xref: /freebsd/sys/netinet/sctp_auth.c (revision 7aa383846770374466b1dcb2cefd71bde9acf463)
1 /*-
2  * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * a) Redistributions of source code must retain the above copyright notice,
8  *   this list of conditions and the following disclaimer.
9  *
10  * b) Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *   the documentation and/or other materials provided with the distribution.
13  *
14  * c) Neither the name of Cisco Systems, Inc. nor the names of its
15  *    contributors may be used to endorse or promote products derived
16  *    from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <netinet/sctp_os.h>
35 #include <netinet/sctp.h>
36 #include <netinet/sctp_header.h>
37 #include <netinet/sctp_pcb.h>
38 #include <netinet/sctp_var.h>
39 #include <netinet/sctp_sysctl.h>
40 #include <netinet/sctputil.h>
41 #include <netinet/sctp_indata.h>
42 #include <netinet/sctp_output.h>
43 #include <netinet/sctp_auth.h>
44 
45 #ifdef SCTP_DEBUG
46 #define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
47 #define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
48 #endif				/* SCTP_DEBUG */
49 
50 
51 void
52 sctp_clear_chunklist(sctp_auth_chklist_t * chklist)
53 {
54 	bzero(chklist, sizeof(*chklist));
55 	/* chklist->num_chunks = 0; */
56 }
57 
58 sctp_auth_chklist_t *
59 sctp_alloc_chunklist(void)
60 {
61 	sctp_auth_chklist_t *chklist;
62 
63 	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
64 	    SCTP_M_AUTH_CL);
65 	if (chklist == NULL) {
66 		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
67 	} else {
68 		sctp_clear_chunklist(chklist);
69 	}
70 	return (chklist);
71 }
72 
73 void
74 sctp_free_chunklist(sctp_auth_chklist_t * list)
75 {
76 	if (list != NULL)
77 		SCTP_FREE(list, SCTP_M_AUTH_CL);
78 }
79 
80 sctp_auth_chklist_t *
81 sctp_copy_chunklist(sctp_auth_chklist_t * list)
82 {
83 	sctp_auth_chklist_t *new_list;
84 
85 	if (list == NULL)
86 		return (NULL);
87 
88 	/* get a new list */
89 	new_list = sctp_alloc_chunklist();
90 	if (new_list == NULL)
91 		return (NULL);
92 	/* copy it */
93 	bcopy(list, new_list, sizeof(*new_list));
94 
95 	return (new_list);
96 }
97 
98 
99 /*
100  * add a chunk to the required chunks list
101  */
102 int
103 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
104 {
105 	if (list == NULL)
106 		return (-1);
107 
108 	/* is chunk restricted? */
109 	if ((chunk == SCTP_INITIATION) ||
110 	    (chunk == SCTP_INITIATION_ACK) ||
111 	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
112 	    (chunk == SCTP_AUTHENTICATION)) {
113 		return (-1);
114 	}
115 	if (list->chunks[chunk] == 0) {
116 		list->chunks[chunk] = 1;
117 		list->num_chunks++;
118 		SCTPDBG(SCTP_DEBUG_AUTH1,
119 		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
120 		    chunk, chunk);
121 	}
122 	return (0);
123 }
124 
125 /*
126  * delete a chunk from the required chunks list
127  */
128 int
129 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
130 {
131 	if (list == NULL)
132 		return (-1);
133 
134 	/* is chunk restricted? */
135 	if ((chunk == SCTP_ASCONF) ||
136 	    (chunk == SCTP_ASCONF_ACK)) {
137 		return (-1);
138 	}
139 	if (list->chunks[chunk] == 1) {
140 		list->chunks[chunk] = 0;
141 		list->num_chunks--;
142 		SCTPDBG(SCTP_DEBUG_AUTH1,
143 		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
144 		    chunk, chunk);
145 	}
146 	return (0);
147 }
148 
149 size_t
150 sctp_auth_get_chklist_size(const sctp_auth_chklist_t * list)
151 {
152 	if (list == NULL)
153 		return (0);
154 	else
155 		return (list->num_chunks);
156 }
157 
158 /*
159  * set the default list of chunks requiring AUTH
160  */
161 void
162 sctp_auth_set_default_chunks(sctp_auth_chklist_t * list)
163 {
164 	(void)sctp_auth_add_chunk(SCTP_ASCONF, list);
165 	(void)sctp_auth_add_chunk(SCTP_ASCONF_ACK, list);
166 }
167 
168 /*
169  * return the current number and list of required chunks caller must
170  * guarantee ptr has space for up to 256 bytes
171  */
172 int
173 sctp_serialize_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
174 {
175 	int i, count = 0;
176 
177 	if (list == NULL)
178 		return (0);
179 
180 	for (i = 0; i < 256; i++) {
181 		if (list->chunks[i] != 0) {
182 			*ptr++ = i;
183 			count++;
184 		}
185 	}
186 	return (count);
187 }
188 
189 int
190 sctp_pack_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
191 {
192 	int i, size = 0;
193 
194 	if (list == NULL)
195 		return (0);
196 
197 	if (list->num_chunks <= 32) {
198 		/* just list them, one byte each */
199 		for (i = 0; i < 256; i++) {
200 			if (list->chunks[i] != 0) {
201 				*ptr++ = i;
202 				size++;
203 			}
204 		}
205 	} else {
206 		int index, offset;
207 
208 		/* pack into a 32 byte bitfield */
209 		for (i = 0; i < 256; i++) {
210 			if (list->chunks[i] != 0) {
211 				index = i / 8;
212 				offset = i % 8;
213 				ptr[index] |= (1 << offset);
214 			}
215 		}
216 		size = 32;
217 	}
218 	return (size);
219 }
220 
221 int
222 sctp_unpack_auth_chunks(const uint8_t * ptr, uint8_t num_chunks,
223     sctp_auth_chklist_t * list)
224 {
225 	int i;
226 	int size;
227 
228 	if (list == NULL)
229 		return (0);
230 
231 	if (num_chunks <= 32) {
232 		/* just pull them, one byte each */
233 		for (i = 0; i < num_chunks; i++) {
234 			(void)sctp_auth_add_chunk(*ptr++, list);
235 		}
236 		size = num_chunks;
237 	} else {
238 		int index, offset;
239 
240 		/* unpack from a 32 byte bitfield */
241 		for (index = 0; index < 32; index++) {
242 			for (offset = 0; offset < 8; offset++) {
243 				if (ptr[index] & (1 << offset)) {
244 					(void)sctp_auth_add_chunk((index * 8) + offset, list);
245 				}
246 			}
247 		}
248 		size = 32;
249 	}
250 	return (size);
251 }
252 
253 
254 /*
255  * allocate structure space for a key of length keylen
256  */
257 sctp_key_t *
258 sctp_alloc_key(uint32_t keylen)
259 {
260 	sctp_key_t *new_key;
261 
262 	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
263 	    SCTP_M_AUTH_KY);
264 	if (new_key == NULL) {
265 		/* out of memory */
266 		return (NULL);
267 	}
268 	new_key->keylen = keylen;
269 	return (new_key);
270 }
271 
272 void
273 sctp_free_key(sctp_key_t * key)
274 {
275 	if (key != NULL)
276 		SCTP_FREE(key, SCTP_M_AUTH_KY);
277 }
278 
279 void
280 sctp_print_key(sctp_key_t * key, const char *str)
281 {
282 	uint32_t i;
283 
284 	if (key == NULL) {
285 		printf("%s: [Null key]\n", str);
286 		return;
287 	}
288 	printf("%s: len %u, ", str, key->keylen);
289 	if (key->keylen) {
290 		for (i = 0; i < key->keylen; i++)
291 			printf("%02x", key->key[i]);
292 		printf("\n");
293 	} else {
294 		printf("[Null key]\n");
295 	}
296 }
297 
298 void
299 sctp_show_key(sctp_key_t * key, const char *str)
300 {
301 	uint32_t i;
302 
303 	if (key == NULL) {
304 		printf("%s: [Null key]\n", str);
305 		return;
306 	}
307 	printf("%s: len %u, ", str, key->keylen);
308 	if (key->keylen) {
309 		for (i = 0; i < key->keylen; i++)
310 			printf("%02x", key->key[i]);
311 		printf("\n");
312 	} else {
313 		printf("[Null key]\n");
314 	}
315 }
316 
317 static uint32_t
318 sctp_get_keylen(sctp_key_t * key)
319 {
320 	if (key != NULL)
321 		return (key->keylen);
322 	else
323 		return (0);
324 }
325 
326 /*
327  * generate a new random key of length 'keylen'
328  */
329 sctp_key_t *
330 sctp_generate_random_key(uint32_t keylen)
331 {
332 	sctp_key_t *new_key;
333 
334 	/* validate keylen */
335 	if (keylen > SCTP_AUTH_RANDOM_SIZE_MAX)
336 		keylen = SCTP_AUTH_RANDOM_SIZE_MAX;
337 
338 	new_key = sctp_alloc_key(keylen);
339 	if (new_key == NULL) {
340 		/* out of memory */
341 		return (NULL);
342 	}
343 	SCTP_READ_RANDOM(new_key->key, keylen);
344 	new_key->keylen = keylen;
345 	return (new_key);
346 }
347 
348 sctp_key_t *
349 sctp_set_key(uint8_t * key, uint32_t keylen)
350 {
351 	sctp_key_t *new_key;
352 
353 	new_key = sctp_alloc_key(keylen);
354 	if (new_key == NULL) {
355 		/* out of memory */
356 		return (NULL);
357 	}
358 	bcopy(key, new_key->key, keylen);
359 	return (new_key);
360 }
361 
362 /*-
363  * given two keys of variable size, compute which key is "larger/smaller"
364  * returns:  1 if key1 > key2
365  *          -1 if key1 < key2
366  *           0 if key1 = key2
367  */
368 static int
369 sctp_compare_key(sctp_key_t * key1, sctp_key_t * key2)
370 {
371 	uint32_t maxlen;
372 	uint32_t i;
373 	uint32_t key1len, key2len;
374 	uint8_t *key_1, *key_2;
375 	uint8_t temp[SCTP_AUTH_RANDOM_SIZE_MAX];
376 
377 	/* sanity/length check */
378 	key1len = sctp_get_keylen(key1);
379 	key2len = sctp_get_keylen(key2);
380 	if ((key1len == 0) && (key2len == 0))
381 		return (0);
382 	else if (key1len == 0)
383 		return (-1);
384 	else if (key2len == 0)
385 		return (1);
386 
387 	if (key1len != key2len) {
388 		if (key1len >= key2len)
389 			maxlen = key1len;
390 		else
391 			maxlen = key2len;
392 		bzero(temp, maxlen);
393 		if (key1len < maxlen) {
394 			/* prepend zeroes to key1 */
395 			bcopy(key1->key, temp + (maxlen - key1len), key1len);
396 			key_1 = temp;
397 			key_2 = key2->key;
398 		} else {
399 			/* prepend zeroes to key2 */
400 			bcopy(key2->key, temp + (maxlen - key2len), key2len);
401 			key_1 = key1->key;
402 			key_2 = temp;
403 		}
404 	} else {
405 		maxlen = key1len;
406 		key_1 = key1->key;
407 		key_2 = key2->key;
408 	}
409 
410 	for (i = 0; i < maxlen; i++) {
411 		if (*key_1 > *key_2)
412 			return (1);
413 		else if (*key_1 < *key_2)
414 			return (-1);
415 		key_1++;
416 		key_2++;
417 	}
418 
419 	/* keys are equal value, so check lengths */
420 	if (key1len == key2len)
421 		return (0);
422 	else if (key1len < key2len)
423 		return (-1);
424 	else
425 		return (1);
426 }
427 
428 /*
429  * generate the concatenated keying material based on the two keys and the
430  * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
431  * order for concatenation
432  */
433 sctp_key_t *
434 sctp_compute_hashkey(sctp_key_t * key1, sctp_key_t * key2, sctp_key_t * shared)
435 {
436 	uint32_t keylen;
437 	sctp_key_t *new_key;
438 	uint8_t *key_ptr;
439 
440 	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
441 	    sctp_get_keylen(shared);
442 
443 	if (keylen > 0) {
444 		/* get space for the new key */
445 		new_key = sctp_alloc_key(keylen);
446 		if (new_key == NULL) {
447 			/* out of memory */
448 			return (NULL);
449 		}
450 		new_key->keylen = keylen;
451 		key_ptr = new_key->key;
452 	} else {
453 		/* all keys empty/null?! */
454 		return (NULL);
455 	}
456 
457 	/* concatenate the keys */
458 	if (sctp_compare_key(key1, key2) <= 0) {
459 		/* key is shared + key1 + key2 */
460 		if (sctp_get_keylen(shared)) {
461 			bcopy(shared->key, key_ptr, shared->keylen);
462 			key_ptr += shared->keylen;
463 		}
464 		if (sctp_get_keylen(key1)) {
465 			bcopy(key1->key, key_ptr, key1->keylen);
466 			key_ptr += key1->keylen;
467 		}
468 		if (sctp_get_keylen(key2)) {
469 			bcopy(key2->key, key_ptr, key2->keylen);
470 			key_ptr += key2->keylen;
471 		}
472 	} else {
473 		/* key is shared + key2 + key1 */
474 		if (sctp_get_keylen(shared)) {
475 			bcopy(shared->key, key_ptr, shared->keylen);
476 			key_ptr += shared->keylen;
477 		}
478 		if (sctp_get_keylen(key2)) {
479 			bcopy(key2->key, key_ptr, key2->keylen);
480 			key_ptr += key2->keylen;
481 		}
482 		if (sctp_get_keylen(key1)) {
483 			bcopy(key1->key, key_ptr, key1->keylen);
484 			key_ptr += key1->keylen;
485 		}
486 	}
487 	return (new_key);
488 }
489 
490 
491 sctp_sharedkey_t *
492 sctp_alloc_sharedkey(void)
493 {
494 	sctp_sharedkey_t *new_key;
495 
496 	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
497 	    SCTP_M_AUTH_KY);
498 	if (new_key == NULL) {
499 		/* out of memory */
500 		return (NULL);
501 	}
502 	new_key->keyid = 0;
503 	new_key->key = NULL;
504 	new_key->refcount = 1;
505 	new_key->deactivated = 0;
506 	return (new_key);
507 }
508 
509 void
510 sctp_free_sharedkey(sctp_sharedkey_t * skey)
511 {
512 	if (skey == NULL)
513 		return;
514 
515 	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
516 		if (skey->key != NULL)
517 			sctp_free_key(skey->key);
518 		SCTP_FREE(skey, SCTP_M_AUTH_KY);
519 	}
520 }
521 
522 sctp_sharedkey_t *
523 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
524 {
525 	sctp_sharedkey_t *skey;
526 
527 	LIST_FOREACH(skey, shared_keys, next) {
528 		if (skey->keyid == key_id)
529 			return (skey);
530 	}
531 	return (NULL);
532 }
533 
534 int
535 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
536     sctp_sharedkey_t * new_skey)
537 {
538 	sctp_sharedkey_t *skey;
539 
540 	if ((shared_keys == NULL) || (new_skey == NULL))
541 		return (EINVAL);
542 
543 	/* insert into an empty list? */
544 	if (LIST_EMPTY(shared_keys)) {
545 		LIST_INSERT_HEAD(shared_keys, new_skey, next);
546 		return (0);
547 	}
548 	/* insert into the existing list, ordered by key id */
549 	LIST_FOREACH(skey, shared_keys, next) {
550 		if (new_skey->keyid < skey->keyid) {
551 			/* insert it before here */
552 			LIST_INSERT_BEFORE(skey, new_skey, next);
553 			return (0);
554 		} else if (new_skey->keyid == skey->keyid) {
555 			/* replace the existing key */
556 			/* verify this key *can* be replaced */
557 			if ((skey->deactivated) && (skey->refcount > 1)) {
558 				SCTPDBG(SCTP_DEBUG_AUTH1,
559 				    "can't replace shared key id %u\n",
560 				    new_skey->keyid);
561 				return (EBUSY);
562 			}
563 			SCTPDBG(SCTP_DEBUG_AUTH1,
564 			    "replacing shared key id %u\n",
565 			    new_skey->keyid);
566 			LIST_INSERT_BEFORE(skey, new_skey, next);
567 			LIST_REMOVE(skey, next);
568 			sctp_free_sharedkey(skey);
569 			return (0);
570 		}
571 		if (LIST_NEXT(skey, next) == NULL) {
572 			/* belongs at the end of the list */
573 			LIST_INSERT_AFTER(skey, new_skey, next);
574 			return (0);
575 		}
576 	}
577 	/* shouldn't reach here */
578 	return (0);
579 }
580 
581 void
582 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
583 {
584 	sctp_sharedkey_t *skey;
585 
586 	/* find the shared key */
587 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
588 
589 	/* bump the ref count */
590 	if (skey) {
591 		atomic_add_int(&skey->refcount, 1);
592 		SCTPDBG(SCTP_DEBUG_AUTH2,
593 		    "%s: stcb %p key %u refcount acquire to %d\n",
594 		    __FUNCTION__, stcb, key_id, skey->refcount);
595 	}
596 }
597 
598 void
599 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id)
600 {
601 	sctp_sharedkey_t *skey;
602 
603 	/* find the shared key */
604 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
605 
606 	/* decrement the ref count */
607 	if (skey) {
608 		sctp_free_sharedkey(skey);
609 		SCTPDBG(SCTP_DEBUG_AUTH2,
610 		    "%s: stcb %p key %u refcount release to %d\n",
611 		    __FUNCTION__, stcb, key_id, skey->refcount);
612 
613 		/* see if a notification should be generated */
614 		if ((skey->refcount <= 1) && (skey->deactivated)) {
615 			/* notify ULP that key is no longer used */
616 			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
617 			    key_id, 0, SCTP_SO_NOT_LOCKED);
618 			SCTPDBG(SCTP_DEBUG_AUTH2,
619 			    "%s: stcb %p key %u no longer used, %d\n",
620 			    __FUNCTION__, stcb, key_id, skey->refcount);
621 		}
622 	}
623 }
624 
625 static sctp_sharedkey_t *
626 sctp_copy_sharedkey(const sctp_sharedkey_t * skey)
627 {
628 	sctp_sharedkey_t *new_skey;
629 
630 	if (skey == NULL)
631 		return (NULL);
632 	new_skey = sctp_alloc_sharedkey();
633 	if (new_skey == NULL)
634 		return (NULL);
635 	if (skey->key != NULL)
636 		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
637 	else
638 		new_skey->key = NULL;
639 	new_skey->keyid = skey->keyid;
640 	return (new_skey);
641 }
642 
643 int
644 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
645 {
646 	sctp_sharedkey_t *skey, *new_skey;
647 	int count = 0;
648 
649 	if ((src == NULL) || (dest == NULL))
650 		return (0);
651 	LIST_FOREACH(skey, src, next) {
652 		new_skey = sctp_copy_sharedkey(skey);
653 		if (new_skey != NULL) {
654 			(void)sctp_insert_sharedkey(dest, new_skey);
655 			count++;
656 		}
657 	}
658 	return (count);
659 }
660 
661 
662 sctp_hmaclist_t *
663 sctp_alloc_hmaclist(uint8_t num_hmacs)
664 {
665 	sctp_hmaclist_t *new_list;
666 	int alloc_size;
667 
668 	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
669 	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
670 	    SCTP_M_AUTH_HL);
671 	if (new_list == NULL) {
672 		/* out of memory */
673 		return (NULL);
674 	}
675 	new_list->max_algo = num_hmacs;
676 	new_list->num_algo = 0;
677 	return (new_list);
678 }
679 
680 void
681 sctp_free_hmaclist(sctp_hmaclist_t * list)
682 {
683 	if (list != NULL) {
684 		SCTP_FREE(list, SCTP_M_AUTH_HL);
685 		list = NULL;
686 	}
687 }
688 
689 int
690 sctp_auth_add_hmacid(sctp_hmaclist_t * list, uint16_t hmac_id)
691 {
692 	int i;
693 
694 	if (list == NULL)
695 		return (-1);
696 	if (list->num_algo == list->max_algo) {
697 		SCTPDBG(SCTP_DEBUG_AUTH1,
698 		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
699 		return (-1);
700 	}
701 	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
702 #ifdef HAVE_SHA224
703 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA224) &&
704 #endif
705 #ifdef HAVE_SHA2
706 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256) &&
707 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA384) &&
708 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA512) &&
709 #endif
710 	    1) {
711 		return (-1);
712 	}
713 	/* Now is it already in the list */
714 	for (i = 0; i < list->num_algo; i++) {
715 		if (list->hmac[i] == hmac_id) {
716 			/* already in list */
717 			return (-1);
718 		}
719 	}
720 	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
721 	list->hmac[list->num_algo++] = hmac_id;
722 	return (0);
723 }
724 
725 sctp_hmaclist_t *
726 sctp_copy_hmaclist(sctp_hmaclist_t * list)
727 {
728 	sctp_hmaclist_t *new_list;
729 	int i;
730 
731 	if (list == NULL)
732 		return (NULL);
733 	/* get a new list */
734 	new_list = sctp_alloc_hmaclist(list->max_algo);
735 	if (new_list == NULL)
736 		return (NULL);
737 	/* copy it */
738 	new_list->max_algo = list->max_algo;
739 	new_list->num_algo = list->num_algo;
740 	for (i = 0; i < list->num_algo; i++)
741 		new_list->hmac[i] = list->hmac[i];
742 	return (new_list);
743 }
744 
745 sctp_hmaclist_t *
746 sctp_default_supported_hmaclist(void)
747 {
748 	sctp_hmaclist_t *new_list;
749 
750 	new_list = sctp_alloc_hmaclist(2);
751 	if (new_list == NULL)
752 		return (NULL);
753 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
754 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
755 	return (new_list);
756 }
757 
758 /*-
759  * HMAC algos are listed in priority/preference order
760  * find the best HMAC id to use for the peer based on local support
761  */
762 uint16_t
763 sctp_negotiate_hmacid(sctp_hmaclist_t * peer, sctp_hmaclist_t * local)
764 {
765 	int i, j;
766 
767 	if ((local == NULL) || (peer == NULL))
768 		return (SCTP_AUTH_HMAC_ID_RSVD);
769 
770 	for (i = 0; i < peer->num_algo; i++) {
771 		for (j = 0; j < local->num_algo; j++) {
772 			if (peer->hmac[i] == local->hmac[j]) {
773 				/* found the "best" one */
774 				SCTPDBG(SCTP_DEBUG_AUTH1,
775 				    "SCTP: negotiated peer HMAC id %u\n",
776 				    peer->hmac[i]);
777 				return (peer->hmac[i]);
778 			}
779 		}
780 	}
781 	/* didn't find one! */
782 	return (SCTP_AUTH_HMAC_ID_RSVD);
783 }
784 
785 /*-
786  * serialize the HMAC algo list and return space used
787  * caller must guarantee ptr has appropriate space
788  */
789 int
790 sctp_serialize_hmaclist(sctp_hmaclist_t * list, uint8_t * ptr)
791 {
792 	int i;
793 	uint16_t hmac_id;
794 
795 	if (list == NULL)
796 		return (0);
797 
798 	for (i = 0; i < list->num_algo; i++) {
799 		hmac_id = htons(list->hmac[i]);
800 		bcopy(&hmac_id, ptr, sizeof(hmac_id));
801 		ptr += sizeof(hmac_id);
802 	}
803 	return (list->num_algo * sizeof(hmac_id));
804 }
805 
806 int
807 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
808 {
809 	uint32_t i;
810 	uint16_t hmac_id;
811 	uint32_t sha1_supported = 0;
812 
813 	for (i = 0; i < num_hmacs; i++) {
814 		hmac_id = ntohs(hmacs->hmac_ids[i]);
815 		if (hmac_id == SCTP_AUTH_HMAC_ID_SHA1)
816 			sha1_supported = 1;
817 	}
818 	/* all HMAC id's are supported */
819 	if (sha1_supported == 0)
820 		return (-1);
821 	else
822 		return (0);
823 }
824 
825 sctp_authinfo_t *
826 sctp_alloc_authinfo(void)
827 {
828 	sctp_authinfo_t *new_authinfo;
829 
830 	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
831 	    SCTP_M_AUTH_IF);
832 
833 	if (new_authinfo == NULL) {
834 		/* out of memory */
835 		return (NULL);
836 	}
837 	bzero(new_authinfo, sizeof(*new_authinfo));
838 	return (new_authinfo);
839 }
840 
841 void
842 sctp_free_authinfo(sctp_authinfo_t * authinfo)
843 {
844 	if (authinfo == NULL)
845 		return;
846 
847 	if (authinfo->random != NULL)
848 		sctp_free_key(authinfo->random);
849 	if (authinfo->peer_random != NULL)
850 		sctp_free_key(authinfo->peer_random);
851 	if (authinfo->assoc_key != NULL)
852 		sctp_free_key(authinfo->assoc_key);
853 	if (authinfo->recv_key != NULL)
854 		sctp_free_key(authinfo->recv_key);
855 
856 	/* We are NOT dynamically allocating authinfo's right now... */
857 	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
858 }
859 
860 
861 uint32_t
862 sctp_get_auth_chunk_len(uint16_t hmac_algo)
863 {
864 	int size;
865 
866 	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
867 	return (SCTP_SIZE32(size));
868 }
869 
870 uint32_t
871 sctp_get_hmac_digest_len(uint16_t hmac_algo)
872 {
873 	switch (hmac_algo) {
874 	case SCTP_AUTH_HMAC_ID_SHA1:
875 		return (SCTP_AUTH_DIGEST_LEN_SHA1);
876 #ifdef HAVE_SHA224
877 	case SCTP_AUTH_HMAC_ID_SHA224:
878 		return (SCTP_AUTH_DIGEST_LEN_SHA224);
879 #endif
880 #ifdef HAVE_SHA2
881 	case SCTP_AUTH_HMAC_ID_SHA256:
882 		return (SCTP_AUTH_DIGEST_LEN_SHA256);
883 	case SCTP_AUTH_HMAC_ID_SHA384:
884 		return (SCTP_AUTH_DIGEST_LEN_SHA384);
885 	case SCTP_AUTH_HMAC_ID_SHA512:
886 		return (SCTP_AUTH_DIGEST_LEN_SHA512);
887 #endif
888 	default:
889 		/* unknown HMAC algorithm: can't do anything */
890 		return (0);
891 	}			/* end switch */
892 }
893 
894 static inline int
895 sctp_get_hmac_block_len(uint16_t hmac_algo)
896 {
897 	switch (hmac_algo) {
898 	case SCTP_AUTH_HMAC_ID_SHA1:
899 #ifdef HAVE_SHA224
900 	case SCTP_AUTH_HMAC_ID_SHA224:
901 #endif
902 		return (64);
903 #ifdef HAVE_SHA2
904 	case SCTP_AUTH_HMAC_ID_SHA256:
905 		return (64);
906 	case SCTP_AUTH_HMAC_ID_SHA384:
907 	case SCTP_AUTH_HMAC_ID_SHA512:
908 		return (128);
909 #endif
910 	case SCTP_AUTH_HMAC_ID_RSVD:
911 	default:
912 		/* unknown HMAC algorithm: can't do anything */
913 		return (0);
914 	}			/* end switch */
915 }
916 
917 static void
918 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t * ctx)
919 {
920 	switch (hmac_algo) {
921 	case SCTP_AUTH_HMAC_ID_SHA1:
922 		SHA1_Init(&ctx->sha1);
923 		break;
924 #ifdef HAVE_SHA224
925 	case SCTP_AUTH_HMAC_ID_SHA224:
926 		break;
927 #endif
928 #ifdef HAVE_SHA2
929 	case SCTP_AUTH_HMAC_ID_SHA256:
930 		SHA256_Init(&ctx->sha256);
931 		break;
932 	case SCTP_AUTH_HMAC_ID_SHA384:
933 		SHA384_Init(&ctx->sha384);
934 		break;
935 	case SCTP_AUTH_HMAC_ID_SHA512:
936 		SHA512_Init(&ctx->sha512);
937 		break;
938 #endif
939 	case SCTP_AUTH_HMAC_ID_RSVD:
940 	default:
941 		/* unknown HMAC algorithm: can't do anything */
942 		return;
943 	}			/* end switch */
944 }
945 
946 static void
947 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t * ctx,
948     uint8_t * text, uint32_t textlen)
949 {
950 	switch (hmac_algo) {
951 	case SCTP_AUTH_HMAC_ID_SHA1:
952 		SHA1_Update(&ctx->sha1, text, textlen);
953 		break;
954 #ifdef HAVE_SHA224
955 	case SCTP_AUTH_HMAC_ID_SHA224:
956 		break;
957 #endif
958 #ifdef HAVE_SHA2
959 	case SCTP_AUTH_HMAC_ID_SHA256:
960 		SHA256_Update(&ctx->sha256, text, textlen);
961 		break;
962 	case SCTP_AUTH_HMAC_ID_SHA384:
963 		SHA384_Update(&ctx->sha384, text, textlen);
964 		break;
965 	case SCTP_AUTH_HMAC_ID_SHA512:
966 		SHA512_Update(&ctx->sha512, text, textlen);
967 		break;
968 #endif
969 	case SCTP_AUTH_HMAC_ID_RSVD:
970 	default:
971 		/* unknown HMAC algorithm: can't do anything */
972 		return;
973 	}			/* end switch */
974 }
975 
976 static void
977 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t * ctx,
978     uint8_t * digest)
979 {
980 	switch (hmac_algo) {
981 	case SCTP_AUTH_HMAC_ID_SHA1:
982 		SHA1_Final(digest, &ctx->sha1);
983 		break;
984 #ifdef HAVE_SHA224
985 	case SCTP_AUTH_HMAC_ID_SHA224:
986 		break;
987 #endif
988 #ifdef HAVE_SHA2
989 	case SCTP_AUTH_HMAC_ID_SHA256:
990 		SHA256_Final(digest, &ctx->sha256);
991 		break;
992 	case SCTP_AUTH_HMAC_ID_SHA384:
993 		/* SHA384 is truncated SHA512 */
994 		SHA384_Final(digest, &ctx->sha384);
995 		break;
996 	case SCTP_AUTH_HMAC_ID_SHA512:
997 		SHA512_Final(digest, &ctx->sha512);
998 		break;
999 #endif
1000 	case SCTP_AUTH_HMAC_ID_RSVD:
1001 	default:
1002 		/* unknown HMAC algorithm: can't do anything */
1003 		return;
1004 	}			/* end switch */
1005 }
1006 
1007 /*-
1008  * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
1009  *
1010  * Compute the HMAC digest using the desired hash key, text, and HMAC
1011  * algorithm.  Resulting digest is placed in 'digest' and digest length
1012  * is returned, if the HMAC was performed.
1013  *
1014  * WARNING: it is up to the caller to supply sufficient space to hold the
1015  * resultant digest.
1016  */
1017 uint32_t
1018 sctp_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1019     uint8_t * text, uint32_t textlen, uint8_t * digest)
1020 {
1021 	uint32_t digestlen;
1022 	uint32_t blocklen;
1023 	sctp_hash_context_t ctx;
1024 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
1025 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1026 	uint32_t i;
1027 
1028 	/* sanity check the material and length */
1029 	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
1030 	    (textlen == 0) || (digest == NULL)) {
1031 		/* can't do HMAC with empty key or text or digest store */
1032 		return (0);
1033 	}
1034 	/* validate the hmac algo and get the digest length */
1035 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1036 	if (digestlen == 0)
1037 		return (0);
1038 
1039 	/* hash the key if it is longer than the hash block size */
1040 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1041 	if (keylen > blocklen) {
1042 		sctp_hmac_init(hmac_algo, &ctx);
1043 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1044 		sctp_hmac_final(hmac_algo, &ctx, temp);
1045 		/* set the hashed key as the key */
1046 		keylen = digestlen;
1047 		key = temp;
1048 	}
1049 	/* initialize the inner/outer pads with the key and "append" zeroes */
1050 	bzero(ipad, blocklen);
1051 	bzero(opad, blocklen);
1052 	bcopy(key, ipad, keylen);
1053 	bcopy(key, opad, keylen);
1054 
1055 	/* XOR the key with ipad and opad values */
1056 	for (i = 0; i < blocklen; i++) {
1057 		ipad[i] ^= 0x36;
1058 		opad[i] ^= 0x5c;
1059 	}
1060 
1061 	/* perform inner hash */
1062 	sctp_hmac_init(hmac_algo, &ctx);
1063 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1064 	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
1065 	sctp_hmac_final(hmac_algo, &ctx, temp);
1066 
1067 	/* perform outer hash */
1068 	sctp_hmac_init(hmac_algo, &ctx);
1069 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1070 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1071 	sctp_hmac_final(hmac_algo, &ctx, digest);
1072 
1073 	return (digestlen);
1074 }
1075 
1076 /* mbuf version */
1077 uint32_t
1078 sctp_hmac_m(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1079     struct mbuf *m, uint32_t m_offset, uint8_t * digest, uint32_t trailer)
1080 {
1081 	uint32_t digestlen;
1082 	uint32_t blocklen;
1083 	sctp_hash_context_t ctx;
1084 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
1085 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1086 	uint32_t i;
1087 	struct mbuf *m_tmp;
1088 
1089 	/* sanity check the material and length */
1090 	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
1091 		/* can't do HMAC with empty key or text or digest store */
1092 		return (0);
1093 	}
1094 	/* validate the hmac algo and get the digest length */
1095 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1096 	if (digestlen == 0)
1097 		return (0);
1098 
1099 	/* hash the key if it is longer than the hash block size */
1100 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1101 	if (keylen > blocklen) {
1102 		sctp_hmac_init(hmac_algo, &ctx);
1103 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1104 		sctp_hmac_final(hmac_algo, &ctx, temp);
1105 		/* set the hashed key as the key */
1106 		keylen = digestlen;
1107 		key = temp;
1108 	}
1109 	/* initialize the inner/outer pads with the key and "append" zeroes */
1110 	bzero(ipad, blocklen);
1111 	bzero(opad, blocklen);
1112 	bcopy(key, ipad, keylen);
1113 	bcopy(key, opad, keylen);
1114 
1115 	/* XOR the key with ipad and opad values */
1116 	for (i = 0; i < blocklen; i++) {
1117 		ipad[i] ^= 0x36;
1118 		opad[i] ^= 0x5c;
1119 	}
1120 
1121 	/* perform inner hash */
1122 	sctp_hmac_init(hmac_algo, &ctx);
1123 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1124 	/* find the correct starting mbuf and offset (get start of text) */
1125 	m_tmp = m;
1126 	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1127 		m_offset -= SCTP_BUF_LEN(m_tmp);
1128 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1129 	}
1130 	/* now use the rest of the mbuf chain for the text */
1131 	while (m_tmp != NULL) {
1132 		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1133 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1134 			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1135 		} else {
1136 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1137 			    SCTP_BUF_LEN(m_tmp) - m_offset);
1138 		}
1139 
1140 		/* clear the offset since it's only for the first mbuf */
1141 		m_offset = 0;
1142 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1143 	}
1144 	sctp_hmac_final(hmac_algo, &ctx, temp);
1145 
1146 	/* perform outer hash */
1147 	sctp_hmac_init(hmac_algo, &ctx);
1148 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1149 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1150 	sctp_hmac_final(hmac_algo, &ctx, digest);
1151 
1152 	return (digestlen);
1153 }
1154 
1155 /*-
1156  * verify the HMAC digest using the desired hash key, text, and HMAC
1157  * algorithm.
1158  * Returns -1 on error, 0 on success.
1159  */
1160 int
1161 sctp_verify_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1162     uint8_t * text, uint32_t textlen,
1163     uint8_t * digest, uint32_t digestlen)
1164 {
1165 	uint32_t len;
1166 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1167 
1168 	/* sanity check the material and length */
1169 	if ((key == NULL) || (keylen == 0) ||
1170 	    (text == NULL) || (textlen == 0) || (digest == NULL)) {
1171 		/* can't do HMAC with empty key or text or digest */
1172 		return (-1);
1173 	}
1174 	len = sctp_get_hmac_digest_len(hmac_algo);
1175 	if ((len == 0) || (digestlen != len))
1176 		return (-1);
1177 
1178 	/* compute the expected hash */
1179 	if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len)
1180 		return (-1);
1181 
1182 	if (memcmp(digest, temp, digestlen) != 0)
1183 		return (-1);
1184 	else
1185 		return (0);
1186 }
1187 
1188 
1189 /*
1190  * computes the requested HMAC using a key struct (which may be modified if
1191  * the keylen exceeds the HMAC block len).
1192  */
1193 uint32_t
1194 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t * key, uint8_t * text,
1195     uint32_t textlen, uint8_t * digest)
1196 {
1197 	uint32_t digestlen;
1198 	uint32_t blocklen;
1199 	sctp_hash_context_t ctx;
1200 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1201 
1202 	/* sanity check */
1203 	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1204 	    (digest == NULL)) {
1205 		/* can't do HMAC with empty key or text or digest store */
1206 		return (0);
1207 	}
1208 	/* validate the hmac algo and get the digest length */
1209 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1210 	if (digestlen == 0)
1211 		return (0);
1212 
1213 	/* hash the key if it is longer than the hash block size */
1214 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1215 	if (key->keylen > blocklen) {
1216 		sctp_hmac_init(hmac_algo, &ctx);
1217 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1218 		sctp_hmac_final(hmac_algo, &ctx, temp);
1219 		/* save the hashed key as the new key */
1220 		key->keylen = digestlen;
1221 		bcopy(temp, key->key, key->keylen);
1222 	}
1223 	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1224 	    digest));
1225 }
1226 
1227 /* mbuf version */
1228 uint32_t
1229 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t * key, struct mbuf *m,
1230     uint32_t m_offset, uint8_t * digest)
1231 {
1232 	uint32_t digestlen;
1233 	uint32_t blocklen;
1234 	sctp_hash_context_t ctx;
1235 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1236 
1237 	/* sanity check */
1238 	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1239 		/* can't do HMAC with empty key or text or digest store */
1240 		return (0);
1241 	}
1242 	/* validate the hmac algo and get the digest length */
1243 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1244 	if (digestlen == 0)
1245 		return (0);
1246 
1247 	/* hash the key if it is longer than the hash block size */
1248 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1249 	if (key->keylen > blocklen) {
1250 		sctp_hmac_init(hmac_algo, &ctx);
1251 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1252 		sctp_hmac_final(hmac_algo, &ctx, temp);
1253 		/* save the hashed key as the new key */
1254 		key->keylen = digestlen;
1255 		bcopy(temp, key->key, key->keylen);
1256 	}
1257 	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1258 }
1259 
1260 int
1261 sctp_auth_is_supported_hmac(sctp_hmaclist_t * list, uint16_t id)
1262 {
1263 	int i;
1264 
1265 	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1266 		return (0);
1267 
1268 	for (i = 0; i < list->num_algo; i++)
1269 		if (list->hmac[i] == id)
1270 			return (1);
1271 
1272 	/* not in the list */
1273 	return (0);
1274 }
1275 
1276 
1277 /*-
1278  * clear any cached key(s) if they match the given key id on an association.
1279  * the cached key(s) will be recomputed and re-cached at next use.
1280  * ASSUMES TCB_LOCK is already held
1281  */
1282 void
1283 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1284 {
1285 	if (stcb == NULL)
1286 		return;
1287 
1288 	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1289 		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1290 		stcb->asoc.authinfo.assoc_key = NULL;
1291 	}
1292 	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1293 		sctp_free_key(stcb->asoc.authinfo.recv_key);
1294 		stcb->asoc.authinfo.recv_key = NULL;
1295 	}
1296 }
1297 
1298 /*-
1299  * clear any cached key(s) if they match the given key id for all assocs on
1300  * an endpoint.
1301  * ASSUMES INP_WLOCK is already held
1302  */
1303 void
1304 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1305 {
1306 	struct sctp_tcb *stcb;
1307 
1308 	if (inp == NULL)
1309 		return;
1310 
1311 	/* clear the cached keys on all assocs on this instance */
1312 	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1313 		SCTP_TCB_LOCK(stcb);
1314 		sctp_clear_cachedkeys(stcb, keyid);
1315 		SCTP_TCB_UNLOCK(stcb);
1316 	}
1317 }
1318 
1319 /*-
1320  * delete a shared key from an association
1321  * ASSUMES TCB_LOCK is already held
1322  */
1323 int
1324 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1325 {
1326 	sctp_sharedkey_t *skey;
1327 
1328 	if (stcb == NULL)
1329 		return (-1);
1330 
1331 	/* is the keyid the assoc active sending key */
1332 	if (keyid == stcb->asoc.authinfo.active_keyid)
1333 		return (-1);
1334 
1335 	/* does the key exist? */
1336 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1337 	if (skey == NULL)
1338 		return (-1);
1339 
1340 	/* are there other refcount holders on the key? */
1341 	if (skey->refcount > 1)
1342 		return (-1);
1343 
1344 	/* remove it */
1345 	LIST_REMOVE(skey, next);
1346 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1347 
1348 	/* clear any cached keys */
1349 	sctp_clear_cachedkeys(stcb, keyid);
1350 	return (0);
1351 }
1352 
1353 /*-
1354  * deletes a shared key from the endpoint
1355  * ASSUMES INP_WLOCK is already held
1356  */
1357 int
1358 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1359 {
1360 	sctp_sharedkey_t *skey;
1361 
1362 	if (inp == NULL)
1363 		return (-1);
1364 
1365 	/* is the keyid the active sending key on the endpoint */
1366 	if (keyid == inp->sctp_ep.default_keyid)
1367 		return (-1);
1368 
1369 	/* does the key exist? */
1370 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1371 	if (skey == NULL)
1372 		return (-1);
1373 
1374 	/* endpoint keys are not refcounted */
1375 
1376 	/* remove it */
1377 	LIST_REMOVE(skey, next);
1378 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1379 
1380 	/* clear any cached keys */
1381 	sctp_clear_cachedkeys_ep(inp, keyid);
1382 	return (0);
1383 }
1384 
1385 /*-
1386  * set the active key on an association
1387  * ASSUMES TCB_LOCK is already held
1388  */
1389 int
1390 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1391 {
1392 	sctp_sharedkey_t *skey = NULL;
1393 
1394 	/* find the key on the assoc */
1395 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1396 	if (skey == NULL) {
1397 		/* that key doesn't exist */
1398 		return (-1);
1399 	}
1400 	if ((skey->deactivated) && (skey->refcount > 1)) {
1401 		/* can't reactivate a deactivated key with other refcounts */
1402 		return (-1);
1403 	}
1404 	/* set the (new) active key */
1405 	stcb->asoc.authinfo.active_keyid = keyid;
1406 	/* reset the deactivated flag */
1407 	skey->deactivated = 0;
1408 
1409 	return (0);
1410 }
1411 
1412 /*-
1413  * set the active key on an endpoint
1414  * ASSUMES INP_WLOCK is already held
1415  */
1416 int
1417 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1418 {
1419 	sctp_sharedkey_t *skey;
1420 
1421 	/* find the key */
1422 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1423 	if (skey == NULL) {
1424 		/* that key doesn't exist */
1425 		return (-1);
1426 	}
1427 	inp->sctp_ep.default_keyid = keyid;
1428 	return (0);
1429 }
1430 
1431 /*-
1432  * deactivates a shared key from the association
1433  * ASSUMES INP_WLOCK is already held
1434  */
1435 int
1436 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1437 {
1438 	sctp_sharedkey_t *skey;
1439 
1440 	if (stcb == NULL)
1441 		return (-1);
1442 
1443 	/* is the keyid the assoc active sending key */
1444 	if (keyid == stcb->asoc.authinfo.active_keyid)
1445 		return (-1);
1446 
1447 	/* does the key exist? */
1448 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1449 	if (skey == NULL)
1450 		return (-1);
1451 
1452 	/* are there other refcount holders on the key? */
1453 	if (skey->refcount == 1) {
1454 		/* no other users, send a notification for this key */
1455 		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1456 		    SCTP_SO_LOCKED);
1457 	}
1458 	/* mark the key as deactivated */
1459 	skey->deactivated = 1;
1460 
1461 	return (0);
1462 }
1463 
1464 /*-
1465  * deactivates a shared key from the endpoint
1466  * ASSUMES INP_WLOCK is already held
1467  */
1468 int
1469 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1470 {
1471 	sctp_sharedkey_t *skey;
1472 
1473 	if (inp == NULL)
1474 		return (-1);
1475 
1476 	/* is the keyid the active sending key on the endpoint */
1477 	if (keyid == inp->sctp_ep.default_keyid)
1478 		return (-1);
1479 
1480 	/* does the key exist? */
1481 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1482 	if (skey == NULL)
1483 		return (-1);
1484 
1485 	/* endpoint keys are not refcounted */
1486 
1487 	/* remove it */
1488 	LIST_REMOVE(skey, next);
1489 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1490 
1491 	return (0);
1492 }
1493 
1494 /*
1495  * get local authentication parameters from cookie (from INIT-ACK)
1496  */
1497 void
1498 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1499     uint32_t offset, uint32_t length)
1500 {
1501 	struct sctp_paramhdr *phdr, tmp_param;
1502 	uint16_t plen, ptype;
1503 	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1504 	struct sctp_auth_random *p_random = NULL;
1505 	uint16_t random_len = 0;
1506 	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1507 	struct sctp_auth_hmac_algo *hmacs = NULL;
1508 	uint16_t hmacs_len = 0;
1509 	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1510 	struct sctp_auth_chunk_list *chunks = NULL;
1511 	uint16_t num_chunks = 0;
1512 	sctp_key_t *new_key;
1513 	uint32_t keylen;
1514 
1515 	/* convert to upper bound */
1516 	length += offset;
1517 
1518 	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1519 	    sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param);
1520 	while (phdr != NULL) {
1521 		ptype = ntohs(phdr->param_type);
1522 		plen = ntohs(phdr->param_length);
1523 
1524 		if ((plen == 0) || (offset + plen > length))
1525 			break;
1526 
1527 		if (ptype == SCTP_RANDOM) {
1528 			if (plen > sizeof(random_store))
1529 				break;
1530 			phdr = sctp_get_next_param(m, offset,
1531 			    (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store)));
1532 			if (phdr == NULL)
1533 				return;
1534 			/* save the random and length for the key */
1535 			p_random = (struct sctp_auth_random *)phdr;
1536 			random_len = plen - sizeof(*p_random);
1537 		} else if (ptype == SCTP_HMAC_LIST) {
1538 			int num_hmacs;
1539 			int i;
1540 
1541 			if (plen > sizeof(hmacs_store))
1542 				break;
1543 			phdr = sctp_get_next_param(m, offset,
1544 			    (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store)));
1545 			if (phdr == NULL)
1546 				return;
1547 			/* save the hmacs list and num for the key */
1548 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1549 			hmacs_len = plen - sizeof(*hmacs);
1550 			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1551 			if (stcb->asoc.local_hmacs != NULL)
1552 				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1553 			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1554 			if (stcb->asoc.local_hmacs != NULL) {
1555 				for (i = 0; i < num_hmacs; i++) {
1556 					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1557 					    ntohs(hmacs->hmac_ids[i]));
1558 				}
1559 			}
1560 		} else if (ptype == SCTP_CHUNK_LIST) {
1561 			int i;
1562 
1563 			if (plen > sizeof(chunks_store))
1564 				break;
1565 			phdr = sctp_get_next_param(m, offset,
1566 			    (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store)));
1567 			if (phdr == NULL)
1568 				return;
1569 			chunks = (struct sctp_auth_chunk_list *)phdr;
1570 			num_chunks = plen - sizeof(*chunks);
1571 			/* save chunks list and num for the key */
1572 			if (stcb->asoc.local_auth_chunks != NULL)
1573 				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1574 			else
1575 				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1576 			for (i = 0; i < num_chunks; i++) {
1577 				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1578 				    stcb->asoc.local_auth_chunks);
1579 			}
1580 		}
1581 		/* get next parameter */
1582 		offset += SCTP_SIZE32(plen);
1583 		if (offset + sizeof(struct sctp_paramhdr) > length)
1584 			break;
1585 		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1586 		    (uint8_t *) & tmp_param);
1587 	}
1588 	/* concatenate the full random key */
1589 	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1590 	if (chunks != NULL) {
1591 		keylen += sizeof(*chunks) + num_chunks;
1592 	}
1593 	new_key = sctp_alloc_key(keylen);
1594 	if (new_key != NULL) {
1595 		/* copy in the RANDOM */
1596 		if (p_random != NULL) {
1597 			keylen = sizeof(*p_random) + random_len;
1598 			bcopy(p_random, new_key->key, keylen);
1599 		}
1600 		/* append in the AUTH chunks */
1601 		if (chunks != NULL) {
1602 			bcopy(chunks, new_key->key + keylen,
1603 			    sizeof(*chunks) + num_chunks);
1604 			keylen += sizeof(*chunks) + num_chunks;
1605 		}
1606 		/* append in the HMACs */
1607 		if (hmacs != NULL) {
1608 			bcopy(hmacs, new_key->key + keylen,
1609 			    sizeof(*hmacs) + hmacs_len);
1610 		}
1611 	}
1612 	if (stcb->asoc.authinfo.random != NULL)
1613 		sctp_free_key(stcb->asoc.authinfo.random);
1614 	stcb->asoc.authinfo.random = new_key;
1615 	stcb->asoc.authinfo.random_len = random_len;
1616 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1617 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1618 
1619 	/* negotiate what HMAC to use for the peer */
1620 	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1621 	    stcb->asoc.local_hmacs);
1622 
1623 	/* copy defaults from the endpoint */
1624 	/* FIX ME: put in cookie? */
1625 	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1626 	/* copy out the shared key list (by reference) from the endpoint */
1627 	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1628 	    &stcb->asoc.shared_keys);
1629 }
1630 
1631 /*
1632  * compute and fill in the HMAC digest for a packet
1633  */
1634 void
1635 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1636     struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1637 {
1638 	uint32_t digestlen;
1639 	sctp_sharedkey_t *skey;
1640 	sctp_key_t *key;
1641 
1642 	if ((stcb == NULL) || (auth == NULL))
1643 		return;
1644 
1645 	/* zero the digest + chunk padding */
1646 	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1647 	bzero(auth->hmac, SCTP_SIZE32(digestlen));
1648 
1649 	/* is the desired key cached? */
1650 	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1651 	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1652 		if (stcb->asoc.authinfo.assoc_key != NULL) {
1653 			/* free the old cached key */
1654 			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1655 		}
1656 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1657 		/* the only way skey is NULL is if null key id 0 is used */
1658 		if (skey != NULL)
1659 			key = skey->key;
1660 		else
1661 			key = NULL;
1662 		/* compute a new assoc key and cache it */
1663 		stcb->asoc.authinfo.assoc_key =
1664 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1665 		    stcb->asoc.authinfo.peer_random, key);
1666 		stcb->asoc.authinfo.assoc_keyid = keyid;
1667 		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1668 		    stcb->asoc.authinfo.assoc_keyid);
1669 #ifdef SCTP_DEBUG
1670 		if (SCTP_AUTH_DEBUG)
1671 			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1672 			    "Assoc Key");
1673 #endif
1674 	}
1675 	/* set in the active key id */
1676 	auth->shared_key_id = htons(keyid);
1677 
1678 	/* compute and fill in the digest */
1679 	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1680 	    m, auth_offset, auth->hmac);
1681 }
1682 
1683 
1684 static void
1685 sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1686 {
1687 	struct mbuf *m_tmp;
1688 	uint8_t *data;
1689 
1690 	/* sanity check */
1691 	if (m == NULL)
1692 		return;
1693 
1694 	/* find the correct starting mbuf and offset (get start position) */
1695 	m_tmp = m;
1696 	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1697 		m_offset -= SCTP_BUF_LEN(m_tmp);
1698 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1699 	}
1700 	/* now use the rest of the mbuf chain */
1701 	while ((m_tmp != NULL) && (size > 0)) {
1702 		data = mtod(m_tmp, uint8_t *) + m_offset;
1703 		if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) {
1704 			bzero(data, SCTP_BUF_LEN(m_tmp));
1705 			size -= SCTP_BUF_LEN(m_tmp);
1706 		} else {
1707 			bzero(data, size);
1708 			size = 0;
1709 		}
1710 		/* clear the offset since it's only for the first mbuf */
1711 		m_offset = 0;
1712 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1713 	}
1714 }
1715 
1716 /*-
1717  * process the incoming Authentication chunk
1718  * return codes:
1719  *   -1 on any authentication error
1720  *    0 on authentication verification
1721  */
1722 int
1723 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1724     struct mbuf *m, uint32_t offset)
1725 {
1726 	uint16_t chunklen;
1727 	uint16_t shared_key_id;
1728 	uint16_t hmac_id;
1729 	sctp_sharedkey_t *skey;
1730 	uint32_t digestlen;
1731 	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1732 	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1733 
1734 	/* auth is checked for NULL by caller */
1735 	chunklen = ntohs(auth->ch.chunk_length);
1736 	if (chunklen < sizeof(*auth)) {
1737 		SCTP_STAT_INCR(sctps_recvauthfailed);
1738 		return (-1);
1739 	}
1740 	SCTP_STAT_INCR(sctps_recvauth);
1741 
1742 	/* get the auth params */
1743 	shared_key_id = ntohs(auth->shared_key_id);
1744 	hmac_id = ntohs(auth->hmac_id);
1745 	SCTPDBG(SCTP_DEBUG_AUTH1,
1746 	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1747 	    shared_key_id, hmac_id);
1748 
1749 	/* is the indicated HMAC supported? */
1750 	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1751 		struct mbuf *m_err;
1752 		struct sctp_auth_invalid_hmac *err;
1753 
1754 		SCTP_STAT_INCR(sctps_recvivalhmacid);
1755 		SCTPDBG(SCTP_DEBUG_AUTH1,
1756 		    "SCTP Auth: unsupported HMAC id %u\n",
1757 		    hmac_id);
1758 		/*
1759 		 * report this in an Error Chunk: Unsupported HMAC
1760 		 * Identifier
1761 		 */
1762 		m_err = sctp_get_mbuf_for_msg(sizeof(*err), 0, M_DONTWAIT,
1763 		    1, MT_HEADER);
1764 		if (m_err != NULL) {
1765 			/* pre-reserve some space */
1766 			SCTP_BUF_RESV_UF(m_err, sizeof(struct sctp_chunkhdr));
1767 			/* fill in the error */
1768 			err = mtod(m_err, struct sctp_auth_invalid_hmac *);
1769 			bzero(err, sizeof(*err));
1770 			err->ph.param_type = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1771 			err->ph.param_length = htons(sizeof(*err));
1772 			err->hmac_id = ntohs(hmac_id);
1773 			SCTP_BUF_LEN(m_err) = sizeof(*err);
1774 			/* queue it */
1775 			sctp_queue_op_err(stcb, m_err);
1776 		}
1777 		return (-1);
1778 	}
1779 	/* get the indicated shared key, if available */
1780 	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1781 	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1782 		/* find the shared key on the assoc first */
1783 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1784 		    shared_key_id);
1785 		/* if the shared key isn't found, discard the chunk */
1786 		if (skey == NULL) {
1787 			SCTP_STAT_INCR(sctps_recvivalkeyid);
1788 			SCTPDBG(SCTP_DEBUG_AUTH1,
1789 			    "SCTP Auth: unknown key id %u\n",
1790 			    shared_key_id);
1791 			return (-1);
1792 		}
1793 		/* generate a notification if this is a new key id */
1794 		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1795 			/*
1796 			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1797 			 * shared_key_id, (void
1798 			 * *)stcb->asoc.authinfo.recv_keyid);
1799 			 */
1800 			sctp_notify_authentication(stcb, SCTP_AUTH_NEWKEY,
1801 			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1802 			    SCTP_SO_NOT_LOCKED);
1803 		/* compute a new recv assoc key and cache it */
1804 		if (stcb->asoc.authinfo.recv_key != NULL)
1805 			sctp_free_key(stcb->asoc.authinfo.recv_key);
1806 		stcb->asoc.authinfo.recv_key =
1807 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1808 		    stcb->asoc.authinfo.peer_random, skey->key);
1809 		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1810 #ifdef SCTP_DEBUG
1811 		if (SCTP_AUTH_DEBUG)
1812 			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1813 #endif
1814 	}
1815 	/* validate the digest length */
1816 	digestlen = sctp_get_hmac_digest_len(hmac_id);
1817 	if (chunklen < (sizeof(*auth) + digestlen)) {
1818 		/* invalid digest length */
1819 		SCTP_STAT_INCR(sctps_recvauthfailed);
1820 		SCTPDBG(SCTP_DEBUG_AUTH1,
1821 		    "SCTP Auth: chunk too short for HMAC\n");
1822 		return (-1);
1823 	}
1824 	/* save a copy of the digest, zero the pseudo header, and validate */
1825 	bcopy(auth->hmac, digest, digestlen);
1826 	sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1827 	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1828 	    m, offset, computed_digest);
1829 
1830 	/* compare the computed digest with the one in the AUTH chunk */
1831 	if (memcmp(digest, computed_digest, digestlen) != 0) {
1832 		SCTP_STAT_INCR(sctps_recvauthfailed);
1833 		SCTPDBG(SCTP_DEBUG_AUTH1,
1834 		    "SCTP Auth: HMAC digest check failed\n");
1835 		return (-1);
1836 	}
1837 	return (0);
1838 }
1839 
1840 /*
1841  * Generate NOTIFICATION
1842  */
1843 void
1844 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1845     uint16_t keyid, uint16_t alt_keyid, int so_locked
1846 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
1847     SCTP_UNUSED
1848 #endif
1849 )
1850 {
1851 	struct mbuf *m_notify;
1852 	struct sctp_authkey_event *auth;
1853 	struct sctp_queued_to_read *control;
1854 
1855 	if ((stcb == NULL) ||
1856 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1857 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1858 	    (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1859 	    ) {
1860 		/* If the socket is gone we are out of here */
1861 		return;
1862 	}
1863 	if (sctp_is_feature_off(stcb->sctp_ep, SCTP_PCB_FLAGS_AUTHEVNT))
1864 		/* event not enabled */
1865 		return;
1866 
1867 	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1868 	    0, M_DONTWAIT, 1, MT_HEADER);
1869 	if (m_notify == NULL)
1870 		/* no space left */
1871 		return;
1872 
1873 	SCTP_BUF_LEN(m_notify) = 0;
1874 	auth = mtod(m_notify, struct sctp_authkey_event *);
1875 	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1876 	auth->auth_flags = 0;
1877 	auth->auth_length = sizeof(*auth);
1878 	auth->auth_keynumber = keyid;
1879 	auth->auth_altkeynumber = alt_keyid;
1880 	auth->auth_indication = indication;
1881 	auth->auth_assoc_id = sctp_get_associd(stcb);
1882 
1883 	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1884 	SCTP_BUF_NEXT(m_notify) = NULL;
1885 
1886 	/* append to socket */
1887 	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1888 	    0, 0, 0, 0, 0, 0, m_notify);
1889 	if (control == NULL) {
1890 		/* no memory */
1891 		sctp_m_freem(m_notify);
1892 		return;
1893 	}
1894 	control->spec_flags = M_NOTIFICATION;
1895 	control->length = SCTP_BUF_LEN(m_notify);
1896 	/* not that we need this */
1897 	control->tail_mbuf = m_notify;
1898 	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1899 	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1900 }
1901 
1902 
1903 /*-
1904  * validates the AUTHentication related parameters in an INIT/INIT-ACK
1905  * Note: currently only used for INIT as INIT-ACK is handled inline
1906  * with sctp_load_addresses_from_init()
1907  */
1908 int
1909 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1910 {
1911 	struct sctp_paramhdr *phdr, parm_buf;
1912 	uint16_t ptype, plen;
1913 	int peer_supports_asconf = 0;
1914 	int peer_supports_auth = 0;
1915 	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1916 	uint8_t saw_asconf = 0;
1917 	uint8_t saw_asconf_ack = 0;
1918 
1919 	/* go through each of the params. */
1920 	phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf));
1921 	while (phdr) {
1922 		ptype = ntohs(phdr->param_type);
1923 		plen = ntohs(phdr->param_length);
1924 
1925 		if (offset + plen > limit) {
1926 			break;
1927 		}
1928 		if (plen < sizeof(struct sctp_paramhdr)) {
1929 			break;
1930 		}
1931 		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1932 			/* A supported extension chunk */
1933 			struct sctp_supported_chunk_types_param *pr_supported;
1934 			uint8_t local_store[SCTP_PARAM_BUFFER_SIZE];
1935 			int num_ent, i;
1936 
1937 			phdr = sctp_get_next_param(m, offset,
1938 			    (struct sctp_paramhdr *)&local_store, min(plen, sizeof(local_store)));
1939 			if (phdr == NULL) {
1940 				return (-1);
1941 			}
1942 			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1943 			num_ent = plen - sizeof(struct sctp_paramhdr);
1944 			for (i = 0; i < num_ent; i++) {
1945 				switch (pr_supported->chunk_types[i]) {
1946 				case SCTP_ASCONF:
1947 				case SCTP_ASCONF_ACK:
1948 					peer_supports_asconf = 1;
1949 					break;
1950 				case SCTP_AUTHENTICATION:
1951 					peer_supports_auth = 1;
1952 					break;
1953 				default:
1954 					/* one we don't care about */
1955 					break;
1956 				}
1957 			}
1958 		} else if (ptype == SCTP_RANDOM) {
1959 			got_random = 1;
1960 			/* enforce the random length */
1961 			if (plen != (sizeof(struct sctp_auth_random) +
1962 			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1963 				SCTPDBG(SCTP_DEBUG_AUTH1,
1964 				    "SCTP: invalid RANDOM len\n");
1965 				return (-1);
1966 			}
1967 		} else if (ptype == SCTP_HMAC_LIST) {
1968 			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1969 			struct sctp_auth_hmac_algo *hmacs;
1970 			int num_hmacs;
1971 
1972 			if (plen > sizeof(store))
1973 				break;
1974 			phdr = sctp_get_next_param(m, offset,
1975 			    (struct sctp_paramhdr *)store, min(plen, sizeof(store)));
1976 			if (phdr == NULL)
1977 				return (-1);
1978 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1979 			num_hmacs = (plen - sizeof(*hmacs)) /
1980 			    sizeof(hmacs->hmac_ids[0]);
1981 			/* validate the hmac list */
1982 			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1983 				SCTPDBG(SCTP_DEBUG_AUTH1,
1984 				    "SCTP: invalid HMAC param\n");
1985 				return (-1);
1986 			}
1987 			got_hmacs = 1;
1988 		} else if (ptype == SCTP_CHUNK_LIST) {
1989 			int i, num_chunks;
1990 			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1991 
1992 			/* did the peer send a non-empty chunk list? */
1993 			struct sctp_auth_chunk_list *chunks = NULL;
1994 
1995 			phdr = sctp_get_next_param(m, offset,
1996 			    (struct sctp_paramhdr *)chunks_store,
1997 			    min(plen, sizeof(chunks_store)));
1998 			if (phdr == NULL)
1999 				return (-1);
2000 
2001 			/*-
2002 			 * Flip through the list and mark that the
2003 			 * peer supports asconf/asconf_ack.
2004 			 */
2005 			chunks = (struct sctp_auth_chunk_list *)phdr;
2006 			num_chunks = plen - sizeof(*chunks);
2007 			for (i = 0; i < num_chunks; i++) {
2008 				/* record asconf/asconf-ack if listed */
2009 				if (chunks->chunk_types[i] == SCTP_ASCONF)
2010 					saw_asconf = 1;
2011 				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
2012 					saw_asconf_ack = 1;
2013 
2014 			}
2015 			if (num_chunks)
2016 				got_chklist = 1;
2017 		}
2018 		offset += SCTP_SIZE32(plen);
2019 		if (offset >= limit) {
2020 			break;
2021 		}
2022 		phdr = sctp_get_next_param(m, offset, &parm_buf,
2023 		    sizeof(parm_buf));
2024 	}
2025 	/* validate authentication required parameters */
2026 	if (got_random && got_hmacs) {
2027 		peer_supports_auth = 1;
2028 	} else {
2029 		peer_supports_auth = 0;
2030 	}
2031 	if (!peer_supports_auth && got_chklist) {
2032 		SCTPDBG(SCTP_DEBUG_AUTH1,
2033 		    "SCTP: peer sent chunk list w/o AUTH\n");
2034 		return (-1);
2035 	}
2036 	if (!SCTP_BASE_SYSCTL(sctp_asconf_auth_nochk) && peer_supports_asconf &&
2037 	    !peer_supports_auth) {
2038 		SCTPDBG(SCTP_DEBUG_AUTH1,
2039 		    "SCTP: peer supports ASCONF but not AUTH\n");
2040 		return (-1);
2041 	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
2042 	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
2043 		return (-2);
2044 	}
2045 	return (0);
2046 }
2047 
2048 void
2049 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
2050 {
2051 	uint16_t chunks_len = 0;
2052 	uint16_t hmacs_len = 0;
2053 	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
2054 	sctp_key_t *new_key;
2055 	uint16_t keylen;
2056 
2057 	/* initialize hmac list from endpoint */
2058 	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
2059 	if (stcb->asoc.local_hmacs != NULL) {
2060 		hmacs_len = stcb->asoc.local_hmacs->num_algo *
2061 		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
2062 	}
2063 	/* initialize auth chunks list from endpoint */
2064 	stcb->asoc.local_auth_chunks =
2065 	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
2066 	if (stcb->asoc.local_auth_chunks != NULL) {
2067 		int i;
2068 
2069 		for (i = 0; i < 256; i++) {
2070 			if (stcb->asoc.local_auth_chunks->chunks[i])
2071 				chunks_len++;
2072 		}
2073 	}
2074 	/* copy defaults from the endpoint */
2075 	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
2076 
2077 	/* copy out the shared key list (by reference) from the endpoint */
2078 	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
2079 	    &stcb->asoc.shared_keys);
2080 
2081 	/* now set the concatenated key (random + chunks + hmacs) */
2082 	/* key includes parameter headers */
2083 	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
2084 	    hmacs_len;
2085 	new_key = sctp_alloc_key(keylen);
2086 	if (new_key != NULL) {
2087 		struct sctp_paramhdr *ph;
2088 		int plen;
2089 
2090 		/* generate and copy in the RANDOM */
2091 		ph = (struct sctp_paramhdr *)new_key->key;
2092 		ph->param_type = htons(SCTP_RANDOM);
2093 		plen = sizeof(*ph) + random_len;
2094 		ph->param_length = htons(plen);
2095 		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
2096 		keylen = plen;
2097 
2098 		/* append in the AUTH chunks */
2099 		/* NOTE: currently we always have chunks to list */
2100 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2101 		ph->param_type = htons(SCTP_CHUNK_LIST);
2102 		plen = sizeof(*ph) + chunks_len;
2103 		ph->param_length = htons(plen);
2104 		keylen += sizeof(*ph);
2105 		if (stcb->asoc.local_auth_chunks) {
2106 			int i;
2107 
2108 			for (i = 0; i < 256; i++) {
2109 				if (stcb->asoc.local_auth_chunks->chunks[i])
2110 					new_key->key[keylen++] = i;
2111 			}
2112 		}
2113 		/* append in the HMACs */
2114 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2115 		ph->param_type = htons(SCTP_HMAC_LIST);
2116 		plen = sizeof(*ph) + hmacs_len;
2117 		ph->param_length = htons(plen);
2118 		keylen += sizeof(*ph);
2119 		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
2120 		    new_key->key + keylen);
2121 	}
2122 	if (stcb->asoc.authinfo.random != NULL)
2123 		sctp_free_key(stcb->asoc.authinfo.random);
2124 	stcb->asoc.authinfo.random = new_key;
2125 	stcb->asoc.authinfo.random_len = random_len;
2126 }
2127