1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. 5 * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. 6 * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions are met: 10 * 11 * a) Redistributions of source code must retain the above copyright notice, 12 * this list of conditions and the following disclaimer. 13 * 14 * b) Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the distribution. 17 * 18 * c) Neither the name of Cisco Systems, Inc. nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 24 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 26 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 #include <netinet/sctp_os.h> 37 #include <netinet/sctp.h> 38 #include <netinet/sctp_header.h> 39 #include <netinet/sctp_pcb.h> 40 #include <netinet/sctp_var.h> 41 #include <netinet/sctp_sysctl.h> 42 #include <netinet/sctputil.h> 43 #include <netinet/sctp_indata.h> 44 #include <netinet/sctp_output.h> 45 #include <netinet/sctp_auth.h> 46 47 #ifdef SCTP_DEBUG 48 #define SCTP_AUTH_DEBUG (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1) 49 #define SCTP_AUTH_DEBUG2 (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2) 50 #endif /* SCTP_DEBUG */ 51 52 void 53 sctp_clear_chunklist(sctp_auth_chklist_t *chklist) 54 { 55 memset(chklist, 0, sizeof(*chklist)); 56 /* chklist->num_chunks = 0; */ 57 } 58 59 sctp_auth_chklist_t * 60 sctp_alloc_chunklist(void) 61 { 62 sctp_auth_chklist_t *chklist; 63 64 SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist), 65 SCTP_M_AUTH_CL); 66 if (chklist == NULL) { 67 SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n"); 68 } else { 69 sctp_clear_chunklist(chklist); 70 } 71 return (chklist); 72 } 73 74 void 75 sctp_free_chunklist(sctp_auth_chklist_t *list) 76 { 77 if (list != NULL) 78 SCTP_FREE(list, SCTP_M_AUTH_CL); 79 } 80 81 sctp_auth_chklist_t * 82 sctp_copy_chunklist(sctp_auth_chklist_t *list) 83 { 84 sctp_auth_chklist_t *new_list; 85 86 if (list == NULL) 87 return (NULL); 88 89 /* get a new list */ 90 new_list = sctp_alloc_chunklist(); 91 if (new_list == NULL) 92 return (NULL); 93 /* copy it */ 94 memcpy(new_list, list, sizeof(*new_list)); 95 96 return (new_list); 97 } 98 99 /* 100 * add a chunk to the required chunks list 101 */ 102 int 103 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list) 104 { 105 if (list == NULL) 106 return (-1); 107 108 /* is chunk restricted? */ 109 if ((chunk == SCTP_INITIATION) || 110 (chunk == SCTP_INITIATION_ACK) || 111 (chunk == SCTP_SHUTDOWN_COMPLETE) || 112 (chunk == SCTP_AUTHENTICATION)) { 113 return (-1); 114 } 115 if (list->chunks[chunk] == 0) { 116 list->chunks[chunk] = 1; 117 list->num_chunks++; 118 SCTPDBG(SCTP_DEBUG_AUTH1, 119 "SCTP: added chunk %u (0x%02x) to Auth list\n", 120 chunk, chunk); 121 } 122 return (0); 123 } 124 125 /* 126 * delete a chunk from the required chunks list 127 */ 128 int 129 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list) 130 { 131 if (list == NULL) 132 return (-1); 133 134 if (list->chunks[chunk] == 1) { 135 list->chunks[chunk] = 0; 136 list->num_chunks--; 137 SCTPDBG(SCTP_DEBUG_AUTH1, 138 "SCTP: deleted chunk %u (0x%02x) from Auth list\n", 139 chunk, chunk); 140 } 141 return (0); 142 } 143 144 size_t 145 sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list) 146 { 147 if (list == NULL) 148 return (0); 149 else 150 return (list->num_chunks); 151 } 152 153 /* 154 * return the current number and list of required chunks caller must 155 * guarantee ptr has space for up to 256 bytes 156 */ 157 int 158 sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr) 159 { 160 int i, count = 0; 161 162 if (list == NULL) 163 return (0); 164 165 for (i = 0; i < 256; i++) { 166 if (list->chunks[i] != 0) { 167 *ptr++ = i; 168 count++; 169 } 170 } 171 return (count); 172 } 173 174 int 175 sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr) 176 { 177 int i, size = 0; 178 179 if (list == NULL) 180 return (0); 181 182 if (list->num_chunks <= 32) { 183 /* just list them, one byte each */ 184 for (i = 0; i < 256; i++) { 185 if (list->chunks[i] != 0) { 186 *ptr++ = i; 187 size++; 188 } 189 } 190 } else { 191 int index, offset; 192 193 /* pack into a 32 byte bitfield */ 194 for (i = 0; i < 256; i++) { 195 if (list->chunks[i] != 0) { 196 index = i / 8; 197 offset = i % 8; 198 ptr[index] |= (1 << offset); 199 } 200 } 201 size = 32; 202 } 203 return (size); 204 } 205 206 int 207 sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks, 208 sctp_auth_chklist_t *list) 209 { 210 int i; 211 int size; 212 213 if (list == NULL) 214 return (0); 215 216 if (num_chunks <= 32) { 217 /* just pull them, one byte each */ 218 for (i = 0; i < num_chunks; i++) { 219 (void)sctp_auth_add_chunk(*ptr++, list); 220 } 221 size = num_chunks; 222 } else { 223 int index, offset; 224 225 /* unpack from a 32 byte bitfield */ 226 for (index = 0; index < 32; index++) { 227 for (offset = 0; offset < 8; offset++) { 228 if (ptr[index] & (1 << offset)) { 229 (void)sctp_auth_add_chunk((index * 8) + offset, list); 230 } 231 } 232 } 233 size = 32; 234 } 235 return (size); 236 } 237 238 /* 239 * allocate structure space for a key of length keylen 240 */ 241 sctp_key_t * 242 sctp_alloc_key(uint32_t keylen) 243 { 244 sctp_key_t *new_key; 245 246 SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen, 247 SCTP_M_AUTH_KY); 248 if (new_key == NULL) { 249 /* out of memory */ 250 return (NULL); 251 } 252 new_key->keylen = keylen; 253 return (new_key); 254 } 255 256 void 257 sctp_free_key(sctp_key_t *key) 258 { 259 if (key != NULL) 260 SCTP_FREE(key, SCTP_M_AUTH_KY); 261 } 262 263 void 264 sctp_print_key(sctp_key_t *key, const char *str) 265 { 266 uint32_t i; 267 268 if (key == NULL) { 269 SCTP_PRINTF("%s: [Null key]\n", str); 270 return; 271 } 272 SCTP_PRINTF("%s: len %u, ", str, key->keylen); 273 if (key->keylen) { 274 for (i = 0; i < key->keylen; i++) 275 SCTP_PRINTF("%02x", key->key[i]); 276 SCTP_PRINTF("\n"); 277 } else { 278 SCTP_PRINTF("[Null key]\n"); 279 } 280 } 281 282 void 283 sctp_show_key(sctp_key_t *key, const char *str) 284 { 285 uint32_t i; 286 287 if (key == NULL) { 288 SCTP_PRINTF("%s: [Null key]\n", str); 289 return; 290 } 291 SCTP_PRINTF("%s: len %u, ", str, key->keylen); 292 if (key->keylen) { 293 for (i = 0; i < key->keylen; i++) 294 SCTP_PRINTF("%02x", key->key[i]); 295 SCTP_PRINTF("\n"); 296 } else { 297 SCTP_PRINTF("[Null key]\n"); 298 } 299 } 300 301 static uint32_t 302 sctp_get_keylen(sctp_key_t *key) 303 { 304 if (key != NULL) 305 return (key->keylen); 306 else 307 return (0); 308 } 309 310 /* 311 * generate a new random key of length 'keylen' 312 */ 313 sctp_key_t * 314 sctp_generate_random_key(uint32_t keylen) 315 { 316 sctp_key_t *new_key; 317 318 new_key = sctp_alloc_key(keylen); 319 if (new_key == NULL) { 320 /* out of memory */ 321 return (NULL); 322 } 323 SCTP_READ_RANDOM(new_key->key, keylen); 324 new_key->keylen = keylen; 325 return (new_key); 326 } 327 328 sctp_key_t * 329 sctp_set_key(uint8_t *key, uint32_t keylen) 330 { 331 sctp_key_t *new_key; 332 333 new_key = sctp_alloc_key(keylen); 334 if (new_key == NULL) { 335 /* out of memory */ 336 return (NULL); 337 } 338 memcpy(new_key->key, key, keylen); 339 return (new_key); 340 } 341 342 /*- 343 * given two keys of variable size, compute which key is "larger/smaller" 344 * returns: 1 if key1 > key2 345 * -1 if key1 < key2 346 * 0 if key1 = key2 347 */ 348 static int 349 sctp_compare_key(sctp_key_t *key1, sctp_key_t *key2) 350 { 351 uint32_t maxlen; 352 uint32_t i; 353 uint32_t key1len, key2len; 354 uint8_t *key_1, *key_2; 355 uint8_t val1, val2; 356 357 /* sanity/length check */ 358 key1len = sctp_get_keylen(key1); 359 key2len = sctp_get_keylen(key2); 360 if ((key1len == 0) && (key2len == 0)) 361 return (0); 362 else if (key1len == 0) 363 return (-1); 364 else if (key2len == 0) 365 return (1); 366 367 if (key1len < key2len) { 368 maxlen = key2len; 369 } else { 370 maxlen = key1len; 371 } 372 key_1 = key1->key; 373 key_2 = key2->key; 374 /* check for numeric equality */ 375 for (i = 0; i < maxlen; i++) { 376 /* left-pad with zeros */ 377 val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++); 378 val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++); 379 if (val1 > val2) { 380 return (1); 381 } else if (val1 < val2) { 382 return (-1); 383 } 384 } 385 /* keys are equal value, so check lengths */ 386 if (key1len == key2len) 387 return (0); 388 else if (key1len < key2len) 389 return (-1); 390 else 391 return (1); 392 } 393 394 /* 395 * generate the concatenated keying material based on the two keys and the 396 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific 397 * order for concatenation 398 */ 399 sctp_key_t * 400 sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared) 401 { 402 uint32_t keylen; 403 sctp_key_t *new_key; 404 uint8_t *key_ptr; 405 406 keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) + 407 sctp_get_keylen(shared); 408 409 if (keylen > 0) { 410 /* get space for the new key */ 411 new_key = sctp_alloc_key(keylen); 412 if (new_key == NULL) { 413 /* out of memory */ 414 return (NULL); 415 } 416 new_key->keylen = keylen; 417 key_ptr = new_key->key; 418 } else { 419 /* all keys empty/null?! */ 420 return (NULL); 421 } 422 423 /* concatenate the keys */ 424 if (sctp_compare_key(key1, key2) <= 0) { 425 /* key is shared + key1 + key2 */ 426 if (sctp_get_keylen(shared)) { 427 memcpy(key_ptr, shared->key, shared->keylen); 428 key_ptr += shared->keylen; 429 } 430 if (sctp_get_keylen(key1)) { 431 memcpy(key_ptr, key1->key, key1->keylen); 432 key_ptr += key1->keylen; 433 } 434 if (sctp_get_keylen(key2)) { 435 memcpy(key_ptr, key2->key, key2->keylen); 436 } 437 } else { 438 /* key is shared + key2 + key1 */ 439 if (sctp_get_keylen(shared)) { 440 memcpy(key_ptr, shared->key, shared->keylen); 441 key_ptr += shared->keylen; 442 } 443 if (sctp_get_keylen(key2)) { 444 memcpy(key_ptr, key2->key, key2->keylen); 445 key_ptr += key2->keylen; 446 } 447 if (sctp_get_keylen(key1)) { 448 memcpy(key_ptr, key1->key, key1->keylen); 449 } 450 } 451 return (new_key); 452 } 453 454 sctp_sharedkey_t * 455 sctp_alloc_sharedkey(void) 456 { 457 sctp_sharedkey_t *new_key; 458 459 SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key), 460 SCTP_M_AUTH_KY); 461 if (new_key == NULL) { 462 /* out of memory */ 463 return (NULL); 464 } 465 new_key->keyid = 0; 466 new_key->key = NULL; 467 new_key->refcount = 1; 468 new_key->deactivated = 0; 469 return (new_key); 470 } 471 472 void 473 sctp_free_sharedkey(sctp_sharedkey_t *skey) 474 { 475 if (skey == NULL) 476 return; 477 478 if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) { 479 if (skey->key != NULL) 480 sctp_free_key(skey->key); 481 SCTP_FREE(skey, SCTP_M_AUTH_KY); 482 } 483 } 484 485 sctp_sharedkey_t * 486 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id) 487 { 488 sctp_sharedkey_t *skey; 489 490 LIST_FOREACH(skey, shared_keys, next) { 491 if (skey->keyid == key_id) 492 return (skey); 493 } 494 return (NULL); 495 } 496 497 int 498 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys, 499 sctp_sharedkey_t *new_skey) 500 { 501 sctp_sharedkey_t *skey; 502 503 if ((shared_keys == NULL) || (new_skey == NULL)) 504 return (EINVAL); 505 506 /* insert into an empty list? */ 507 if (LIST_EMPTY(shared_keys)) { 508 LIST_INSERT_HEAD(shared_keys, new_skey, next); 509 return (0); 510 } 511 /* insert into the existing list, ordered by key id */ 512 LIST_FOREACH(skey, shared_keys, next) { 513 if (new_skey->keyid < skey->keyid) { 514 /* insert it before here */ 515 LIST_INSERT_BEFORE(skey, new_skey, next); 516 return (0); 517 } else if (new_skey->keyid == skey->keyid) { 518 /* replace the existing key */ 519 /* verify this key *can* be replaced */ 520 if ((skey->deactivated) || (skey->refcount > 1)) { 521 SCTPDBG(SCTP_DEBUG_AUTH1, 522 "can't replace shared key id %u\n", 523 new_skey->keyid); 524 return (EBUSY); 525 } 526 SCTPDBG(SCTP_DEBUG_AUTH1, 527 "replacing shared key id %u\n", 528 new_skey->keyid); 529 LIST_INSERT_BEFORE(skey, new_skey, next); 530 LIST_REMOVE(skey, next); 531 sctp_free_sharedkey(skey); 532 return (0); 533 } 534 if (LIST_NEXT(skey, next) == NULL) { 535 /* belongs at the end of the list */ 536 LIST_INSERT_AFTER(skey, new_skey, next); 537 return (0); 538 } 539 } 540 /* shouldn't reach here */ 541 return (EINVAL); 542 } 543 544 void 545 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id) 546 { 547 sctp_sharedkey_t *skey; 548 549 /* find the shared key */ 550 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 551 552 /* bump the ref count */ 553 if (skey) { 554 atomic_add_int(&skey->refcount, 1); 555 SCTPDBG(SCTP_DEBUG_AUTH2, 556 "%s: stcb %p key %u refcount acquire to %d\n", 557 __func__, (void *)stcb, key_id, skey->refcount); 558 } 559 } 560 561 void 562 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked) 563 { 564 sctp_sharedkey_t *skey; 565 566 /* find the shared key */ 567 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 568 569 /* decrement the ref count */ 570 if (skey) { 571 SCTPDBG(SCTP_DEBUG_AUTH2, 572 "%s: stcb %p key %u refcount release to %d\n", 573 __func__, (void *)stcb, key_id, skey->refcount); 574 575 /* see if a notification should be generated */ 576 if ((skey->refcount <= 2) && (skey->deactivated)) { 577 /* notify ULP that key is no longer used */ 578 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, 579 key_id, 0, so_locked); 580 SCTPDBG(SCTP_DEBUG_AUTH2, 581 "%s: stcb %p key %u no longer used, %d\n", 582 __func__, (void *)stcb, key_id, skey->refcount); 583 } 584 sctp_free_sharedkey(skey); 585 } 586 } 587 588 static sctp_sharedkey_t * 589 sctp_copy_sharedkey(const sctp_sharedkey_t *skey) 590 { 591 sctp_sharedkey_t *new_skey; 592 593 if (skey == NULL) 594 return (NULL); 595 new_skey = sctp_alloc_sharedkey(); 596 if (new_skey == NULL) 597 return (NULL); 598 if (skey->key != NULL) 599 new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen); 600 else 601 new_skey->key = NULL; 602 new_skey->keyid = skey->keyid; 603 return (new_skey); 604 } 605 606 int 607 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest) 608 { 609 sctp_sharedkey_t *skey, *new_skey; 610 int count = 0; 611 612 if ((src == NULL) || (dest == NULL)) 613 return (0); 614 LIST_FOREACH(skey, src, next) { 615 new_skey = sctp_copy_sharedkey(skey); 616 if (new_skey != NULL) { 617 if (sctp_insert_sharedkey(dest, new_skey)) { 618 sctp_free_sharedkey(new_skey); 619 } else { 620 count++; 621 } 622 } 623 } 624 return (count); 625 } 626 627 sctp_hmaclist_t * 628 sctp_alloc_hmaclist(uint16_t num_hmacs) 629 { 630 sctp_hmaclist_t *new_list; 631 int alloc_size; 632 633 alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]); 634 SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size, 635 SCTP_M_AUTH_HL); 636 if (new_list == NULL) { 637 /* out of memory */ 638 return (NULL); 639 } 640 new_list->max_algo = num_hmacs; 641 new_list->num_algo = 0; 642 return (new_list); 643 } 644 645 void 646 sctp_free_hmaclist(sctp_hmaclist_t *list) 647 { 648 if (list != NULL) { 649 SCTP_FREE(list, SCTP_M_AUTH_HL); 650 } 651 } 652 653 int 654 sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id) 655 { 656 int i; 657 658 if (list == NULL) 659 return (-1); 660 if (list->num_algo == list->max_algo) { 661 SCTPDBG(SCTP_DEBUG_AUTH1, 662 "SCTP: HMAC id list full, ignoring add %u\n", hmac_id); 663 return (-1); 664 } 665 if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) && 666 (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) { 667 return (-1); 668 } 669 /* Now is it already in the list */ 670 for (i = 0; i < list->num_algo; i++) { 671 if (list->hmac[i] == hmac_id) { 672 /* already in list */ 673 return (-1); 674 } 675 } 676 SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id); 677 list->hmac[list->num_algo++] = hmac_id; 678 return (0); 679 } 680 681 sctp_hmaclist_t * 682 sctp_copy_hmaclist(sctp_hmaclist_t *list) 683 { 684 sctp_hmaclist_t *new_list; 685 int i; 686 687 if (list == NULL) 688 return (NULL); 689 /* get a new list */ 690 new_list = sctp_alloc_hmaclist(list->max_algo); 691 if (new_list == NULL) 692 return (NULL); 693 /* copy it */ 694 new_list->max_algo = list->max_algo; 695 new_list->num_algo = list->num_algo; 696 for (i = 0; i < list->num_algo; i++) 697 new_list->hmac[i] = list->hmac[i]; 698 return (new_list); 699 } 700 701 sctp_hmaclist_t * 702 sctp_default_supported_hmaclist(void) 703 { 704 sctp_hmaclist_t *new_list; 705 706 new_list = sctp_alloc_hmaclist(2); 707 if (new_list == NULL) 708 return (NULL); 709 /* We prefer SHA256, so list it first */ 710 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256); 711 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1); 712 return (new_list); 713 } 714 715 /*- 716 * HMAC algos are listed in priority/preference order 717 * find the best HMAC id to use for the peer based on local support 718 */ 719 uint16_t 720 sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local) 721 { 722 int i, j; 723 724 if ((local == NULL) || (peer == NULL)) 725 return (SCTP_AUTH_HMAC_ID_RSVD); 726 727 for (i = 0; i < peer->num_algo; i++) { 728 for (j = 0; j < local->num_algo; j++) { 729 if (peer->hmac[i] == local->hmac[j]) { 730 /* found the "best" one */ 731 SCTPDBG(SCTP_DEBUG_AUTH1, 732 "SCTP: negotiated peer HMAC id %u\n", 733 peer->hmac[i]); 734 return (peer->hmac[i]); 735 } 736 } 737 } 738 /* didn't find one! */ 739 return (SCTP_AUTH_HMAC_ID_RSVD); 740 } 741 742 /*- 743 * serialize the HMAC algo list and return space used 744 * caller must guarantee ptr has appropriate space 745 */ 746 int 747 sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr) 748 { 749 int i; 750 uint16_t hmac_id; 751 752 if (list == NULL) 753 return (0); 754 755 for (i = 0; i < list->num_algo; i++) { 756 hmac_id = htons(list->hmac[i]); 757 memcpy(ptr, &hmac_id, sizeof(hmac_id)); 758 ptr += sizeof(hmac_id); 759 } 760 return (list->num_algo * sizeof(hmac_id)); 761 } 762 763 int 764 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs) 765 { 766 uint32_t i; 767 768 for (i = 0; i < num_hmacs; i++) { 769 if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) { 770 return (0); 771 } 772 } 773 return (-1); 774 } 775 776 sctp_authinfo_t * 777 sctp_alloc_authinfo(void) 778 { 779 sctp_authinfo_t *new_authinfo; 780 781 SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo), 782 SCTP_M_AUTH_IF); 783 784 if (new_authinfo == NULL) { 785 /* out of memory */ 786 return (NULL); 787 } 788 memset(new_authinfo, 0, sizeof(*new_authinfo)); 789 return (new_authinfo); 790 } 791 792 void 793 sctp_free_authinfo(sctp_authinfo_t *authinfo) 794 { 795 if (authinfo == NULL) 796 return; 797 798 if (authinfo->random != NULL) 799 sctp_free_key(authinfo->random); 800 if (authinfo->peer_random != NULL) 801 sctp_free_key(authinfo->peer_random); 802 if (authinfo->assoc_key != NULL) 803 sctp_free_key(authinfo->assoc_key); 804 if (authinfo->recv_key != NULL) 805 sctp_free_key(authinfo->recv_key); 806 807 /* We are NOT dynamically allocating authinfo's right now... */ 808 /* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */ 809 } 810 811 uint32_t 812 sctp_get_auth_chunk_len(uint16_t hmac_algo) 813 { 814 int size; 815 816 size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo); 817 return (SCTP_SIZE32(size)); 818 } 819 820 uint32_t 821 sctp_get_hmac_digest_len(uint16_t hmac_algo) 822 { 823 switch (hmac_algo) { 824 case SCTP_AUTH_HMAC_ID_SHA1: 825 return (SCTP_AUTH_DIGEST_LEN_SHA1); 826 case SCTP_AUTH_HMAC_ID_SHA256: 827 return (SCTP_AUTH_DIGEST_LEN_SHA256); 828 default: 829 /* unknown HMAC algorithm: can't do anything */ 830 return (0); 831 } /* end switch */ 832 } 833 834 static inline int 835 sctp_get_hmac_block_len(uint16_t hmac_algo) 836 { 837 switch (hmac_algo) { 838 case SCTP_AUTH_HMAC_ID_SHA1: 839 return (64); 840 case SCTP_AUTH_HMAC_ID_SHA256: 841 return (64); 842 case SCTP_AUTH_HMAC_ID_RSVD: 843 default: 844 /* unknown HMAC algorithm: can't do anything */ 845 return (0); 846 } /* end switch */ 847 } 848 849 static void 850 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t *ctx) 851 { 852 switch (hmac_algo) { 853 case SCTP_AUTH_HMAC_ID_SHA1: 854 SCTP_SHA1_INIT(&ctx->sha1); 855 break; 856 case SCTP_AUTH_HMAC_ID_SHA256: 857 SCTP_SHA256_INIT(&ctx->sha256); 858 break; 859 case SCTP_AUTH_HMAC_ID_RSVD: 860 default: 861 /* unknown HMAC algorithm: can't do anything */ 862 return; 863 } /* end switch */ 864 } 865 866 static void 867 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t *ctx, 868 uint8_t *text, uint32_t textlen) 869 { 870 switch (hmac_algo) { 871 case SCTP_AUTH_HMAC_ID_SHA1: 872 SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen); 873 break; 874 case SCTP_AUTH_HMAC_ID_SHA256: 875 SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen); 876 break; 877 case SCTP_AUTH_HMAC_ID_RSVD: 878 default: 879 /* unknown HMAC algorithm: can't do anything */ 880 return; 881 } /* end switch */ 882 } 883 884 static void 885 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t *ctx, 886 uint8_t *digest) 887 { 888 switch (hmac_algo) { 889 case SCTP_AUTH_HMAC_ID_SHA1: 890 SCTP_SHA1_FINAL(digest, &ctx->sha1); 891 break; 892 case SCTP_AUTH_HMAC_ID_SHA256: 893 SCTP_SHA256_FINAL(digest, &ctx->sha256); 894 break; 895 case SCTP_AUTH_HMAC_ID_RSVD: 896 default: 897 /* unknown HMAC algorithm: can't do anything */ 898 return; 899 } /* end switch */ 900 } 901 902 /*- 903 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104) 904 * 905 * Compute the HMAC digest using the desired hash key, text, and HMAC 906 * algorithm. Resulting digest is placed in 'digest' and digest length 907 * is returned, if the HMAC was performed. 908 * 909 * WARNING: it is up to the caller to supply sufficient space to hold the 910 * resultant digest. 911 */ 912 uint32_t 913 sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, 914 uint8_t *text, uint32_t textlen, uint8_t *digest) 915 { 916 uint32_t digestlen; 917 uint32_t blocklen; 918 sctp_hash_context_t ctx; 919 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 920 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 921 uint32_t i; 922 923 /* sanity check the material and length */ 924 if ((key == NULL) || (keylen == 0) || (text == NULL) || 925 (textlen == 0) || (digest == NULL)) { 926 /* can't do HMAC with empty key or text or digest store */ 927 return (0); 928 } 929 /* validate the hmac algo and get the digest length */ 930 digestlen = sctp_get_hmac_digest_len(hmac_algo); 931 if (digestlen == 0) 932 return (0); 933 934 /* hash the key if it is longer than the hash block size */ 935 blocklen = sctp_get_hmac_block_len(hmac_algo); 936 if (keylen > blocklen) { 937 sctp_hmac_init(hmac_algo, &ctx); 938 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 939 sctp_hmac_final(hmac_algo, &ctx, temp); 940 /* set the hashed key as the key */ 941 keylen = digestlen; 942 key = temp; 943 } 944 /* initialize the inner/outer pads with the key and "append" zeroes */ 945 memset(ipad, 0, blocklen); 946 memset(opad, 0, blocklen); 947 memcpy(ipad, key, keylen); 948 memcpy(opad, key, keylen); 949 950 /* XOR the key with ipad and opad values */ 951 for (i = 0; i < blocklen; i++) { 952 ipad[i] ^= 0x36; 953 opad[i] ^= 0x5c; 954 } 955 956 /* perform inner hash */ 957 sctp_hmac_init(hmac_algo, &ctx); 958 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 959 sctp_hmac_update(hmac_algo, &ctx, text, textlen); 960 sctp_hmac_final(hmac_algo, &ctx, temp); 961 962 /* perform outer hash */ 963 sctp_hmac_init(hmac_algo, &ctx); 964 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 965 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 966 sctp_hmac_final(hmac_algo, &ctx, digest); 967 968 return (digestlen); 969 } 970 971 /* mbuf version */ 972 uint32_t 973 sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, 974 struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer) 975 { 976 uint32_t digestlen; 977 uint32_t blocklen; 978 sctp_hash_context_t ctx; 979 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 980 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 981 uint32_t i; 982 struct mbuf *m_tmp; 983 984 /* sanity check the material and length */ 985 if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) { 986 /* can't do HMAC with empty key or text or digest store */ 987 return (0); 988 } 989 /* validate the hmac algo and get the digest length */ 990 digestlen = sctp_get_hmac_digest_len(hmac_algo); 991 if (digestlen == 0) 992 return (0); 993 994 /* hash the key if it is longer than the hash block size */ 995 blocklen = sctp_get_hmac_block_len(hmac_algo); 996 if (keylen > blocklen) { 997 sctp_hmac_init(hmac_algo, &ctx); 998 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 999 sctp_hmac_final(hmac_algo, &ctx, temp); 1000 /* set the hashed key as the key */ 1001 keylen = digestlen; 1002 key = temp; 1003 } 1004 /* initialize the inner/outer pads with the key and "append" zeroes */ 1005 memset(ipad, 0, blocklen); 1006 memset(opad, 0, blocklen); 1007 memcpy(ipad, key, keylen); 1008 memcpy(opad, key, keylen); 1009 1010 /* XOR the key with ipad and opad values */ 1011 for (i = 0; i < blocklen; i++) { 1012 ipad[i] ^= 0x36; 1013 opad[i] ^= 0x5c; 1014 } 1015 1016 /* perform inner hash */ 1017 sctp_hmac_init(hmac_algo, &ctx); 1018 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 1019 /* find the correct starting mbuf and offset (get start of text) */ 1020 m_tmp = m; 1021 while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) { 1022 m_offset -= SCTP_BUF_LEN(m_tmp); 1023 m_tmp = SCTP_BUF_NEXT(m_tmp); 1024 } 1025 /* now use the rest of the mbuf chain for the text */ 1026 while (m_tmp != NULL) { 1027 if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) { 1028 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset, 1029 SCTP_BUF_LEN(m_tmp) - (trailer + m_offset)); 1030 } else { 1031 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset, 1032 SCTP_BUF_LEN(m_tmp) - m_offset); 1033 } 1034 1035 /* clear the offset since it's only for the first mbuf */ 1036 m_offset = 0; 1037 m_tmp = SCTP_BUF_NEXT(m_tmp); 1038 } 1039 sctp_hmac_final(hmac_algo, &ctx, temp); 1040 1041 /* perform outer hash */ 1042 sctp_hmac_init(hmac_algo, &ctx); 1043 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 1044 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 1045 sctp_hmac_final(hmac_algo, &ctx, digest); 1046 1047 return (digestlen); 1048 } 1049 1050 /* 1051 * computes the requested HMAC using a key struct (which may be modified if 1052 * the keylen exceeds the HMAC block len). 1053 */ 1054 uint32_t 1055 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text, 1056 uint32_t textlen, uint8_t *digest) 1057 { 1058 uint32_t digestlen; 1059 uint32_t blocklen; 1060 sctp_hash_context_t ctx; 1061 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1062 1063 /* sanity check */ 1064 if ((key == NULL) || (text == NULL) || (textlen == 0) || 1065 (digest == NULL)) { 1066 /* can't do HMAC with empty key or text or digest store */ 1067 return (0); 1068 } 1069 /* validate the hmac algo and get the digest length */ 1070 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1071 if (digestlen == 0) 1072 return (0); 1073 1074 /* hash the key if it is longer than the hash block size */ 1075 blocklen = sctp_get_hmac_block_len(hmac_algo); 1076 if (key->keylen > blocklen) { 1077 sctp_hmac_init(hmac_algo, &ctx); 1078 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1079 sctp_hmac_final(hmac_algo, &ctx, temp); 1080 /* save the hashed key as the new key */ 1081 key->keylen = digestlen; 1082 memcpy(key->key, temp, key->keylen); 1083 } 1084 return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen, 1085 digest)); 1086 } 1087 1088 /* mbuf version */ 1089 uint32_t 1090 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m, 1091 uint32_t m_offset, uint8_t *digest) 1092 { 1093 uint32_t digestlen; 1094 uint32_t blocklen; 1095 sctp_hash_context_t ctx; 1096 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1097 1098 /* sanity check */ 1099 if ((key == NULL) || (m == NULL) || (digest == NULL)) { 1100 /* can't do HMAC with empty key or text or digest store */ 1101 return (0); 1102 } 1103 /* validate the hmac algo and get the digest length */ 1104 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1105 if (digestlen == 0) 1106 return (0); 1107 1108 /* hash the key if it is longer than the hash block size */ 1109 blocklen = sctp_get_hmac_block_len(hmac_algo); 1110 if (key->keylen > blocklen) { 1111 sctp_hmac_init(hmac_algo, &ctx); 1112 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1113 sctp_hmac_final(hmac_algo, &ctx, temp); 1114 /* save the hashed key as the new key */ 1115 key->keylen = digestlen; 1116 memcpy(key->key, temp, key->keylen); 1117 } 1118 return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0)); 1119 } 1120 1121 int 1122 sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id) 1123 { 1124 int i; 1125 1126 if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD)) 1127 return (0); 1128 1129 for (i = 0; i < list->num_algo; i++) 1130 if (list->hmac[i] == id) 1131 return (1); 1132 1133 /* not in the list */ 1134 return (0); 1135 } 1136 1137 /*- 1138 * clear any cached key(s) if they match the given key id on an association. 1139 * the cached key(s) will be recomputed and re-cached at next use. 1140 * ASSUMES TCB_LOCK is already held 1141 */ 1142 void 1143 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid) 1144 { 1145 if (stcb == NULL) 1146 return; 1147 1148 if (keyid == stcb->asoc.authinfo.assoc_keyid) { 1149 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1150 stcb->asoc.authinfo.assoc_key = NULL; 1151 } 1152 if (keyid == stcb->asoc.authinfo.recv_keyid) { 1153 sctp_free_key(stcb->asoc.authinfo.recv_key); 1154 stcb->asoc.authinfo.recv_key = NULL; 1155 } 1156 } 1157 1158 /*- 1159 * clear any cached key(s) if they match the given key id for all assocs on 1160 * an endpoint. 1161 * ASSUMES INP_WLOCK is already held 1162 */ 1163 void 1164 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid) 1165 { 1166 struct sctp_tcb *stcb; 1167 1168 if (inp == NULL) 1169 return; 1170 1171 /* clear the cached keys on all assocs on this instance */ 1172 LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { 1173 SCTP_TCB_LOCK(stcb); 1174 sctp_clear_cachedkeys(stcb, keyid); 1175 SCTP_TCB_UNLOCK(stcb); 1176 } 1177 } 1178 1179 /*- 1180 * delete a shared key from an association 1181 * ASSUMES TCB_LOCK is already held 1182 */ 1183 int 1184 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1185 { 1186 sctp_sharedkey_t *skey; 1187 1188 if (stcb == NULL) 1189 return (-1); 1190 1191 /* is the keyid the assoc active sending key */ 1192 if (keyid == stcb->asoc.authinfo.active_keyid) 1193 return (-1); 1194 1195 /* does the key exist? */ 1196 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1197 if (skey == NULL) 1198 return (-1); 1199 1200 /* are there other refcount holders on the key? */ 1201 if (skey->refcount > 1) 1202 return (-1); 1203 1204 /* remove it */ 1205 LIST_REMOVE(skey, next); 1206 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1207 1208 /* clear any cached keys */ 1209 sctp_clear_cachedkeys(stcb, keyid); 1210 return (0); 1211 } 1212 1213 /*- 1214 * deletes a shared key from the endpoint 1215 * ASSUMES INP_WLOCK is already held 1216 */ 1217 int 1218 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1219 { 1220 sctp_sharedkey_t *skey; 1221 1222 if (inp == NULL) 1223 return (-1); 1224 1225 /* is the keyid the active sending key on the endpoint */ 1226 if (keyid == inp->sctp_ep.default_keyid) 1227 return (-1); 1228 1229 /* does the key exist? */ 1230 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1231 if (skey == NULL) 1232 return (-1); 1233 1234 /* endpoint keys are not refcounted */ 1235 1236 /* remove it */ 1237 LIST_REMOVE(skey, next); 1238 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1239 1240 /* clear any cached keys */ 1241 sctp_clear_cachedkeys_ep(inp, keyid); 1242 return (0); 1243 } 1244 1245 /*- 1246 * set the active key on an association 1247 * ASSUMES TCB_LOCK is already held 1248 */ 1249 int 1250 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid) 1251 { 1252 sctp_sharedkey_t *skey = NULL; 1253 1254 /* find the key on the assoc */ 1255 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1256 if (skey == NULL) { 1257 /* that key doesn't exist */ 1258 return (-1); 1259 } 1260 if ((skey->deactivated) && (skey->refcount > 1)) { 1261 /* can't reactivate a deactivated key with other refcounts */ 1262 return (-1); 1263 } 1264 1265 /* set the (new) active key */ 1266 stcb->asoc.authinfo.active_keyid = keyid; 1267 /* reset the deactivated flag */ 1268 skey->deactivated = 0; 1269 1270 return (0); 1271 } 1272 1273 /*- 1274 * set the active key on an endpoint 1275 * ASSUMES INP_WLOCK is already held 1276 */ 1277 int 1278 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1279 { 1280 sctp_sharedkey_t *skey; 1281 1282 /* find the key */ 1283 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1284 if (skey == NULL) { 1285 /* that key doesn't exist */ 1286 return (-1); 1287 } 1288 inp->sctp_ep.default_keyid = keyid; 1289 return (0); 1290 } 1291 1292 /*- 1293 * deactivates a shared key from the association 1294 * ASSUMES INP_WLOCK is already held 1295 */ 1296 int 1297 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1298 { 1299 sctp_sharedkey_t *skey; 1300 1301 if (stcb == NULL) 1302 return (-1); 1303 1304 /* is the keyid the assoc active sending key */ 1305 if (keyid == stcb->asoc.authinfo.active_keyid) 1306 return (-1); 1307 1308 /* does the key exist? */ 1309 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1310 if (skey == NULL) 1311 return (-1); 1312 1313 /* are there other refcount holders on the key? */ 1314 if (skey->refcount == 1) { 1315 /* no other users, send a notification for this key */ 1316 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0, 1317 SCTP_SO_LOCKED); 1318 } 1319 1320 /* mark the key as deactivated */ 1321 skey->deactivated = 1; 1322 1323 return (0); 1324 } 1325 1326 /*- 1327 * deactivates a shared key from the endpoint 1328 * ASSUMES INP_WLOCK is already held 1329 */ 1330 int 1331 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1332 { 1333 sctp_sharedkey_t *skey; 1334 1335 if (inp == NULL) 1336 return (-1); 1337 1338 /* is the keyid the active sending key on the endpoint */ 1339 if (keyid == inp->sctp_ep.default_keyid) 1340 return (-1); 1341 1342 /* does the key exist? */ 1343 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1344 if (skey == NULL) 1345 return (-1); 1346 1347 /* endpoint keys are not refcounted */ 1348 1349 /* remove it */ 1350 LIST_REMOVE(skey, next); 1351 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1352 1353 return (0); 1354 } 1355 1356 /* 1357 * get local authentication parameters from cookie (from INIT-ACK) 1358 */ 1359 void 1360 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m, 1361 uint32_t offset, uint32_t length) 1362 { 1363 struct sctp_paramhdr *phdr, tmp_param; 1364 uint16_t plen, ptype; 1365 uint8_t random_store[SCTP_PARAM_BUFFER_SIZE]; 1366 struct sctp_auth_random *p_random = NULL; 1367 uint16_t random_len = 0; 1368 uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE]; 1369 struct sctp_auth_hmac_algo *hmacs = NULL; 1370 uint16_t hmacs_len = 0; 1371 uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE]; 1372 struct sctp_auth_chunk_list *chunks = NULL; 1373 uint16_t num_chunks = 0; 1374 sctp_key_t *new_key; 1375 uint32_t keylen; 1376 1377 /* convert to upper bound */ 1378 length += offset; 1379 1380 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, 1381 sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param); 1382 while (phdr != NULL) { 1383 ptype = ntohs(phdr->param_type); 1384 plen = ntohs(phdr->param_length); 1385 1386 if ((plen < sizeof(struct sctp_paramhdr)) || 1387 (offset + plen > length)) 1388 break; 1389 1390 if (ptype == SCTP_RANDOM) { 1391 if (plen > sizeof(random_store)) 1392 break; 1393 phdr = sctp_get_next_param(m, offset, 1394 (struct sctp_paramhdr *)random_store, plen); 1395 if (phdr == NULL) 1396 return; 1397 /* save the random and length for the key */ 1398 p_random = (struct sctp_auth_random *)phdr; 1399 random_len = plen - sizeof(*p_random); 1400 } else if (ptype == SCTP_HMAC_LIST) { 1401 uint16_t num_hmacs; 1402 uint16_t i; 1403 1404 if (plen > sizeof(hmacs_store)) 1405 break; 1406 phdr = sctp_get_next_param(m, offset, 1407 (struct sctp_paramhdr *)hmacs_store, plen); 1408 if (phdr == NULL) 1409 return; 1410 /* save the hmacs list and num for the key */ 1411 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1412 hmacs_len = plen - sizeof(*hmacs); 1413 num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]); 1414 if (stcb->asoc.local_hmacs != NULL) 1415 sctp_free_hmaclist(stcb->asoc.local_hmacs); 1416 stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs); 1417 if (stcb->asoc.local_hmacs != NULL) { 1418 for (i = 0; i < num_hmacs; i++) { 1419 (void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs, 1420 ntohs(hmacs->hmac_ids[i])); 1421 } 1422 } 1423 } else if (ptype == SCTP_CHUNK_LIST) { 1424 int i; 1425 1426 if (plen > sizeof(chunks_store)) 1427 break; 1428 phdr = sctp_get_next_param(m, offset, 1429 (struct sctp_paramhdr *)chunks_store, plen); 1430 if (phdr == NULL) 1431 return; 1432 chunks = (struct sctp_auth_chunk_list *)phdr; 1433 num_chunks = plen - sizeof(*chunks); 1434 /* save chunks list and num for the key */ 1435 if (stcb->asoc.local_auth_chunks != NULL) 1436 sctp_clear_chunklist(stcb->asoc.local_auth_chunks); 1437 else 1438 stcb->asoc.local_auth_chunks = sctp_alloc_chunklist(); 1439 for (i = 0; i < num_chunks; i++) { 1440 (void)sctp_auth_add_chunk(chunks->chunk_types[i], 1441 stcb->asoc.local_auth_chunks); 1442 } 1443 } 1444 /* get next parameter */ 1445 offset += SCTP_SIZE32(plen); 1446 if (offset + sizeof(struct sctp_paramhdr) > length) 1447 break; 1448 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), 1449 (uint8_t *)&tmp_param); 1450 } 1451 /* concatenate the full random key */ 1452 keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len; 1453 if (chunks != NULL) { 1454 keylen += sizeof(*chunks) + num_chunks; 1455 } 1456 new_key = sctp_alloc_key(keylen); 1457 if (new_key != NULL) { 1458 /* copy in the RANDOM */ 1459 if (p_random != NULL) { 1460 keylen = sizeof(*p_random) + random_len; 1461 memcpy(new_key->key, p_random, keylen); 1462 } else { 1463 keylen = 0; 1464 } 1465 /* append in the AUTH chunks */ 1466 if (chunks != NULL) { 1467 memcpy(new_key->key + keylen, chunks, 1468 sizeof(*chunks) + num_chunks); 1469 keylen += sizeof(*chunks) + num_chunks; 1470 } 1471 /* append in the HMACs */ 1472 if (hmacs != NULL) { 1473 memcpy(new_key->key + keylen, hmacs, 1474 sizeof(*hmacs) + hmacs_len); 1475 } 1476 } 1477 if (stcb->asoc.authinfo.random != NULL) 1478 sctp_free_key(stcb->asoc.authinfo.random); 1479 stcb->asoc.authinfo.random = new_key; 1480 stcb->asoc.authinfo.random_len = random_len; 1481 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid); 1482 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid); 1483 1484 /* negotiate what HMAC to use for the peer */ 1485 stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs, 1486 stcb->asoc.local_hmacs); 1487 1488 /* copy defaults from the endpoint */ 1489 /* FIX ME: put in cookie? */ 1490 stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid; 1491 /* copy out the shared key list (by reference) from the endpoint */ 1492 (void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys, 1493 &stcb->asoc.shared_keys); 1494 } 1495 1496 /* 1497 * compute and fill in the HMAC digest for a packet 1498 */ 1499 void 1500 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset, 1501 struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid) 1502 { 1503 uint32_t digestlen; 1504 sctp_sharedkey_t *skey; 1505 sctp_key_t *key; 1506 1507 if ((stcb == NULL) || (auth == NULL)) 1508 return; 1509 1510 /* zero the digest + chunk padding */ 1511 digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id); 1512 memset(auth->hmac, 0, SCTP_SIZE32(digestlen)); 1513 1514 /* is the desired key cached? */ 1515 if ((keyid != stcb->asoc.authinfo.assoc_keyid) || 1516 (stcb->asoc.authinfo.assoc_key == NULL)) { 1517 if (stcb->asoc.authinfo.assoc_key != NULL) { 1518 /* free the old cached key */ 1519 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1520 } 1521 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1522 /* the only way skey is NULL is if null key id 0 is used */ 1523 if (skey != NULL) 1524 key = skey->key; 1525 else 1526 key = NULL; 1527 /* compute a new assoc key and cache it */ 1528 stcb->asoc.authinfo.assoc_key = 1529 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1530 stcb->asoc.authinfo.peer_random, key); 1531 stcb->asoc.authinfo.assoc_keyid = keyid; 1532 SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n", 1533 stcb->asoc.authinfo.assoc_keyid); 1534 #ifdef SCTP_DEBUG 1535 if (SCTP_AUTH_DEBUG) 1536 sctp_print_key(stcb->asoc.authinfo.assoc_key, 1537 "Assoc Key"); 1538 #endif 1539 } 1540 1541 /* set in the active key id */ 1542 auth->shared_key_id = htons(keyid); 1543 1544 /* compute and fill in the digest */ 1545 (void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key, 1546 m, auth_offset, auth->hmac); 1547 } 1548 1549 static void 1550 sctp_zero_m(struct mbuf *m, uint32_t m_offset, uint32_t size) 1551 { 1552 struct mbuf *m_tmp; 1553 uint8_t *data; 1554 1555 /* sanity check */ 1556 if (m == NULL) 1557 return; 1558 1559 /* find the correct starting mbuf and offset (get start position) */ 1560 m_tmp = m; 1561 while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) { 1562 m_offset -= SCTP_BUF_LEN(m_tmp); 1563 m_tmp = SCTP_BUF_NEXT(m_tmp); 1564 } 1565 /* now use the rest of the mbuf chain */ 1566 while ((m_tmp != NULL) && (size > 0)) { 1567 data = mtod(m_tmp, uint8_t *)+m_offset; 1568 if (size > (uint32_t)(SCTP_BUF_LEN(m_tmp) - m_offset)) { 1569 memset(data, 0, SCTP_BUF_LEN(m_tmp) - m_offset); 1570 size -= SCTP_BUF_LEN(m_tmp) - m_offset; 1571 } else { 1572 memset(data, 0, size); 1573 size = 0; 1574 } 1575 /* clear the offset since it's only for the first mbuf */ 1576 m_offset = 0; 1577 m_tmp = SCTP_BUF_NEXT(m_tmp); 1578 } 1579 } 1580 1581 /*- 1582 * process the incoming Authentication chunk 1583 * return codes: 1584 * -1 on any authentication error 1585 * 0 on authentication verification 1586 */ 1587 int 1588 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth, 1589 struct mbuf *m, uint32_t offset) 1590 { 1591 uint16_t chunklen; 1592 uint16_t shared_key_id; 1593 uint16_t hmac_id; 1594 sctp_sharedkey_t *skey; 1595 uint32_t digestlen; 1596 uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1597 uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1598 1599 /* auth is checked for NULL by caller */ 1600 chunklen = ntohs(auth->ch.chunk_length); 1601 if (chunklen < sizeof(*auth)) { 1602 SCTP_STAT_INCR(sctps_recvauthfailed); 1603 return (-1); 1604 } 1605 SCTP_STAT_INCR(sctps_recvauth); 1606 1607 /* get the auth params */ 1608 shared_key_id = ntohs(auth->shared_key_id); 1609 hmac_id = ntohs(auth->hmac_id); 1610 SCTPDBG(SCTP_DEBUG_AUTH1, 1611 "SCTP AUTH Chunk: shared key %u, HMAC id %u\n", 1612 shared_key_id, hmac_id); 1613 1614 /* is the indicated HMAC supported? */ 1615 if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) { 1616 struct mbuf *op_err; 1617 struct sctp_error_auth_invalid_hmac *cause; 1618 1619 SCTP_STAT_INCR(sctps_recvivalhmacid); 1620 SCTPDBG(SCTP_DEBUG_AUTH1, 1621 "SCTP Auth: unsupported HMAC id %u\n", 1622 hmac_id); 1623 /* 1624 * report this in an Error Chunk: Unsupported HMAC 1625 * Identifier 1626 */ 1627 op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac), 1628 0, M_NOWAIT, 1, MT_HEADER); 1629 if (op_err != NULL) { 1630 /* pre-reserve some space */ 1631 SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr)); 1632 /* fill in the error */ 1633 cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *); 1634 cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID); 1635 cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac)); 1636 cause->hmac_id = ntohs(hmac_id); 1637 SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac); 1638 /* queue it */ 1639 sctp_queue_op_err(stcb, op_err); 1640 } 1641 return (-1); 1642 } 1643 /* get the indicated shared key, if available */ 1644 if ((stcb->asoc.authinfo.recv_key == NULL) || 1645 (stcb->asoc.authinfo.recv_keyid != shared_key_id)) { 1646 /* find the shared key on the assoc first */ 1647 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, 1648 shared_key_id); 1649 /* if the shared key isn't found, discard the chunk */ 1650 if (skey == NULL) { 1651 SCTP_STAT_INCR(sctps_recvivalkeyid); 1652 SCTPDBG(SCTP_DEBUG_AUTH1, 1653 "SCTP Auth: unknown key id %u\n", 1654 shared_key_id); 1655 return (-1); 1656 } 1657 /* generate a notification if this is a new key id */ 1658 if (stcb->asoc.authinfo.recv_keyid != shared_key_id) 1659 /* 1660 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb, 1661 * shared_key_id, (void 1662 * *)stcb->asoc.authinfo.recv_keyid); 1663 */ 1664 sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY, 1665 shared_key_id, stcb->asoc.authinfo.recv_keyid, 1666 SCTP_SO_NOT_LOCKED); 1667 /* compute a new recv assoc key and cache it */ 1668 if (stcb->asoc.authinfo.recv_key != NULL) 1669 sctp_free_key(stcb->asoc.authinfo.recv_key); 1670 stcb->asoc.authinfo.recv_key = 1671 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1672 stcb->asoc.authinfo.peer_random, skey->key); 1673 stcb->asoc.authinfo.recv_keyid = shared_key_id; 1674 #ifdef SCTP_DEBUG 1675 if (SCTP_AUTH_DEBUG) 1676 sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key"); 1677 #endif 1678 } 1679 /* validate the digest length */ 1680 digestlen = sctp_get_hmac_digest_len(hmac_id); 1681 if (chunklen < (sizeof(*auth) + digestlen)) { 1682 /* invalid digest length */ 1683 SCTP_STAT_INCR(sctps_recvauthfailed); 1684 SCTPDBG(SCTP_DEBUG_AUTH1, 1685 "SCTP Auth: chunk too short for HMAC\n"); 1686 return (-1); 1687 } 1688 /* save a copy of the digest, zero the pseudo header, and validate */ 1689 memcpy(digest, auth->hmac, digestlen); 1690 sctp_zero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen)); 1691 (void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key, 1692 m, offset, computed_digest); 1693 1694 /* compare the computed digest with the one in the AUTH chunk */ 1695 if (timingsafe_bcmp(digest, computed_digest, digestlen) != 0) { 1696 SCTP_STAT_INCR(sctps_recvauthfailed); 1697 SCTPDBG(SCTP_DEBUG_AUTH1, 1698 "SCTP Auth: HMAC digest check failed\n"); 1699 return (-1); 1700 } 1701 return (0); 1702 } 1703 1704 /* 1705 * Generate NOTIFICATION 1706 */ 1707 void 1708 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication, 1709 uint16_t keyid, uint16_t alt_keyid, int so_locked) 1710 { 1711 struct mbuf *m_notify; 1712 struct sctp_authkey_event *auth; 1713 struct sctp_queued_to_read *control; 1714 1715 if ((stcb == NULL) || 1716 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || 1717 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || 1718 (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) 1719 ) { 1720 /* If the socket is gone we are out of here */ 1721 return; 1722 } 1723 1724 if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT)) 1725 /* event not enabled */ 1726 return; 1727 1728 m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event), 1729 0, M_NOWAIT, 1, MT_HEADER); 1730 if (m_notify == NULL) 1731 /* no space left */ 1732 return; 1733 1734 SCTP_BUF_LEN(m_notify) = 0; 1735 auth = mtod(m_notify, struct sctp_authkey_event *); 1736 memset(auth, 0, sizeof(struct sctp_authkey_event)); 1737 auth->auth_type = SCTP_AUTHENTICATION_EVENT; 1738 auth->auth_flags = 0; 1739 auth->auth_length = sizeof(*auth); 1740 auth->auth_keynumber = keyid; 1741 auth->auth_altkeynumber = alt_keyid; 1742 auth->auth_indication = indication; 1743 auth->auth_assoc_id = sctp_get_associd(stcb); 1744 1745 SCTP_BUF_LEN(m_notify) = sizeof(*auth); 1746 SCTP_BUF_NEXT(m_notify) = NULL; 1747 1748 /* append to socket */ 1749 control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 1750 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); 1751 if (control == NULL) { 1752 /* no memory */ 1753 sctp_m_freem(m_notify); 1754 return; 1755 } 1756 control->length = SCTP_BUF_LEN(m_notify); 1757 control->spec_flags = M_NOTIFICATION; 1758 /* not that we need this */ 1759 control->tail_mbuf = m_notify; 1760 sctp_add_to_readq(stcb->sctp_ep, stcb, control, 1761 &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); 1762 } 1763 1764 /*- 1765 * validates the AUTHentication related parameters in an INIT/INIT-ACK 1766 * Note: currently only used for INIT as INIT-ACK is handled inline 1767 * with sctp_load_addresses_from_init() 1768 */ 1769 int 1770 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit) 1771 { 1772 struct sctp_paramhdr *phdr, param_buf; 1773 uint16_t ptype, plen; 1774 int peer_supports_asconf = 0; 1775 int peer_supports_auth = 0; 1776 int got_random = 0, got_hmacs = 0, got_chklist = 0; 1777 uint8_t saw_asconf = 0; 1778 uint8_t saw_asconf_ack = 0; 1779 1780 /* go through each of the params. */ 1781 phdr = sctp_get_next_param(m, offset, ¶m_buf, sizeof(param_buf)); 1782 while (phdr) { 1783 ptype = ntohs(phdr->param_type); 1784 plen = ntohs(phdr->param_length); 1785 1786 if (offset + plen > limit) { 1787 break; 1788 } 1789 if (plen < sizeof(struct sctp_paramhdr)) { 1790 break; 1791 } 1792 if (ptype == SCTP_SUPPORTED_CHUNK_EXT) { 1793 /* A supported extension chunk */ 1794 struct sctp_supported_chunk_types_param *pr_supported; 1795 uint8_t local_store[SCTP_SMALL_CHUNK_STORE]; 1796 int num_ent, i; 1797 1798 if (plen > sizeof(local_store)) { 1799 break; 1800 } 1801 phdr = sctp_get_next_param(m, offset, 1802 (struct sctp_paramhdr *)&local_store, 1803 plen); 1804 if (phdr == NULL) { 1805 return (-1); 1806 } 1807 pr_supported = (struct sctp_supported_chunk_types_param *)phdr; 1808 num_ent = plen - sizeof(struct sctp_paramhdr); 1809 for (i = 0; i < num_ent; i++) { 1810 switch (pr_supported->chunk_types[i]) { 1811 case SCTP_ASCONF: 1812 case SCTP_ASCONF_ACK: 1813 peer_supports_asconf = 1; 1814 break; 1815 default: 1816 /* one we don't care about */ 1817 break; 1818 } 1819 } 1820 } else if (ptype == SCTP_RANDOM) { 1821 /* enforce the random length */ 1822 if (plen != (sizeof(struct sctp_auth_random) + 1823 SCTP_AUTH_RANDOM_SIZE_REQUIRED)) { 1824 SCTPDBG(SCTP_DEBUG_AUTH1, 1825 "SCTP: invalid RANDOM len\n"); 1826 return (-1); 1827 } 1828 got_random = 1; 1829 } else if (ptype == SCTP_HMAC_LIST) { 1830 struct sctp_auth_hmac_algo *hmacs; 1831 uint8_t store[SCTP_PARAM_BUFFER_SIZE]; 1832 int num_hmacs; 1833 1834 if (plen > sizeof(store)) { 1835 break; 1836 } 1837 phdr = sctp_get_next_param(m, offset, 1838 (struct sctp_paramhdr *)store, 1839 plen); 1840 if (phdr == NULL) { 1841 return (-1); 1842 } 1843 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1844 num_hmacs = (plen - sizeof(*hmacs)) / sizeof(hmacs->hmac_ids[0]); 1845 /* validate the hmac list */ 1846 if (sctp_verify_hmac_param(hmacs, num_hmacs)) { 1847 SCTPDBG(SCTP_DEBUG_AUTH1, 1848 "SCTP: invalid HMAC param\n"); 1849 return (-1); 1850 } 1851 got_hmacs = 1; 1852 } else if (ptype == SCTP_CHUNK_LIST) { 1853 struct sctp_auth_chunk_list *chunks; 1854 uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE]; 1855 int i, num_chunks; 1856 1857 if (plen > sizeof(chunks_store)) { 1858 break; 1859 } 1860 phdr = sctp_get_next_param(m, offset, 1861 (struct sctp_paramhdr *)chunks_store, 1862 plen); 1863 if (phdr == NULL) { 1864 return (-1); 1865 } 1866 /*- 1867 * Flip through the list and mark that the 1868 * peer supports asconf/asconf_ack. 1869 */ 1870 chunks = (struct sctp_auth_chunk_list *)phdr; 1871 num_chunks = plen - sizeof(*chunks); 1872 for (i = 0; i < num_chunks; i++) { 1873 /* record asconf/asconf-ack if listed */ 1874 if (chunks->chunk_types[i] == SCTP_ASCONF) 1875 saw_asconf = 1; 1876 if (chunks->chunk_types[i] == SCTP_ASCONF_ACK) 1877 saw_asconf_ack = 1; 1878 } 1879 if (num_chunks) 1880 got_chklist = 1; 1881 } 1882 1883 offset += SCTP_SIZE32(plen); 1884 if (offset >= limit) { 1885 break; 1886 } 1887 phdr = sctp_get_next_param(m, offset, ¶m_buf, 1888 sizeof(param_buf)); 1889 } 1890 /* validate authentication required parameters */ 1891 if (got_random && got_hmacs) { 1892 peer_supports_auth = 1; 1893 } else { 1894 peer_supports_auth = 0; 1895 } 1896 if (!peer_supports_auth && got_chklist) { 1897 SCTPDBG(SCTP_DEBUG_AUTH1, 1898 "SCTP: peer sent chunk list w/o AUTH\n"); 1899 return (-1); 1900 } 1901 if (peer_supports_asconf && !peer_supports_auth) { 1902 SCTPDBG(SCTP_DEBUG_AUTH1, 1903 "SCTP: peer supports ASCONF but not AUTH\n"); 1904 return (-1); 1905 } else if ((peer_supports_asconf) && (peer_supports_auth) && 1906 ((saw_asconf == 0) || (saw_asconf_ack == 0))) { 1907 return (-2); 1908 } 1909 return (0); 1910 } 1911 1912 void 1913 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb) 1914 { 1915 uint16_t chunks_len = 0; 1916 uint16_t hmacs_len = 0; 1917 uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT; 1918 sctp_key_t *new_key; 1919 uint16_t keylen; 1920 1921 /* initialize hmac list from endpoint */ 1922 stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs); 1923 if (stcb->asoc.local_hmacs != NULL) { 1924 hmacs_len = stcb->asoc.local_hmacs->num_algo * 1925 sizeof(stcb->asoc.local_hmacs->hmac[0]); 1926 } 1927 /* initialize auth chunks list from endpoint */ 1928 stcb->asoc.local_auth_chunks = 1929 sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks); 1930 if (stcb->asoc.local_auth_chunks != NULL) { 1931 int i; 1932 1933 for (i = 0; i < 256; i++) { 1934 if (stcb->asoc.local_auth_chunks->chunks[i]) 1935 chunks_len++; 1936 } 1937 } 1938 /* copy defaults from the endpoint */ 1939 stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid; 1940 1941 /* copy out the shared key list (by reference) from the endpoint */ 1942 (void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys, 1943 &stcb->asoc.shared_keys); 1944 1945 /* now set the concatenated key (random + chunks + hmacs) */ 1946 /* key includes parameter headers */ 1947 keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len + 1948 hmacs_len; 1949 new_key = sctp_alloc_key(keylen); 1950 if (new_key != NULL) { 1951 struct sctp_paramhdr *ph; 1952 int plen; 1953 1954 /* generate and copy in the RANDOM */ 1955 ph = (struct sctp_paramhdr *)new_key->key; 1956 ph->param_type = htons(SCTP_RANDOM); 1957 plen = sizeof(*ph) + random_len; 1958 ph->param_length = htons(plen); 1959 SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len); 1960 keylen = plen; 1961 1962 /* append in the AUTH chunks */ 1963 /* NOTE: currently we always have chunks to list */ 1964 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 1965 ph->param_type = htons(SCTP_CHUNK_LIST); 1966 plen = sizeof(*ph) + chunks_len; 1967 ph->param_length = htons(plen); 1968 keylen += sizeof(*ph); 1969 if (stcb->asoc.local_auth_chunks) { 1970 int i; 1971 1972 for (i = 0; i < 256; i++) { 1973 if (stcb->asoc.local_auth_chunks->chunks[i]) 1974 new_key->key[keylen++] = i; 1975 } 1976 } 1977 1978 /* append in the HMACs */ 1979 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 1980 ph->param_type = htons(SCTP_HMAC_LIST); 1981 plen = sizeof(*ph) + hmacs_len; 1982 ph->param_length = htons(plen); 1983 keylen += sizeof(*ph); 1984 (void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs, 1985 new_key->key + keylen); 1986 } 1987 if (stcb->asoc.authinfo.random != NULL) 1988 sctp_free_key(stcb->asoc.authinfo.random); 1989 stcb->asoc.authinfo.random = new_key; 1990 stcb->asoc.authinfo.random_len = random_len; 1991 } 1992