xref: /freebsd/sys/netinet/sctp_auth.c (revision 39ee7a7a6bdd1557b1c3532abf60d139798ac88b)
1 /*-
2  * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
3  * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
4  * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * a) Redistributions of source code must retain the above copyright notice,
10  *    this list of conditions and the following disclaimer.
11  *
12  * b) Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the distribution.
15  *
16  * c) Neither the name of Cisco Systems, Inc. nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <netinet/sctp_os.h>
37 #include <netinet/sctp.h>
38 #include <netinet/sctp_header.h>
39 #include <netinet/sctp_pcb.h>
40 #include <netinet/sctp_var.h>
41 #include <netinet/sctp_sysctl.h>
42 #include <netinet/sctputil.h>
43 #include <netinet/sctp_indata.h>
44 #include <netinet/sctp_output.h>
45 #include <netinet/sctp_auth.h>
46 
47 #ifdef SCTP_DEBUG
48 #define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
49 #define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
50 #endif				/* SCTP_DEBUG */
51 
52 
53 void
54 sctp_clear_chunklist(sctp_auth_chklist_t * chklist)
55 {
56 	bzero(chklist, sizeof(*chklist));
57 	/* chklist->num_chunks = 0; */
58 }
59 
60 sctp_auth_chklist_t *
61 sctp_alloc_chunklist(void)
62 {
63 	sctp_auth_chklist_t *chklist;
64 
65 	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
66 	    SCTP_M_AUTH_CL);
67 	if (chklist == NULL) {
68 		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
69 	} else {
70 		sctp_clear_chunklist(chklist);
71 	}
72 	return (chklist);
73 }
74 
75 void
76 sctp_free_chunklist(sctp_auth_chklist_t * list)
77 {
78 	if (list != NULL)
79 		SCTP_FREE(list, SCTP_M_AUTH_CL);
80 }
81 
82 sctp_auth_chklist_t *
83 sctp_copy_chunklist(sctp_auth_chklist_t * list)
84 {
85 	sctp_auth_chklist_t *new_list;
86 
87 	if (list == NULL)
88 		return (NULL);
89 
90 	/* get a new list */
91 	new_list = sctp_alloc_chunklist();
92 	if (new_list == NULL)
93 		return (NULL);
94 	/* copy it */
95 	bcopy(list, new_list, sizeof(*new_list));
96 
97 	return (new_list);
98 }
99 
100 
101 /*
102  * add a chunk to the required chunks list
103  */
104 int
105 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
106 {
107 	if (list == NULL)
108 		return (-1);
109 
110 	/* is chunk restricted? */
111 	if ((chunk == SCTP_INITIATION) ||
112 	    (chunk == SCTP_INITIATION_ACK) ||
113 	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
114 	    (chunk == SCTP_AUTHENTICATION)) {
115 		return (-1);
116 	}
117 	if (list->chunks[chunk] == 0) {
118 		list->chunks[chunk] = 1;
119 		list->num_chunks++;
120 		SCTPDBG(SCTP_DEBUG_AUTH1,
121 		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
122 		    chunk, chunk);
123 	}
124 	return (0);
125 }
126 
127 /*
128  * delete a chunk from the required chunks list
129  */
130 int
131 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
132 {
133 	if (list == NULL)
134 		return (-1);
135 
136 	if (list->chunks[chunk] == 1) {
137 		list->chunks[chunk] = 0;
138 		list->num_chunks--;
139 		SCTPDBG(SCTP_DEBUG_AUTH1,
140 		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
141 		    chunk, chunk);
142 	}
143 	return (0);
144 }
145 
146 size_t
147 sctp_auth_get_chklist_size(const sctp_auth_chklist_t * list)
148 {
149 	if (list == NULL)
150 		return (0);
151 	else
152 		return (list->num_chunks);
153 }
154 
155 /*
156  * return the current number and list of required chunks caller must
157  * guarantee ptr has space for up to 256 bytes
158  */
159 int
160 sctp_serialize_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
161 {
162 	int i, count = 0;
163 
164 	if (list == NULL)
165 		return (0);
166 
167 	for (i = 0; i < 256; i++) {
168 		if (list->chunks[i] != 0) {
169 			*ptr++ = i;
170 			count++;
171 		}
172 	}
173 	return (count);
174 }
175 
176 int
177 sctp_pack_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
178 {
179 	int i, size = 0;
180 
181 	if (list == NULL)
182 		return (0);
183 
184 	if (list->num_chunks <= 32) {
185 		/* just list them, one byte each */
186 		for (i = 0; i < 256; i++) {
187 			if (list->chunks[i] != 0) {
188 				*ptr++ = i;
189 				size++;
190 			}
191 		}
192 	} else {
193 		int index, offset;
194 
195 		/* pack into a 32 byte bitfield */
196 		for (i = 0; i < 256; i++) {
197 			if (list->chunks[i] != 0) {
198 				index = i / 8;
199 				offset = i % 8;
200 				ptr[index] |= (1 << offset);
201 			}
202 		}
203 		size = 32;
204 	}
205 	return (size);
206 }
207 
208 int
209 sctp_unpack_auth_chunks(const uint8_t * ptr, uint8_t num_chunks,
210     sctp_auth_chklist_t * list)
211 {
212 	int i;
213 	int size;
214 
215 	if (list == NULL)
216 		return (0);
217 
218 	if (num_chunks <= 32) {
219 		/* just pull them, one byte each */
220 		for (i = 0; i < num_chunks; i++) {
221 			(void)sctp_auth_add_chunk(*ptr++, list);
222 		}
223 		size = num_chunks;
224 	} else {
225 		int index, offset;
226 
227 		/* unpack from a 32 byte bitfield */
228 		for (index = 0; index < 32; index++) {
229 			for (offset = 0; offset < 8; offset++) {
230 				if (ptr[index] & (1 << offset)) {
231 					(void)sctp_auth_add_chunk((index * 8) + offset, list);
232 				}
233 			}
234 		}
235 		size = 32;
236 	}
237 	return (size);
238 }
239 
240 
241 /*
242  * allocate structure space for a key of length keylen
243  */
244 sctp_key_t *
245 sctp_alloc_key(uint32_t keylen)
246 {
247 	sctp_key_t *new_key;
248 
249 	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
250 	    SCTP_M_AUTH_KY);
251 	if (new_key == NULL) {
252 		/* out of memory */
253 		return (NULL);
254 	}
255 	new_key->keylen = keylen;
256 	return (new_key);
257 }
258 
259 void
260 sctp_free_key(sctp_key_t * key)
261 {
262 	if (key != NULL)
263 		SCTP_FREE(key, SCTP_M_AUTH_KY);
264 }
265 
266 void
267 sctp_print_key(sctp_key_t * key, const char *str)
268 {
269 	uint32_t i;
270 
271 	if (key == NULL) {
272 		SCTP_PRINTF("%s: [Null key]\n", str);
273 		return;
274 	}
275 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
276 	if (key->keylen) {
277 		for (i = 0; i < key->keylen; i++)
278 			SCTP_PRINTF("%02x", key->key[i]);
279 		SCTP_PRINTF("\n");
280 	} else {
281 		SCTP_PRINTF("[Null key]\n");
282 	}
283 }
284 
285 void
286 sctp_show_key(sctp_key_t * key, const char *str)
287 {
288 	uint32_t i;
289 
290 	if (key == NULL) {
291 		SCTP_PRINTF("%s: [Null key]\n", str);
292 		return;
293 	}
294 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
295 	if (key->keylen) {
296 		for (i = 0; i < key->keylen; i++)
297 			SCTP_PRINTF("%02x", key->key[i]);
298 		SCTP_PRINTF("\n");
299 	} else {
300 		SCTP_PRINTF("[Null key]\n");
301 	}
302 }
303 
304 static uint32_t
305 sctp_get_keylen(sctp_key_t * key)
306 {
307 	if (key != NULL)
308 		return (key->keylen);
309 	else
310 		return (0);
311 }
312 
313 /*
314  * generate a new random key of length 'keylen'
315  */
316 sctp_key_t *
317 sctp_generate_random_key(uint32_t keylen)
318 {
319 	sctp_key_t *new_key;
320 
321 	new_key = sctp_alloc_key(keylen);
322 	if (new_key == NULL) {
323 		/* out of memory */
324 		return (NULL);
325 	}
326 	SCTP_READ_RANDOM(new_key->key, keylen);
327 	new_key->keylen = keylen;
328 	return (new_key);
329 }
330 
331 sctp_key_t *
332 sctp_set_key(uint8_t * key, uint32_t keylen)
333 {
334 	sctp_key_t *new_key;
335 
336 	new_key = sctp_alloc_key(keylen);
337 	if (new_key == NULL) {
338 		/* out of memory */
339 		return (NULL);
340 	}
341 	bcopy(key, new_key->key, keylen);
342 	return (new_key);
343 }
344 
345 /*-
346  * given two keys of variable size, compute which key is "larger/smaller"
347  * returns:  1 if key1 > key2
348  *          -1 if key1 < key2
349  *           0 if key1 = key2
350  */
351 static int
352 sctp_compare_key(sctp_key_t * key1, sctp_key_t * key2)
353 {
354 	uint32_t maxlen;
355 	uint32_t i;
356 	uint32_t key1len, key2len;
357 	uint8_t *key_1, *key_2;
358 	uint8_t val1, val2;
359 
360 	/* sanity/length check */
361 	key1len = sctp_get_keylen(key1);
362 	key2len = sctp_get_keylen(key2);
363 	if ((key1len == 0) && (key2len == 0))
364 		return (0);
365 	else if (key1len == 0)
366 		return (-1);
367 	else if (key2len == 0)
368 		return (1);
369 
370 	if (key1len < key2len) {
371 		maxlen = key2len;
372 	} else {
373 		maxlen = key1len;
374 	}
375 	key_1 = key1->key;
376 	key_2 = key2->key;
377 	/* check for numeric equality */
378 	for (i = 0; i < maxlen; i++) {
379 		/* left-pad with zeros */
380 		val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++);
381 		val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++);
382 		if (val1 > val2) {
383 			return (1);
384 		} else if (val1 < val2) {
385 			return (-1);
386 		}
387 	}
388 	/* keys are equal value, so check lengths */
389 	if (key1len == key2len)
390 		return (0);
391 	else if (key1len < key2len)
392 		return (-1);
393 	else
394 		return (1);
395 }
396 
397 /*
398  * generate the concatenated keying material based on the two keys and the
399  * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
400  * order for concatenation
401  */
402 sctp_key_t *
403 sctp_compute_hashkey(sctp_key_t * key1, sctp_key_t * key2, sctp_key_t * shared)
404 {
405 	uint32_t keylen;
406 	sctp_key_t *new_key;
407 	uint8_t *key_ptr;
408 
409 	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
410 	    sctp_get_keylen(shared);
411 
412 	if (keylen > 0) {
413 		/* get space for the new key */
414 		new_key = sctp_alloc_key(keylen);
415 		if (new_key == NULL) {
416 			/* out of memory */
417 			return (NULL);
418 		}
419 		new_key->keylen = keylen;
420 		key_ptr = new_key->key;
421 	} else {
422 		/* all keys empty/null?! */
423 		return (NULL);
424 	}
425 
426 	/* concatenate the keys */
427 	if (sctp_compare_key(key1, key2) <= 0) {
428 		/* key is shared + key1 + key2 */
429 		if (sctp_get_keylen(shared)) {
430 			bcopy(shared->key, key_ptr, shared->keylen);
431 			key_ptr += shared->keylen;
432 		}
433 		if (sctp_get_keylen(key1)) {
434 			bcopy(key1->key, key_ptr, key1->keylen);
435 			key_ptr += key1->keylen;
436 		}
437 		if (sctp_get_keylen(key2)) {
438 			bcopy(key2->key, key_ptr, key2->keylen);
439 		}
440 	} else {
441 		/* key is shared + key2 + key1 */
442 		if (sctp_get_keylen(shared)) {
443 			bcopy(shared->key, key_ptr, shared->keylen);
444 			key_ptr += shared->keylen;
445 		}
446 		if (sctp_get_keylen(key2)) {
447 			bcopy(key2->key, key_ptr, key2->keylen);
448 			key_ptr += key2->keylen;
449 		}
450 		if (sctp_get_keylen(key1)) {
451 			bcopy(key1->key, key_ptr, key1->keylen);
452 		}
453 	}
454 	return (new_key);
455 }
456 
457 
458 sctp_sharedkey_t *
459 sctp_alloc_sharedkey(void)
460 {
461 	sctp_sharedkey_t *new_key;
462 
463 	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
464 	    SCTP_M_AUTH_KY);
465 	if (new_key == NULL) {
466 		/* out of memory */
467 		return (NULL);
468 	}
469 	new_key->keyid = 0;
470 	new_key->key = NULL;
471 	new_key->refcount = 1;
472 	new_key->deactivated = 0;
473 	return (new_key);
474 }
475 
476 void
477 sctp_free_sharedkey(sctp_sharedkey_t * skey)
478 {
479 	if (skey == NULL)
480 		return;
481 
482 	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
483 		if (skey->key != NULL)
484 			sctp_free_key(skey->key);
485 		SCTP_FREE(skey, SCTP_M_AUTH_KY);
486 	}
487 }
488 
489 sctp_sharedkey_t *
490 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
491 {
492 	sctp_sharedkey_t *skey;
493 
494 	LIST_FOREACH(skey, shared_keys, next) {
495 		if (skey->keyid == key_id)
496 			return (skey);
497 	}
498 	return (NULL);
499 }
500 
501 int
502 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
503     sctp_sharedkey_t * new_skey)
504 {
505 	sctp_sharedkey_t *skey;
506 
507 	if ((shared_keys == NULL) || (new_skey == NULL))
508 		return (EINVAL);
509 
510 	/* insert into an empty list? */
511 	if (LIST_EMPTY(shared_keys)) {
512 		LIST_INSERT_HEAD(shared_keys, new_skey, next);
513 		return (0);
514 	}
515 	/* insert into the existing list, ordered by key id */
516 	LIST_FOREACH(skey, shared_keys, next) {
517 		if (new_skey->keyid < skey->keyid) {
518 			/* insert it before here */
519 			LIST_INSERT_BEFORE(skey, new_skey, next);
520 			return (0);
521 		} else if (new_skey->keyid == skey->keyid) {
522 			/* replace the existing key */
523 			/* verify this key *can* be replaced */
524 			if ((skey->deactivated) && (skey->refcount > 1)) {
525 				SCTPDBG(SCTP_DEBUG_AUTH1,
526 				    "can't replace shared key id %u\n",
527 				    new_skey->keyid);
528 				return (EBUSY);
529 			}
530 			SCTPDBG(SCTP_DEBUG_AUTH1,
531 			    "replacing shared key id %u\n",
532 			    new_skey->keyid);
533 			LIST_INSERT_BEFORE(skey, new_skey, next);
534 			LIST_REMOVE(skey, next);
535 			sctp_free_sharedkey(skey);
536 			return (0);
537 		}
538 		if (LIST_NEXT(skey, next) == NULL) {
539 			/* belongs at the end of the list */
540 			LIST_INSERT_AFTER(skey, new_skey, next);
541 			return (0);
542 		}
543 	}
544 	/* shouldn't reach here */
545 	return (0);
546 }
547 
548 void
549 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
550 {
551 	sctp_sharedkey_t *skey;
552 
553 	/* find the shared key */
554 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
555 
556 	/* bump the ref count */
557 	if (skey) {
558 		atomic_add_int(&skey->refcount, 1);
559 		SCTPDBG(SCTP_DEBUG_AUTH2,
560 		    "%s: stcb %p key %u refcount acquire to %d\n",
561 		    __func__, (void *)stcb, key_id, skey->refcount);
562 	}
563 }
564 
565 void
566 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked
567 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
568     SCTP_UNUSED
569 #endif
570 )
571 {
572 	sctp_sharedkey_t *skey;
573 
574 	/* find the shared key */
575 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
576 
577 	/* decrement the ref count */
578 	if (skey) {
579 		SCTPDBG(SCTP_DEBUG_AUTH2,
580 		    "%s: stcb %p key %u refcount release to %d\n",
581 		    __func__, (void *)stcb, key_id, skey->refcount);
582 
583 		/* see if a notification should be generated */
584 		if ((skey->refcount <= 2) && (skey->deactivated)) {
585 			/* notify ULP that key is no longer used */
586 			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
587 			    key_id, 0, so_locked);
588 			SCTPDBG(SCTP_DEBUG_AUTH2,
589 			    "%s: stcb %p key %u no longer used, %d\n",
590 			    __func__, (void *)stcb, key_id, skey->refcount);
591 		}
592 		sctp_free_sharedkey(skey);
593 	}
594 }
595 
596 static sctp_sharedkey_t *
597 sctp_copy_sharedkey(const sctp_sharedkey_t * skey)
598 {
599 	sctp_sharedkey_t *new_skey;
600 
601 	if (skey == NULL)
602 		return (NULL);
603 	new_skey = sctp_alloc_sharedkey();
604 	if (new_skey == NULL)
605 		return (NULL);
606 	if (skey->key != NULL)
607 		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
608 	else
609 		new_skey->key = NULL;
610 	new_skey->keyid = skey->keyid;
611 	return (new_skey);
612 }
613 
614 int
615 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
616 {
617 	sctp_sharedkey_t *skey, *new_skey;
618 	int count = 0;
619 
620 	if ((src == NULL) || (dest == NULL))
621 		return (0);
622 	LIST_FOREACH(skey, src, next) {
623 		new_skey = sctp_copy_sharedkey(skey);
624 		if (new_skey != NULL) {
625 			(void)sctp_insert_sharedkey(dest, new_skey);
626 			count++;
627 		}
628 	}
629 	return (count);
630 }
631 
632 
633 sctp_hmaclist_t *
634 sctp_alloc_hmaclist(uint16_t num_hmacs)
635 {
636 	sctp_hmaclist_t *new_list;
637 	int alloc_size;
638 
639 	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
640 	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
641 	    SCTP_M_AUTH_HL);
642 	if (new_list == NULL) {
643 		/* out of memory */
644 		return (NULL);
645 	}
646 	new_list->max_algo = num_hmacs;
647 	new_list->num_algo = 0;
648 	return (new_list);
649 }
650 
651 void
652 sctp_free_hmaclist(sctp_hmaclist_t * list)
653 {
654 	if (list != NULL) {
655 		SCTP_FREE(list, SCTP_M_AUTH_HL);
656 		list = NULL;
657 	}
658 }
659 
660 int
661 sctp_auth_add_hmacid(sctp_hmaclist_t * list, uint16_t hmac_id)
662 {
663 	int i;
664 
665 	if (list == NULL)
666 		return (-1);
667 	if (list->num_algo == list->max_algo) {
668 		SCTPDBG(SCTP_DEBUG_AUTH1,
669 		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
670 		return (-1);
671 	}
672 	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
673 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) {
674 		return (-1);
675 	}
676 	/* Now is it already in the list */
677 	for (i = 0; i < list->num_algo; i++) {
678 		if (list->hmac[i] == hmac_id) {
679 			/* already in list */
680 			return (-1);
681 		}
682 	}
683 	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
684 	list->hmac[list->num_algo++] = hmac_id;
685 	return (0);
686 }
687 
688 sctp_hmaclist_t *
689 sctp_copy_hmaclist(sctp_hmaclist_t * list)
690 {
691 	sctp_hmaclist_t *new_list;
692 	int i;
693 
694 	if (list == NULL)
695 		return (NULL);
696 	/* get a new list */
697 	new_list = sctp_alloc_hmaclist(list->max_algo);
698 	if (new_list == NULL)
699 		return (NULL);
700 	/* copy it */
701 	new_list->max_algo = list->max_algo;
702 	new_list->num_algo = list->num_algo;
703 	for (i = 0; i < list->num_algo; i++)
704 		new_list->hmac[i] = list->hmac[i];
705 	return (new_list);
706 }
707 
708 sctp_hmaclist_t *
709 sctp_default_supported_hmaclist(void)
710 {
711 	sctp_hmaclist_t *new_list;
712 
713 	new_list = sctp_alloc_hmaclist(2);
714 	if (new_list == NULL)
715 		return (NULL);
716 	/* We prefer SHA256, so list it first */
717 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
718 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
719 	return (new_list);
720 }
721 
722 /*-
723  * HMAC algos are listed in priority/preference order
724  * find the best HMAC id to use for the peer based on local support
725  */
726 uint16_t
727 sctp_negotiate_hmacid(sctp_hmaclist_t * peer, sctp_hmaclist_t * local)
728 {
729 	int i, j;
730 
731 	if ((local == NULL) || (peer == NULL))
732 		return (SCTP_AUTH_HMAC_ID_RSVD);
733 
734 	for (i = 0; i < peer->num_algo; i++) {
735 		for (j = 0; j < local->num_algo; j++) {
736 			if (peer->hmac[i] == local->hmac[j]) {
737 				/* found the "best" one */
738 				SCTPDBG(SCTP_DEBUG_AUTH1,
739 				    "SCTP: negotiated peer HMAC id %u\n",
740 				    peer->hmac[i]);
741 				return (peer->hmac[i]);
742 			}
743 		}
744 	}
745 	/* didn't find one! */
746 	return (SCTP_AUTH_HMAC_ID_RSVD);
747 }
748 
749 /*-
750  * serialize the HMAC algo list and return space used
751  * caller must guarantee ptr has appropriate space
752  */
753 int
754 sctp_serialize_hmaclist(sctp_hmaclist_t * list, uint8_t * ptr)
755 {
756 	int i;
757 	uint16_t hmac_id;
758 
759 	if (list == NULL)
760 		return (0);
761 
762 	for (i = 0; i < list->num_algo; i++) {
763 		hmac_id = htons(list->hmac[i]);
764 		bcopy(&hmac_id, ptr, sizeof(hmac_id));
765 		ptr += sizeof(hmac_id);
766 	}
767 	return (list->num_algo * sizeof(hmac_id));
768 }
769 
770 int
771 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
772 {
773 	uint32_t i;
774 
775 	for (i = 0; i < num_hmacs; i++) {
776 		if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) {
777 			return (0);
778 		}
779 	}
780 	return (-1);
781 }
782 
783 sctp_authinfo_t *
784 sctp_alloc_authinfo(void)
785 {
786 	sctp_authinfo_t *new_authinfo;
787 
788 	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
789 	    SCTP_M_AUTH_IF);
790 
791 	if (new_authinfo == NULL) {
792 		/* out of memory */
793 		return (NULL);
794 	}
795 	bzero(new_authinfo, sizeof(*new_authinfo));
796 	return (new_authinfo);
797 }
798 
799 void
800 sctp_free_authinfo(sctp_authinfo_t * authinfo)
801 {
802 	if (authinfo == NULL)
803 		return;
804 
805 	if (authinfo->random != NULL)
806 		sctp_free_key(authinfo->random);
807 	if (authinfo->peer_random != NULL)
808 		sctp_free_key(authinfo->peer_random);
809 	if (authinfo->assoc_key != NULL)
810 		sctp_free_key(authinfo->assoc_key);
811 	if (authinfo->recv_key != NULL)
812 		sctp_free_key(authinfo->recv_key);
813 
814 	/* We are NOT dynamically allocating authinfo's right now... */
815 	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
816 }
817 
818 
819 uint32_t
820 sctp_get_auth_chunk_len(uint16_t hmac_algo)
821 {
822 	int size;
823 
824 	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
825 	return (SCTP_SIZE32(size));
826 }
827 
828 uint32_t
829 sctp_get_hmac_digest_len(uint16_t hmac_algo)
830 {
831 	switch (hmac_algo) {
832 	case SCTP_AUTH_HMAC_ID_SHA1:
833 		return (SCTP_AUTH_DIGEST_LEN_SHA1);
834 	case SCTP_AUTH_HMAC_ID_SHA256:
835 		return (SCTP_AUTH_DIGEST_LEN_SHA256);
836 	default:
837 		/* unknown HMAC algorithm: can't do anything */
838 		return (0);
839 	}			/* end switch */
840 }
841 
842 static inline int
843 sctp_get_hmac_block_len(uint16_t hmac_algo)
844 {
845 	switch (hmac_algo) {
846 	case SCTP_AUTH_HMAC_ID_SHA1:
847 		return (64);
848 	case SCTP_AUTH_HMAC_ID_SHA256:
849 		return (64);
850 	case SCTP_AUTH_HMAC_ID_RSVD:
851 	default:
852 		/* unknown HMAC algorithm: can't do anything */
853 		return (0);
854 	}			/* end switch */
855 }
856 
857 static void
858 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t * ctx)
859 {
860 	switch (hmac_algo) {
861 	case SCTP_AUTH_HMAC_ID_SHA1:
862 		SCTP_SHA1_INIT(&ctx->sha1);
863 		break;
864 	case SCTP_AUTH_HMAC_ID_SHA256:
865 		SCTP_SHA256_INIT(&ctx->sha256);
866 		break;
867 	case SCTP_AUTH_HMAC_ID_RSVD:
868 	default:
869 		/* unknown HMAC algorithm: can't do anything */
870 		return;
871 	}			/* end switch */
872 }
873 
874 static void
875 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t * ctx,
876     uint8_t * text, uint32_t textlen)
877 {
878 	switch (hmac_algo) {
879 	case SCTP_AUTH_HMAC_ID_SHA1:
880 		SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen);
881 		break;
882 	case SCTP_AUTH_HMAC_ID_SHA256:
883 		SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen);
884 		break;
885 	case SCTP_AUTH_HMAC_ID_RSVD:
886 	default:
887 		/* unknown HMAC algorithm: can't do anything */
888 		return;
889 	}			/* end switch */
890 }
891 
892 static void
893 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t * ctx,
894     uint8_t * digest)
895 {
896 	switch (hmac_algo) {
897 	case SCTP_AUTH_HMAC_ID_SHA1:
898 		SCTP_SHA1_FINAL(digest, &ctx->sha1);
899 		break;
900 	case SCTP_AUTH_HMAC_ID_SHA256:
901 		SCTP_SHA256_FINAL(digest, &ctx->sha256);
902 		break;
903 	case SCTP_AUTH_HMAC_ID_RSVD:
904 	default:
905 		/* unknown HMAC algorithm: can't do anything */
906 		return;
907 	}			/* end switch */
908 }
909 
910 /*-
911  * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
912  *
913  * Compute the HMAC digest using the desired hash key, text, and HMAC
914  * algorithm.  Resulting digest is placed in 'digest' and digest length
915  * is returned, if the HMAC was performed.
916  *
917  * WARNING: it is up to the caller to supply sufficient space to hold the
918  * resultant digest.
919  */
920 uint32_t
921 sctp_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
922     uint8_t * text, uint32_t textlen, uint8_t * digest)
923 {
924 	uint32_t digestlen;
925 	uint32_t blocklen;
926 	sctp_hash_context_t ctx;
927 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
928 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
929 	uint32_t i;
930 
931 	/* sanity check the material and length */
932 	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
933 	    (textlen == 0) || (digest == NULL)) {
934 		/* can't do HMAC with empty key or text or digest store */
935 		return (0);
936 	}
937 	/* validate the hmac algo and get the digest length */
938 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
939 	if (digestlen == 0)
940 		return (0);
941 
942 	/* hash the key if it is longer than the hash block size */
943 	blocklen = sctp_get_hmac_block_len(hmac_algo);
944 	if (keylen > blocklen) {
945 		sctp_hmac_init(hmac_algo, &ctx);
946 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
947 		sctp_hmac_final(hmac_algo, &ctx, temp);
948 		/* set the hashed key as the key */
949 		keylen = digestlen;
950 		key = temp;
951 	}
952 	/* initialize the inner/outer pads with the key and "append" zeroes */
953 	bzero(ipad, blocklen);
954 	bzero(opad, blocklen);
955 	bcopy(key, ipad, keylen);
956 	bcopy(key, opad, keylen);
957 
958 	/* XOR the key with ipad and opad values */
959 	for (i = 0; i < blocklen; i++) {
960 		ipad[i] ^= 0x36;
961 		opad[i] ^= 0x5c;
962 	}
963 
964 	/* perform inner hash */
965 	sctp_hmac_init(hmac_algo, &ctx);
966 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
967 	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
968 	sctp_hmac_final(hmac_algo, &ctx, temp);
969 
970 	/* perform outer hash */
971 	sctp_hmac_init(hmac_algo, &ctx);
972 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
973 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
974 	sctp_hmac_final(hmac_algo, &ctx, digest);
975 
976 	return (digestlen);
977 }
978 
979 /* mbuf version */
980 uint32_t
981 sctp_hmac_m(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
982     struct mbuf *m, uint32_t m_offset, uint8_t * digest, uint32_t trailer)
983 {
984 	uint32_t digestlen;
985 	uint32_t blocklen;
986 	sctp_hash_context_t ctx;
987 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
988 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
989 	uint32_t i;
990 	struct mbuf *m_tmp;
991 
992 	/* sanity check the material and length */
993 	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
994 		/* can't do HMAC with empty key or text or digest store */
995 		return (0);
996 	}
997 	/* validate the hmac algo and get the digest length */
998 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
999 	if (digestlen == 0)
1000 		return (0);
1001 
1002 	/* hash the key if it is longer than the hash block size */
1003 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1004 	if (keylen > blocklen) {
1005 		sctp_hmac_init(hmac_algo, &ctx);
1006 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1007 		sctp_hmac_final(hmac_algo, &ctx, temp);
1008 		/* set the hashed key as the key */
1009 		keylen = digestlen;
1010 		key = temp;
1011 	}
1012 	/* initialize the inner/outer pads with the key and "append" zeroes */
1013 	bzero(ipad, blocklen);
1014 	bzero(opad, blocklen);
1015 	bcopy(key, ipad, keylen);
1016 	bcopy(key, opad, keylen);
1017 
1018 	/* XOR the key with ipad and opad values */
1019 	for (i = 0; i < blocklen; i++) {
1020 		ipad[i] ^= 0x36;
1021 		opad[i] ^= 0x5c;
1022 	}
1023 
1024 	/* perform inner hash */
1025 	sctp_hmac_init(hmac_algo, &ctx);
1026 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1027 	/* find the correct starting mbuf and offset (get start of text) */
1028 	m_tmp = m;
1029 	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1030 		m_offset -= SCTP_BUF_LEN(m_tmp);
1031 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1032 	}
1033 	/* now use the rest of the mbuf chain for the text */
1034 	while (m_tmp != NULL) {
1035 		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1036 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1037 			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1038 		} else {
1039 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1040 			    SCTP_BUF_LEN(m_tmp) - m_offset);
1041 		}
1042 
1043 		/* clear the offset since it's only for the first mbuf */
1044 		m_offset = 0;
1045 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1046 	}
1047 	sctp_hmac_final(hmac_algo, &ctx, temp);
1048 
1049 	/* perform outer hash */
1050 	sctp_hmac_init(hmac_algo, &ctx);
1051 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1052 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1053 	sctp_hmac_final(hmac_algo, &ctx, digest);
1054 
1055 	return (digestlen);
1056 }
1057 
1058 /*-
1059  * verify the HMAC digest using the desired hash key, text, and HMAC
1060  * algorithm.
1061  * Returns -1 on error, 0 on success.
1062  */
1063 int
1064 sctp_verify_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1065     uint8_t * text, uint32_t textlen,
1066     uint8_t * digest, uint32_t digestlen)
1067 {
1068 	uint32_t len;
1069 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1070 
1071 	/* sanity check the material and length */
1072 	if ((key == NULL) || (keylen == 0) ||
1073 	    (text == NULL) || (textlen == 0) || (digest == NULL)) {
1074 		/* can't do HMAC with empty key or text or digest */
1075 		return (-1);
1076 	}
1077 	len = sctp_get_hmac_digest_len(hmac_algo);
1078 	if ((len == 0) || (digestlen != len))
1079 		return (-1);
1080 
1081 	/* compute the expected hash */
1082 	if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len)
1083 		return (-1);
1084 
1085 	if (memcmp(digest, temp, digestlen) != 0)
1086 		return (-1);
1087 	else
1088 		return (0);
1089 }
1090 
1091 
1092 /*
1093  * computes the requested HMAC using a key struct (which may be modified if
1094  * the keylen exceeds the HMAC block len).
1095  */
1096 uint32_t
1097 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t * key, uint8_t * text,
1098     uint32_t textlen, uint8_t * digest)
1099 {
1100 	uint32_t digestlen;
1101 	uint32_t blocklen;
1102 	sctp_hash_context_t ctx;
1103 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1104 
1105 	/* sanity check */
1106 	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1107 	    (digest == NULL)) {
1108 		/* can't do HMAC with empty key or text or digest store */
1109 		return (0);
1110 	}
1111 	/* validate the hmac algo and get the digest length */
1112 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1113 	if (digestlen == 0)
1114 		return (0);
1115 
1116 	/* hash the key if it is longer than the hash block size */
1117 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1118 	if (key->keylen > blocklen) {
1119 		sctp_hmac_init(hmac_algo, &ctx);
1120 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1121 		sctp_hmac_final(hmac_algo, &ctx, temp);
1122 		/* save the hashed key as the new key */
1123 		key->keylen = digestlen;
1124 		bcopy(temp, key->key, key->keylen);
1125 	}
1126 	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1127 	    digest));
1128 }
1129 
1130 /* mbuf version */
1131 uint32_t
1132 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t * key, struct mbuf *m,
1133     uint32_t m_offset, uint8_t * digest)
1134 {
1135 	uint32_t digestlen;
1136 	uint32_t blocklen;
1137 	sctp_hash_context_t ctx;
1138 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1139 
1140 	/* sanity check */
1141 	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1142 		/* can't do HMAC with empty key or text or digest store */
1143 		return (0);
1144 	}
1145 	/* validate the hmac algo and get the digest length */
1146 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1147 	if (digestlen == 0)
1148 		return (0);
1149 
1150 	/* hash the key if it is longer than the hash block size */
1151 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1152 	if (key->keylen > blocklen) {
1153 		sctp_hmac_init(hmac_algo, &ctx);
1154 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1155 		sctp_hmac_final(hmac_algo, &ctx, temp);
1156 		/* save the hashed key as the new key */
1157 		key->keylen = digestlen;
1158 		bcopy(temp, key->key, key->keylen);
1159 	}
1160 	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1161 }
1162 
1163 int
1164 sctp_auth_is_supported_hmac(sctp_hmaclist_t * list, uint16_t id)
1165 {
1166 	int i;
1167 
1168 	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1169 		return (0);
1170 
1171 	for (i = 0; i < list->num_algo; i++)
1172 		if (list->hmac[i] == id)
1173 			return (1);
1174 
1175 	/* not in the list */
1176 	return (0);
1177 }
1178 
1179 
1180 /*-
1181  * clear any cached key(s) if they match the given key id on an association.
1182  * the cached key(s) will be recomputed and re-cached at next use.
1183  * ASSUMES TCB_LOCK is already held
1184  */
1185 void
1186 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1187 {
1188 	if (stcb == NULL)
1189 		return;
1190 
1191 	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1192 		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1193 		stcb->asoc.authinfo.assoc_key = NULL;
1194 	}
1195 	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1196 		sctp_free_key(stcb->asoc.authinfo.recv_key);
1197 		stcb->asoc.authinfo.recv_key = NULL;
1198 	}
1199 }
1200 
1201 /*-
1202  * clear any cached key(s) if they match the given key id for all assocs on
1203  * an endpoint.
1204  * ASSUMES INP_WLOCK is already held
1205  */
1206 void
1207 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1208 {
1209 	struct sctp_tcb *stcb;
1210 
1211 	if (inp == NULL)
1212 		return;
1213 
1214 	/* clear the cached keys on all assocs on this instance */
1215 	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1216 		SCTP_TCB_LOCK(stcb);
1217 		sctp_clear_cachedkeys(stcb, keyid);
1218 		SCTP_TCB_UNLOCK(stcb);
1219 	}
1220 }
1221 
1222 /*-
1223  * delete a shared key from an association
1224  * ASSUMES TCB_LOCK is already held
1225  */
1226 int
1227 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1228 {
1229 	sctp_sharedkey_t *skey;
1230 
1231 	if (stcb == NULL)
1232 		return (-1);
1233 
1234 	/* is the keyid the assoc active sending key */
1235 	if (keyid == stcb->asoc.authinfo.active_keyid)
1236 		return (-1);
1237 
1238 	/* does the key exist? */
1239 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1240 	if (skey == NULL)
1241 		return (-1);
1242 
1243 	/* are there other refcount holders on the key? */
1244 	if (skey->refcount > 1)
1245 		return (-1);
1246 
1247 	/* remove it */
1248 	LIST_REMOVE(skey, next);
1249 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1250 
1251 	/* clear any cached keys */
1252 	sctp_clear_cachedkeys(stcb, keyid);
1253 	return (0);
1254 }
1255 
1256 /*-
1257  * deletes a shared key from the endpoint
1258  * ASSUMES INP_WLOCK is already held
1259  */
1260 int
1261 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1262 {
1263 	sctp_sharedkey_t *skey;
1264 
1265 	if (inp == NULL)
1266 		return (-1);
1267 
1268 	/* is the keyid the active sending key on the endpoint */
1269 	if (keyid == inp->sctp_ep.default_keyid)
1270 		return (-1);
1271 
1272 	/* does the key exist? */
1273 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1274 	if (skey == NULL)
1275 		return (-1);
1276 
1277 	/* endpoint keys are not refcounted */
1278 
1279 	/* remove it */
1280 	LIST_REMOVE(skey, next);
1281 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1282 
1283 	/* clear any cached keys */
1284 	sctp_clear_cachedkeys_ep(inp, keyid);
1285 	return (0);
1286 }
1287 
1288 /*-
1289  * set the active key on an association
1290  * ASSUMES TCB_LOCK is already held
1291  */
1292 int
1293 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1294 {
1295 	sctp_sharedkey_t *skey = NULL;
1296 
1297 	/* find the key on the assoc */
1298 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1299 	if (skey == NULL) {
1300 		/* that key doesn't exist */
1301 		return (-1);
1302 	}
1303 	if ((skey->deactivated) && (skey->refcount > 1)) {
1304 		/* can't reactivate a deactivated key with other refcounts */
1305 		return (-1);
1306 	}
1307 	/* set the (new) active key */
1308 	stcb->asoc.authinfo.active_keyid = keyid;
1309 	/* reset the deactivated flag */
1310 	skey->deactivated = 0;
1311 
1312 	return (0);
1313 }
1314 
1315 /*-
1316  * set the active key on an endpoint
1317  * ASSUMES INP_WLOCK is already held
1318  */
1319 int
1320 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1321 {
1322 	sctp_sharedkey_t *skey;
1323 
1324 	/* find the key */
1325 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1326 	if (skey == NULL) {
1327 		/* that key doesn't exist */
1328 		return (-1);
1329 	}
1330 	inp->sctp_ep.default_keyid = keyid;
1331 	return (0);
1332 }
1333 
1334 /*-
1335  * deactivates a shared key from the association
1336  * ASSUMES INP_WLOCK is already held
1337  */
1338 int
1339 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1340 {
1341 	sctp_sharedkey_t *skey;
1342 
1343 	if (stcb == NULL)
1344 		return (-1);
1345 
1346 	/* is the keyid the assoc active sending key */
1347 	if (keyid == stcb->asoc.authinfo.active_keyid)
1348 		return (-1);
1349 
1350 	/* does the key exist? */
1351 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1352 	if (skey == NULL)
1353 		return (-1);
1354 
1355 	/* are there other refcount holders on the key? */
1356 	if (skey->refcount == 1) {
1357 		/* no other users, send a notification for this key */
1358 		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1359 		    SCTP_SO_LOCKED);
1360 	}
1361 	/* mark the key as deactivated */
1362 	skey->deactivated = 1;
1363 
1364 	return (0);
1365 }
1366 
1367 /*-
1368  * deactivates a shared key from the endpoint
1369  * ASSUMES INP_WLOCK is already held
1370  */
1371 int
1372 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1373 {
1374 	sctp_sharedkey_t *skey;
1375 
1376 	if (inp == NULL)
1377 		return (-1);
1378 
1379 	/* is the keyid the active sending key on the endpoint */
1380 	if (keyid == inp->sctp_ep.default_keyid)
1381 		return (-1);
1382 
1383 	/* does the key exist? */
1384 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1385 	if (skey == NULL)
1386 		return (-1);
1387 
1388 	/* endpoint keys are not refcounted */
1389 
1390 	/* remove it */
1391 	LIST_REMOVE(skey, next);
1392 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1393 
1394 	return (0);
1395 }
1396 
1397 /*
1398  * get local authentication parameters from cookie (from INIT-ACK)
1399  */
1400 void
1401 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1402     uint32_t offset, uint32_t length)
1403 {
1404 	struct sctp_paramhdr *phdr, tmp_param;
1405 	uint16_t plen, ptype;
1406 	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1407 	struct sctp_auth_random *p_random = NULL;
1408 	uint16_t random_len = 0;
1409 	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1410 	struct sctp_auth_hmac_algo *hmacs = NULL;
1411 	uint16_t hmacs_len = 0;
1412 	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1413 	struct sctp_auth_chunk_list *chunks = NULL;
1414 	uint16_t num_chunks = 0;
1415 	sctp_key_t *new_key;
1416 	uint32_t keylen;
1417 
1418 	/* convert to upper bound */
1419 	length += offset;
1420 
1421 	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1422 	    sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param);
1423 	while (phdr != NULL) {
1424 		ptype = ntohs(phdr->param_type);
1425 		plen = ntohs(phdr->param_length);
1426 
1427 		if ((plen == 0) || (offset + plen > length))
1428 			break;
1429 
1430 		if (ptype == SCTP_RANDOM) {
1431 			if (plen > sizeof(random_store))
1432 				break;
1433 			phdr = sctp_get_next_param(m, offset,
1434 			    (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store)));
1435 			if (phdr == NULL)
1436 				return;
1437 			/* save the random and length for the key */
1438 			p_random = (struct sctp_auth_random *)phdr;
1439 			random_len = plen - sizeof(*p_random);
1440 		} else if (ptype == SCTP_HMAC_LIST) {
1441 			uint16_t num_hmacs;
1442 			uint16_t i;
1443 
1444 			if (plen > sizeof(hmacs_store))
1445 				break;
1446 			phdr = sctp_get_next_param(m, offset,
1447 			    (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store)));
1448 			if (phdr == NULL)
1449 				return;
1450 			/* save the hmacs list and num for the key */
1451 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1452 			hmacs_len = plen - sizeof(*hmacs);
1453 			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1454 			if (stcb->asoc.local_hmacs != NULL)
1455 				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1456 			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1457 			if (stcb->asoc.local_hmacs != NULL) {
1458 				for (i = 0; i < num_hmacs; i++) {
1459 					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1460 					    ntohs(hmacs->hmac_ids[i]));
1461 				}
1462 			}
1463 		} else if (ptype == SCTP_CHUNK_LIST) {
1464 			int i;
1465 
1466 			if (plen > sizeof(chunks_store))
1467 				break;
1468 			phdr = sctp_get_next_param(m, offset,
1469 			    (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store)));
1470 			if (phdr == NULL)
1471 				return;
1472 			chunks = (struct sctp_auth_chunk_list *)phdr;
1473 			num_chunks = plen - sizeof(*chunks);
1474 			/* save chunks list and num for the key */
1475 			if (stcb->asoc.local_auth_chunks != NULL)
1476 				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1477 			else
1478 				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1479 			for (i = 0; i < num_chunks; i++) {
1480 				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1481 				    stcb->asoc.local_auth_chunks);
1482 			}
1483 		}
1484 		/* get next parameter */
1485 		offset += SCTP_SIZE32(plen);
1486 		if (offset + sizeof(struct sctp_paramhdr) > length)
1487 			break;
1488 		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1489 		    (uint8_t *) & tmp_param);
1490 	}
1491 	/* concatenate the full random key */
1492 	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1493 	if (chunks != NULL) {
1494 		keylen += sizeof(*chunks) + num_chunks;
1495 	}
1496 	new_key = sctp_alloc_key(keylen);
1497 	if (new_key != NULL) {
1498 		/* copy in the RANDOM */
1499 		if (p_random != NULL) {
1500 			keylen = sizeof(*p_random) + random_len;
1501 			bcopy(p_random, new_key->key, keylen);
1502 		}
1503 		/* append in the AUTH chunks */
1504 		if (chunks != NULL) {
1505 			bcopy(chunks, new_key->key + keylen,
1506 			    sizeof(*chunks) + num_chunks);
1507 			keylen += sizeof(*chunks) + num_chunks;
1508 		}
1509 		/* append in the HMACs */
1510 		if (hmacs != NULL) {
1511 			bcopy(hmacs, new_key->key + keylen,
1512 			    sizeof(*hmacs) + hmacs_len);
1513 		}
1514 	}
1515 	if (stcb->asoc.authinfo.random != NULL)
1516 		sctp_free_key(stcb->asoc.authinfo.random);
1517 	stcb->asoc.authinfo.random = new_key;
1518 	stcb->asoc.authinfo.random_len = random_len;
1519 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1520 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1521 
1522 	/* negotiate what HMAC to use for the peer */
1523 	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1524 	    stcb->asoc.local_hmacs);
1525 
1526 	/* copy defaults from the endpoint */
1527 	/* FIX ME: put in cookie? */
1528 	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1529 	/* copy out the shared key list (by reference) from the endpoint */
1530 	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1531 	    &stcb->asoc.shared_keys);
1532 }
1533 
1534 /*
1535  * compute and fill in the HMAC digest for a packet
1536  */
1537 void
1538 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1539     struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1540 {
1541 	uint32_t digestlen;
1542 	sctp_sharedkey_t *skey;
1543 	sctp_key_t *key;
1544 
1545 	if ((stcb == NULL) || (auth == NULL))
1546 		return;
1547 
1548 	/* zero the digest + chunk padding */
1549 	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1550 	bzero(auth->hmac, SCTP_SIZE32(digestlen));
1551 
1552 	/* is the desired key cached? */
1553 	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1554 	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1555 		if (stcb->asoc.authinfo.assoc_key != NULL) {
1556 			/* free the old cached key */
1557 			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1558 		}
1559 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1560 		/* the only way skey is NULL is if null key id 0 is used */
1561 		if (skey != NULL)
1562 			key = skey->key;
1563 		else
1564 			key = NULL;
1565 		/* compute a new assoc key and cache it */
1566 		stcb->asoc.authinfo.assoc_key =
1567 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1568 		    stcb->asoc.authinfo.peer_random, key);
1569 		stcb->asoc.authinfo.assoc_keyid = keyid;
1570 		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1571 		    stcb->asoc.authinfo.assoc_keyid);
1572 #ifdef SCTP_DEBUG
1573 		if (SCTP_AUTH_DEBUG)
1574 			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1575 			    "Assoc Key");
1576 #endif
1577 	}
1578 	/* set in the active key id */
1579 	auth->shared_key_id = htons(keyid);
1580 
1581 	/* compute and fill in the digest */
1582 	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1583 	    m, auth_offset, auth->hmac);
1584 }
1585 
1586 
1587 static void
1588 sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1589 {
1590 	struct mbuf *m_tmp;
1591 	uint8_t *data;
1592 
1593 	/* sanity check */
1594 	if (m == NULL)
1595 		return;
1596 
1597 	/* find the correct starting mbuf and offset (get start position) */
1598 	m_tmp = m;
1599 	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1600 		m_offset -= SCTP_BUF_LEN(m_tmp);
1601 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1602 	}
1603 	/* now use the rest of the mbuf chain */
1604 	while ((m_tmp != NULL) && (size > 0)) {
1605 		data = mtod(m_tmp, uint8_t *) + m_offset;
1606 		if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) {
1607 			bzero(data, SCTP_BUF_LEN(m_tmp));
1608 			size -= SCTP_BUF_LEN(m_tmp);
1609 		} else {
1610 			bzero(data, size);
1611 			size = 0;
1612 		}
1613 		/* clear the offset since it's only for the first mbuf */
1614 		m_offset = 0;
1615 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1616 	}
1617 }
1618 
1619 /*-
1620  * process the incoming Authentication chunk
1621  * return codes:
1622  *   -1 on any authentication error
1623  *    0 on authentication verification
1624  */
1625 int
1626 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1627     struct mbuf *m, uint32_t offset)
1628 {
1629 	uint16_t chunklen;
1630 	uint16_t shared_key_id;
1631 	uint16_t hmac_id;
1632 	sctp_sharedkey_t *skey;
1633 	uint32_t digestlen;
1634 	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1635 	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1636 
1637 	/* auth is checked for NULL by caller */
1638 	chunklen = ntohs(auth->ch.chunk_length);
1639 	if (chunklen < sizeof(*auth)) {
1640 		SCTP_STAT_INCR(sctps_recvauthfailed);
1641 		return (-1);
1642 	}
1643 	SCTP_STAT_INCR(sctps_recvauth);
1644 
1645 	/* get the auth params */
1646 	shared_key_id = ntohs(auth->shared_key_id);
1647 	hmac_id = ntohs(auth->hmac_id);
1648 	SCTPDBG(SCTP_DEBUG_AUTH1,
1649 	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1650 	    shared_key_id, hmac_id);
1651 
1652 	/* is the indicated HMAC supported? */
1653 	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1654 		struct mbuf *op_err;
1655 		struct sctp_error_auth_invalid_hmac *cause;
1656 
1657 		SCTP_STAT_INCR(sctps_recvivalhmacid);
1658 		SCTPDBG(SCTP_DEBUG_AUTH1,
1659 		    "SCTP Auth: unsupported HMAC id %u\n",
1660 		    hmac_id);
1661 		/*
1662 		 * report this in an Error Chunk: Unsupported HMAC
1663 		 * Identifier
1664 		 */
1665 		op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac),
1666 		    0, M_NOWAIT, 1, MT_HEADER);
1667 		if (op_err != NULL) {
1668 			/* pre-reserve some space */
1669 			SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr));
1670 			/* fill in the error */
1671 			cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *);
1672 			cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1673 			cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac));
1674 			cause->hmac_id = ntohs(hmac_id);
1675 			SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac);
1676 			/* queue it */
1677 			sctp_queue_op_err(stcb, op_err);
1678 		}
1679 		return (-1);
1680 	}
1681 	/* get the indicated shared key, if available */
1682 	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1683 	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1684 		/* find the shared key on the assoc first */
1685 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1686 		    shared_key_id);
1687 		/* if the shared key isn't found, discard the chunk */
1688 		if (skey == NULL) {
1689 			SCTP_STAT_INCR(sctps_recvivalkeyid);
1690 			SCTPDBG(SCTP_DEBUG_AUTH1,
1691 			    "SCTP Auth: unknown key id %u\n",
1692 			    shared_key_id);
1693 			return (-1);
1694 		}
1695 		/* generate a notification if this is a new key id */
1696 		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1697 			/*
1698 			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1699 			 * shared_key_id, (void
1700 			 * *)stcb->asoc.authinfo.recv_keyid);
1701 			 */
1702 			sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY,
1703 			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1704 			    SCTP_SO_NOT_LOCKED);
1705 		/* compute a new recv assoc key and cache it */
1706 		if (stcb->asoc.authinfo.recv_key != NULL)
1707 			sctp_free_key(stcb->asoc.authinfo.recv_key);
1708 		stcb->asoc.authinfo.recv_key =
1709 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1710 		    stcb->asoc.authinfo.peer_random, skey->key);
1711 		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1712 #ifdef SCTP_DEBUG
1713 		if (SCTP_AUTH_DEBUG)
1714 			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1715 #endif
1716 	}
1717 	/* validate the digest length */
1718 	digestlen = sctp_get_hmac_digest_len(hmac_id);
1719 	if (chunklen < (sizeof(*auth) + digestlen)) {
1720 		/* invalid digest length */
1721 		SCTP_STAT_INCR(sctps_recvauthfailed);
1722 		SCTPDBG(SCTP_DEBUG_AUTH1,
1723 		    "SCTP Auth: chunk too short for HMAC\n");
1724 		return (-1);
1725 	}
1726 	/* save a copy of the digest, zero the pseudo header, and validate */
1727 	bcopy(auth->hmac, digest, digestlen);
1728 	sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1729 	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1730 	    m, offset, computed_digest);
1731 
1732 	/* compare the computed digest with the one in the AUTH chunk */
1733 	if (memcmp(digest, computed_digest, digestlen) != 0) {
1734 		SCTP_STAT_INCR(sctps_recvauthfailed);
1735 		SCTPDBG(SCTP_DEBUG_AUTH1,
1736 		    "SCTP Auth: HMAC digest check failed\n");
1737 		return (-1);
1738 	}
1739 	return (0);
1740 }
1741 
1742 /*
1743  * Generate NOTIFICATION
1744  */
1745 void
1746 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1747     uint16_t keyid, uint16_t alt_keyid, int so_locked
1748 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
1749     SCTP_UNUSED
1750 #endif
1751 )
1752 {
1753 	struct mbuf *m_notify;
1754 	struct sctp_authkey_event *auth;
1755 	struct sctp_queued_to_read *control;
1756 
1757 	if ((stcb == NULL) ||
1758 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1759 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1760 	    (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1761 	    ) {
1762 		/* If the socket is gone we are out of here */
1763 		return;
1764 	}
1765 	if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT))
1766 		/* event not enabled */
1767 		return;
1768 
1769 	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1770 	    0, M_NOWAIT, 1, MT_HEADER);
1771 	if (m_notify == NULL)
1772 		/* no space left */
1773 		return;
1774 
1775 	SCTP_BUF_LEN(m_notify) = 0;
1776 	auth = mtod(m_notify, struct sctp_authkey_event *);
1777 	memset(auth, 0, sizeof(struct sctp_authkey_event));
1778 	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1779 	auth->auth_flags = 0;
1780 	auth->auth_length = sizeof(*auth);
1781 	auth->auth_keynumber = keyid;
1782 	auth->auth_altkeynumber = alt_keyid;
1783 	auth->auth_indication = indication;
1784 	auth->auth_assoc_id = sctp_get_associd(stcb);
1785 
1786 	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1787 	SCTP_BUF_NEXT(m_notify) = NULL;
1788 
1789 	/* append to socket */
1790 	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1791 	    0, 0, stcb->asoc.context, 0, 0, 0, m_notify);
1792 	if (control == NULL) {
1793 		/* no memory */
1794 		sctp_m_freem(m_notify);
1795 		return;
1796 	}
1797 	control->spec_flags = M_NOTIFICATION;
1798 	control->length = SCTP_BUF_LEN(m_notify);
1799 	/* not that we need this */
1800 	control->tail_mbuf = m_notify;
1801 	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1802 	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1803 }
1804 
1805 
1806 /*-
1807  * validates the AUTHentication related parameters in an INIT/INIT-ACK
1808  * Note: currently only used for INIT as INIT-ACK is handled inline
1809  * with sctp_load_addresses_from_init()
1810  */
1811 int
1812 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1813 {
1814 	struct sctp_paramhdr *phdr, parm_buf;
1815 	uint16_t ptype, plen;
1816 	int peer_supports_asconf = 0;
1817 	int peer_supports_auth = 0;
1818 	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1819 	uint8_t saw_asconf = 0;
1820 	uint8_t saw_asconf_ack = 0;
1821 
1822 	/* go through each of the params. */
1823 	phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf));
1824 	while (phdr) {
1825 		ptype = ntohs(phdr->param_type);
1826 		plen = ntohs(phdr->param_length);
1827 
1828 		if (offset + plen > limit) {
1829 			break;
1830 		}
1831 		if (plen < sizeof(struct sctp_paramhdr)) {
1832 			break;
1833 		}
1834 		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1835 			/* A supported extension chunk */
1836 			struct sctp_supported_chunk_types_param *pr_supported;
1837 			uint8_t local_store[SCTP_PARAM_BUFFER_SIZE];
1838 			int num_ent, i;
1839 
1840 			phdr = sctp_get_next_param(m, offset,
1841 			    (struct sctp_paramhdr *)&local_store, min(plen, sizeof(local_store)));
1842 			if (phdr == NULL) {
1843 				return (-1);
1844 			}
1845 			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1846 			num_ent = plen - sizeof(struct sctp_paramhdr);
1847 			for (i = 0; i < num_ent; i++) {
1848 				switch (pr_supported->chunk_types[i]) {
1849 				case SCTP_ASCONF:
1850 				case SCTP_ASCONF_ACK:
1851 					peer_supports_asconf = 1;
1852 					break;
1853 				default:
1854 					/* one we don't care about */
1855 					break;
1856 				}
1857 			}
1858 		} else if (ptype == SCTP_RANDOM) {
1859 			got_random = 1;
1860 			/* enforce the random length */
1861 			if (plen != (sizeof(struct sctp_auth_random) +
1862 			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1863 				SCTPDBG(SCTP_DEBUG_AUTH1,
1864 				    "SCTP: invalid RANDOM len\n");
1865 				return (-1);
1866 			}
1867 		} else if (ptype == SCTP_HMAC_LIST) {
1868 			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1869 			struct sctp_auth_hmac_algo *hmacs;
1870 			int num_hmacs;
1871 
1872 			if (plen > sizeof(store))
1873 				break;
1874 			phdr = sctp_get_next_param(m, offset,
1875 			    (struct sctp_paramhdr *)store, min(plen, sizeof(store)));
1876 			if (phdr == NULL)
1877 				return (-1);
1878 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1879 			num_hmacs = (plen - sizeof(*hmacs)) /
1880 			    sizeof(hmacs->hmac_ids[0]);
1881 			/* validate the hmac list */
1882 			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1883 				SCTPDBG(SCTP_DEBUG_AUTH1,
1884 				    "SCTP: invalid HMAC param\n");
1885 				return (-1);
1886 			}
1887 			got_hmacs = 1;
1888 		} else if (ptype == SCTP_CHUNK_LIST) {
1889 			int i, num_chunks;
1890 			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1891 
1892 			/* did the peer send a non-empty chunk list? */
1893 			struct sctp_auth_chunk_list *chunks = NULL;
1894 
1895 			phdr = sctp_get_next_param(m, offset,
1896 			    (struct sctp_paramhdr *)chunks_store,
1897 			    min(plen, sizeof(chunks_store)));
1898 			if (phdr == NULL)
1899 				return (-1);
1900 
1901 			/*-
1902 			 * Flip through the list and mark that the
1903 			 * peer supports asconf/asconf_ack.
1904 			 */
1905 			chunks = (struct sctp_auth_chunk_list *)phdr;
1906 			num_chunks = plen - sizeof(*chunks);
1907 			for (i = 0; i < num_chunks; i++) {
1908 				/* record asconf/asconf-ack if listed */
1909 				if (chunks->chunk_types[i] == SCTP_ASCONF)
1910 					saw_asconf = 1;
1911 				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
1912 					saw_asconf_ack = 1;
1913 
1914 			}
1915 			if (num_chunks)
1916 				got_chklist = 1;
1917 		}
1918 		offset += SCTP_SIZE32(plen);
1919 		if (offset >= limit) {
1920 			break;
1921 		}
1922 		phdr = sctp_get_next_param(m, offset, &parm_buf,
1923 		    sizeof(parm_buf));
1924 	}
1925 	/* validate authentication required parameters */
1926 	if (got_random && got_hmacs) {
1927 		peer_supports_auth = 1;
1928 	} else {
1929 		peer_supports_auth = 0;
1930 	}
1931 	if (!peer_supports_auth && got_chklist) {
1932 		SCTPDBG(SCTP_DEBUG_AUTH1,
1933 		    "SCTP: peer sent chunk list w/o AUTH\n");
1934 		return (-1);
1935 	}
1936 	if (peer_supports_asconf && !peer_supports_auth) {
1937 		SCTPDBG(SCTP_DEBUG_AUTH1,
1938 		    "SCTP: peer supports ASCONF but not AUTH\n");
1939 		return (-1);
1940 	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
1941 	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
1942 		return (-2);
1943 	}
1944 	return (0);
1945 }
1946 
1947 void
1948 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
1949 {
1950 	uint16_t chunks_len = 0;
1951 	uint16_t hmacs_len = 0;
1952 	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
1953 	sctp_key_t *new_key;
1954 	uint16_t keylen;
1955 
1956 	/* initialize hmac list from endpoint */
1957 	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
1958 	if (stcb->asoc.local_hmacs != NULL) {
1959 		hmacs_len = stcb->asoc.local_hmacs->num_algo *
1960 		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
1961 	}
1962 	/* initialize auth chunks list from endpoint */
1963 	stcb->asoc.local_auth_chunks =
1964 	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
1965 	if (stcb->asoc.local_auth_chunks != NULL) {
1966 		int i;
1967 
1968 		for (i = 0; i < 256; i++) {
1969 			if (stcb->asoc.local_auth_chunks->chunks[i])
1970 				chunks_len++;
1971 		}
1972 	}
1973 	/* copy defaults from the endpoint */
1974 	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
1975 
1976 	/* copy out the shared key list (by reference) from the endpoint */
1977 	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
1978 	    &stcb->asoc.shared_keys);
1979 
1980 	/* now set the concatenated key (random + chunks + hmacs) */
1981 	/* key includes parameter headers */
1982 	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
1983 	    hmacs_len;
1984 	new_key = sctp_alloc_key(keylen);
1985 	if (new_key != NULL) {
1986 		struct sctp_paramhdr *ph;
1987 		int plen;
1988 
1989 		/* generate and copy in the RANDOM */
1990 		ph = (struct sctp_paramhdr *)new_key->key;
1991 		ph->param_type = htons(SCTP_RANDOM);
1992 		plen = sizeof(*ph) + random_len;
1993 		ph->param_length = htons(plen);
1994 		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
1995 		keylen = plen;
1996 
1997 		/* append in the AUTH chunks */
1998 		/* NOTE: currently we always have chunks to list */
1999 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2000 		ph->param_type = htons(SCTP_CHUNK_LIST);
2001 		plen = sizeof(*ph) + chunks_len;
2002 		ph->param_length = htons(plen);
2003 		keylen += sizeof(*ph);
2004 		if (stcb->asoc.local_auth_chunks) {
2005 			int i;
2006 
2007 			for (i = 0; i < 256; i++) {
2008 				if (stcb->asoc.local_auth_chunks->chunks[i])
2009 					new_key->key[keylen++] = i;
2010 			}
2011 		}
2012 		/* append in the HMACs */
2013 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2014 		ph->param_type = htons(SCTP_HMAC_LIST);
2015 		plen = sizeof(*ph) + hmacs_len;
2016 		ph->param_length = htons(plen);
2017 		keylen += sizeof(*ph);
2018 		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
2019 		    new_key->key + keylen);
2020 	}
2021 	if (stcb->asoc.authinfo.random != NULL)
2022 		sctp_free_key(stcb->asoc.authinfo.random);
2023 	stcb->asoc.authinfo.random = new_key;
2024 	stcb->asoc.authinfo.random_len = random_len;
2025 }
2026