1 /*- 2 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. 3 * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. 4 * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * a) Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * b) Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in 14 * the documentation and/or other materials provided with the distribution. 15 * 16 * c) Neither the name of Cisco Systems, Inc. nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <netinet/sctp_os.h> 37 #include <netinet/sctp.h> 38 #include <netinet/sctp_header.h> 39 #include <netinet/sctp_pcb.h> 40 #include <netinet/sctp_var.h> 41 #include <netinet/sctp_sysctl.h> 42 #include <netinet/sctputil.h> 43 #include <netinet/sctp_indata.h> 44 #include <netinet/sctp_output.h> 45 #include <netinet/sctp_auth.h> 46 47 #ifdef SCTP_DEBUG 48 #define SCTP_AUTH_DEBUG (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1) 49 #define SCTP_AUTH_DEBUG2 (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2) 50 #endif /* SCTP_DEBUG */ 51 52 53 void 54 sctp_clear_chunklist(sctp_auth_chklist_t * chklist) 55 { 56 bzero(chklist, sizeof(*chklist)); 57 /* chklist->num_chunks = 0; */ 58 } 59 60 sctp_auth_chklist_t * 61 sctp_alloc_chunklist(void) 62 { 63 sctp_auth_chklist_t *chklist; 64 65 SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist), 66 SCTP_M_AUTH_CL); 67 if (chklist == NULL) { 68 SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n"); 69 } else { 70 sctp_clear_chunklist(chklist); 71 } 72 return (chklist); 73 } 74 75 void 76 sctp_free_chunklist(sctp_auth_chklist_t * list) 77 { 78 if (list != NULL) 79 SCTP_FREE(list, SCTP_M_AUTH_CL); 80 } 81 82 sctp_auth_chklist_t * 83 sctp_copy_chunklist(sctp_auth_chklist_t * list) 84 { 85 sctp_auth_chklist_t *new_list; 86 87 if (list == NULL) 88 return (NULL); 89 90 /* get a new list */ 91 new_list = sctp_alloc_chunklist(); 92 if (new_list == NULL) 93 return (NULL); 94 /* copy it */ 95 bcopy(list, new_list, sizeof(*new_list)); 96 97 return (new_list); 98 } 99 100 101 /* 102 * add a chunk to the required chunks list 103 */ 104 int 105 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t * list) 106 { 107 if (list == NULL) 108 return (-1); 109 110 /* is chunk restricted? */ 111 if ((chunk == SCTP_INITIATION) || 112 (chunk == SCTP_INITIATION_ACK) || 113 (chunk == SCTP_SHUTDOWN_COMPLETE) || 114 (chunk == SCTP_AUTHENTICATION)) { 115 return (-1); 116 } 117 if (list->chunks[chunk] == 0) { 118 list->chunks[chunk] = 1; 119 list->num_chunks++; 120 SCTPDBG(SCTP_DEBUG_AUTH1, 121 "SCTP: added chunk %u (0x%02x) to Auth list\n", 122 chunk, chunk); 123 } 124 return (0); 125 } 126 127 /* 128 * delete a chunk from the required chunks list 129 */ 130 int 131 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t * list) 132 { 133 if (list == NULL) 134 return (-1); 135 136 if (list->chunks[chunk] == 1) { 137 list->chunks[chunk] = 0; 138 list->num_chunks--; 139 SCTPDBG(SCTP_DEBUG_AUTH1, 140 "SCTP: deleted chunk %u (0x%02x) from Auth list\n", 141 chunk, chunk); 142 } 143 return (0); 144 } 145 146 size_t 147 sctp_auth_get_chklist_size(const sctp_auth_chklist_t * list) 148 { 149 if (list == NULL) 150 return (0); 151 else 152 return (list->num_chunks); 153 } 154 155 /* 156 * return the current number and list of required chunks caller must 157 * guarantee ptr has space for up to 256 bytes 158 */ 159 int 160 sctp_serialize_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr) 161 { 162 int i, count = 0; 163 164 if (list == NULL) 165 return (0); 166 167 for (i = 0; i < 256; i++) { 168 if (list->chunks[i] != 0) { 169 *ptr++ = i; 170 count++; 171 } 172 } 173 return (count); 174 } 175 176 int 177 sctp_pack_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr) 178 { 179 int i, size = 0; 180 181 if (list == NULL) 182 return (0); 183 184 if (list->num_chunks <= 32) { 185 /* just list them, one byte each */ 186 for (i = 0; i < 256; i++) { 187 if (list->chunks[i] != 0) { 188 *ptr++ = i; 189 size++; 190 } 191 } 192 } else { 193 int index, offset; 194 195 /* pack into a 32 byte bitfield */ 196 for (i = 0; i < 256; i++) { 197 if (list->chunks[i] != 0) { 198 index = i / 8; 199 offset = i % 8; 200 ptr[index] |= (1 << offset); 201 } 202 } 203 size = 32; 204 } 205 return (size); 206 } 207 208 int 209 sctp_unpack_auth_chunks(const uint8_t * ptr, uint8_t num_chunks, 210 sctp_auth_chklist_t * list) 211 { 212 int i; 213 int size; 214 215 if (list == NULL) 216 return (0); 217 218 if (num_chunks <= 32) { 219 /* just pull them, one byte each */ 220 for (i = 0; i < num_chunks; i++) { 221 (void)sctp_auth_add_chunk(*ptr++, list); 222 } 223 size = num_chunks; 224 } else { 225 int index, offset; 226 227 /* unpack from a 32 byte bitfield */ 228 for (index = 0; index < 32; index++) { 229 for (offset = 0; offset < 8; offset++) { 230 if (ptr[index] & (1 << offset)) { 231 (void)sctp_auth_add_chunk((index * 8) + offset, list); 232 } 233 } 234 } 235 size = 32; 236 } 237 return (size); 238 } 239 240 241 /* 242 * allocate structure space for a key of length keylen 243 */ 244 sctp_key_t * 245 sctp_alloc_key(uint32_t keylen) 246 { 247 sctp_key_t *new_key; 248 249 SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen, 250 SCTP_M_AUTH_KY); 251 if (new_key == NULL) { 252 /* out of memory */ 253 return (NULL); 254 } 255 new_key->keylen = keylen; 256 return (new_key); 257 } 258 259 void 260 sctp_free_key(sctp_key_t * key) 261 { 262 if (key != NULL) 263 SCTP_FREE(key, SCTP_M_AUTH_KY); 264 } 265 266 void 267 sctp_print_key(sctp_key_t * key, const char *str) 268 { 269 uint32_t i; 270 271 if (key == NULL) { 272 SCTP_PRINTF("%s: [Null key]\n", str); 273 return; 274 } 275 SCTP_PRINTF("%s: len %u, ", str, key->keylen); 276 if (key->keylen) { 277 for (i = 0; i < key->keylen; i++) 278 SCTP_PRINTF("%02x", key->key[i]); 279 SCTP_PRINTF("\n"); 280 } else { 281 SCTP_PRINTF("[Null key]\n"); 282 } 283 } 284 285 void 286 sctp_show_key(sctp_key_t * key, const char *str) 287 { 288 uint32_t i; 289 290 if (key == NULL) { 291 SCTP_PRINTF("%s: [Null key]\n", str); 292 return; 293 } 294 SCTP_PRINTF("%s: len %u, ", str, key->keylen); 295 if (key->keylen) { 296 for (i = 0; i < key->keylen; i++) 297 SCTP_PRINTF("%02x", key->key[i]); 298 SCTP_PRINTF("\n"); 299 } else { 300 SCTP_PRINTF("[Null key]\n"); 301 } 302 } 303 304 static uint32_t 305 sctp_get_keylen(sctp_key_t * key) 306 { 307 if (key != NULL) 308 return (key->keylen); 309 else 310 return (0); 311 } 312 313 /* 314 * generate a new random key of length 'keylen' 315 */ 316 sctp_key_t * 317 sctp_generate_random_key(uint32_t keylen) 318 { 319 sctp_key_t *new_key; 320 321 new_key = sctp_alloc_key(keylen); 322 if (new_key == NULL) { 323 /* out of memory */ 324 return (NULL); 325 } 326 SCTP_READ_RANDOM(new_key->key, keylen); 327 new_key->keylen = keylen; 328 return (new_key); 329 } 330 331 sctp_key_t * 332 sctp_set_key(uint8_t * key, uint32_t keylen) 333 { 334 sctp_key_t *new_key; 335 336 new_key = sctp_alloc_key(keylen); 337 if (new_key == NULL) { 338 /* out of memory */ 339 return (NULL); 340 } 341 bcopy(key, new_key->key, keylen); 342 return (new_key); 343 } 344 345 /*- 346 * given two keys of variable size, compute which key is "larger/smaller" 347 * returns: 1 if key1 > key2 348 * -1 if key1 < key2 349 * 0 if key1 = key2 350 */ 351 static int 352 sctp_compare_key(sctp_key_t * key1, sctp_key_t * key2) 353 { 354 uint32_t maxlen; 355 uint32_t i; 356 uint32_t key1len, key2len; 357 uint8_t *key_1, *key_2; 358 uint8_t val1, val2; 359 360 /* sanity/length check */ 361 key1len = sctp_get_keylen(key1); 362 key2len = sctp_get_keylen(key2); 363 if ((key1len == 0) && (key2len == 0)) 364 return (0); 365 else if (key1len == 0) 366 return (-1); 367 else if (key2len == 0) 368 return (1); 369 370 if (key1len < key2len) { 371 maxlen = key2len; 372 } else { 373 maxlen = key1len; 374 } 375 key_1 = key1->key; 376 key_2 = key2->key; 377 /* check for numeric equality */ 378 for (i = 0; i < maxlen; i++) { 379 /* left-pad with zeros */ 380 val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++); 381 val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++); 382 if (val1 > val2) { 383 return (1); 384 } else if (val1 < val2) { 385 return (-1); 386 } 387 } 388 /* keys are equal value, so check lengths */ 389 if (key1len == key2len) 390 return (0); 391 else if (key1len < key2len) 392 return (-1); 393 else 394 return (1); 395 } 396 397 /* 398 * generate the concatenated keying material based on the two keys and the 399 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific 400 * order for concatenation 401 */ 402 sctp_key_t * 403 sctp_compute_hashkey(sctp_key_t * key1, sctp_key_t * key2, sctp_key_t * shared) 404 { 405 uint32_t keylen; 406 sctp_key_t *new_key; 407 uint8_t *key_ptr; 408 409 keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) + 410 sctp_get_keylen(shared); 411 412 if (keylen > 0) { 413 /* get space for the new key */ 414 new_key = sctp_alloc_key(keylen); 415 if (new_key == NULL) { 416 /* out of memory */ 417 return (NULL); 418 } 419 new_key->keylen = keylen; 420 key_ptr = new_key->key; 421 } else { 422 /* all keys empty/null?! */ 423 return (NULL); 424 } 425 426 /* concatenate the keys */ 427 if (sctp_compare_key(key1, key2) <= 0) { 428 /* key is shared + key1 + key2 */ 429 if (sctp_get_keylen(shared)) { 430 bcopy(shared->key, key_ptr, shared->keylen); 431 key_ptr += shared->keylen; 432 } 433 if (sctp_get_keylen(key1)) { 434 bcopy(key1->key, key_ptr, key1->keylen); 435 key_ptr += key1->keylen; 436 } 437 if (sctp_get_keylen(key2)) { 438 bcopy(key2->key, key_ptr, key2->keylen); 439 } 440 } else { 441 /* key is shared + key2 + key1 */ 442 if (sctp_get_keylen(shared)) { 443 bcopy(shared->key, key_ptr, shared->keylen); 444 key_ptr += shared->keylen; 445 } 446 if (sctp_get_keylen(key2)) { 447 bcopy(key2->key, key_ptr, key2->keylen); 448 key_ptr += key2->keylen; 449 } 450 if (sctp_get_keylen(key1)) { 451 bcopy(key1->key, key_ptr, key1->keylen); 452 } 453 } 454 return (new_key); 455 } 456 457 458 sctp_sharedkey_t * 459 sctp_alloc_sharedkey(void) 460 { 461 sctp_sharedkey_t *new_key; 462 463 SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key), 464 SCTP_M_AUTH_KY); 465 if (new_key == NULL) { 466 /* out of memory */ 467 return (NULL); 468 } 469 new_key->keyid = 0; 470 new_key->key = NULL; 471 new_key->refcount = 1; 472 new_key->deactivated = 0; 473 return (new_key); 474 } 475 476 void 477 sctp_free_sharedkey(sctp_sharedkey_t * skey) 478 { 479 if (skey == NULL) 480 return; 481 482 if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) { 483 if (skey->key != NULL) 484 sctp_free_key(skey->key); 485 SCTP_FREE(skey, SCTP_M_AUTH_KY); 486 } 487 } 488 489 sctp_sharedkey_t * 490 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id) 491 { 492 sctp_sharedkey_t *skey; 493 494 LIST_FOREACH(skey, shared_keys, next) { 495 if (skey->keyid == key_id) 496 return (skey); 497 } 498 return (NULL); 499 } 500 501 int 502 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys, 503 sctp_sharedkey_t * new_skey) 504 { 505 sctp_sharedkey_t *skey; 506 507 if ((shared_keys == NULL) || (new_skey == NULL)) 508 return (EINVAL); 509 510 /* insert into an empty list? */ 511 if (LIST_EMPTY(shared_keys)) { 512 LIST_INSERT_HEAD(shared_keys, new_skey, next); 513 return (0); 514 } 515 /* insert into the existing list, ordered by key id */ 516 LIST_FOREACH(skey, shared_keys, next) { 517 if (new_skey->keyid < skey->keyid) { 518 /* insert it before here */ 519 LIST_INSERT_BEFORE(skey, new_skey, next); 520 return (0); 521 } else if (new_skey->keyid == skey->keyid) { 522 /* replace the existing key */ 523 /* verify this key *can* be replaced */ 524 if ((skey->deactivated) && (skey->refcount > 1)) { 525 SCTPDBG(SCTP_DEBUG_AUTH1, 526 "can't replace shared key id %u\n", 527 new_skey->keyid); 528 return (EBUSY); 529 } 530 SCTPDBG(SCTP_DEBUG_AUTH1, 531 "replacing shared key id %u\n", 532 new_skey->keyid); 533 LIST_INSERT_BEFORE(skey, new_skey, next); 534 LIST_REMOVE(skey, next); 535 sctp_free_sharedkey(skey); 536 return (0); 537 } 538 if (LIST_NEXT(skey, next) == NULL) { 539 /* belongs at the end of the list */ 540 LIST_INSERT_AFTER(skey, new_skey, next); 541 return (0); 542 } 543 } 544 /* shouldn't reach here */ 545 return (0); 546 } 547 548 void 549 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id) 550 { 551 sctp_sharedkey_t *skey; 552 553 /* find the shared key */ 554 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 555 556 /* bump the ref count */ 557 if (skey) { 558 atomic_add_int(&skey->refcount, 1); 559 SCTPDBG(SCTP_DEBUG_AUTH2, 560 "%s: stcb %p key %u refcount acquire to %d\n", 561 __FUNCTION__, (void *)stcb, key_id, skey->refcount); 562 } 563 } 564 565 void 566 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked 567 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) 568 SCTP_UNUSED 569 #endif 570 ) 571 { 572 sctp_sharedkey_t *skey; 573 574 /* find the shared key */ 575 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 576 577 /* decrement the ref count */ 578 if (skey) { 579 sctp_free_sharedkey(skey); 580 SCTPDBG(SCTP_DEBUG_AUTH2, 581 "%s: stcb %p key %u refcount release to %d\n", 582 __FUNCTION__, (void *)stcb, key_id, skey->refcount); 583 584 /* see if a notification should be generated */ 585 if ((skey->refcount <= 1) && (skey->deactivated)) { 586 /* notify ULP that key is no longer used */ 587 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, 588 key_id, 0, so_locked); 589 SCTPDBG(SCTP_DEBUG_AUTH2, 590 "%s: stcb %p key %u no longer used, %d\n", 591 __FUNCTION__, (void *)stcb, key_id, skey->refcount); 592 } 593 } 594 } 595 596 static sctp_sharedkey_t * 597 sctp_copy_sharedkey(const sctp_sharedkey_t * skey) 598 { 599 sctp_sharedkey_t *new_skey; 600 601 if (skey == NULL) 602 return (NULL); 603 new_skey = sctp_alloc_sharedkey(); 604 if (new_skey == NULL) 605 return (NULL); 606 if (skey->key != NULL) 607 new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen); 608 else 609 new_skey->key = NULL; 610 new_skey->keyid = skey->keyid; 611 return (new_skey); 612 } 613 614 int 615 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest) 616 { 617 sctp_sharedkey_t *skey, *new_skey; 618 int count = 0; 619 620 if ((src == NULL) || (dest == NULL)) 621 return (0); 622 LIST_FOREACH(skey, src, next) { 623 new_skey = sctp_copy_sharedkey(skey); 624 if (new_skey != NULL) { 625 (void)sctp_insert_sharedkey(dest, new_skey); 626 count++; 627 } 628 } 629 return (count); 630 } 631 632 633 sctp_hmaclist_t * 634 sctp_alloc_hmaclist(uint16_t num_hmacs) 635 { 636 sctp_hmaclist_t *new_list; 637 int alloc_size; 638 639 alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]); 640 SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size, 641 SCTP_M_AUTH_HL); 642 if (new_list == NULL) { 643 /* out of memory */ 644 return (NULL); 645 } 646 new_list->max_algo = num_hmacs; 647 new_list->num_algo = 0; 648 return (new_list); 649 } 650 651 void 652 sctp_free_hmaclist(sctp_hmaclist_t * list) 653 { 654 if (list != NULL) { 655 SCTP_FREE(list, SCTP_M_AUTH_HL); 656 list = NULL; 657 } 658 } 659 660 int 661 sctp_auth_add_hmacid(sctp_hmaclist_t * list, uint16_t hmac_id) 662 { 663 int i; 664 665 if (list == NULL) 666 return (-1); 667 if (list->num_algo == list->max_algo) { 668 SCTPDBG(SCTP_DEBUG_AUTH1, 669 "SCTP: HMAC id list full, ignoring add %u\n", hmac_id); 670 return (-1); 671 } 672 if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) && 673 (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) { 674 return (-1); 675 } 676 /* Now is it already in the list */ 677 for (i = 0; i < list->num_algo; i++) { 678 if (list->hmac[i] == hmac_id) { 679 /* already in list */ 680 return (-1); 681 } 682 } 683 SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id); 684 list->hmac[list->num_algo++] = hmac_id; 685 return (0); 686 } 687 688 sctp_hmaclist_t * 689 sctp_copy_hmaclist(sctp_hmaclist_t * list) 690 { 691 sctp_hmaclist_t *new_list; 692 int i; 693 694 if (list == NULL) 695 return (NULL); 696 /* get a new list */ 697 new_list = sctp_alloc_hmaclist(list->max_algo); 698 if (new_list == NULL) 699 return (NULL); 700 /* copy it */ 701 new_list->max_algo = list->max_algo; 702 new_list->num_algo = list->num_algo; 703 for (i = 0; i < list->num_algo; i++) 704 new_list->hmac[i] = list->hmac[i]; 705 return (new_list); 706 } 707 708 sctp_hmaclist_t * 709 sctp_default_supported_hmaclist(void) 710 { 711 sctp_hmaclist_t *new_list; 712 713 new_list = sctp_alloc_hmaclist(2); 714 if (new_list == NULL) 715 return (NULL); 716 /* We prefer SHA256, so list it first */ 717 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256); 718 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1); 719 return (new_list); 720 } 721 722 /*- 723 * HMAC algos are listed in priority/preference order 724 * find the best HMAC id to use for the peer based on local support 725 */ 726 uint16_t 727 sctp_negotiate_hmacid(sctp_hmaclist_t * peer, sctp_hmaclist_t * local) 728 { 729 int i, j; 730 731 if ((local == NULL) || (peer == NULL)) 732 return (SCTP_AUTH_HMAC_ID_RSVD); 733 734 for (i = 0; i < peer->num_algo; i++) { 735 for (j = 0; j < local->num_algo; j++) { 736 if (peer->hmac[i] == local->hmac[j]) { 737 /* found the "best" one */ 738 SCTPDBG(SCTP_DEBUG_AUTH1, 739 "SCTP: negotiated peer HMAC id %u\n", 740 peer->hmac[i]); 741 return (peer->hmac[i]); 742 } 743 } 744 } 745 /* didn't find one! */ 746 return (SCTP_AUTH_HMAC_ID_RSVD); 747 } 748 749 /*- 750 * serialize the HMAC algo list and return space used 751 * caller must guarantee ptr has appropriate space 752 */ 753 int 754 sctp_serialize_hmaclist(sctp_hmaclist_t * list, uint8_t * ptr) 755 { 756 int i; 757 uint16_t hmac_id; 758 759 if (list == NULL) 760 return (0); 761 762 for (i = 0; i < list->num_algo; i++) { 763 hmac_id = htons(list->hmac[i]); 764 bcopy(&hmac_id, ptr, sizeof(hmac_id)); 765 ptr += sizeof(hmac_id); 766 } 767 return (list->num_algo * sizeof(hmac_id)); 768 } 769 770 int 771 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs) 772 { 773 uint32_t i; 774 775 for (i = 0; i < num_hmacs; i++) { 776 if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) { 777 return (0); 778 } 779 } 780 return (-1); 781 } 782 783 sctp_authinfo_t * 784 sctp_alloc_authinfo(void) 785 { 786 sctp_authinfo_t *new_authinfo; 787 788 SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo), 789 SCTP_M_AUTH_IF); 790 791 if (new_authinfo == NULL) { 792 /* out of memory */ 793 return (NULL); 794 } 795 bzero(new_authinfo, sizeof(*new_authinfo)); 796 return (new_authinfo); 797 } 798 799 void 800 sctp_free_authinfo(sctp_authinfo_t * authinfo) 801 { 802 if (authinfo == NULL) 803 return; 804 805 if (authinfo->random != NULL) 806 sctp_free_key(authinfo->random); 807 if (authinfo->peer_random != NULL) 808 sctp_free_key(authinfo->peer_random); 809 if (authinfo->assoc_key != NULL) 810 sctp_free_key(authinfo->assoc_key); 811 if (authinfo->recv_key != NULL) 812 sctp_free_key(authinfo->recv_key); 813 814 /* We are NOT dynamically allocating authinfo's right now... */ 815 /* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */ 816 } 817 818 819 uint32_t 820 sctp_get_auth_chunk_len(uint16_t hmac_algo) 821 { 822 int size; 823 824 size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo); 825 return (SCTP_SIZE32(size)); 826 } 827 828 uint32_t 829 sctp_get_hmac_digest_len(uint16_t hmac_algo) 830 { 831 switch (hmac_algo) { 832 case SCTP_AUTH_HMAC_ID_SHA1: 833 return (SCTP_AUTH_DIGEST_LEN_SHA1); 834 case SCTP_AUTH_HMAC_ID_SHA256: 835 return (SCTP_AUTH_DIGEST_LEN_SHA256); 836 default: 837 /* unknown HMAC algorithm: can't do anything */ 838 return (0); 839 } /* end switch */ 840 } 841 842 static inline int 843 sctp_get_hmac_block_len(uint16_t hmac_algo) 844 { 845 switch (hmac_algo) { 846 case SCTP_AUTH_HMAC_ID_SHA1: 847 return (64); 848 case SCTP_AUTH_HMAC_ID_SHA256: 849 return (64); 850 case SCTP_AUTH_HMAC_ID_RSVD: 851 default: 852 /* unknown HMAC algorithm: can't do anything */ 853 return (0); 854 } /* end switch */ 855 } 856 857 static void 858 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t * ctx) 859 { 860 switch (hmac_algo) { 861 case SCTP_AUTH_HMAC_ID_SHA1: 862 SCTP_SHA1_INIT(&ctx->sha1); 863 break; 864 case SCTP_AUTH_HMAC_ID_SHA256: 865 SCTP_SHA256_INIT(&ctx->sha256); 866 break; 867 case SCTP_AUTH_HMAC_ID_RSVD: 868 default: 869 /* unknown HMAC algorithm: can't do anything */ 870 return; 871 } /* end switch */ 872 } 873 874 static void 875 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t * ctx, 876 uint8_t * text, uint32_t textlen) 877 { 878 switch (hmac_algo) { 879 case SCTP_AUTH_HMAC_ID_SHA1: 880 SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen); 881 break; 882 case SCTP_AUTH_HMAC_ID_SHA256: 883 SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen); 884 break; 885 case SCTP_AUTH_HMAC_ID_RSVD: 886 default: 887 /* unknown HMAC algorithm: can't do anything */ 888 return; 889 } /* end switch */ 890 } 891 892 static void 893 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t * ctx, 894 uint8_t * digest) 895 { 896 switch (hmac_algo) { 897 case SCTP_AUTH_HMAC_ID_SHA1: 898 SCTP_SHA1_FINAL(digest, &ctx->sha1); 899 break; 900 case SCTP_AUTH_HMAC_ID_SHA256: 901 SCTP_SHA256_FINAL(digest, &ctx->sha256); 902 break; 903 case SCTP_AUTH_HMAC_ID_RSVD: 904 default: 905 /* unknown HMAC algorithm: can't do anything */ 906 return; 907 } /* end switch */ 908 } 909 910 /*- 911 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104) 912 * 913 * Compute the HMAC digest using the desired hash key, text, and HMAC 914 * algorithm. Resulting digest is placed in 'digest' and digest length 915 * is returned, if the HMAC was performed. 916 * 917 * WARNING: it is up to the caller to supply sufficient space to hold the 918 * resultant digest. 919 */ 920 uint32_t 921 sctp_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen, 922 uint8_t * text, uint32_t textlen, uint8_t * digest) 923 { 924 uint32_t digestlen; 925 uint32_t blocklen; 926 sctp_hash_context_t ctx; 927 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 928 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 929 uint32_t i; 930 931 /* sanity check the material and length */ 932 if ((key == NULL) || (keylen == 0) || (text == NULL) || 933 (textlen == 0) || (digest == NULL)) { 934 /* can't do HMAC with empty key or text or digest store */ 935 return (0); 936 } 937 /* validate the hmac algo and get the digest length */ 938 digestlen = sctp_get_hmac_digest_len(hmac_algo); 939 if (digestlen == 0) 940 return (0); 941 942 /* hash the key if it is longer than the hash block size */ 943 blocklen = sctp_get_hmac_block_len(hmac_algo); 944 if (keylen > blocklen) { 945 sctp_hmac_init(hmac_algo, &ctx); 946 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 947 sctp_hmac_final(hmac_algo, &ctx, temp); 948 /* set the hashed key as the key */ 949 keylen = digestlen; 950 key = temp; 951 } 952 /* initialize the inner/outer pads with the key and "append" zeroes */ 953 bzero(ipad, blocklen); 954 bzero(opad, blocklen); 955 bcopy(key, ipad, keylen); 956 bcopy(key, opad, keylen); 957 958 /* XOR the key with ipad and opad values */ 959 for (i = 0; i < blocklen; i++) { 960 ipad[i] ^= 0x36; 961 opad[i] ^= 0x5c; 962 } 963 964 /* perform inner hash */ 965 sctp_hmac_init(hmac_algo, &ctx); 966 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 967 sctp_hmac_update(hmac_algo, &ctx, text, textlen); 968 sctp_hmac_final(hmac_algo, &ctx, temp); 969 970 /* perform outer hash */ 971 sctp_hmac_init(hmac_algo, &ctx); 972 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 973 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 974 sctp_hmac_final(hmac_algo, &ctx, digest); 975 976 return (digestlen); 977 } 978 979 /* mbuf version */ 980 uint32_t 981 sctp_hmac_m(uint16_t hmac_algo, uint8_t * key, uint32_t keylen, 982 struct mbuf *m, uint32_t m_offset, uint8_t * digest, uint32_t trailer) 983 { 984 uint32_t digestlen; 985 uint32_t blocklen; 986 sctp_hash_context_t ctx; 987 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 988 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 989 uint32_t i; 990 struct mbuf *m_tmp; 991 992 /* sanity check the material and length */ 993 if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) { 994 /* can't do HMAC with empty key or text or digest store */ 995 return (0); 996 } 997 /* validate the hmac algo and get the digest length */ 998 digestlen = sctp_get_hmac_digest_len(hmac_algo); 999 if (digestlen == 0) 1000 return (0); 1001 1002 /* hash the key if it is longer than the hash block size */ 1003 blocklen = sctp_get_hmac_block_len(hmac_algo); 1004 if (keylen > blocklen) { 1005 sctp_hmac_init(hmac_algo, &ctx); 1006 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 1007 sctp_hmac_final(hmac_algo, &ctx, temp); 1008 /* set the hashed key as the key */ 1009 keylen = digestlen; 1010 key = temp; 1011 } 1012 /* initialize the inner/outer pads with the key and "append" zeroes */ 1013 bzero(ipad, blocklen); 1014 bzero(opad, blocklen); 1015 bcopy(key, ipad, keylen); 1016 bcopy(key, opad, keylen); 1017 1018 /* XOR the key with ipad and opad values */ 1019 for (i = 0; i < blocklen; i++) { 1020 ipad[i] ^= 0x36; 1021 opad[i] ^= 0x5c; 1022 } 1023 1024 /* perform inner hash */ 1025 sctp_hmac_init(hmac_algo, &ctx); 1026 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 1027 /* find the correct starting mbuf and offset (get start of text) */ 1028 m_tmp = m; 1029 while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) { 1030 m_offset -= SCTP_BUF_LEN(m_tmp); 1031 m_tmp = SCTP_BUF_NEXT(m_tmp); 1032 } 1033 /* now use the rest of the mbuf chain for the text */ 1034 while (m_tmp != NULL) { 1035 if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) { 1036 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset, 1037 SCTP_BUF_LEN(m_tmp) - (trailer + m_offset)); 1038 } else { 1039 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset, 1040 SCTP_BUF_LEN(m_tmp) - m_offset); 1041 } 1042 1043 /* clear the offset since it's only for the first mbuf */ 1044 m_offset = 0; 1045 m_tmp = SCTP_BUF_NEXT(m_tmp); 1046 } 1047 sctp_hmac_final(hmac_algo, &ctx, temp); 1048 1049 /* perform outer hash */ 1050 sctp_hmac_init(hmac_algo, &ctx); 1051 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 1052 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 1053 sctp_hmac_final(hmac_algo, &ctx, digest); 1054 1055 return (digestlen); 1056 } 1057 1058 /*- 1059 * verify the HMAC digest using the desired hash key, text, and HMAC 1060 * algorithm. 1061 * Returns -1 on error, 0 on success. 1062 */ 1063 int 1064 sctp_verify_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen, 1065 uint8_t * text, uint32_t textlen, 1066 uint8_t * digest, uint32_t digestlen) 1067 { 1068 uint32_t len; 1069 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1070 1071 /* sanity check the material and length */ 1072 if ((key == NULL) || (keylen == 0) || 1073 (text == NULL) || (textlen == 0) || (digest == NULL)) { 1074 /* can't do HMAC with empty key or text or digest */ 1075 return (-1); 1076 } 1077 len = sctp_get_hmac_digest_len(hmac_algo); 1078 if ((len == 0) || (digestlen != len)) 1079 return (-1); 1080 1081 /* compute the expected hash */ 1082 if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len) 1083 return (-1); 1084 1085 if (memcmp(digest, temp, digestlen) != 0) 1086 return (-1); 1087 else 1088 return (0); 1089 } 1090 1091 1092 /* 1093 * computes the requested HMAC using a key struct (which may be modified if 1094 * the keylen exceeds the HMAC block len). 1095 */ 1096 uint32_t 1097 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t * key, uint8_t * text, 1098 uint32_t textlen, uint8_t * digest) 1099 { 1100 uint32_t digestlen; 1101 uint32_t blocklen; 1102 sctp_hash_context_t ctx; 1103 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1104 1105 /* sanity check */ 1106 if ((key == NULL) || (text == NULL) || (textlen == 0) || 1107 (digest == NULL)) { 1108 /* can't do HMAC with empty key or text or digest store */ 1109 return (0); 1110 } 1111 /* validate the hmac algo and get the digest length */ 1112 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1113 if (digestlen == 0) 1114 return (0); 1115 1116 /* hash the key if it is longer than the hash block size */ 1117 blocklen = sctp_get_hmac_block_len(hmac_algo); 1118 if (key->keylen > blocklen) { 1119 sctp_hmac_init(hmac_algo, &ctx); 1120 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1121 sctp_hmac_final(hmac_algo, &ctx, temp); 1122 /* save the hashed key as the new key */ 1123 key->keylen = digestlen; 1124 bcopy(temp, key->key, key->keylen); 1125 } 1126 return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen, 1127 digest)); 1128 } 1129 1130 /* mbuf version */ 1131 uint32_t 1132 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t * key, struct mbuf *m, 1133 uint32_t m_offset, uint8_t * digest) 1134 { 1135 uint32_t digestlen; 1136 uint32_t blocklen; 1137 sctp_hash_context_t ctx; 1138 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1139 1140 /* sanity check */ 1141 if ((key == NULL) || (m == NULL) || (digest == NULL)) { 1142 /* can't do HMAC with empty key or text or digest store */ 1143 return (0); 1144 } 1145 /* validate the hmac algo and get the digest length */ 1146 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1147 if (digestlen == 0) 1148 return (0); 1149 1150 /* hash the key if it is longer than the hash block size */ 1151 blocklen = sctp_get_hmac_block_len(hmac_algo); 1152 if (key->keylen > blocklen) { 1153 sctp_hmac_init(hmac_algo, &ctx); 1154 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1155 sctp_hmac_final(hmac_algo, &ctx, temp); 1156 /* save the hashed key as the new key */ 1157 key->keylen = digestlen; 1158 bcopy(temp, key->key, key->keylen); 1159 } 1160 return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0)); 1161 } 1162 1163 int 1164 sctp_auth_is_supported_hmac(sctp_hmaclist_t * list, uint16_t id) 1165 { 1166 int i; 1167 1168 if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD)) 1169 return (0); 1170 1171 for (i = 0; i < list->num_algo; i++) 1172 if (list->hmac[i] == id) 1173 return (1); 1174 1175 /* not in the list */ 1176 return (0); 1177 } 1178 1179 1180 /*- 1181 * clear any cached key(s) if they match the given key id on an association. 1182 * the cached key(s) will be recomputed and re-cached at next use. 1183 * ASSUMES TCB_LOCK is already held 1184 */ 1185 void 1186 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid) 1187 { 1188 if (stcb == NULL) 1189 return; 1190 1191 if (keyid == stcb->asoc.authinfo.assoc_keyid) { 1192 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1193 stcb->asoc.authinfo.assoc_key = NULL; 1194 } 1195 if (keyid == stcb->asoc.authinfo.recv_keyid) { 1196 sctp_free_key(stcb->asoc.authinfo.recv_key); 1197 stcb->asoc.authinfo.recv_key = NULL; 1198 } 1199 } 1200 1201 /*- 1202 * clear any cached key(s) if they match the given key id for all assocs on 1203 * an endpoint. 1204 * ASSUMES INP_WLOCK is already held 1205 */ 1206 void 1207 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid) 1208 { 1209 struct sctp_tcb *stcb; 1210 1211 if (inp == NULL) 1212 return; 1213 1214 /* clear the cached keys on all assocs on this instance */ 1215 LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { 1216 SCTP_TCB_LOCK(stcb); 1217 sctp_clear_cachedkeys(stcb, keyid); 1218 SCTP_TCB_UNLOCK(stcb); 1219 } 1220 } 1221 1222 /*- 1223 * delete a shared key from an association 1224 * ASSUMES TCB_LOCK is already held 1225 */ 1226 int 1227 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1228 { 1229 sctp_sharedkey_t *skey; 1230 1231 if (stcb == NULL) 1232 return (-1); 1233 1234 /* is the keyid the assoc active sending key */ 1235 if (keyid == stcb->asoc.authinfo.active_keyid) 1236 return (-1); 1237 1238 /* does the key exist? */ 1239 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1240 if (skey == NULL) 1241 return (-1); 1242 1243 /* are there other refcount holders on the key? */ 1244 if (skey->refcount > 1) 1245 return (-1); 1246 1247 /* remove it */ 1248 LIST_REMOVE(skey, next); 1249 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1250 1251 /* clear any cached keys */ 1252 sctp_clear_cachedkeys(stcb, keyid); 1253 return (0); 1254 } 1255 1256 /*- 1257 * deletes a shared key from the endpoint 1258 * ASSUMES INP_WLOCK is already held 1259 */ 1260 int 1261 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1262 { 1263 sctp_sharedkey_t *skey; 1264 1265 if (inp == NULL) 1266 return (-1); 1267 1268 /* is the keyid the active sending key on the endpoint */ 1269 if (keyid == inp->sctp_ep.default_keyid) 1270 return (-1); 1271 1272 /* does the key exist? */ 1273 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1274 if (skey == NULL) 1275 return (-1); 1276 1277 /* endpoint keys are not refcounted */ 1278 1279 /* remove it */ 1280 LIST_REMOVE(skey, next); 1281 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1282 1283 /* clear any cached keys */ 1284 sctp_clear_cachedkeys_ep(inp, keyid); 1285 return (0); 1286 } 1287 1288 /*- 1289 * set the active key on an association 1290 * ASSUMES TCB_LOCK is already held 1291 */ 1292 int 1293 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid) 1294 { 1295 sctp_sharedkey_t *skey = NULL; 1296 1297 /* find the key on the assoc */ 1298 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1299 if (skey == NULL) { 1300 /* that key doesn't exist */ 1301 return (-1); 1302 } 1303 if ((skey->deactivated) && (skey->refcount > 1)) { 1304 /* can't reactivate a deactivated key with other refcounts */ 1305 return (-1); 1306 } 1307 /* set the (new) active key */ 1308 stcb->asoc.authinfo.active_keyid = keyid; 1309 /* reset the deactivated flag */ 1310 skey->deactivated = 0; 1311 1312 return (0); 1313 } 1314 1315 /*- 1316 * set the active key on an endpoint 1317 * ASSUMES INP_WLOCK is already held 1318 */ 1319 int 1320 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1321 { 1322 sctp_sharedkey_t *skey; 1323 1324 /* find the key */ 1325 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1326 if (skey == NULL) { 1327 /* that key doesn't exist */ 1328 return (-1); 1329 } 1330 inp->sctp_ep.default_keyid = keyid; 1331 return (0); 1332 } 1333 1334 /*- 1335 * deactivates a shared key from the association 1336 * ASSUMES INP_WLOCK is already held 1337 */ 1338 int 1339 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1340 { 1341 sctp_sharedkey_t *skey; 1342 1343 if (stcb == NULL) 1344 return (-1); 1345 1346 /* is the keyid the assoc active sending key */ 1347 if (keyid == stcb->asoc.authinfo.active_keyid) 1348 return (-1); 1349 1350 /* does the key exist? */ 1351 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1352 if (skey == NULL) 1353 return (-1); 1354 1355 /* are there other refcount holders on the key? */ 1356 if (skey->refcount == 1) { 1357 /* no other users, send a notification for this key */ 1358 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0, 1359 SCTP_SO_LOCKED); 1360 } 1361 /* mark the key as deactivated */ 1362 skey->deactivated = 1; 1363 1364 return (0); 1365 } 1366 1367 /*- 1368 * deactivates a shared key from the endpoint 1369 * ASSUMES INP_WLOCK is already held 1370 */ 1371 int 1372 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1373 { 1374 sctp_sharedkey_t *skey; 1375 1376 if (inp == NULL) 1377 return (-1); 1378 1379 /* is the keyid the active sending key on the endpoint */ 1380 if (keyid == inp->sctp_ep.default_keyid) 1381 return (-1); 1382 1383 /* does the key exist? */ 1384 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1385 if (skey == NULL) 1386 return (-1); 1387 1388 /* endpoint keys are not refcounted */ 1389 1390 /* remove it */ 1391 LIST_REMOVE(skey, next); 1392 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1393 1394 return (0); 1395 } 1396 1397 /* 1398 * get local authentication parameters from cookie (from INIT-ACK) 1399 */ 1400 void 1401 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m, 1402 uint32_t offset, uint32_t length) 1403 { 1404 struct sctp_paramhdr *phdr, tmp_param; 1405 uint16_t plen, ptype; 1406 uint8_t random_store[SCTP_PARAM_BUFFER_SIZE]; 1407 struct sctp_auth_random *p_random = NULL; 1408 uint16_t random_len = 0; 1409 uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE]; 1410 struct sctp_auth_hmac_algo *hmacs = NULL; 1411 uint16_t hmacs_len = 0; 1412 uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE]; 1413 struct sctp_auth_chunk_list *chunks = NULL; 1414 uint16_t num_chunks = 0; 1415 sctp_key_t *new_key; 1416 uint32_t keylen; 1417 1418 /* convert to upper bound */ 1419 length += offset; 1420 1421 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, 1422 sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param); 1423 while (phdr != NULL) { 1424 ptype = ntohs(phdr->param_type); 1425 plen = ntohs(phdr->param_length); 1426 1427 if ((plen == 0) || (offset + plen > length)) 1428 break; 1429 1430 if (ptype == SCTP_RANDOM) { 1431 if (plen > sizeof(random_store)) 1432 break; 1433 phdr = sctp_get_next_param(m, offset, 1434 (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store))); 1435 if (phdr == NULL) 1436 return; 1437 /* save the random and length for the key */ 1438 p_random = (struct sctp_auth_random *)phdr; 1439 random_len = plen - sizeof(*p_random); 1440 } else if (ptype == SCTP_HMAC_LIST) { 1441 uint16_t num_hmacs; 1442 uint16_t i; 1443 1444 if (plen > sizeof(hmacs_store)) 1445 break; 1446 phdr = sctp_get_next_param(m, offset, 1447 (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store))); 1448 if (phdr == NULL) 1449 return; 1450 /* save the hmacs list and num for the key */ 1451 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1452 hmacs_len = plen - sizeof(*hmacs); 1453 num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]); 1454 if (stcb->asoc.local_hmacs != NULL) 1455 sctp_free_hmaclist(stcb->asoc.local_hmacs); 1456 stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs); 1457 if (stcb->asoc.local_hmacs != NULL) { 1458 for (i = 0; i < num_hmacs; i++) { 1459 (void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs, 1460 ntohs(hmacs->hmac_ids[i])); 1461 } 1462 } 1463 } else if (ptype == SCTP_CHUNK_LIST) { 1464 int i; 1465 1466 if (plen > sizeof(chunks_store)) 1467 break; 1468 phdr = sctp_get_next_param(m, offset, 1469 (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store))); 1470 if (phdr == NULL) 1471 return; 1472 chunks = (struct sctp_auth_chunk_list *)phdr; 1473 num_chunks = plen - sizeof(*chunks); 1474 /* save chunks list and num for the key */ 1475 if (stcb->asoc.local_auth_chunks != NULL) 1476 sctp_clear_chunklist(stcb->asoc.local_auth_chunks); 1477 else 1478 stcb->asoc.local_auth_chunks = sctp_alloc_chunklist(); 1479 for (i = 0; i < num_chunks; i++) { 1480 (void)sctp_auth_add_chunk(chunks->chunk_types[i], 1481 stcb->asoc.local_auth_chunks); 1482 } 1483 } 1484 /* get next parameter */ 1485 offset += SCTP_SIZE32(plen); 1486 if (offset + sizeof(struct sctp_paramhdr) > length) 1487 break; 1488 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), 1489 (uint8_t *) & tmp_param); 1490 } 1491 /* concatenate the full random key */ 1492 keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len; 1493 if (chunks != NULL) { 1494 keylen += sizeof(*chunks) + num_chunks; 1495 } 1496 new_key = sctp_alloc_key(keylen); 1497 if (new_key != NULL) { 1498 /* copy in the RANDOM */ 1499 if (p_random != NULL) { 1500 keylen = sizeof(*p_random) + random_len; 1501 bcopy(p_random, new_key->key, keylen); 1502 } 1503 /* append in the AUTH chunks */ 1504 if (chunks != NULL) { 1505 bcopy(chunks, new_key->key + keylen, 1506 sizeof(*chunks) + num_chunks); 1507 keylen += sizeof(*chunks) + num_chunks; 1508 } 1509 /* append in the HMACs */ 1510 if (hmacs != NULL) { 1511 bcopy(hmacs, new_key->key + keylen, 1512 sizeof(*hmacs) + hmacs_len); 1513 } 1514 } 1515 if (stcb->asoc.authinfo.random != NULL) 1516 sctp_free_key(stcb->asoc.authinfo.random); 1517 stcb->asoc.authinfo.random = new_key; 1518 stcb->asoc.authinfo.random_len = random_len; 1519 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid); 1520 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid); 1521 1522 /* negotiate what HMAC to use for the peer */ 1523 stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs, 1524 stcb->asoc.local_hmacs); 1525 1526 /* copy defaults from the endpoint */ 1527 /* FIX ME: put in cookie? */ 1528 stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid; 1529 /* copy out the shared key list (by reference) from the endpoint */ 1530 (void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys, 1531 &stcb->asoc.shared_keys); 1532 } 1533 1534 /* 1535 * compute and fill in the HMAC digest for a packet 1536 */ 1537 void 1538 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset, 1539 struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid) 1540 { 1541 uint32_t digestlen; 1542 sctp_sharedkey_t *skey; 1543 sctp_key_t *key; 1544 1545 if ((stcb == NULL) || (auth == NULL)) 1546 return; 1547 1548 /* zero the digest + chunk padding */ 1549 digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id); 1550 bzero(auth->hmac, SCTP_SIZE32(digestlen)); 1551 1552 /* is the desired key cached? */ 1553 if ((keyid != stcb->asoc.authinfo.assoc_keyid) || 1554 (stcb->asoc.authinfo.assoc_key == NULL)) { 1555 if (stcb->asoc.authinfo.assoc_key != NULL) { 1556 /* free the old cached key */ 1557 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1558 } 1559 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1560 /* the only way skey is NULL is if null key id 0 is used */ 1561 if (skey != NULL) 1562 key = skey->key; 1563 else 1564 key = NULL; 1565 /* compute a new assoc key and cache it */ 1566 stcb->asoc.authinfo.assoc_key = 1567 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1568 stcb->asoc.authinfo.peer_random, key); 1569 stcb->asoc.authinfo.assoc_keyid = keyid; 1570 SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n", 1571 stcb->asoc.authinfo.assoc_keyid); 1572 #ifdef SCTP_DEBUG 1573 if (SCTP_AUTH_DEBUG) 1574 sctp_print_key(stcb->asoc.authinfo.assoc_key, 1575 "Assoc Key"); 1576 #endif 1577 } 1578 /* set in the active key id */ 1579 auth->shared_key_id = htons(keyid); 1580 1581 /* compute and fill in the digest */ 1582 (void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key, 1583 m, auth_offset, auth->hmac); 1584 } 1585 1586 1587 static void 1588 sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size) 1589 { 1590 struct mbuf *m_tmp; 1591 uint8_t *data; 1592 1593 /* sanity check */ 1594 if (m == NULL) 1595 return; 1596 1597 /* find the correct starting mbuf and offset (get start position) */ 1598 m_tmp = m; 1599 while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) { 1600 m_offset -= SCTP_BUF_LEN(m_tmp); 1601 m_tmp = SCTP_BUF_NEXT(m_tmp); 1602 } 1603 /* now use the rest of the mbuf chain */ 1604 while ((m_tmp != NULL) && (size > 0)) { 1605 data = mtod(m_tmp, uint8_t *) + m_offset; 1606 if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) { 1607 bzero(data, SCTP_BUF_LEN(m_tmp)); 1608 size -= SCTP_BUF_LEN(m_tmp); 1609 } else { 1610 bzero(data, size); 1611 size = 0; 1612 } 1613 /* clear the offset since it's only for the first mbuf */ 1614 m_offset = 0; 1615 m_tmp = SCTP_BUF_NEXT(m_tmp); 1616 } 1617 } 1618 1619 /*- 1620 * process the incoming Authentication chunk 1621 * return codes: 1622 * -1 on any authentication error 1623 * 0 on authentication verification 1624 */ 1625 int 1626 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth, 1627 struct mbuf *m, uint32_t offset) 1628 { 1629 uint16_t chunklen; 1630 uint16_t shared_key_id; 1631 uint16_t hmac_id; 1632 sctp_sharedkey_t *skey; 1633 uint32_t digestlen; 1634 uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1635 uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1636 1637 /* auth is checked for NULL by caller */ 1638 chunklen = ntohs(auth->ch.chunk_length); 1639 if (chunklen < sizeof(*auth)) { 1640 SCTP_STAT_INCR(sctps_recvauthfailed); 1641 return (-1); 1642 } 1643 SCTP_STAT_INCR(sctps_recvauth); 1644 1645 /* get the auth params */ 1646 shared_key_id = ntohs(auth->shared_key_id); 1647 hmac_id = ntohs(auth->hmac_id); 1648 SCTPDBG(SCTP_DEBUG_AUTH1, 1649 "SCTP AUTH Chunk: shared key %u, HMAC id %u\n", 1650 shared_key_id, hmac_id); 1651 1652 /* is the indicated HMAC supported? */ 1653 if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) { 1654 struct mbuf *m_err; 1655 struct sctp_auth_invalid_hmac *err; 1656 1657 SCTP_STAT_INCR(sctps_recvivalhmacid); 1658 SCTPDBG(SCTP_DEBUG_AUTH1, 1659 "SCTP Auth: unsupported HMAC id %u\n", 1660 hmac_id); 1661 /* 1662 * report this in an Error Chunk: Unsupported HMAC 1663 * Identifier 1664 */ 1665 m_err = sctp_get_mbuf_for_msg(sizeof(*err), 0, M_NOWAIT, 1666 1, MT_HEADER); 1667 if (m_err != NULL) { 1668 /* pre-reserve some space */ 1669 SCTP_BUF_RESV_UF(m_err, sizeof(struct sctp_chunkhdr)); 1670 /* fill in the error */ 1671 err = mtod(m_err, struct sctp_auth_invalid_hmac *); 1672 bzero(err, sizeof(*err)); 1673 err->ph.param_type = htons(SCTP_CAUSE_UNSUPPORTED_HMACID); 1674 err->ph.param_length = htons(sizeof(*err)); 1675 err->hmac_id = ntohs(hmac_id); 1676 SCTP_BUF_LEN(m_err) = sizeof(*err); 1677 /* queue it */ 1678 sctp_queue_op_err(stcb, m_err); 1679 } 1680 return (-1); 1681 } 1682 /* get the indicated shared key, if available */ 1683 if ((stcb->asoc.authinfo.recv_key == NULL) || 1684 (stcb->asoc.authinfo.recv_keyid != shared_key_id)) { 1685 /* find the shared key on the assoc first */ 1686 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, 1687 shared_key_id); 1688 /* if the shared key isn't found, discard the chunk */ 1689 if (skey == NULL) { 1690 SCTP_STAT_INCR(sctps_recvivalkeyid); 1691 SCTPDBG(SCTP_DEBUG_AUTH1, 1692 "SCTP Auth: unknown key id %u\n", 1693 shared_key_id); 1694 return (-1); 1695 } 1696 /* generate a notification if this is a new key id */ 1697 if (stcb->asoc.authinfo.recv_keyid != shared_key_id) 1698 /* 1699 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb, 1700 * shared_key_id, (void 1701 * *)stcb->asoc.authinfo.recv_keyid); 1702 */ 1703 sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY, 1704 shared_key_id, stcb->asoc.authinfo.recv_keyid, 1705 SCTP_SO_NOT_LOCKED); 1706 /* compute a new recv assoc key and cache it */ 1707 if (stcb->asoc.authinfo.recv_key != NULL) 1708 sctp_free_key(stcb->asoc.authinfo.recv_key); 1709 stcb->asoc.authinfo.recv_key = 1710 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1711 stcb->asoc.authinfo.peer_random, skey->key); 1712 stcb->asoc.authinfo.recv_keyid = shared_key_id; 1713 #ifdef SCTP_DEBUG 1714 if (SCTP_AUTH_DEBUG) 1715 sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key"); 1716 #endif 1717 } 1718 /* validate the digest length */ 1719 digestlen = sctp_get_hmac_digest_len(hmac_id); 1720 if (chunklen < (sizeof(*auth) + digestlen)) { 1721 /* invalid digest length */ 1722 SCTP_STAT_INCR(sctps_recvauthfailed); 1723 SCTPDBG(SCTP_DEBUG_AUTH1, 1724 "SCTP Auth: chunk too short for HMAC\n"); 1725 return (-1); 1726 } 1727 /* save a copy of the digest, zero the pseudo header, and validate */ 1728 bcopy(auth->hmac, digest, digestlen); 1729 sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen)); 1730 (void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key, 1731 m, offset, computed_digest); 1732 1733 /* compare the computed digest with the one in the AUTH chunk */ 1734 if (memcmp(digest, computed_digest, digestlen) != 0) { 1735 SCTP_STAT_INCR(sctps_recvauthfailed); 1736 SCTPDBG(SCTP_DEBUG_AUTH1, 1737 "SCTP Auth: HMAC digest check failed\n"); 1738 return (-1); 1739 } 1740 return (0); 1741 } 1742 1743 /* 1744 * Generate NOTIFICATION 1745 */ 1746 void 1747 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication, 1748 uint16_t keyid, uint16_t alt_keyid, int so_locked 1749 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) 1750 SCTP_UNUSED 1751 #endif 1752 ) 1753 { 1754 struct mbuf *m_notify; 1755 struct sctp_authkey_event *auth; 1756 struct sctp_queued_to_read *control; 1757 1758 if ((stcb == NULL) || 1759 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || 1760 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || 1761 (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) 1762 ) { 1763 /* If the socket is gone we are out of here */ 1764 return; 1765 } 1766 if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT)) 1767 /* event not enabled */ 1768 return; 1769 1770 m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event), 1771 0, M_NOWAIT, 1, MT_HEADER); 1772 if (m_notify == NULL) 1773 /* no space left */ 1774 return; 1775 1776 SCTP_BUF_LEN(m_notify) = 0; 1777 auth = mtod(m_notify, struct sctp_authkey_event *); 1778 memset(auth, 0, sizeof(struct sctp_authkey_event)); 1779 auth->auth_type = SCTP_AUTHENTICATION_EVENT; 1780 auth->auth_flags = 0; 1781 auth->auth_length = sizeof(*auth); 1782 auth->auth_keynumber = keyid; 1783 auth->auth_altkeynumber = alt_keyid; 1784 auth->auth_indication = indication; 1785 auth->auth_assoc_id = sctp_get_associd(stcb); 1786 1787 SCTP_BUF_LEN(m_notify) = sizeof(*auth); 1788 SCTP_BUF_NEXT(m_notify) = NULL; 1789 1790 /* append to socket */ 1791 control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 1792 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); 1793 if (control == NULL) { 1794 /* no memory */ 1795 sctp_m_freem(m_notify); 1796 return; 1797 } 1798 control->spec_flags = M_NOTIFICATION; 1799 control->length = SCTP_BUF_LEN(m_notify); 1800 /* not that we need this */ 1801 control->tail_mbuf = m_notify; 1802 sctp_add_to_readq(stcb->sctp_ep, stcb, control, 1803 &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); 1804 } 1805 1806 1807 /*- 1808 * validates the AUTHentication related parameters in an INIT/INIT-ACK 1809 * Note: currently only used for INIT as INIT-ACK is handled inline 1810 * with sctp_load_addresses_from_init() 1811 */ 1812 int 1813 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit) 1814 { 1815 struct sctp_paramhdr *phdr, parm_buf; 1816 uint16_t ptype, plen; 1817 int peer_supports_asconf = 0; 1818 int peer_supports_auth = 0; 1819 int got_random = 0, got_hmacs = 0, got_chklist = 0; 1820 uint8_t saw_asconf = 0; 1821 uint8_t saw_asconf_ack = 0; 1822 1823 /* go through each of the params. */ 1824 phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf)); 1825 while (phdr) { 1826 ptype = ntohs(phdr->param_type); 1827 plen = ntohs(phdr->param_length); 1828 1829 if (offset + plen > limit) { 1830 break; 1831 } 1832 if (plen < sizeof(struct sctp_paramhdr)) { 1833 break; 1834 } 1835 if (ptype == SCTP_SUPPORTED_CHUNK_EXT) { 1836 /* A supported extension chunk */ 1837 struct sctp_supported_chunk_types_param *pr_supported; 1838 uint8_t local_store[SCTP_PARAM_BUFFER_SIZE]; 1839 int num_ent, i; 1840 1841 phdr = sctp_get_next_param(m, offset, 1842 (struct sctp_paramhdr *)&local_store, min(plen, sizeof(local_store))); 1843 if (phdr == NULL) { 1844 return (-1); 1845 } 1846 pr_supported = (struct sctp_supported_chunk_types_param *)phdr; 1847 num_ent = plen - sizeof(struct sctp_paramhdr); 1848 for (i = 0; i < num_ent; i++) { 1849 switch (pr_supported->chunk_types[i]) { 1850 case SCTP_ASCONF: 1851 case SCTP_ASCONF_ACK: 1852 peer_supports_asconf = 1; 1853 break; 1854 default: 1855 /* one we don't care about */ 1856 break; 1857 } 1858 } 1859 } else if (ptype == SCTP_RANDOM) { 1860 got_random = 1; 1861 /* enforce the random length */ 1862 if (plen != (sizeof(struct sctp_auth_random) + 1863 SCTP_AUTH_RANDOM_SIZE_REQUIRED)) { 1864 SCTPDBG(SCTP_DEBUG_AUTH1, 1865 "SCTP: invalid RANDOM len\n"); 1866 return (-1); 1867 } 1868 } else if (ptype == SCTP_HMAC_LIST) { 1869 uint8_t store[SCTP_PARAM_BUFFER_SIZE]; 1870 struct sctp_auth_hmac_algo *hmacs; 1871 int num_hmacs; 1872 1873 if (plen > sizeof(store)) 1874 break; 1875 phdr = sctp_get_next_param(m, offset, 1876 (struct sctp_paramhdr *)store, min(plen, sizeof(store))); 1877 if (phdr == NULL) 1878 return (-1); 1879 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1880 num_hmacs = (plen - sizeof(*hmacs)) / 1881 sizeof(hmacs->hmac_ids[0]); 1882 /* validate the hmac list */ 1883 if (sctp_verify_hmac_param(hmacs, num_hmacs)) { 1884 SCTPDBG(SCTP_DEBUG_AUTH1, 1885 "SCTP: invalid HMAC param\n"); 1886 return (-1); 1887 } 1888 got_hmacs = 1; 1889 } else if (ptype == SCTP_CHUNK_LIST) { 1890 int i, num_chunks; 1891 uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE]; 1892 1893 /* did the peer send a non-empty chunk list? */ 1894 struct sctp_auth_chunk_list *chunks = NULL; 1895 1896 phdr = sctp_get_next_param(m, offset, 1897 (struct sctp_paramhdr *)chunks_store, 1898 min(plen, sizeof(chunks_store))); 1899 if (phdr == NULL) 1900 return (-1); 1901 1902 /*- 1903 * Flip through the list and mark that the 1904 * peer supports asconf/asconf_ack. 1905 */ 1906 chunks = (struct sctp_auth_chunk_list *)phdr; 1907 num_chunks = plen - sizeof(*chunks); 1908 for (i = 0; i < num_chunks; i++) { 1909 /* record asconf/asconf-ack if listed */ 1910 if (chunks->chunk_types[i] == SCTP_ASCONF) 1911 saw_asconf = 1; 1912 if (chunks->chunk_types[i] == SCTP_ASCONF_ACK) 1913 saw_asconf_ack = 1; 1914 1915 } 1916 if (num_chunks) 1917 got_chklist = 1; 1918 } 1919 offset += SCTP_SIZE32(plen); 1920 if (offset >= limit) { 1921 break; 1922 } 1923 phdr = sctp_get_next_param(m, offset, &parm_buf, 1924 sizeof(parm_buf)); 1925 } 1926 /* validate authentication required parameters */ 1927 if (got_random && got_hmacs) { 1928 peer_supports_auth = 1; 1929 } else { 1930 peer_supports_auth = 0; 1931 } 1932 if (!peer_supports_auth && got_chklist) { 1933 SCTPDBG(SCTP_DEBUG_AUTH1, 1934 "SCTP: peer sent chunk list w/o AUTH\n"); 1935 return (-1); 1936 } 1937 if (peer_supports_asconf && !peer_supports_auth) { 1938 SCTPDBG(SCTP_DEBUG_AUTH1, 1939 "SCTP: peer supports ASCONF but not AUTH\n"); 1940 return (-1); 1941 } else if ((peer_supports_asconf) && (peer_supports_auth) && 1942 ((saw_asconf == 0) || (saw_asconf_ack == 0))) { 1943 return (-2); 1944 } 1945 return (0); 1946 } 1947 1948 void 1949 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb) 1950 { 1951 uint16_t chunks_len = 0; 1952 uint16_t hmacs_len = 0; 1953 uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT; 1954 sctp_key_t *new_key; 1955 uint16_t keylen; 1956 1957 /* initialize hmac list from endpoint */ 1958 stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs); 1959 if (stcb->asoc.local_hmacs != NULL) { 1960 hmacs_len = stcb->asoc.local_hmacs->num_algo * 1961 sizeof(stcb->asoc.local_hmacs->hmac[0]); 1962 } 1963 /* initialize auth chunks list from endpoint */ 1964 stcb->asoc.local_auth_chunks = 1965 sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks); 1966 if (stcb->asoc.local_auth_chunks != NULL) { 1967 int i; 1968 1969 for (i = 0; i < 256; i++) { 1970 if (stcb->asoc.local_auth_chunks->chunks[i]) 1971 chunks_len++; 1972 } 1973 } 1974 /* copy defaults from the endpoint */ 1975 stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid; 1976 1977 /* copy out the shared key list (by reference) from the endpoint */ 1978 (void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys, 1979 &stcb->asoc.shared_keys); 1980 1981 /* now set the concatenated key (random + chunks + hmacs) */ 1982 /* key includes parameter headers */ 1983 keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len + 1984 hmacs_len; 1985 new_key = sctp_alloc_key(keylen); 1986 if (new_key != NULL) { 1987 struct sctp_paramhdr *ph; 1988 int plen; 1989 1990 /* generate and copy in the RANDOM */ 1991 ph = (struct sctp_paramhdr *)new_key->key; 1992 ph->param_type = htons(SCTP_RANDOM); 1993 plen = sizeof(*ph) + random_len; 1994 ph->param_length = htons(plen); 1995 SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len); 1996 keylen = plen; 1997 1998 /* append in the AUTH chunks */ 1999 /* NOTE: currently we always have chunks to list */ 2000 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 2001 ph->param_type = htons(SCTP_CHUNK_LIST); 2002 plen = sizeof(*ph) + chunks_len; 2003 ph->param_length = htons(plen); 2004 keylen += sizeof(*ph); 2005 if (stcb->asoc.local_auth_chunks) { 2006 int i; 2007 2008 for (i = 0; i < 256; i++) { 2009 if (stcb->asoc.local_auth_chunks->chunks[i]) 2010 new_key->key[keylen++] = i; 2011 } 2012 } 2013 /* append in the HMACs */ 2014 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 2015 ph->param_type = htons(SCTP_HMAC_LIST); 2016 plen = sizeof(*ph) + hmacs_len; 2017 ph->param_length = htons(plen); 2018 keylen += sizeof(*ph); 2019 (void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs, 2020 new_key->key + keylen); 2021 } 2022 if (stcb->asoc.authinfo.random != NULL) 2023 sctp_free_key(stcb->asoc.authinfo.random); 2024 stcb->asoc.authinfo.random = new_key; 2025 stcb->asoc.authinfo.random_len = random_len; 2026 } 2027