1667 			key = NULL;
1668 		/* compute a new assoc key and cache it */
1669 		stcb->asoc.authinfo.assoc_key =
1670 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1671 		    stcb->asoc.authinfo.peer_random, key);
1672 		stcb->asoc.authinfo.assoc_keyid = keyid;
1673 		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1674 		    stcb->asoc.authinfo.assoc_keyid);
1675 #ifdef SCTP_DEBUG
1676 		if (SCTP_AUTH_DEBUG)
1677 			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1678 			    "Assoc Key");
1679 #endif
1680 	}
1681 	/* set in the active key id */
1682 	auth->shared_key_id = htons(keyid);
1683 
1684 	/* compute and fill in the digest */
1685 	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1686 	    m, auth_offset, auth->hmac);
1687 }
1688 
1689 
1690 static void
1691 sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1692 {
1693 	struct mbuf *m_tmp;
1694 	uint8_t *data;
1695 
1696 	/* sanity check */
1697 	if (m == NULL)
1698 		return;
1699 
1700 	/* find the correct starting mbuf and offset (get start position) */
1701 	m_tmp = m;
1702 	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1703 		m_offset -= SCTP_BUF_LEN(m_tmp);
1704 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1705 	}
1706 	/* now use the rest of the mbuf chain */
1707 	while ((m_tmp != NULL) && (size > 0)) {
1708 		data = mtod(m_tmp, uint8_t *) + m_offset;
1709 		if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) {
1710 			bzero(data, SCTP_BUF_LEN(m_tmp));
1711 			size -= SCTP_BUF_LEN(m_tmp);
1712 		} else {
1713 			bzero(data, size);
1714 			size = 0;
1715 		}
1716 		/* clear the offset since it's only for the first mbuf */
1717 		m_offset = 0;
1718 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1719 	}
1720 }
1721 
1722 /*-
1723  * process the incoming Authentication chunk
1724  * return codes:
1725  *   -1 on any authentication error
1726  *    0 on authentication verification
1727  */
1728 int
1729 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1730     struct mbuf *m, uint32_t offset)
1731 {
1732 	uint16_t chunklen;
1733 	uint16_t shared_key_id;
1734 	uint16_t hmac_id;
1735 	sctp_sharedkey_t *skey;
1736 	uint32_t digestlen;
1737 	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1738 	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1739 
1740 	/* auth is checked for NULL by caller */
1741 	chunklen = ntohs(auth->ch.chunk_length);
1742 	if (chunklen < sizeof(*auth)) {
1743 		SCTP_STAT_INCR(sctps_recvauthfailed);
1744 		return (-1);
1745 	}
1746 	SCTP_STAT_INCR(sctps_recvauth);
1747 
1748 	/* get the auth params */
1749 	shared_key_id = ntohs(auth->shared_key_id);
1750 	hmac_id = ntohs(auth->hmac_id);
1751 	SCTPDBG(SCTP_DEBUG_AUTH1,
1752 	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1753 	    shared_key_id, hmac_id);
1754 
1755 	/* is the indicated HMAC supported? */
1756 	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1757 		struct mbuf *m_err;
1758 		struct sctp_auth_invalid_hmac *err;
1759 
1760 		SCTP_STAT_INCR(sctps_recvivalhmacid);
1761 		SCTPDBG(SCTP_DEBUG_AUTH1,
1762 		    "SCTP Auth: unsupported HMAC id %u\n",
1763 		    hmac_id);
1764 		/*
1765 		 * report this in an Error Chunk: Unsupported HMAC
1766 		 * Identifier
1767 		 */
1768 		m_err = sctp_get_mbuf_for_msg(sizeof(*err), 0, M_DONTWAIT,
1769 		    1, MT_HEADER);
1770 		if (m_err != NULL) {
1771 			/* pre-reserve some space */
1772 			SCTP_BUF_RESV_UF(m_err, sizeof(struct sctp_chunkhdr));
1773 			/* fill in the error */
1774 			err = mtod(m_err, struct sctp_auth_invalid_hmac *);
1775 			bzero(err, sizeof(*err));
1776 			err->ph.param_type = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1777 			err->ph.param_length = htons(sizeof(*err));
1778 			err->hmac_id = ntohs(hmac_id);
1779 			SCTP_BUF_LEN(m_err) = sizeof(*err);
1780 			/* queue it */
1781 			sctp_queue_op_err(stcb, m_err);
1782 		}
1783 		return (-1);
1784 	}
1785 	/* get the indicated shared key, if available */
1786 	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1787 	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1788 		/* find the shared key on the assoc first */
1789 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1790 		    shared_key_id);
1791 		/* if the shared key isn't found, discard the chunk */
1792 		if (skey == NULL) {
1793 			SCTP_STAT_INCR(sctps_recvivalkeyid);
1794 			SCTPDBG(SCTP_DEBUG_AUTH1,
1795 			    "SCTP Auth: unknown key id %u\n",
1796 			    shared_key_id);
1797 			return (-1);
1798 		}
1799 		/* generate a notification if this is a new key id */
1800 		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1801 			/*
1802 			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1803 			 * shared_key_id, (void
1804 			 * *)stcb->asoc.authinfo.recv_keyid);
1805 			 */
1806 			sctp_notify_authentication(stcb, SCTP_AUTH_NEWKEY,
1807 			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1808 			    SCTP_SO_NOT_LOCKED);
1809 		/* compute a new recv assoc key and cache it */
1810 		if (stcb->asoc.authinfo.recv_key != NULL)
1811 			sctp_free_key(stcb->asoc.authinfo.recv_key);
1812 		stcb->asoc.authinfo.recv_key =
1813 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1814 		    stcb->asoc.authinfo.peer_random, skey->key);
1815 		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1816 #ifdef SCTP_DEBUG
1817 		if (SCTP_AUTH_DEBUG)
1818 			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1819 #endif
1820 	}
1821 	/* validate the digest length */
1822 	digestlen = sctp_get_hmac_digest_len(hmac_id);
1823 	if (chunklen < (sizeof(*auth) + digestlen)) {
1824 		/* invalid digest length */
1825 		SCTP_STAT_INCR(sctps_recvauthfailed);
1826 		SCTPDBG(SCTP_DEBUG_AUTH1,
1827 		    "SCTP Auth: chunk too short for HMAC\n");
1828 		return (-1);
1829 	}
1830 	/* save a copy of the digest, zero the pseudo header, and validate */
1831 	bcopy(auth->hmac, digest, digestlen);
1832 	sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1833 	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1834 	    m, offset, computed_digest);
1835 
1836 	/* compare the computed digest with the one in the AUTH chunk */
1837 	if (memcmp(digest, computed_digest, digestlen) != 0) {
1838 		SCTP_STAT_INCR(sctps_recvauthfailed);
1839 		SCTPDBG(SCTP_DEBUG_AUTH1,
1840 		    "SCTP Auth: HMAC digest check failed\n");
1841 		return (-1);
1842 	}
1843 	return (0);
1844 }
1845 
1846 /*
1847  * Generate NOTIFICATION
1848  */
1849 void
1850 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1851     uint16_t keyid, uint16_t alt_keyid, int so_locked
1852 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
1853     SCTP_UNUSED
1854 #endif
1855 )
1856 {
1857 	struct mbuf *m_notify;
1858 	struct sctp_authkey_event *auth;
1859 	struct sctp_queued_to_read *control;
1860 
1861 	if ((stcb == NULL) ||
1862 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1863 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1864 	    (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1865 	    ) {
1866 		/* If the socket is gone we are out of here */
1867 		return;
1868 	}
1869 	if (sctp_is_feature_off(stcb->sctp_ep, SCTP_PCB_FLAGS_AUTHEVNT))
1870 		/* event not enabled */
1871 		return;
1872 
1873 	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1874 	    0, M_DONTWAIT, 1, MT_HEADER);
1875 	if (m_notify == NULL)
1876 		/* no space left */
1877 		return;
1878 
1879 	SCTP_BUF_LEN(m_notify) = 0;
1880 	auth = mtod(m_notify, struct sctp_authkey_event *);
1881 	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1882 	auth->auth_flags = 0;
1883 	auth->auth_length = sizeof(*auth);
1884 	auth->auth_keynumber = keyid;
1885 	auth->auth_altkeynumber = alt_keyid;
1886 	auth->auth_indication = indication;
1887 	auth->auth_assoc_id = sctp_get_associd(stcb);
1888 
1889 	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1890 	SCTP_BUF_NEXT(m_notify) = NULL;
1891 
1892 	/* append to socket */
1893 	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1894 	    0, 0, 0, 0, 0, 0, m_notify);
1895 	if (control == NULL) {
1896 		/* no memory */
1897 		sctp_m_freem(m_notify);
1898 		return;
1899 	}
1900 	control->spec_flags = M_NOTIFICATION;
1901 	control->length = SCTP_BUF_LEN(m_notify);
1902 	/* not that we need this */
1903 	control->tail_mbuf = m_notify;
1904 	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1905 	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1906 }
1907 
1908 
1909 /*-
1910  * validates the AUTHentication related parameters in an INIT/INIT-ACK
1911  * Note: currently only used for INIT as INIT-ACK is handled inline
1912  * with sctp_load_addresses_from_init()
1913  */
1914 int
1915 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1916 {
1917 	struct sctp_paramhdr *phdr, parm_buf;
1918 	uint16_t ptype, plen;
1919 	int peer_supports_asconf = 0;
1920 	int peer_supports_auth = 0;
1921 	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1922 	uint8_t saw_asconf = 0;
1923 	uint8_t saw_asconf_ack = 0;
1924 
1925 	/* go through each of the params. */
1926 	phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf));
1927 	while (phdr) {
1928 		ptype = ntohs(phdr->param_type);
1929 		plen = ntohs(phdr->param_length);
1930 
1931 		if (offset + plen > limit) {
1932 			break;
1933 		}
1934 		if (plen < sizeof(struct sctp_paramhdr)) {
1935 			break;
1936 		}
1937 		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1938 			/* A supported extension chunk */
1939 			struct sctp_supported_chunk_types_param *pr_supported;
1940 			uint8_t local_store[SCTP_PARAM_BUFFER_SIZE];
1941 			int num_ent, i;
1942 
1943 			phdr = sctp_get_next_param(m, offset,
1944 			    (struct sctp_paramhdr *)&local_store, min(plen, sizeof(local_store)));
1945 			if (phdr == NULL) {
1946 				return (-1);
1947 			}
1948 			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1949 			num_ent = plen - sizeof(struct sctp_paramhdr);
1950 			for (i = 0; i < num_ent; i++) {
1951 				switch (pr_supported->chunk_types[i]) {
1952 				case SCTP_ASCONF:
1953 				case SCTP_ASCONF_ACK:
1954 					peer_supports_asconf = 1;
1955 					break;
1956 				default:
1957 					/* one we don't care about */
1958 					break;
1959 				}
1960 			}
1961 		} else if (ptype == SCTP_RANDOM) {
1962 			got_random = 1;
1963 			/* enforce the random length */
1964 			if (plen != (sizeof(struct sctp_auth_random) +
1965 			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1966 				SCTPDBG(SCTP_DEBUG_AUTH1,
1967 				    "SCTP: invalid RANDOM len\n");
1968 				return (-1);
1969 			}
1970 		} else if (ptype == SCTP_HMAC_LIST) {
1971 			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1972 			struct sctp_auth_hmac_algo *hmacs;
1973 			int num_hmacs;
1974 
1975 			if (plen > sizeof(store))
1976 				break;
1977 			phdr = sctp_get_next_param(m, offset,
1978 			    (struct sctp_paramhdr *)store, min(plen, sizeof(store)));
1979 			if (phdr == NULL)
1980 				return (-1);
1981 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1982 			num_hmacs = (plen - sizeof(*hmacs)) /
1983 			    sizeof(hmacs->hmac_ids[0]);
1984 			/* validate the hmac list */
1985 			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1986 				SCTPDBG(SCTP_DEBUG_AUTH1,
1987 				    "SCTP: invalid HMAC param\n");
1988 				return (-1);
1989 			}
1990 			got_hmacs = 1;
1991 		} else if (ptype == SCTP_CHUNK_LIST) {
1992 			int i, num_chunks;
1993 			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1994 
1995 			/* did the peer send a non-empty chunk list? */
1996 			struct sctp_auth_chunk_list *chunks = NULL;
1997 
1998 			phdr = sctp_get_next_param(m, offset,
1999 			    (struct sctp_paramhdr *)chunks_store,
2000 			    min(plen, sizeof(chunks_store)));
2001 			if (phdr == NULL)
2002 				return (-1);
2003 
2004 			/*-
2005 			 * Flip through the list and mark that the
2006 			 * peer supports asconf/asconf_ack.
2007 			 */
2008 			chunks = (struct sctp_auth_chunk_list *)phdr;
2009 			num_chunks = plen - sizeof(*chunks);
2010 			for (i = 0; i < num_chunks; i++) {
2011 				/* record asconf/asconf-ack if listed */
2012 				if (chunks->chunk_types[i] == SCTP_ASCONF)
2013 					saw_asconf = 1;
2014 				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
2015 					saw_asconf_ack = 1;
2016 
2017 			}
2018 			if (num_chunks)
2019 				got_chklist = 1;
2020 		}
2021 		offset += SCTP_SIZE32(plen);
2022 		if (offset >= limit) {
2023 			break;
2024 		}
2025 		phdr = sctp_get_next_param(m, offset, &parm_buf,
2026 		    sizeof(parm_buf));
2027 	}
2028 	/* validate authentication required parameters */
2029 	if (got_random && got_hmacs) {
2030 		peer_supports_auth = 1;
2031 	} else {
2032 		peer_supports_auth = 0;
2033 	}
2034 	if (!peer_supports_auth && got_chklist) {
2035 		SCTPDBG(SCTP_DEBUG_AUTH1,
2036 		    "SCTP: peer sent chunk list w/o AUTH\n");
2037 		return (-1);
2038 	}
2039 	if (!SCTP_BASE_SYSCTL(sctp_asconf_auth_nochk) && peer_supports_asconf &&
2040 	    !peer_supports_auth) {
2041 		SCTPDBG(SCTP_DEBUG_AUTH1,
2042 		    "SCTP: peer supports ASCONF but not AUTH\n");
2043 		return (-1);
2044 	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
2045 	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
2046 		return (-2);
2047 	}
2048 	return (0);
2049 }
2050 
2051 void
2052 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
2053 {
2054 	uint16_t chunks_len = 0;
2055 	uint16_t hmacs_len = 0;
2056 	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
2057 	sctp_key_t *new_key;
2058 	uint16_t keylen;
2059 
2060 	/* initialize hmac list from endpoint */
2061 	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
2062 	if (stcb->asoc.local_hmacs != NULL) {
2063 		hmacs_len = stcb->asoc.local_hmacs->num_algo *
2064 		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
2065 	}
2066 	/* initialize auth chunks list from endpoint */
2067 	stcb->asoc.local_auth_chunks =
2068 	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
2069 	if (stcb->asoc.local_auth_chunks != NULL) {
2070 		int i;
2071 
2072 		for (i = 0; i < 256; i++) {
2073 			if (stcb->asoc.local_auth_chunks->chunks[i])
2074 				chunks_len++;
2075 		}
2076 	}
2077 	/* copy defaults from the endpoint */
2078 	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
2079 
2080 	/* copy out the shared key list (by reference) from the endpoint */
2081 	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
2082 	    &stcb->asoc.shared_keys);
2083 
2084 	/* now set the concatenated key (random + chunks + hmacs) */
2085 	/* key includes parameter headers */
2086 	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
2087 	    hmacs_len;
2088 	new_key = sctp_alloc_key(keylen);
2089 	if (new_key != NULL) {
2090 		struct sctp_paramhdr *ph;
2091 		int plen;
2092 
2093 		/* generate and copy in the RANDOM */
2094 		ph = (struct sctp_paramhdr *)new_key->key;
2095 		ph->param_type = htons(SCTP_RANDOM);
2096 		plen = sizeof(*ph) + random_len;
2097 		ph->param_length = htons(plen);
2098 		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
2099 		keylen = plen;
2100 
2101 		/* append in the AUTH chunks */
2102 		/* NOTE: currently we always have chunks to list */
2103 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2104 		ph->param_type = htons(SCTP_CHUNK_LIST);
2105 		plen = sizeof(*ph) + chunks_len;
2106 		ph->param_length = htons(plen);
2107 		keylen += sizeof(*ph);
2108 		if (stcb->asoc.local_auth_chunks) {
2109 			int i;
2110 
2111 			for (i = 0; i < 256; i++) {
2112 				if (stcb->asoc.local_auth_chunks->chunks[i])
2113 					new_key->key[keylen++] = i;
2114 			}
2115 		}
2116 		/* append in the HMACs */
2117 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2118 		ph->param_type = htons(SCTP_HMAC_LIST);
2119 		plen = sizeof(*ph) + hmacs_len;
2120 		ph->param_length = htons(plen);
2121 		keylen += sizeof(*ph);
2122 		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
2123 		    new_key->key + keylen);
2124 	}
2125 	if (stcb->asoc.authinfo.random != NULL)
2126 		sctp_free_key(stcb->asoc.authinfo.random);
2127 	stcb->asoc.authinfo.random = new_key;
2128 	stcb->asoc.authinfo.random_len = random_len;
2129 }
2130