xref: /freebsd/sys/netinet/sctp_auth.c (revision 23f6875a43f7ce365f2d52cf857da010c47fb03b)
1 /*-
2  * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
3  * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
4  * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * a) Redistributions of source code must retain the above copyright notice,
10  *    this list of conditions and the following disclaimer.
11  *
12  * b) Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the distribution.
15  *
16  * c) Neither the name of Cisco Systems, Inc. nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <netinet/sctp_os.h>
37 #include <netinet/sctp.h>
38 #include <netinet/sctp_header.h>
39 #include <netinet/sctp_pcb.h>
40 #include <netinet/sctp_var.h>
41 #include <netinet/sctp_sysctl.h>
42 #include <netinet/sctputil.h>
43 #include <netinet/sctp_indata.h>
44 #include <netinet/sctp_output.h>
45 #include <netinet/sctp_auth.h>
46 
47 #ifdef SCTP_DEBUG
48 #define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
49 #define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
50 #endif				/* SCTP_DEBUG */
51 
52 
53 void
54 sctp_clear_chunklist(sctp_auth_chklist_t *chklist)
55 {
56 	bzero(chklist, sizeof(*chklist));
57 	/* chklist->num_chunks = 0; */
58 }
59 
60 sctp_auth_chklist_t *
61 sctp_alloc_chunklist(void)
62 {
63 	sctp_auth_chklist_t *chklist;
64 
65 	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
66 	    SCTP_M_AUTH_CL);
67 	if (chklist == NULL) {
68 		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
69 	} else {
70 		sctp_clear_chunklist(chklist);
71 	}
72 	return (chklist);
73 }
74 
75 void
76 sctp_free_chunklist(sctp_auth_chklist_t *list)
77 {
78 	if (list != NULL)
79 		SCTP_FREE(list, SCTP_M_AUTH_CL);
80 }
81 
82 sctp_auth_chklist_t *
83 sctp_copy_chunklist(sctp_auth_chklist_t *list)
84 {
85 	sctp_auth_chklist_t *new_list;
86 
87 	if (list == NULL)
88 		return (NULL);
89 
90 	/* get a new list */
91 	new_list = sctp_alloc_chunklist();
92 	if (new_list == NULL)
93 		return (NULL);
94 	/* copy it */
95 	bcopy(list, new_list, sizeof(*new_list));
96 
97 	return (new_list);
98 }
99 
100 
101 /*
102  * add a chunk to the required chunks list
103  */
104 int
105 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
106 {
107 	if (list == NULL)
108 		return (-1);
109 
110 	/* is chunk restricted? */
111 	if ((chunk == SCTP_INITIATION) ||
112 	    (chunk == SCTP_INITIATION_ACK) ||
113 	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
114 	    (chunk == SCTP_AUTHENTICATION)) {
115 		return (-1);
116 	}
117 	if (list->chunks[chunk] == 0) {
118 		list->chunks[chunk] = 1;
119 		list->num_chunks++;
120 		SCTPDBG(SCTP_DEBUG_AUTH1,
121 		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
122 		    chunk, chunk);
123 	}
124 	return (0);
125 }
126 
127 /*
128  * delete a chunk from the required chunks list
129  */
130 int
131 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
132 {
133 	if (list == NULL)
134 		return (-1);
135 
136 	if (list->chunks[chunk] == 1) {
137 		list->chunks[chunk] = 0;
138 		list->num_chunks--;
139 		SCTPDBG(SCTP_DEBUG_AUTH1,
140 		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
141 		    chunk, chunk);
142 	}
143 	return (0);
144 }
145 
146 size_t
147 sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list)
148 {
149 	if (list == NULL)
150 		return (0);
151 	else
152 		return (list->num_chunks);
153 }
154 
155 /*
156  * return the current number and list of required chunks caller must
157  * guarantee ptr has space for up to 256 bytes
158  */
159 int
160 sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
161 {
162 	int i, count = 0;
163 
164 	if (list == NULL)
165 		return (0);
166 
167 	for (i = 0; i < 256; i++) {
168 		if (list->chunks[i] != 0) {
169 			*ptr++ = i;
170 			count++;
171 		}
172 	}
173 	return (count);
174 }
175 
176 int
177 sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
178 {
179 	int i, size = 0;
180 
181 	if (list == NULL)
182 		return (0);
183 
184 	if (list->num_chunks <= 32) {
185 		/* just list them, one byte each */
186 		for (i = 0; i < 256; i++) {
187 			if (list->chunks[i] != 0) {
188 				*ptr++ = i;
189 				size++;
190 			}
191 		}
192 	} else {
193 		int index, offset;
194 
195 		/* pack into a 32 byte bitfield */
196 		for (i = 0; i < 256; i++) {
197 			if (list->chunks[i] != 0) {
198 				index = i / 8;
199 				offset = i % 8;
200 				ptr[index] |= (1 << offset);
201 			}
202 		}
203 		size = 32;
204 	}
205 	return (size);
206 }
207 
208 int
209 sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks,
210     sctp_auth_chklist_t *list)
211 {
212 	int i;
213 	int size;
214 
215 	if (list == NULL)
216 		return (0);
217 
218 	if (num_chunks <= 32) {
219 		/* just pull them, one byte each */
220 		for (i = 0; i < num_chunks; i++) {
221 			(void)sctp_auth_add_chunk(*ptr++, list);
222 		}
223 		size = num_chunks;
224 	} else {
225 		int index, offset;
226 
227 		/* unpack from a 32 byte bitfield */
228 		for (index = 0; index < 32; index++) {
229 			for (offset = 0; offset < 8; offset++) {
230 				if (ptr[index] & (1 << offset)) {
231 					(void)sctp_auth_add_chunk((index * 8) + offset, list);
232 				}
233 			}
234 		}
235 		size = 32;
236 	}
237 	return (size);
238 }
239 
240 
241 /*
242  * allocate structure space for a key of length keylen
243  */
244 sctp_key_t *
245 sctp_alloc_key(uint32_t keylen)
246 {
247 	sctp_key_t *new_key;
248 
249 	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
250 	    SCTP_M_AUTH_KY);
251 	if (new_key == NULL) {
252 		/* out of memory */
253 		return (NULL);
254 	}
255 	new_key->keylen = keylen;
256 	return (new_key);
257 }
258 
259 void
260 sctp_free_key(sctp_key_t *key)
261 {
262 	if (key != NULL)
263 		SCTP_FREE(key, SCTP_M_AUTH_KY);
264 }
265 
266 void
267 sctp_print_key(sctp_key_t *key, const char *str)
268 {
269 	uint32_t i;
270 
271 	if (key == NULL) {
272 		SCTP_PRINTF("%s: [Null key]\n", str);
273 		return;
274 	}
275 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
276 	if (key->keylen) {
277 		for (i = 0; i < key->keylen; i++)
278 			SCTP_PRINTF("%02x", key->key[i]);
279 		SCTP_PRINTF("\n");
280 	} else {
281 		SCTP_PRINTF("[Null key]\n");
282 	}
283 }
284 
285 void
286 sctp_show_key(sctp_key_t *key, const char *str)
287 {
288 	uint32_t i;
289 
290 	if (key == NULL) {
291 		SCTP_PRINTF("%s: [Null key]\n", str);
292 		return;
293 	}
294 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
295 	if (key->keylen) {
296 		for (i = 0; i < key->keylen; i++)
297 			SCTP_PRINTF("%02x", key->key[i]);
298 		SCTP_PRINTF("\n");
299 	} else {
300 		SCTP_PRINTF("[Null key]\n");
301 	}
302 }
303 
304 static uint32_t
305 sctp_get_keylen(sctp_key_t *key)
306 {
307 	if (key != NULL)
308 		return (key->keylen);
309 	else
310 		return (0);
311 }
312 
313 /*
314  * generate a new random key of length 'keylen'
315  */
316 sctp_key_t *
317 sctp_generate_random_key(uint32_t keylen)
318 {
319 	sctp_key_t *new_key;
320 
321 	new_key = sctp_alloc_key(keylen);
322 	if (new_key == NULL) {
323 		/* out of memory */
324 		return (NULL);
325 	}
326 	SCTP_READ_RANDOM(new_key->key, keylen);
327 	new_key->keylen = keylen;
328 	return (new_key);
329 }
330 
331 sctp_key_t *
332 sctp_set_key(uint8_t *key, uint32_t keylen)
333 {
334 	sctp_key_t *new_key;
335 
336 	new_key = sctp_alloc_key(keylen);
337 	if (new_key == NULL) {
338 		/* out of memory */
339 		return (NULL);
340 	}
341 	bcopy(key, new_key->key, keylen);
342 	return (new_key);
343 }
344 
345 /*-
346  * given two keys of variable size, compute which key is "larger/smaller"
347  * returns:  1 if key1 > key2
348  *          -1 if key1 < key2
349  *           0 if key1 = key2
350  */
351 static int
352 sctp_compare_key(sctp_key_t *key1, sctp_key_t *key2)
353 {
354 	uint32_t maxlen;
355 	uint32_t i;
356 	uint32_t key1len, key2len;
357 	uint8_t *key_1, *key_2;
358 	uint8_t val1, val2;
359 
360 	/* sanity/length check */
361 	key1len = sctp_get_keylen(key1);
362 	key2len = sctp_get_keylen(key2);
363 	if ((key1len == 0) && (key2len == 0))
364 		return (0);
365 	else if (key1len == 0)
366 		return (-1);
367 	else if (key2len == 0)
368 		return (1);
369 
370 	if (key1len < key2len) {
371 		maxlen = key2len;
372 	} else {
373 		maxlen = key1len;
374 	}
375 	key_1 = key1->key;
376 	key_2 = key2->key;
377 	/* check for numeric equality */
378 	for (i = 0; i < maxlen; i++) {
379 		/* left-pad with zeros */
380 		val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++);
381 		val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++);
382 		if (val1 > val2) {
383 			return (1);
384 		} else if (val1 < val2) {
385 			return (-1);
386 		}
387 	}
388 	/* keys are equal value, so check lengths */
389 	if (key1len == key2len)
390 		return (0);
391 	else if (key1len < key2len)
392 		return (-1);
393 	else
394 		return (1);
395 }
396 
397 /*
398  * generate the concatenated keying material based on the two keys and the
399  * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
400  * order for concatenation
401  */
402 sctp_key_t *
403 sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared)
404 {
405 	uint32_t keylen;
406 	sctp_key_t *new_key;
407 	uint8_t *key_ptr;
408 
409 	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
410 	    sctp_get_keylen(shared);
411 
412 	if (keylen > 0) {
413 		/* get space for the new key */
414 		new_key = sctp_alloc_key(keylen);
415 		if (new_key == NULL) {
416 			/* out of memory */
417 			return (NULL);
418 		}
419 		new_key->keylen = keylen;
420 		key_ptr = new_key->key;
421 	} else {
422 		/* all keys empty/null?! */
423 		return (NULL);
424 	}
425 
426 	/* concatenate the keys */
427 	if (sctp_compare_key(key1, key2) <= 0) {
428 		/* key is shared + key1 + key2 */
429 		if (sctp_get_keylen(shared)) {
430 			bcopy(shared->key, key_ptr, shared->keylen);
431 			key_ptr += shared->keylen;
432 		}
433 		if (sctp_get_keylen(key1)) {
434 			bcopy(key1->key, key_ptr, key1->keylen);
435 			key_ptr += key1->keylen;
436 		}
437 		if (sctp_get_keylen(key2)) {
438 			bcopy(key2->key, key_ptr, key2->keylen);
439 		}
440 	} else {
441 		/* key is shared + key2 + key1 */
442 		if (sctp_get_keylen(shared)) {
443 			bcopy(shared->key, key_ptr, shared->keylen);
444 			key_ptr += shared->keylen;
445 		}
446 		if (sctp_get_keylen(key2)) {
447 			bcopy(key2->key, key_ptr, key2->keylen);
448 			key_ptr += key2->keylen;
449 		}
450 		if (sctp_get_keylen(key1)) {
451 			bcopy(key1->key, key_ptr, key1->keylen);
452 		}
453 	}
454 	return (new_key);
455 }
456 
457 
458 sctp_sharedkey_t *
459 sctp_alloc_sharedkey(void)
460 {
461 	sctp_sharedkey_t *new_key;
462 
463 	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
464 	    SCTP_M_AUTH_KY);
465 	if (new_key == NULL) {
466 		/* out of memory */
467 		return (NULL);
468 	}
469 	new_key->keyid = 0;
470 	new_key->key = NULL;
471 	new_key->refcount = 1;
472 	new_key->deactivated = 0;
473 	return (new_key);
474 }
475 
476 void
477 sctp_free_sharedkey(sctp_sharedkey_t *skey)
478 {
479 	if (skey == NULL)
480 		return;
481 
482 	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
483 		if (skey->key != NULL)
484 			sctp_free_key(skey->key);
485 		SCTP_FREE(skey, SCTP_M_AUTH_KY);
486 	}
487 }
488 
489 sctp_sharedkey_t *
490 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
491 {
492 	sctp_sharedkey_t *skey;
493 
494 	LIST_FOREACH(skey, shared_keys, next) {
495 		if (skey->keyid == key_id)
496 			return (skey);
497 	}
498 	return (NULL);
499 }
500 
501 int
502 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
503     sctp_sharedkey_t *new_skey)
504 {
505 	sctp_sharedkey_t *skey;
506 
507 	if ((shared_keys == NULL) || (new_skey == NULL))
508 		return (EINVAL);
509 
510 	/* insert into an empty list? */
511 	if (LIST_EMPTY(shared_keys)) {
512 		LIST_INSERT_HEAD(shared_keys, new_skey, next);
513 		return (0);
514 	}
515 	/* insert into the existing list, ordered by key id */
516 	LIST_FOREACH(skey, shared_keys, next) {
517 		if (new_skey->keyid < skey->keyid) {
518 			/* insert it before here */
519 			LIST_INSERT_BEFORE(skey, new_skey, next);
520 			return (0);
521 		} else if (new_skey->keyid == skey->keyid) {
522 			/* replace the existing key */
523 			/* verify this key *can* be replaced */
524 			if ((skey->deactivated) && (skey->refcount > 1)) {
525 				SCTPDBG(SCTP_DEBUG_AUTH1,
526 				    "can't replace shared key id %u\n",
527 				    new_skey->keyid);
528 				return (EBUSY);
529 			}
530 			SCTPDBG(SCTP_DEBUG_AUTH1,
531 			    "replacing shared key id %u\n",
532 			    new_skey->keyid);
533 			LIST_INSERT_BEFORE(skey, new_skey, next);
534 			LIST_REMOVE(skey, next);
535 			sctp_free_sharedkey(skey);
536 			return (0);
537 		}
538 		if (LIST_NEXT(skey, next) == NULL) {
539 			/* belongs at the end of the list */
540 			LIST_INSERT_AFTER(skey, new_skey, next);
541 			return (0);
542 		}
543 	}
544 	/* shouldn't reach here */
545 	return (EINVAL);
546 }
547 
548 void
549 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
550 {
551 	sctp_sharedkey_t *skey;
552 
553 	/* find the shared key */
554 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
555 
556 	/* bump the ref count */
557 	if (skey) {
558 		atomic_add_int(&skey->refcount, 1);
559 		SCTPDBG(SCTP_DEBUG_AUTH2,
560 		    "%s: stcb %p key %u refcount acquire to %d\n",
561 		    __func__, (void *)stcb, key_id, skey->refcount);
562 	}
563 }
564 
565 void
566 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked
567 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
568     SCTP_UNUSED
569 #endif
570 )
571 {
572 	sctp_sharedkey_t *skey;
573 
574 	/* find the shared key */
575 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
576 
577 	/* decrement the ref count */
578 	if (skey) {
579 		SCTPDBG(SCTP_DEBUG_AUTH2,
580 		    "%s: stcb %p key %u refcount release to %d\n",
581 		    __func__, (void *)stcb, key_id, skey->refcount);
582 
583 		/* see if a notification should be generated */
584 		if ((skey->refcount <= 2) && (skey->deactivated)) {
585 			/* notify ULP that key is no longer used */
586 			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
587 			    key_id, 0, so_locked);
588 			SCTPDBG(SCTP_DEBUG_AUTH2,
589 			    "%s: stcb %p key %u no longer used, %d\n",
590 			    __func__, (void *)stcb, key_id, skey->refcount);
591 		}
592 		sctp_free_sharedkey(skey);
593 	}
594 }
595 
596 static sctp_sharedkey_t *
597 sctp_copy_sharedkey(const sctp_sharedkey_t *skey)
598 {
599 	sctp_sharedkey_t *new_skey;
600 
601 	if (skey == NULL)
602 		return (NULL);
603 	new_skey = sctp_alloc_sharedkey();
604 	if (new_skey == NULL)
605 		return (NULL);
606 	if (skey->key != NULL)
607 		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
608 	else
609 		new_skey->key = NULL;
610 	new_skey->keyid = skey->keyid;
611 	return (new_skey);
612 }
613 
614 int
615 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
616 {
617 	sctp_sharedkey_t *skey, *new_skey;
618 	int count = 0;
619 
620 	if ((src == NULL) || (dest == NULL))
621 		return (0);
622 	LIST_FOREACH(skey, src, next) {
623 		new_skey = sctp_copy_sharedkey(skey);
624 		if (new_skey != NULL) {
625 			if (sctp_insert_sharedkey(dest, new_skey)) {
626 				sctp_free_sharedkey(new_skey);
627 			} else {
628 				count++;
629 			}
630 		}
631 	}
632 	return (count);
633 }
634 
635 
636 sctp_hmaclist_t *
637 sctp_alloc_hmaclist(uint16_t num_hmacs)
638 {
639 	sctp_hmaclist_t *new_list;
640 	int alloc_size;
641 
642 	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
643 	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
644 	    SCTP_M_AUTH_HL);
645 	if (new_list == NULL) {
646 		/* out of memory */
647 		return (NULL);
648 	}
649 	new_list->max_algo = num_hmacs;
650 	new_list->num_algo = 0;
651 	return (new_list);
652 }
653 
654 void
655 sctp_free_hmaclist(sctp_hmaclist_t *list)
656 {
657 	if (list != NULL) {
658 		SCTP_FREE(list, SCTP_M_AUTH_HL);
659 		list = NULL;
660 	}
661 }
662 
663 int
664 sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id)
665 {
666 	int i;
667 
668 	if (list == NULL)
669 		return (-1);
670 	if (list->num_algo == list->max_algo) {
671 		SCTPDBG(SCTP_DEBUG_AUTH1,
672 		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
673 		return (-1);
674 	}
675 	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
676 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) {
677 		return (-1);
678 	}
679 	/* Now is it already in the list */
680 	for (i = 0; i < list->num_algo; i++) {
681 		if (list->hmac[i] == hmac_id) {
682 			/* already in list */
683 			return (-1);
684 		}
685 	}
686 	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
687 	list->hmac[list->num_algo++] = hmac_id;
688 	return (0);
689 }
690 
691 sctp_hmaclist_t *
692 sctp_copy_hmaclist(sctp_hmaclist_t *list)
693 {
694 	sctp_hmaclist_t *new_list;
695 	int i;
696 
697 	if (list == NULL)
698 		return (NULL);
699 	/* get a new list */
700 	new_list = sctp_alloc_hmaclist(list->max_algo);
701 	if (new_list == NULL)
702 		return (NULL);
703 	/* copy it */
704 	new_list->max_algo = list->max_algo;
705 	new_list->num_algo = list->num_algo;
706 	for (i = 0; i < list->num_algo; i++)
707 		new_list->hmac[i] = list->hmac[i];
708 	return (new_list);
709 }
710 
711 sctp_hmaclist_t *
712 sctp_default_supported_hmaclist(void)
713 {
714 	sctp_hmaclist_t *new_list;
715 
716 	new_list = sctp_alloc_hmaclist(2);
717 	if (new_list == NULL)
718 		return (NULL);
719 	/* We prefer SHA256, so list it first */
720 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
721 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
722 	return (new_list);
723 }
724 
725 /*-
726  * HMAC algos are listed in priority/preference order
727  * find the best HMAC id to use for the peer based on local support
728  */
729 uint16_t
730 sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local)
731 {
732 	int i, j;
733 
734 	if ((local == NULL) || (peer == NULL))
735 		return (SCTP_AUTH_HMAC_ID_RSVD);
736 
737 	for (i = 0; i < peer->num_algo; i++) {
738 		for (j = 0; j < local->num_algo; j++) {
739 			if (peer->hmac[i] == local->hmac[j]) {
740 				/* found the "best" one */
741 				SCTPDBG(SCTP_DEBUG_AUTH1,
742 				    "SCTP: negotiated peer HMAC id %u\n",
743 				    peer->hmac[i]);
744 				return (peer->hmac[i]);
745 			}
746 		}
747 	}
748 	/* didn't find one! */
749 	return (SCTP_AUTH_HMAC_ID_RSVD);
750 }
751 
752 /*-
753  * serialize the HMAC algo list and return space used
754  * caller must guarantee ptr has appropriate space
755  */
756 int
757 sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr)
758 {
759 	int i;
760 	uint16_t hmac_id;
761 
762 	if (list == NULL)
763 		return (0);
764 
765 	for (i = 0; i < list->num_algo; i++) {
766 		hmac_id = htons(list->hmac[i]);
767 		bcopy(&hmac_id, ptr, sizeof(hmac_id));
768 		ptr += sizeof(hmac_id);
769 	}
770 	return (list->num_algo * sizeof(hmac_id));
771 }
772 
773 int
774 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
775 {
776 	uint32_t i;
777 
778 	for (i = 0; i < num_hmacs; i++) {
779 		if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) {
780 			return (0);
781 		}
782 	}
783 	return (-1);
784 }
785 
786 sctp_authinfo_t *
787 sctp_alloc_authinfo(void)
788 {
789 	sctp_authinfo_t *new_authinfo;
790 
791 	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
792 	    SCTP_M_AUTH_IF);
793 
794 	if (new_authinfo == NULL) {
795 		/* out of memory */
796 		return (NULL);
797 	}
798 	bzero(new_authinfo, sizeof(*new_authinfo));
799 	return (new_authinfo);
800 }
801 
802 void
803 sctp_free_authinfo(sctp_authinfo_t *authinfo)
804 {
805 	if (authinfo == NULL)
806 		return;
807 
808 	if (authinfo->random != NULL)
809 		sctp_free_key(authinfo->random);
810 	if (authinfo->peer_random != NULL)
811 		sctp_free_key(authinfo->peer_random);
812 	if (authinfo->assoc_key != NULL)
813 		sctp_free_key(authinfo->assoc_key);
814 	if (authinfo->recv_key != NULL)
815 		sctp_free_key(authinfo->recv_key);
816 
817 	/* We are NOT dynamically allocating authinfo's right now... */
818 	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
819 }
820 
821 
822 uint32_t
823 sctp_get_auth_chunk_len(uint16_t hmac_algo)
824 {
825 	int size;
826 
827 	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
828 	return (SCTP_SIZE32(size));
829 }
830 
831 uint32_t
832 sctp_get_hmac_digest_len(uint16_t hmac_algo)
833 {
834 	switch (hmac_algo) {
835 	case SCTP_AUTH_HMAC_ID_SHA1:
836 		return (SCTP_AUTH_DIGEST_LEN_SHA1);
837 	case SCTP_AUTH_HMAC_ID_SHA256:
838 		return (SCTP_AUTH_DIGEST_LEN_SHA256);
839 	default:
840 		/* unknown HMAC algorithm: can't do anything */
841 		return (0);
842 	}			/* end switch */
843 }
844 
845 static inline int
846 sctp_get_hmac_block_len(uint16_t hmac_algo)
847 {
848 	switch (hmac_algo) {
849 	case SCTP_AUTH_HMAC_ID_SHA1:
850 		return (64);
851 	case SCTP_AUTH_HMAC_ID_SHA256:
852 		return (64);
853 	case SCTP_AUTH_HMAC_ID_RSVD:
854 	default:
855 		/* unknown HMAC algorithm: can't do anything */
856 		return (0);
857 	}			/* end switch */
858 }
859 
860 static void
861 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t *ctx)
862 {
863 	switch (hmac_algo) {
864 	case SCTP_AUTH_HMAC_ID_SHA1:
865 		SCTP_SHA1_INIT(&ctx->sha1);
866 		break;
867 	case SCTP_AUTH_HMAC_ID_SHA256:
868 		SCTP_SHA256_INIT(&ctx->sha256);
869 		break;
870 	case SCTP_AUTH_HMAC_ID_RSVD:
871 	default:
872 		/* unknown HMAC algorithm: can't do anything */
873 		return;
874 	}			/* end switch */
875 }
876 
877 static void
878 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t *ctx,
879     uint8_t *text, uint32_t textlen)
880 {
881 	switch (hmac_algo) {
882 	case SCTP_AUTH_HMAC_ID_SHA1:
883 		SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen);
884 		break;
885 	case SCTP_AUTH_HMAC_ID_SHA256:
886 		SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen);
887 		break;
888 	case SCTP_AUTH_HMAC_ID_RSVD:
889 	default:
890 		/* unknown HMAC algorithm: can't do anything */
891 		return;
892 	}			/* end switch */
893 }
894 
895 static void
896 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t *ctx,
897     uint8_t *digest)
898 {
899 	switch (hmac_algo) {
900 	case SCTP_AUTH_HMAC_ID_SHA1:
901 		SCTP_SHA1_FINAL(digest, &ctx->sha1);
902 		break;
903 	case SCTP_AUTH_HMAC_ID_SHA256:
904 		SCTP_SHA256_FINAL(digest, &ctx->sha256);
905 		break;
906 	case SCTP_AUTH_HMAC_ID_RSVD:
907 	default:
908 		/* unknown HMAC algorithm: can't do anything */
909 		return;
910 	}			/* end switch */
911 }
912 
913 /*-
914  * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
915  *
916  * Compute the HMAC digest using the desired hash key, text, and HMAC
917  * algorithm.  Resulting digest is placed in 'digest' and digest length
918  * is returned, if the HMAC was performed.
919  *
920  * WARNING: it is up to the caller to supply sufficient space to hold the
921  * resultant digest.
922  */
923 uint32_t
924 sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
925     uint8_t *text, uint32_t textlen, uint8_t *digest)
926 {
927 	uint32_t digestlen;
928 	uint32_t blocklen;
929 	sctp_hash_context_t ctx;
930 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
931 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
932 	uint32_t i;
933 
934 	/* sanity check the material and length */
935 	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
936 	    (textlen == 0) || (digest == NULL)) {
937 		/* can't do HMAC with empty key or text or digest store */
938 		return (0);
939 	}
940 	/* validate the hmac algo and get the digest length */
941 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
942 	if (digestlen == 0)
943 		return (0);
944 
945 	/* hash the key if it is longer than the hash block size */
946 	blocklen = sctp_get_hmac_block_len(hmac_algo);
947 	if (keylen > blocklen) {
948 		sctp_hmac_init(hmac_algo, &ctx);
949 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
950 		sctp_hmac_final(hmac_algo, &ctx, temp);
951 		/* set the hashed key as the key */
952 		keylen = digestlen;
953 		key = temp;
954 	}
955 	/* initialize the inner/outer pads with the key and "append" zeroes */
956 	bzero(ipad, blocklen);
957 	bzero(opad, blocklen);
958 	bcopy(key, ipad, keylen);
959 	bcopy(key, opad, keylen);
960 
961 	/* XOR the key with ipad and opad values */
962 	for (i = 0; i < blocklen; i++) {
963 		ipad[i] ^= 0x36;
964 		opad[i] ^= 0x5c;
965 	}
966 
967 	/* perform inner hash */
968 	sctp_hmac_init(hmac_algo, &ctx);
969 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
970 	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
971 	sctp_hmac_final(hmac_algo, &ctx, temp);
972 
973 	/* perform outer hash */
974 	sctp_hmac_init(hmac_algo, &ctx);
975 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
976 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
977 	sctp_hmac_final(hmac_algo, &ctx, digest);
978 
979 	return (digestlen);
980 }
981 
982 /* mbuf version */
983 uint32_t
984 sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
985     struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer)
986 {
987 	uint32_t digestlen;
988 	uint32_t blocklen;
989 	sctp_hash_context_t ctx;
990 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
991 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
992 	uint32_t i;
993 	struct mbuf *m_tmp;
994 
995 	/* sanity check the material and length */
996 	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
997 		/* can't do HMAC with empty key or text or digest store */
998 		return (0);
999 	}
1000 	/* validate the hmac algo and get the digest length */
1001 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1002 	if (digestlen == 0)
1003 		return (0);
1004 
1005 	/* hash the key if it is longer than the hash block size */
1006 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1007 	if (keylen > blocklen) {
1008 		sctp_hmac_init(hmac_algo, &ctx);
1009 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1010 		sctp_hmac_final(hmac_algo, &ctx, temp);
1011 		/* set the hashed key as the key */
1012 		keylen = digestlen;
1013 		key = temp;
1014 	}
1015 	/* initialize the inner/outer pads with the key and "append" zeroes */
1016 	bzero(ipad, blocklen);
1017 	bzero(opad, blocklen);
1018 	bcopy(key, ipad, keylen);
1019 	bcopy(key, opad, keylen);
1020 
1021 	/* XOR the key with ipad and opad values */
1022 	for (i = 0; i < blocklen; i++) {
1023 		ipad[i] ^= 0x36;
1024 		opad[i] ^= 0x5c;
1025 	}
1026 
1027 	/* perform inner hash */
1028 	sctp_hmac_init(hmac_algo, &ctx);
1029 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1030 	/* find the correct starting mbuf and offset (get start of text) */
1031 	m_tmp = m;
1032 	while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) {
1033 		m_offset -= SCTP_BUF_LEN(m_tmp);
1034 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1035 	}
1036 	/* now use the rest of the mbuf chain for the text */
1037 	while (m_tmp != NULL) {
1038 		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1039 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset,
1040 			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1041 		} else {
1042 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset,
1043 			    SCTP_BUF_LEN(m_tmp) - m_offset);
1044 		}
1045 
1046 		/* clear the offset since it's only for the first mbuf */
1047 		m_offset = 0;
1048 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1049 	}
1050 	sctp_hmac_final(hmac_algo, &ctx, temp);
1051 
1052 	/* perform outer hash */
1053 	sctp_hmac_init(hmac_algo, &ctx);
1054 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1055 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1056 	sctp_hmac_final(hmac_algo, &ctx, digest);
1057 
1058 	return (digestlen);
1059 }
1060 
1061 /*-
1062  * verify the HMAC digest using the desired hash key, text, and HMAC
1063  * algorithm.
1064  * Returns -1 on error, 0 on success.
1065  */
1066 int
1067 sctp_verify_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
1068     uint8_t *text, uint32_t textlen,
1069     uint8_t *digest, uint32_t digestlen)
1070 {
1071 	uint32_t len;
1072 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1073 
1074 	/* sanity check the material and length */
1075 	if ((key == NULL) || (keylen == 0) ||
1076 	    (text == NULL) || (textlen == 0) || (digest == NULL)) {
1077 		/* can't do HMAC with empty key or text or digest */
1078 		return (-1);
1079 	}
1080 	len = sctp_get_hmac_digest_len(hmac_algo);
1081 	if ((len == 0) || (digestlen != len))
1082 		return (-1);
1083 
1084 	/* compute the expected hash */
1085 	if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len)
1086 		return (-1);
1087 
1088 	if (memcmp(digest, temp, digestlen) != 0)
1089 		return (-1);
1090 	else
1091 		return (0);
1092 }
1093 
1094 
1095 /*
1096  * computes the requested HMAC using a key struct (which may be modified if
1097  * the keylen exceeds the HMAC block len).
1098  */
1099 uint32_t
1100 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text,
1101     uint32_t textlen, uint8_t *digest)
1102 {
1103 	uint32_t digestlen;
1104 	uint32_t blocklen;
1105 	sctp_hash_context_t ctx;
1106 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1107 
1108 	/* sanity check */
1109 	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1110 	    (digest == NULL)) {
1111 		/* can't do HMAC with empty key or text or digest store */
1112 		return (0);
1113 	}
1114 	/* validate the hmac algo and get the digest length */
1115 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1116 	if (digestlen == 0)
1117 		return (0);
1118 
1119 	/* hash the key if it is longer than the hash block size */
1120 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1121 	if (key->keylen > blocklen) {
1122 		sctp_hmac_init(hmac_algo, &ctx);
1123 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1124 		sctp_hmac_final(hmac_algo, &ctx, temp);
1125 		/* save the hashed key as the new key */
1126 		key->keylen = digestlen;
1127 		bcopy(temp, key->key, key->keylen);
1128 	}
1129 	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1130 	    digest));
1131 }
1132 
1133 /* mbuf version */
1134 uint32_t
1135 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m,
1136     uint32_t m_offset, uint8_t *digest)
1137 {
1138 	uint32_t digestlen;
1139 	uint32_t blocklen;
1140 	sctp_hash_context_t ctx;
1141 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1142 
1143 	/* sanity check */
1144 	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1145 		/* can't do HMAC with empty key or text or digest store */
1146 		return (0);
1147 	}
1148 	/* validate the hmac algo and get the digest length */
1149 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1150 	if (digestlen == 0)
1151 		return (0);
1152 
1153 	/* hash the key if it is longer than the hash block size */
1154 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1155 	if (key->keylen > blocklen) {
1156 		sctp_hmac_init(hmac_algo, &ctx);
1157 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1158 		sctp_hmac_final(hmac_algo, &ctx, temp);
1159 		/* save the hashed key as the new key */
1160 		key->keylen = digestlen;
1161 		bcopy(temp, key->key, key->keylen);
1162 	}
1163 	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1164 }
1165 
1166 int
1167 sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id)
1168 {
1169 	int i;
1170 
1171 	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1172 		return (0);
1173 
1174 	for (i = 0; i < list->num_algo; i++)
1175 		if (list->hmac[i] == id)
1176 			return (1);
1177 
1178 	/* not in the list */
1179 	return (0);
1180 }
1181 
1182 
1183 /*-
1184  * clear any cached key(s) if they match the given key id on an association.
1185  * the cached key(s) will be recomputed and re-cached at next use.
1186  * ASSUMES TCB_LOCK is already held
1187  */
1188 void
1189 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1190 {
1191 	if (stcb == NULL)
1192 		return;
1193 
1194 	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1195 		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1196 		stcb->asoc.authinfo.assoc_key = NULL;
1197 	}
1198 	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1199 		sctp_free_key(stcb->asoc.authinfo.recv_key);
1200 		stcb->asoc.authinfo.recv_key = NULL;
1201 	}
1202 }
1203 
1204 /*-
1205  * clear any cached key(s) if they match the given key id for all assocs on
1206  * an endpoint.
1207  * ASSUMES INP_WLOCK is already held
1208  */
1209 void
1210 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1211 {
1212 	struct sctp_tcb *stcb;
1213 
1214 	if (inp == NULL)
1215 		return;
1216 
1217 	/* clear the cached keys on all assocs on this instance */
1218 	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1219 		SCTP_TCB_LOCK(stcb);
1220 		sctp_clear_cachedkeys(stcb, keyid);
1221 		SCTP_TCB_UNLOCK(stcb);
1222 	}
1223 }
1224 
1225 /*-
1226  * delete a shared key from an association
1227  * ASSUMES TCB_LOCK is already held
1228  */
1229 int
1230 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1231 {
1232 	sctp_sharedkey_t *skey;
1233 
1234 	if (stcb == NULL)
1235 		return (-1);
1236 
1237 	/* is the keyid the assoc active sending key */
1238 	if (keyid == stcb->asoc.authinfo.active_keyid)
1239 		return (-1);
1240 
1241 	/* does the key exist? */
1242 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1243 	if (skey == NULL)
1244 		return (-1);
1245 
1246 	/* are there other refcount holders on the key? */
1247 	if (skey->refcount > 1)
1248 		return (-1);
1249 
1250 	/* remove it */
1251 	LIST_REMOVE(skey, next);
1252 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1253 
1254 	/* clear any cached keys */
1255 	sctp_clear_cachedkeys(stcb, keyid);
1256 	return (0);
1257 }
1258 
1259 /*-
1260  * deletes a shared key from the endpoint
1261  * ASSUMES INP_WLOCK is already held
1262  */
1263 int
1264 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1265 {
1266 	sctp_sharedkey_t *skey;
1267 
1268 	if (inp == NULL)
1269 		return (-1);
1270 
1271 	/* is the keyid the active sending key on the endpoint */
1272 	if (keyid == inp->sctp_ep.default_keyid)
1273 		return (-1);
1274 
1275 	/* does the key exist? */
1276 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1277 	if (skey == NULL)
1278 		return (-1);
1279 
1280 	/* endpoint keys are not refcounted */
1281 
1282 	/* remove it */
1283 	LIST_REMOVE(skey, next);
1284 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1285 
1286 	/* clear any cached keys */
1287 	sctp_clear_cachedkeys_ep(inp, keyid);
1288 	return (0);
1289 }
1290 
1291 /*-
1292  * set the active key on an association
1293  * ASSUMES TCB_LOCK is already held
1294  */
1295 int
1296 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1297 {
1298 	sctp_sharedkey_t *skey = NULL;
1299 
1300 	/* find the key on the assoc */
1301 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1302 	if (skey == NULL) {
1303 		/* that key doesn't exist */
1304 		return (-1);
1305 	}
1306 	if ((skey->deactivated) && (skey->refcount > 1)) {
1307 		/* can't reactivate a deactivated key with other refcounts */
1308 		return (-1);
1309 	}
1310 	/* set the (new) active key */
1311 	stcb->asoc.authinfo.active_keyid = keyid;
1312 	/* reset the deactivated flag */
1313 	skey->deactivated = 0;
1314 
1315 	return (0);
1316 }
1317 
1318 /*-
1319  * set the active key on an endpoint
1320  * ASSUMES INP_WLOCK is already held
1321  */
1322 int
1323 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1324 {
1325 	sctp_sharedkey_t *skey;
1326 
1327 	/* find the key */
1328 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1329 	if (skey == NULL) {
1330 		/* that key doesn't exist */
1331 		return (-1);
1332 	}
1333 	inp->sctp_ep.default_keyid = keyid;
1334 	return (0);
1335 }
1336 
1337 /*-
1338  * deactivates a shared key from the association
1339  * ASSUMES INP_WLOCK is already held
1340  */
1341 int
1342 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1343 {
1344 	sctp_sharedkey_t *skey;
1345 
1346 	if (stcb == NULL)
1347 		return (-1);
1348 
1349 	/* is the keyid the assoc active sending key */
1350 	if (keyid == stcb->asoc.authinfo.active_keyid)
1351 		return (-1);
1352 
1353 	/* does the key exist? */
1354 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1355 	if (skey == NULL)
1356 		return (-1);
1357 
1358 	/* are there other refcount holders on the key? */
1359 	if (skey->refcount == 1) {
1360 		/* no other users, send a notification for this key */
1361 		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1362 		    SCTP_SO_LOCKED);
1363 	}
1364 	/* mark the key as deactivated */
1365 	skey->deactivated = 1;
1366 
1367 	return (0);
1368 }
1369 
1370 /*-
1371  * deactivates a shared key from the endpoint
1372  * ASSUMES INP_WLOCK is already held
1373  */
1374 int
1375 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1376 {
1377 	sctp_sharedkey_t *skey;
1378 
1379 	if (inp == NULL)
1380 		return (-1);
1381 
1382 	/* is the keyid the active sending key on the endpoint */
1383 	if (keyid == inp->sctp_ep.default_keyid)
1384 		return (-1);
1385 
1386 	/* does the key exist? */
1387 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1388 	if (skey == NULL)
1389 		return (-1);
1390 
1391 	/* endpoint keys are not refcounted */
1392 
1393 	/* remove it */
1394 	LIST_REMOVE(skey, next);
1395 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1396 
1397 	return (0);
1398 }
1399 
1400 /*
1401  * get local authentication parameters from cookie (from INIT-ACK)
1402  */
1403 void
1404 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1405     uint32_t offset, uint32_t length)
1406 {
1407 	struct sctp_paramhdr *phdr, tmp_param;
1408 	uint16_t plen, ptype;
1409 	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1410 	struct sctp_auth_random *p_random = NULL;
1411 	uint16_t random_len = 0;
1412 	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1413 	struct sctp_auth_hmac_algo *hmacs = NULL;
1414 	uint16_t hmacs_len = 0;
1415 	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1416 	struct sctp_auth_chunk_list *chunks = NULL;
1417 	uint16_t num_chunks = 0;
1418 	sctp_key_t *new_key;
1419 	uint32_t keylen;
1420 
1421 	/* convert to upper bound */
1422 	length += offset;
1423 
1424 	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1425 	    sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param);
1426 	while (phdr != NULL) {
1427 		ptype = ntohs(phdr->param_type);
1428 		plen = ntohs(phdr->param_length);
1429 
1430 		if ((plen == 0) || (offset + plen > length))
1431 			break;
1432 
1433 		if (ptype == SCTP_RANDOM) {
1434 			if (plen > sizeof(random_store))
1435 				break;
1436 			phdr = sctp_get_next_param(m, offset,
1437 			    (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store)));
1438 			if (phdr == NULL)
1439 				return;
1440 			/* save the random and length for the key */
1441 			p_random = (struct sctp_auth_random *)phdr;
1442 			random_len = plen - sizeof(*p_random);
1443 		} else if (ptype == SCTP_HMAC_LIST) {
1444 			uint16_t num_hmacs;
1445 			uint16_t i;
1446 
1447 			if (plen > sizeof(hmacs_store))
1448 				break;
1449 			phdr = sctp_get_next_param(m, offset,
1450 			    (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store)));
1451 			if (phdr == NULL)
1452 				return;
1453 			/* save the hmacs list and num for the key */
1454 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1455 			hmacs_len = plen - sizeof(*hmacs);
1456 			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1457 			if (stcb->asoc.local_hmacs != NULL)
1458 				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1459 			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1460 			if (stcb->asoc.local_hmacs != NULL) {
1461 				for (i = 0; i < num_hmacs; i++) {
1462 					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1463 					    ntohs(hmacs->hmac_ids[i]));
1464 				}
1465 			}
1466 		} else if (ptype == SCTP_CHUNK_LIST) {
1467 			int i;
1468 
1469 			if (plen > sizeof(chunks_store))
1470 				break;
1471 			phdr = sctp_get_next_param(m, offset,
1472 			    (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store)));
1473 			if (phdr == NULL)
1474 				return;
1475 			chunks = (struct sctp_auth_chunk_list *)phdr;
1476 			num_chunks = plen - sizeof(*chunks);
1477 			/* save chunks list and num for the key */
1478 			if (stcb->asoc.local_auth_chunks != NULL)
1479 				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1480 			else
1481 				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1482 			for (i = 0; i < num_chunks; i++) {
1483 				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1484 				    stcb->asoc.local_auth_chunks);
1485 			}
1486 		}
1487 		/* get next parameter */
1488 		offset += SCTP_SIZE32(plen);
1489 		if (offset + sizeof(struct sctp_paramhdr) > length)
1490 			break;
1491 		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1492 		    (uint8_t *)&tmp_param);
1493 	}
1494 	/* concatenate the full random key */
1495 	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1496 	if (chunks != NULL) {
1497 		keylen += sizeof(*chunks) + num_chunks;
1498 	}
1499 	new_key = sctp_alloc_key(keylen);
1500 	if (new_key != NULL) {
1501 		/* copy in the RANDOM */
1502 		if (p_random != NULL) {
1503 			keylen = sizeof(*p_random) + random_len;
1504 			bcopy(p_random, new_key->key, keylen);
1505 		}
1506 		/* append in the AUTH chunks */
1507 		if (chunks != NULL) {
1508 			bcopy(chunks, new_key->key + keylen,
1509 			    sizeof(*chunks) + num_chunks);
1510 			keylen += sizeof(*chunks) + num_chunks;
1511 		}
1512 		/* append in the HMACs */
1513 		if (hmacs != NULL) {
1514 			bcopy(hmacs, new_key->key + keylen,
1515 			    sizeof(*hmacs) + hmacs_len);
1516 		}
1517 	}
1518 	if (stcb->asoc.authinfo.random != NULL)
1519 		sctp_free_key(stcb->asoc.authinfo.random);
1520 	stcb->asoc.authinfo.random = new_key;
1521 	stcb->asoc.authinfo.random_len = random_len;
1522 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1523 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1524 
1525 	/* negotiate what HMAC to use for the peer */
1526 	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1527 	    stcb->asoc.local_hmacs);
1528 
1529 	/* copy defaults from the endpoint */
1530 	/* FIX ME: put in cookie? */
1531 	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1532 	/* copy out the shared key list (by reference) from the endpoint */
1533 	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1534 	    &stcb->asoc.shared_keys);
1535 }
1536 
1537 /*
1538  * compute and fill in the HMAC digest for a packet
1539  */
1540 void
1541 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1542     struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1543 {
1544 	uint32_t digestlen;
1545 	sctp_sharedkey_t *skey;
1546 	sctp_key_t *key;
1547 
1548 	if ((stcb == NULL) || (auth == NULL))
1549 		return;
1550 
1551 	/* zero the digest + chunk padding */
1552 	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1553 	bzero(auth->hmac, SCTP_SIZE32(digestlen));
1554 
1555 	/* is the desired key cached? */
1556 	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1557 	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1558 		if (stcb->asoc.authinfo.assoc_key != NULL) {
1559 			/* free the old cached key */
1560 			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1561 		}
1562 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1563 		/* the only way skey is NULL is if null key id 0 is used */
1564 		if (skey != NULL)
1565 			key = skey->key;
1566 		else
1567 			key = NULL;
1568 		/* compute a new assoc key and cache it */
1569 		stcb->asoc.authinfo.assoc_key =
1570 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1571 		    stcb->asoc.authinfo.peer_random, key);
1572 		stcb->asoc.authinfo.assoc_keyid = keyid;
1573 		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1574 		    stcb->asoc.authinfo.assoc_keyid);
1575 #ifdef SCTP_DEBUG
1576 		if (SCTP_AUTH_DEBUG)
1577 			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1578 			    "Assoc Key");
1579 #endif
1580 	}
1581 	/* set in the active key id */
1582 	auth->shared_key_id = htons(keyid);
1583 
1584 	/* compute and fill in the digest */
1585 	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1586 	    m, auth_offset, auth->hmac);
1587 }
1588 
1589 
1590 static void
1591 sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1592 {
1593 	struct mbuf *m_tmp;
1594 	uint8_t *data;
1595 
1596 	/* sanity check */
1597 	if (m == NULL)
1598 		return;
1599 
1600 	/* find the correct starting mbuf and offset (get start position) */
1601 	m_tmp = m;
1602 	while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) {
1603 		m_offset -= SCTP_BUF_LEN(m_tmp);
1604 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1605 	}
1606 	/* now use the rest of the mbuf chain */
1607 	while ((m_tmp != NULL) && (size > 0)) {
1608 		data = mtod(m_tmp, uint8_t *)+m_offset;
1609 		if (size > (uint32_t)SCTP_BUF_LEN(m_tmp)) {
1610 			bzero(data, SCTP_BUF_LEN(m_tmp));
1611 			size -= SCTP_BUF_LEN(m_tmp);
1612 		} else {
1613 			bzero(data, size);
1614 			size = 0;
1615 		}
1616 		/* clear the offset since it's only for the first mbuf */
1617 		m_offset = 0;
1618 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1619 	}
1620 }
1621 
1622 /*-
1623  * process the incoming Authentication chunk
1624  * return codes:
1625  *   -1 on any authentication error
1626  *    0 on authentication verification
1627  */
1628 int
1629 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1630     struct mbuf *m, uint32_t offset)
1631 {
1632 	uint16_t chunklen;
1633 	uint16_t shared_key_id;
1634 	uint16_t hmac_id;
1635 	sctp_sharedkey_t *skey;
1636 	uint32_t digestlen;
1637 	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1638 	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1639 
1640 	/* auth is checked for NULL by caller */
1641 	chunklen = ntohs(auth->ch.chunk_length);
1642 	if (chunklen < sizeof(*auth)) {
1643 		SCTP_STAT_INCR(sctps_recvauthfailed);
1644 		return (-1);
1645 	}
1646 	SCTP_STAT_INCR(sctps_recvauth);
1647 
1648 	/* get the auth params */
1649 	shared_key_id = ntohs(auth->shared_key_id);
1650 	hmac_id = ntohs(auth->hmac_id);
1651 	SCTPDBG(SCTP_DEBUG_AUTH1,
1652 	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1653 	    shared_key_id, hmac_id);
1654 
1655 	/* is the indicated HMAC supported? */
1656 	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1657 		struct mbuf *op_err;
1658 		struct sctp_error_auth_invalid_hmac *cause;
1659 
1660 		SCTP_STAT_INCR(sctps_recvivalhmacid);
1661 		SCTPDBG(SCTP_DEBUG_AUTH1,
1662 		    "SCTP Auth: unsupported HMAC id %u\n",
1663 		    hmac_id);
1664 		/*
1665 		 * report this in an Error Chunk: Unsupported HMAC
1666 		 * Identifier
1667 		 */
1668 		op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac),
1669 		    0, M_NOWAIT, 1, MT_HEADER);
1670 		if (op_err != NULL) {
1671 			/* pre-reserve some space */
1672 			SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr));
1673 			/* fill in the error */
1674 			cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *);
1675 			cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1676 			cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac));
1677 			cause->hmac_id = ntohs(hmac_id);
1678 			SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac);
1679 			/* queue it */
1680 			sctp_queue_op_err(stcb, op_err);
1681 		}
1682 		return (-1);
1683 	}
1684 	/* get the indicated shared key, if available */
1685 	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1686 	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1687 		/* find the shared key on the assoc first */
1688 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1689 		    shared_key_id);
1690 		/* if the shared key isn't found, discard the chunk */
1691 		if (skey == NULL) {
1692 			SCTP_STAT_INCR(sctps_recvivalkeyid);
1693 			SCTPDBG(SCTP_DEBUG_AUTH1,
1694 			    "SCTP Auth: unknown key id %u\n",
1695 			    shared_key_id);
1696 			return (-1);
1697 		}
1698 		/* generate a notification if this is a new key id */
1699 		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1700 			/*
1701 			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1702 			 * shared_key_id, (void
1703 			 * *)stcb->asoc.authinfo.recv_keyid);
1704 			 */
1705 			sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY,
1706 			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1707 			    SCTP_SO_NOT_LOCKED);
1708 		/* compute a new recv assoc key and cache it */
1709 		if (stcb->asoc.authinfo.recv_key != NULL)
1710 			sctp_free_key(stcb->asoc.authinfo.recv_key);
1711 		stcb->asoc.authinfo.recv_key =
1712 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1713 		    stcb->asoc.authinfo.peer_random, skey->key);
1714 		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1715 #ifdef SCTP_DEBUG
1716 		if (SCTP_AUTH_DEBUG)
1717 			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1718 #endif
1719 	}
1720 	/* validate the digest length */
1721 	digestlen = sctp_get_hmac_digest_len(hmac_id);
1722 	if (chunklen < (sizeof(*auth) + digestlen)) {
1723 		/* invalid digest length */
1724 		SCTP_STAT_INCR(sctps_recvauthfailed);
1725 		SCTPDBG(SCTP_DEBUG_AUTH1,
1726 		    "SCTP Auth: chunk too short for HMAC\n");
1727 		return (-1);
1728 	}
1729 	/* save a copy of the digest, zero the pseudo header, and validate */
1730 	bcopy(auth->hmac, digest, digestlen);
1731 	sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1732 	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1733 	    m, offset, computed_digest);
1734 
1735 	/* compare the computed digest with the one in the AUTH chunk */
1736 	if (memcmp(digest, computed_digest, digestlen) != 0) {
1737 		SCTP_STAT_INCR(sctps_recvauthfailed);
1738 		SCTPDBG(SCTP_DEBUG_AUTH1,
1739 		    "SCTP Auth: HMAC digest check failed\n");
1740 		return (-1);
1741 	}
1742 	return (0);
1743 }
1744 
1745 /*
1746  * Generate NOTIFICATION
1747  */
1748 void
1749 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1750     uint16_t keyid, uint16_t alt_keyid, int so_locked
1751 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
1752     SCTP_UNUSED
1753 #endif
1754 )
1755 {
1756 	struct mbuf *m_notify;
1757 	struct sctp_authkey_event *auth;
1758 	struct sctp_queued_to_read *control;
1759 
1760 	if ((stcb == NULL) ||
1761 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1762 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1763 	    (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1764 	    ) {
1765 		/* If the socket is gone we are out of here */
1766 		return;
1767 	}
1768 	if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT))
1769 		/* event not enabled */
1770 		return;
1771 
1772 	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1773 	    0, M_NOWAIT, 1, MT_HEADER);
1774 	if (m_notify == NULL)
1775 		/* no space left */
1776 		return;
1777 
1778 	SCTP_BUF_LEN(m_notify) = 0;
1779 	auth = mtod(m_notify, struct sctp_authkey_event *);
1780 	memset(auth, 0, sizeof(struct sctp_authkey_event));
1781 	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1782 	auth->auth_flags = 0;
1783 	auth->auth_length = sizeof(*auth);
1784 	auth->auth_keynumber = keyid;
1785 	auth->auth_altkeynumber = alt_keyid;
1786 	auth->auth_indication = indication;
1787 	auth->auth_assoc_id = sctp_get_associd(stcb);
1788 
1789 	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1790 	SCTP_BUF_NEXT(m_notify) = NULL;
1791 
1792 	/* append to socket */
1793 	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1794 	    0, 0, stcb->asoc.context, 0, 0, 0, m_notify);
1795 	if (control == NULL) {
1796 		/* no memory */
1797 		sctp_m_freem(m_notify);
1798 		return;
1799 	}
1800 	control->spec_flags = M_NOTIFICATION;
1801 	control->length = SCTP_BUF_LEN(m_notify);
1802 	/* not that we need this */
1803 	control->tail_mbuf = m_notify;
1804 	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1805 	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1806 }
1807 
1808 
1809 /*-
1810  * validates the AUTHentication related parameters in an INIT/INIT-ACK
1811  * Note: currently only used for INIT as INIT-ACK is handled inline
1812  * with sctp_load_addresses_from_init()
1813  */
1814 int
1815 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1816 {
1817 	struct sctp_paramhdr *phdr, parm_buf;
1818 	uint16_t ptype, plen;
1819 	int peer_supports_asconf = 0;
1820 	int peer_supports_auth = 0;
1821 	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1822 	uint8_t saw_asconf = 0;
1823 	uint8_t saw_asconf_ack = 0;
1824 
1825 	/* go through each of the params. */
1826 	phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf));
1827 	while (phdr) {
1828 		ptype = ntohs(phdr->param_type);
1829 		plen = ntohs(phdr->param_length);
1830 
1831 		if (offset + plen > limit) {
1832 			break;
1833 		}
1834 		if (plen < sizeof(struct sctp_paramhdr)) {
1835 			break;
1836 		}
1837 		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1838 			/* A supported extension chunk */
1839 			struct sctp_supported_chunk_types_param *pr_supported;
1840 			uint8_t local_store[SCTP_PARAM_BUFFER_SIZE];
1841 			int num_ent, i;
1842 
1843 			phdr = sctp_get_next_param(m, offset,
1844 			    (struct sctp_paramhdr *)&local_store, min(plen, sizeof(local_store)));
1845 			if (phdr == NULL) {
1846 				return (-1);
1847 			}
1848 			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1849 			num_ent = plen - sizeof(struct sctp_paramhdr);
1850 			for (i = 0; i < num_ent; i++) {
1851 				switch (pr_supported->chunk_types[i]) {
1852 				case SCTP_ASCONF:
1853 				case SCTP_ASCONF_ACK:
1854 					peer_supports_asconf = 1;
1855 					break;
1856 				default:
1857 					/* one we don't care about */
1858 					break;
1859 				}
1860 			}
1861 		} else if (ptype == SCTP_RANDOM) {
1862 			got_random = 1;
1863 			/* enforce the random length */
1864 			if (plen != (sizeof(struct sctp_auth_random) +
1865 			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1866 				SCTPDBG(SCTP_DEBUG_AUTH1,
1867 				    "SCTP: invalid RANDOM len\n");
1868 				return (-1);
1869 			}
1870 		} else if (ptype == SCTP_HMAC_LIST) {
1871 			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1872 			struct sctp_auth_hmac_algo *hmacs;
1873 			int num_hmacs;
1874 
1875 			if (plen > sizeof(store))
1876 				break;
1877 			phdr = sctp_get_next_param(m, offset,
1878 			    (struct sctp_paramhdr *)store, min(plen, sizeof(store)));
1879 			if (phdr == NULL)
1880 				return (-1);
1881 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1882 			num_hmacs = (plen - sizeof(*hmacs)) /
1883 			    sizeof(hmacs->hmac_ids[0]);
1884 			/* validate the hmac list */
1885 			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1886 				SCTPDBG(SCTP_DEBUG_AUTH1,
1887 				    "SCTP: invalid HMAC param\n");
1888 				return (-1);
1889 			}
1890 			got_hmacs = 1;
1891 		} else if (ptype == SCTP_CHUNK_LIST) {
1892 			int i, num_chunks;
1893 			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1894 
1895 			/* did the peer send a non-empty chunk list? */
1896 			struct sctp_auth_chunk_list *chunks = NULL;
1897 
1898 			phdr = sctp_get_next_param(m, offset,
1899 			    (struct sctp_paramhdr *)chunks_store,
1900 			    min(plen, sizeof(chunks_store)));
1901 			if (phdr == NULL)
1902 				return (-1);
1903 
1904 			/*-
1905 			 * Flip through the list and mark that the
1906 			 * peer supports asconf/asconf_ack.
1907 			 */
1908 			chunks = (struct sctp_auth_chunk_list *)phdr;
1909 			num_chunks = plen - sizeof(*chunks);
1910 			for (i = 0; i < num_chunks; i++) {
1911 				/* record asconf/asconf-ack if listed */
1912 				if (chunks->chunk_types[i] == SCTP_ASCONF)
1913 					saw_asconf = 1;
1914 				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
1915 					saw_asconf_ack = 1;
1916 
1917 			}
1918 			if (num_chunks)
1919 				got_chklist = 1;
1920 		}
1921 		offset += SCTP_SIZE32(plen);
1922 		if (offset >= limit) {
1923 			break;
1924 		}
1925 		phdr = sctp_get_next_param(m, offset, &parm_buf,
1926 		    sizeof(parm_buf));
1927 	}
1928 	/* validate authentication required parameters */
1929 	if (got_random && got_hmacs) {
1930 		peer_supports_auth = 1;
1931 	} else {
1932 		peer_supports_auth = 0;
1933 	}
1934 	if (!peer_supports_auth && got_chklist) {
1935 		SCTPDBG(SCTP_DEBUG_AUTH1,
1936 		    "SCTP: peer sent chunk list w/o AUTH\n");
1937 		return (-1);
1938 	}
1939 	if (peer_supports_asconf && !peer_supports_auth) {
1940 		SCTPDBG(SCTP_DEBUG_AUTH1,
1941 		    "SCTP: peer supports ASCONF but not AUTH\n");
1942 		return (-1);
1943 	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
1944 	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
1945 		return (-2);
1946 	}
1947 	return (0);
1948 }
1949 
1950 void
1951 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
1952 {
1953 	uint16_t chunks_len = 0;
1954 	uint16_t hmacs_len = 0;
1955 	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
1956 	sctp_key_t *new_key;
1957 	uint16_t keylen;
1958 
1959 	/* initialize hmac list from endpoint */
1960 	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
1961 	if (stcb->asoc.local_hmacs != NULL) {
1962 		hmacs_len = stcb->asoc.local_hmacs->num_algo *
1963 		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
1964 	}
1965 	/* initialize auth chunks list from endpoint */
1966 	stcb->asoc.local_auth_chunks =
1967 	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
1968 	if (stcb->asoc.local_auth_chunks != NULL) {
1969 		int i;
1970 
1971 		for (i = 0; i < 256; i++) {
1972 			if (stcb->asoc.local_auth_chunks->chunks[i])
1973 				chunks_len++;
1974 		}
1975 	}
1976 	/* copy defaults from the endpoint */
1977 	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
1978 
1979 	/* copy out the shared key list (by reference) from the endpoint */
1980 	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
1981 	    &stcb->asoc.shared_keys);
1982 
1983 	/* now set the concatenated key (random + chunks + hmacs) */
1984 	/* key includes parameter headers */
1985 	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
1986 	    hmacs_len;
1987 	new_key = sctp_alloc_key(keylen);
1988 	if (new_key != NULL) {
1989 		struct sctp_paramhdr *ph;
1990 		int plen;
1991 
1992 		/* generate and copy in the RANDOM */
1993 		ph = (struct sctp_paramhdr *)new_key->key;
1994 		ph->param_type = htons(SCTP_RANDOM);
1995 		plen = sizeof(*ph) + random_len;
1996 		ph->param_length = htons(plen);
1997 		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
1998 		keylen = plen;
1999 
2000 		/* append in the AUTH chunks */
2001 		/* NOTE: currently we always have chunks to list */
2002 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2003 		ph->param_type = htons(SCTP_CHUNK_LIST);
2004 		plen = sizeof(*ph) + chunks_len;
2005 		ph->param_length = htons(plen);
2006 		keylen += sizeof(*ph);
2007 		if (stcb->asoc.local_auth_chunks) {
2008 			int i;
2009 
2010 			for (i = 0; i < 256; i++) {
2011 				if (stcb->asoc.local_auth_chunks->chunks[i])
2012 					new_key->key[keylen++] = i;
2013 			}
2014 		}
2015 		/* append in the HMACs */
2016 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2017 		ph->param_type = htons(SCTP_HMAC_LIST);
2018 		plen = sizeof(*ph) + hmacs_len;
2019 		ph->param_length = htons(plen);
2020 		keylen += sizeof(*ph);
2021 		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
2022 		    new_key->key + keylen);
2023 	}
2024 	if (stcb->asoc.authinfo.random != NULL)
2025 		sctp_free_key(stcb->asoc.authinfo.random);
2026 	stcb->asoc.authinfo.random = new_key;
2027 	stcb->asoc.authinfo.random_len = random_len;
2028 }
2029