xref: /freebsd/sys/netinet/sctp_auth.c (revision 1d386b48a555f61cb7325543adbbb5c3f3407a66)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
5  * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
6  * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * a) Redistributions of source code must retain the above copyright notice,
12  *    this list of conditions and the following disclaimer.
13  *
14  * b) Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the distribution.
17  *
18  * c) Neither the name of Cisco Systems, Inc. nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
24  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 #include <netinet/sctp_os.h>
37 #include <netinet/sctp.h>
38 #include <netinet/sctp_header.h>
39 #include <netinet/sctp_pcb.h>
40 #include <netinet/sctp_var.h>
41 #include <netinet/sctp_sysctl.h>
42 #include <netinet/sctputil.h>
43 #include <netinet/sctp_indata.h>
44 #include <netinet/sctp_output.h>
45 #include <netinet/sctp_auth.h>
46 
47 #ifdef SCTP_DEBUG
48 #define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
49 #define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
50 #endif				/* SCTP_DEBUG */
51 
52 void
53 sctp_clear_chunklist(sctp_auth_chklist_t *chklist)
54 {
55 	memset(chklist, 0, sizeof(*chklist));
56 	/* chklist->num_chunks = 0; */
57 }
58 
59 sctp_auth_chklist_t *
60 sctp_alloc_chunklist(void)
61 {
62 	sctp_auth_chklist_t *chklist;
63 
64 	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
65 	    SCTP_M_AUTH_CL);
66 	if (chklist == NULL) {
67 		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
68 	} else {
69 		sctp_clear_chunklist(chklist);
70 	}
71 	return (chklist);
72 }
73 
74 void
75 sctp_free_chunklist(sctp_auth_chklist_t *list)
76 {
77 	if (list != NULL)
78 		SCTP_FREE(list, SCTP_M_AUTH_CL);
79 }
80 
81 sctp_auth_chklist_t *
82 sctp_copy_chunklist(sctp_auth_chklist_t *list)
83 {
84 	sctp_auth_chklist_t *new_list;
85 
86 	if (list == NULL)
87 		return (NULL);
88 
89 	/* get a new list */
90 	new_list = sctp_alloc_chunklist();
91 	if (new_list == NULL)
92 		return (NULL);
93 	/* copy it */
94 	memcpy(new_list, list, sizeof(*new_list));
95 
96 	return (new_list);
97 }
98 
99 /*
100  * add a chunk to the required chunks list
101  */
102 int
103 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
104 {
105 	if (list == NULL)
106 		return (-1);
107 
108 	/* is chunk restricted? */
109 	if ((chunk == SCTP_INITIATION) ||
110 	    (chunk == SCTP_INITIATION_ACK) ||
111 	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
112 	    (chunk == SCTP_AUTHENTICATION)) {
113 		return (-1);
114 	}
115 	if (list->chunks[chunk] == 0) {
116 		list->chunks[chunk] = 1;
117 		list->num_chunks++;
118 		SCTPDBG(SCTP_DEBUG_AUTH1,
119 		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
120 		    chunk, chunk);
121 	}
122 	return (0);
123 }
124 
125 /*
126  * delete a chunk from the required chunks list
127  */
128 int
129 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
130 {
131 	if (list == NULL)
132 		return (-1);
133 
134 	if (list->chunks[chunk] == 1) {
135 		list->chunks[chunk] = 0;
136 		list->num_chunks--;
137 		SCTPDBG(SCTP_DEBUG_AUTH1,
138 		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
139 		    chunk, chunk);
140 	}
141 	return (0);
142 }
143 
144 size_t
145 sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list)
146 {
147 	if (list == NULL)
148 		return (0);
149 	else
150 		return (list->num_chunks);
151 }
152 
153 /*
154  * return the current number and list of required chunks caller must
155  * guarantee ptr has space for up to 256 bytes
156  */
157 int
158 sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
159 {
160 	int i, count = 0;
161 
162 	if (list == NULL)
163 		return (0);
164 
165 	for (i = 0; i < 256; i++) {
166 		if (list->chunks[i] != 0) {
167 			*ptr++ = i;
168 			count++;
169 		}
170 	}
171 	return (count);
172 }
173 
174 int
175 sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
176 {
177 	int i, size = 0;
178 
179 	if (list == NULL)
180 		return (0);
181 
182 	if (list->num_chunks <= 32) {
183 		/* just list them, one byte each */
184 		for (i = 0; i < 256; i++) {
185 			if (list->chunks[i] != 0) {
186 				*ptr++ = i;
187 				size++;
188 			}
189 		}
190 	} else {
191 		int index, offset;
192 
193 		/* pack into a 32 byte bitfield */
194 		for (i = 0; i < 256; i++) {
195 			if (list->chunks[i] != 0) {
196 				index = i / 8;
197 				offset = i % 8;
198 				ptr[index] |= (1 << offset);
199 			}
200 		}
201 		size = 32;
202 	}
203 	return (size);
204 }
205 
206 int
207 sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks,
208     sctp_auth_chklist_t *list)
209 {
210 	int i;
211 	int size;
212 
213 	if (list == NULL)
214 		return (0);
215 
216 	if (num_chunks <= 32) {
217 		/* just pull them, one byte each */
218 		for (i = 0; i < num_chunks; i++) {
219 			(void)sctp_auth_add_chunk(*ptr++, list);
220 		}
221 		size = num_chunks;
222 	} else {
223 		int index, offset;
224 
225 		/* unpack from a 32 byte bitfield */
226 		for (index = 0; index < 32; index++) {
227 			for (offset = 0; offset < 8; offset++) {
228 				if (ptr[index] & (1 << offset)) {
229 					(void)sctp_auth_add_chunk((index * 8) + offset, list);
230 				}
231 			}
232 		}
233 		size = 32;
234 	}
235 	return (size);
236 }
237 
238 /*
239  * allocate structure space for a key of length keylen
240  */
241 sctp_key_t *
242 sctp_alloc_key(uint32_t keylen)
243 {
244 	sctp_key_t *new_key;
245 
246 	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
247 	    SCTP_M_AUTH_KY);
248 	if (new_key == NULL) {
249 		/* out of memory */
250 		return (NULL);
251 	}
252 	new_key->keylen = keylen;
253 	return (new_key);
254 }
255 
256 void
257 sctp_free_key(sctp_key_t *key)
258 {
259 	if (key != NULL)
260 		SCTP_FREE(key, SCTP_M_AUTH_KY);
261 }
262 
263 void
264 sctp_print_key(sctp_key_t *key, const char *str)
265 {
266 	uint32_t i;
267 
268 	if (key == NULL) {
269 		SCTP_PRINTF("%s: [Null key]\n", str);
270 		return;
271 	}
272 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
273 	if (key->keylen) {
274 		for (i = 0; i < key->keylen; i++)
275 			SCTP_PRINTF("%02x", key->key[i]);
276 		SCTP_PRINTF("\n");
277 	} else {
278 		SCTP_PRINTF("[Null key]\n");
279 	}
280 }
281 
282 void
283 sctp_show_key(sctp_key_t *key, const char *str)
284 {
285 	uint32_t i;
286 
287 	if (key == NULL) {
288 		SCTP_PRINTF("%s: [Null key]\n", str);
289 		return;
290 	}
291 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
292 	if (key->keylen) {
293 		for (i = 0; i < key->keylen; i++)
294 			SCTP_PRINTF("%02x", key->key[i]);
295 		SCTP_PRINTF("\n");
296 	} else {
297 		SCTP_PRINTF("[Null key]\n");
298 	}
299 }
300 
301 static uint32_t
302 sctp_get_keylen(sctp_key_t *key)
303 {
304 	if (key != NULL)
305 		return (key->keylen);
306 	else
307 		return (0);
308 }
309 
310 /*
311  * generate a new random key of length 'keylen'
312  */
313 sctp_key_t *
314 sctp_generate_random_key(uint32_t keylen)
315 {
316 	sctp_key_t *new_key;
317 
318 	new_key = sctp_alloc_key(keylen);
319 	if (new_key == NULL) {
320 		/* out of memory */
321 		return (NULL);
322 	}
323 	SCTP_READ_RANDOM(new_key->key, keylen);
324 	new_key->keylen = keylen;
325 	return (new_key);
326 }
327 
328 sctp_key_t *
329 sctp_set_key(uint8_t *key, uint32_t keylen)
330 {
331 	sctp_key_t *new_key;
332 
333 	new_key = sctp_alloc_key(keylen);
334 	if (new_key == NULL) {
335 		/* out of memory */
336 		return (NULL);
337 	}
338 	memcpy(new_key->key, key, keylen);
339 	return (new_key);
340 }
341 
342 /*-
343  * given two keys of variable size, compute which key is "larger/smaller"
344  * returns:  1 if key1 > key2
345  *          -1 if key1 < key2
346  *           0 if key1 = key2
347  */
348 static int
349 sctp_compare_key(sctp_key_t *key1, sctp_key_t *key2)
350 {
351 	uint32_t maxlen;
352 	uint32_t i;
353 	uint32_t key1len, key2len;
354 	uint8_t *key_1, *key_2;
355 	uint8_t val1, val2;
356 
357 	/* sanity/length check */
358 	key1len = sctp_get_keylen(key1);
359 	key2len = sctp_get_keylen(key2);
360 	if ((key1len == 0) && (key2len == 0))
361 		return (0);
362 	else if (key1len == 0)
363 		return (-1);
364 	else if (key2len == 0)
365 		return (1);
366 
367 	if (key1len < key2len) {
368 		maxlen = key2len;
369 	} else {
370 		maxlen = key1len;
371 	}
372 	key_1 = key1->key;
373 	key_2 = key2->key;
374 	/* check for numeric equality */
375 	for (i = 0; i < maxlen; i++) {
376 		/* left-pad with zeros */
377 		val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++);
378 		val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++);
379 		if (val1 > val2) {
380 			return (1);
381 		} else if (val1 < val2) {
382 			return (-1);
383 		}
384 	}
385 	/* keys are equal value, so check lengths */
386 	if (key1len == key2len)
387 		return (0);
388 	else if (key1len < key2len)
389 		return (-1);
390 	else
391 		return (1);
392 }
393 
394 /*
395  * generate the concatenated keying material based on the two keys and the
396  * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
397  * order for concatenation
398  */
399 sctp_key_t *
400 sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared)
401 {
402 	uint32_t keylen;
403 	sctp_key_t *new_key;
404 	uint8_t *key_ptr;
405 
406 	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
407 	    sctp_get_keylen(shared);
408 
409 	if (keylen > 0) {
410 		/* get space for the new key */
411 		new_key = sctp_alloc_key(keylen);
412 		if (new_key == NULL) {
413 			/* out of memory */
414 			return (NULL);
415 		}
416 		new_key->keylen = keylen;
417 		key_ptr = new_key->key;
418 	} else {
419 		/* all keys empty/null?! */
420 		return (NULL);
421 	}
422 
423 	/* concatenate the keys */
424 	if (sctp_compare_key(key1, key2) <= 0) {
425 		/* key is shared + key1 + key2 */
426 		if (sctp_get_keylen(shared)) {
427 			memcpy(key_ptr, shared->key, shared->keylen);
428 			key_ptr += shared->keylen;
429 		}
430 		if (sctp_get_keylen(key1)) {
431 			memcpy(key_ptr, key1->key, key1->keylen);
432 			key_ptr += key1->keylen;
433 		}
434 		if (sctp_get_keylen(key2)) {
435 			memcpy(key_ptr, key2->key, key2->keylen);
436 		}
437 	} else {
438 		/* key is shared + key2 + key1 */
439 		if (sctp_get_keylen(shared)) {
440 			memcpy(key_ptr, shared->key, shared->keylen);
441 			key_ptr += shared->keylen;
442 		}
443 		if (sctp_get_keylen(key2)) {
444 			memcpy(key_ptr, key2->key, key2->keylen);
445 			key_ptr += key2->keylen;
446 		}
447 		if (sctp_get_keylen(key1)) {
448 			memcpy(key_ptr, key1->key, key1->keylen);
449 		}
450 	}
451 	return (new_key);
452 }
453 
454 sctp_sharedkey_t *
455 sctp_alloc_sharedkey(void)
456 {
457 	sctp_sharedkey_t *new_key;
458 
459 	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
460 	    SCTP_M_AUTH_KY);
461 	if (new_key == NULL) {
462 		/* out of memory */
463 		return (NULL);
464 	}
465 	new_key->keyid = 0;
466 	new_key->key = NULL;
467 	new_key->refcount = 1;
468 	new_key->deactivated = 0;
469 	return (new_key);
470 }
471 
472 void
473 sctp_free_sharedkey(sctp_sharedkey_t *skey)
474 {
475 	if (skey == NULL)
476 		return;
477 
478 	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
479 		if (skey->key != NULL)
480 			sctp_free_key(skey->key);
481 		SCTP_FREE(skey, SCTP_M_AUTH_KY);
482 	}
483 }
484 
485 sctp_sharedkey_t *
486 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
487 {
488 	sctp_sharedkey_t *skey;
489 
490 	LIST_FOREACH(skey, shared_keys, next) {
491 		if (skey->keyid == key_id)
492 			return (skey);
493 	}
494 	return (NULL);
495 }
496 
497 int
498 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
499     sctp_sharedkey_t *new_skey)
500 {
501 	sctp_sharedkey_t *skey;
502 
503 	if ((shared_keys == NULL) || (new_skey == NULL))
504 		return (EINVAL);
505 
506 	/* insert into an empty list? */
507 	if (LIST_EMPTY(shared_keys)) {
508 		LIST_INSERT_HEAD(shared_keys, new_skey, next);
509 		return (0);
510 	}
511 	/* insert into the existing list, ordered by key id */
512 	LIST_FOREACH(skey, shared_keys, next) {
513 		if (new_skey->keyid < skey->keyid) {
514 			/* insert it before here */
515 			LIST_INSERT_BEFORE(skey, new_skey, next);
516 			return (0);
517 		} else if (new_skey->keyid == skey->keyid) {
518 			/* replace the existing key */
519 			/* verify this key *can* be replaced */
520 			if ((skey->deactivated) || (skey->refcount > 1)) {
521 				SCTPDBG(SCTP_DEBUG_AUTH1,
522 				    "can't replace shared key id %u\n",
523 				    new_skey->keyid);
524 				return (EBUSY);
525 			}
526 			SCTPDBG(SCTP_DEBUG_AUTH1,
527 			    "replacing shared key id %u\n",
528 			    new_skey->keyid);
529 			LIST_INSERT_BEFORE(skey, new_skey, next);
530 			LIST_REMOVE(skey, next);
531 			sctp_free_sharedkey(skey);
532 			return (0);
533 		}
534 		if (LIST_NEXT(skey, next) == NULL) {
535 			/* belongs at the end of the list */
536 			LIST_INSERT_AFTER(skey, new_skey, next);
537 			return (0);
538 		}
539 	}
540 	/* shouldn't reach here */
541 	return (EINVAL);
542 }
543 
544 void
545 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
546 {
547 	sctp_sharedkey_t *skey;
548 
549 	/* find the shared key */
550 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
551 
552 	/* bump the ref count */
553 	if (skey) {
554 		atomic_add_int(&skey->refcount, 1);
555 		SCTPDBG(SCTP_DEBUG_AUTH2,
556 		    "%s: stcb %p key %u refcount acquire to %d\n",
557 		    __func__, (void *)stcb, key_id, skey->refcount);
558 	}
559 }
560 
561 void
562 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked)
563 {
564 	sctp_sharedkey_t *skey;
565 
566 	/* find the shared key */
567 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
568 
569 	/* decrement the ref count */
570 	if (skey) {
571 		SCTPDBG(SCTP_DEBUG_AUTH2,
572 		    "%s: stcb %p key %u refcount release to %d\n",
573 		    __func__, (void *)stcb, key_id, skey->refcount);
574 
575 		/* see if a notification should be generated */
576 		if ((skey->refcount <= 2) && (skey->deactivated)) {
577 			/* notify ULP that key is no longer used */
578 			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
579 			    key_id, 0, so_locked);
580 			SCTPDBG(SCTP_DEBUG_AUTH2,
581 			    "%s: stcb %p key %u no longer used, %d\n",
582 			    __func__, (void *)stcb, key_id, skey->refcount);
583 		}
584 		sctp_free_sharedkey(skey);
585 	}
586 }
587 
588 static sctp_sharedkey_t *
589 sctp_copy_sharedkey(const sctp_sharedkey_t *skey)
590 {
591 	sctp_sharedkey_t *new_skey;
592 
593 	if (skey == NULL)
594 		return (NULL);
595 	new_skey = sctp_alloc_sharedkey();
596 	if (new_skey == NULL)
597 		return (NULL);
598 	if (skey->key != NULL)
599 		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
600 	else
601 		new_skey->key = NULL;
602 	new_skey->keyid = skey->keyid;
603 	return (new_skey);
604 }
605 
606 int
607 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
608 {
609 	sctp_sharedkey_t *skey, *new_skey;
610 	int count = 0;
611 
612 	if ((src == NULL) || (dest == NULL))
613 		return (0);
614 	LIST_FOREACH(skey, src, next) {
615 		new_skey = sctp_copy_sharedkey(skey);
616 		if (new_skey != NULL) {
617 			if (sctp_insert_sharedkey(dest, new_skey)) {
618 				sctp_free_sharedkey(new_skey);
619 			} else {
620 				count++;
621 			}
622 		}
623 	}
624 	return (count);
625 }
626 
627 sctp_hmaclist_t *
628 sctp_alloc_hmaclist(uint16_t num_hmacs)
629 {
630 	sctp_hmaclist_t *new_list;
631 	int alloc_size;
632 
633 	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
634 	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
635 	    SCTP_M_AUTH_HL);
636 	if (new_list == NULL) {
637 		/* out of memory */
638 		return (NULL);
639 	}
640 	new_list->max_algo = num_hmacs;
641 	new_list->num_algo = 0;
642 	return (new_list);
643 }
644 
645 void
646 sctp_free_hmaclist(sctp_hmaclist_t *list)
647 {
648 	if (list != NULL) {
649 		SCTP_FREE(list, SCTP_M_AUTH_HL);
650 	}
651 }
652 
653 int
654 sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id)
655 {
656 	int i;
657 
658 	if (list == NULL)
659 		return (-1);
660 	if (list->num_algo == list->max_algo) {
661 		SCTPDBG(SCTP_DEBUG_AUTH1,
662 		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
663 		return (-1);
664 	}
665 	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
666 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) {
667 		return (-1);
668 	}
669 	/* Now is it already in the list */
670 	for (i = 0; i < list->num_algo; i++) {
671 		if (list->hmac[i] == hmac_id) {
672 			/* already in list */
673 			return (-1);
674 		}
675 	}
676 	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
677 	list->hmac[list->num_algo++] = hmac_id;
678 	return (0);
679 }
680 
681 sctp_hmaclist_t *
682 sctp_copy_hmaclist(sctp_hmaclist_t *list)
683 {
684 	sctp_hmaclist_t *new_list;
685 	int i;
686 
687 	if (list == NULL)
688 		return (NULL);
689 	/* get a new list */
690 	new_list = sctp_alloc_hmaclist(list->max_algo);
691 	if (new_list == NULL)
692 		return (NULL);
693 	/* copy it */
694 	new_list->max_algo = list->max_algo;
695 	new_list->num_algo = list->num_algo;
696 	for (i = 0; i < list->num_algo; i++)
697 		new_list->hmac[i] = list->hmac[i];
698 	return (new_list);
699 }
700 
701 sctp_hmaclist_t *
702 sctp_default_supported_hmaclist(void)
703 {
704 	sctp_hmaclist_t *new_list;
705 
706 	new_list = sctp_alloc_hmaclist(2);
707 	if (new_list == NULL)
708 		return (NULL);
709 	/* We prefer SHA256, so list it first */
710 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
711 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
712 	return (new_list);
713 }
714 
715 /*-
716  * HMAC algos are listed in priority/preference order
717  * find the best HMAC id to use for the peer based on local support
718  */
719 uint16_t
720 sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local)
721 {
722 	int i, j;
723 
724 	if ((local == NULL) || (peer == NULL))
725 		return (SCTP_AUTH_HMAC_ID_RSVD);
726 
727 	for (i = 0; i < peer->num_algo; i++) {
728 		for (j = 0; j < local->num_algo; j++) {
729 			if (peer->hmac[i] == local->hmac[j]) {
730 				/* found the "best" one */
731 				SCTPDBG(SCTP_DEBUG_AUTH1,
732 				    "SCTP: negotiated peer HMAC id %u\n",
733 				    peer->hmac[i]);
734 				return (peer->hmac[i]);
735 			}
736 		}
737 	}
738 	/* didn't find one! */
739 	return (SCTP_AUTH_HMAC_ID_RSVD);
740 }
741 
742 /*-
743  * serialize the HMAC algo list and return space used
744  * caller must guarantee ptr has appropriate space
745  */
746 int
747 sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr)
748 {
749 	int i;
750 	uint16_t hmac_id;
751 
752 	if (list == NULL)
753 		return (0);
754 
755 	for (i = 0; i < list->num_algo; i++) {
756 		hmac_id = htons(list->hmac[i]);
757 		memcpy(ptr, &hmac_id, sizeof(hmac_id));
758 		ptr += sizeof(hmac_id);
759 	}
760 	return (list->num_algo * sizeof(hmac_id));
761 }
762 
763 int
764 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
765 {
766 	uint32_t i;
767 
768 	for (i = 0; i < num_hmacs; i++) {
769 		if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) {
770 			return (0);
771 		}
772 	}
773 	return (-1);
774 }
775 
776 sctp_authinfo_t *
777 sctp_alloc_authinfo(void)
778 {
779 	sctp_authinfo_t *new_authinfo;
780 
781 	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
782 	    SCTP_M_AUTH_IF);
783 
784 	if (new_authinfo == NULL) {
785 		/* out of memory */
786 		return (NULL);
787 	}
788 	memset(new_authinfo, 0, sizeof(*new_authinfo));
789 	return (new_authinfo);
790 }
791 
792 void
793 sctp_free_authinfo(sctp_authinfo_t *authinfo)
794 {
795 	if (authinfo == NULL)
796 		return;
797 
798 	if (authinfo->random != NULL)
799 		sctp_free_key(authinfo->random);
800 	if (authinfo->peer_random != NULL)
801 		sctp_free_key(authinfo->peer_random);
802 	if (authinfo->assoc_key != NULL)
803 		sctp_free_key(authinfo->assoc_key);
804 	if (authinfo->recv_key != NULL)
805 		sctp_free_key(authinfo->recv_key);
806 
807 	/* We are NOT dynamically allocating authinfo's right now... */
808 	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
809 }
810 
811 uint32_t
812 sctp_get_auth_chunk_len(uint16_t hmac_algo)
813 {
814 	int size;
815 
816 	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
817 	return (SCTP_SIZE32(size));
818 }
819 
820 uint32_t
821 sctp_get_hmac_digest_len(uint16_t hmac_algo)
822 {
823 	switch (hmac_algo) {
824 	case SCTP_AUTH_HMAC_ID_SHA1:
825 		return (SCTP_AUTH_DIGEST_LEN_SHA1);
826 	case SCTP_AUTH_HMAC_ID_SHA256:
827 		return (SCTP_AUTH_DIGEST_LEN_SHA256);
828 	default:
829 		/* unknown HMAC algorithm: can't do anything */
830 		return (0);
831 	}			/* end switch */
832 }
833 
834 static inline int
835 sctp_get_hmac_block_len(uint16_t hmac_algo)
836 {
837 	switch (hmac_algo) {
838 	case SCTP_AUTH_HMAC_ID_SHA1:
839 		return (64);
840 	case SCTP_AUTH_HMAC_ID_SHA256:
841 		return (64);
842 	case SCTP_AUTH_HMAC_ID_RSVD:
843 	default:
844 		/* unknown HMAC algorithm: can't do anything */
845 		return (0);
846 	}			/* end switch */
847 }
848 
849 static void
850 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t *ctx)
851 {
852 	switch (hmac_algo) {
853 	case SCTP_AUTH_HMAC_ID_SHA1:
854 		SCTP_SHA1_INIT(&ctx->sha1);
855 		break;
856 	case SCTP_AUTH_HMAC_ID_SHA256:
857 		SCTP_SHA256_INIT(&ctx->sha256);
858 		break;
859 	case SCTP_AUTH_HMAC_ID_RSVD:
860 	default:
861 		/* unknown HMAC algorithm: can't do anything */
862 		return;
863 	}			/* end switch */
864 }
865 
866 static void
867 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t *ctx,
868     uint8_t *text, uint32_t textlen)
869 {
870 	switch (hmac_algo) {
871 	case SCTP_AUTH_HMAC_ID_SHA1:
872 		SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen);
873 		break;
874 	case SCTP_AUTH_HMAC_ID_SHA256:
875 		SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen);
876 		break;
877 	case SCTP_AUTH_HMAC_ID_RSVD:
878 	default:
879 		/* unknown HMAC algorithm: can't do anything */
880 		return;
881 	}			/* end switch */
882 }
883 
884 static void
885 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t *ctx,
886     uint8_t *digest)
887 {
888 	switch (hmac_algo) {
889 	case SCTP_AUTH_HMAC_ID_SHA1:
890 		SCTP_SHA1_FINAL(digest, &ctx->sha1);
891 		break;
892 	case SCTP_AUTH_HMAC_ID_SHA256:
893 		SCTP_SHA256_FINAL(digest, &ctx->sha256);
894 		break;
895 	case SCTP_AUTH_HMAC_ID_RSVD:
896 	default:
897 		/* unknown HMAC algorithm: can't do anything */
898 		return;
899 	}			/* end switch */
900 }
901 
902 /*-
903  * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
904  *
905  * Compute the HMAC digest using the desired hash key, text, and HMAC
906  * algorithm.  Resulting digest is placed in 'digest' and digest length
907  * is returned, if the HMAC was performed.
908  *
909  * WARNING: it is up to the caller to supply sufficient space to hold the
910  * resultant digest.
911  */
912 uint32_t
913 sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
914     uint8_t *text, uint32_t textlen, uint8_t *digest)
915 {
916 	uint32_t digestlen;
917 	uint32_t blocklen;
918 	sctp_hash_context_t ctx;
919 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
920 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
921 	uint32_t i;
922 
923 	/* sanity check the material and length */
924 	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
925 	    (textlen == 0) || (digest == NULL)) {
926 		/* can't do HMAC with empty key or text or digest store */
927 		return (0);
928 	}
929 	/* validate the hmac algo and get the digest length */
930 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
931 	if (digestlen == 0)
932 		return (0);
933 
934 	/* hash the key if it is longer than the hash block size */
935 	blocklen = sctp_get_hmac_block_len(hmac_algo);
936 	if (keylen > blocklen) {
937 		sctp_hmac_init(hmac_algo, &ctx);
938 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
939 		sctp_hmac_final(hmac_algo, &ctx, temp);
940 		/* set the hashed key as the key */
941 		keylen = digestlen;
942 		key = temp;
943 	}
944 	/* initialize the inner/outer pads with the key and "append" zeroes */
945 	memset(ipad, 0, blocklen);
946 	memset(opad, 0, blocklen);
947 	memcpy(ipad, key, keylen);
948 	memcpy(opad, key, keylen);
949 
950 	/* XOR the key with ipad and opad values */
951 	for (i = 0; i < blocklen; i++) {
952 		ipad[i] ^= 0x36;
953 		opad[i] ^= 0x5c;
954 	}
955 
956 	/* perform inner hash */
957 	sctp_hmac_init(hmac_algo, &ctx);
958 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
959 	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
960 	sctp_hmac_final(hmac_algo, &ctx, temp);
961 
962 	/* perform outer hash */
963 	sctp_hmac_init(hmac_algo, &ctx);
964 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
965 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
966 	sctp_hmac_final(hmac_algo, &ctx, digest);
967 
968 	return (digestlen);
969 }
970 
971 /* mbuf version */
972 uint32_t
973 sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
974     struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer)
975 {
976 	uint32_t digestlen;
977 	uint32_t blocklen;
978 	sctp_hash_context_t ctx;
979 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
980 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
981 	uint32_t i;
982 	struct mbuf *m_tmp;
983 
984 	/* sanity check the material and length */
985 	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
986 		/* can't do HMAC with empty key or text or digest store */
987 		return (0);
988 	}
989 	/* validate the hmac algo and get the digest length */
990 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
991 	if (digestlen == 0)
992 		return (0);
993 
994 	/* hash the key if it is longer than the hash block size */
995 	blocklen = sctp_get_hmac_block_len(hmac_algo);
996 	if (keylen > blocklen) {
997 		sctp_hmac_init(hmac_algo, &ctx);
998 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
999 		sctp_hmac_final(hmac_algo, &ctx, temp);
1000 		/* set the hashed key as the key */
1001 		keylen = digestlen;
1002 		key = temp;
1003 	}
1004 	/* initialize the inner/outer pads with the key and "append" zeroes */
1005 	memset(ipad, 0, blocklen);
1006 	memset(opad, 0, blocklen);
1007 	memcpy(ipad, key, keylen);
1008 	memcpy(opad, key, keylen);
1009 
1010 	/* XOR the key with ipad and opad values */
1011 	for (i = 0; i < blocklen; i++) {
1012 		ipad[i] ^= 0x36;
1013 		opad[i] ^= 0x5c;
1014 	}
1015 
1016 	/* perform inner hash */
1017 	sctp_hmac_init(hmac_algo, &ctx);
1018 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1019 	/* find the correct starting mbuf and offset (get start of text) */
1020 	m_tmp = m;
1021 	while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) {
1022 		m_offset -= SCTP_BUF_LEN(m_tmp);
1023 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1024 	}
1025 	/* now use the rest of the mbuf chain for the text */
1026 	while (m_tmp != NULL) {
1027 		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1028 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset,
1029 			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1030 		} else {
1031 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset,
1032 			    SCTP_BUF_LEN(m_tmp) - m_offset);
1033 		}
1034 
1035 		/* clear the offset since it's only for the first mbuf */
1036 		m_offset = 0;
1037 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1038 	}
1039 	sctp_hmac_final(hmac_algo, &ctx, temp);
1040 
1041 	/* perform outer hash */
1042 	sctp_hmac_init(hmac_algo, &ctx);
1043 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1044 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1045 	sctp_hmac_final(hmac_algo, &ctx, digest);
1046 
1047 	return (digestlen);
1048 }
1049 
1050 /*
1051  * computes the requested HMAC using a key struct (which may be modified if
1052  * the keylen exceeds the HMAC block len).
1053  */
1054 uint32_t
1055 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text,
1056     uint32_t textlen, uint8_t *digest)
1057 {
1058 	uint32_t digestlen;
1059 	uint32_t blocklen;
1060 	sctp_hash_context_t ctx;
1061 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1062 
1063 	/* sanity check */
1064 	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1065 	    (digest == NULL)) {
1066 		/* can't do HMAC with empty key or text or digest store */
1067 		return (0);
1068 	}
1069 	/* validate the hmac algo and get the digest length */
1070 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1071 	if (digestlen == 0)
1072 		return (0);
1073 
1074 	/* hash the key if it is longer than the hash block size */
1075 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1076 	if (key->keylen > blocklen) {
1077 		sctp_hmac_init(hmac_algo, &ctx);
1078 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1079 		sctp_hmac_final(hmac_algo, &ctx, temp);
1080 		/* save the hashed key as the new key */
1081 		key->keylen = digestlen;
1082 		memcpy(key->key, temp, key->keylen);
1083 	}
1084 	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1085 	    digest));
1086 }
1087 
1088 /* mbuf version */
1089 uint32_t
1090 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m,
1091     uint32_t m_offset, uint8_t *digest)
1092 {
1093 	uint32_t digestlen;
1094 	uint32_t blocklen;
1095 	sctp_hash_context_t ctx;
1096 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1097 
1098 	/* sanity check */
1099 	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1100 		/* can't do HMAC with empty key or text or digest store */
1101 		return (0);
1102 	}
1103 	/* validate the hmac algo and get the digest length */
1104 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1105 	if (digestlen == 0)
1106 		return (0);
1107 
1108 	/* hash the key if it is longer than the hash block size */
1109 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1110 	if (key->keylen > blocklen) {
1111 		sctp_hmac_init(hmac_algo, &ctx);
1112 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1113 		sctp_hmac_final(hmac_algo, &ctx, temp);
1114 		/* save the hashed key as the new key */
1115 		key->keylen = digestlen;
1116 		memcpy(key->key, temp, key->keylen);
1117 	}
1118 	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1119 }
1120 
1121 int
1122 sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id)
1123 {
1124 	int i;
1125 
1126 	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1127 		return (0);
1128 
1129 	for (i = 0; i < list->num_algo; i++)
1130 		if (list->hmac[i] == id)
1131 			return (1);
1132 
1133 	/* not in the list */
1134 	return (0);
1135 }
1136 
1137 /*-
1138  * clear any cached key(s) if they match the given key id on an association.
1139  * the cached key(s) will be recomputed and re-cached at next use.
1140  * ASSUMES TCB_LOCK is already held
1141  */
1142 void
1143 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1144 {
1145 	if (stcb == NULL)
1146 		return;
1147 
1148 	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1149 		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1150 		stcb->asoc.authinfo.assoc_key = NULL;
1151 	}
1152 	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1153 		sctp_free_key(stcb->asoc.authinfo.recv_key);
1154 		stcb->asoc.authinfo.recv_key = NULL;
1155 	}
1156 }
1157 
1158 /*-
1159  * clear any cached key(s) if they match the given key id for all assocs on
1160  * an endpoint.
1161  * ASSUMES INP_WLOCK is already held
1162  */
1163 void
1164 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1165 {
1166 	struct sctp_tcb *stcb;
1167 
1168 	if (inp == NULL)
1169 		return;
1170 
1171 	/* clear the cached keys on all assocs on this instance */
1172 	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1173 		SCTP_TCB_LOCK(stcb);
1174 		sctp_clear_cachedkeys(stcb, keyid);
1175 		SCTP_TCB_UNLOCK(stcb);
1176 	}
1177 }
1178 
1179 /*-
1180  * delete a shared key from an association
1181  * ASSUMES TCB_LOCK is already held
1182  */
1183 int
1184 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1185 {
1186 	sctp_sharedkey_t *skey;
1187 
1188 	if (stcb == NULL)
1189 		return (-1);
1190 
1191 	/* is the keyid the assoc active sending key */
1192 	if (keyid == stcb->asoc.authinfo.active_keyid)
1193 		return (-1);
1194 
1195 	/* does the key exist? */
1196 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1197 	if (skey == NULL)
1198 		return (-1);
1199 
1200 	/* are there other refcount holders on the key? */
1201 	if (skey->refcount > 1)
1202 		return (-1);
1203 
1204 	/* remove it */
1205 	LIST_REMOVE(skey, next);
1206 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1207 
1208 	/* clear any cached keys */
1209 	sctp_clear_cachedkeys(stcb, keyid);
1210 	return (0);
1211 }
1212 
1213 /*-
1214  * deletes a shared key from the endpoint
1215  * ASSUMES INP_WLOCK is already held
1216  */
1217 int
1218 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1219 {
1220 	sctp_sharedkey_t *skey;
1221 
1222 	if (inp == NULL)
1223 		return (-1);
1224 
1225 	/* is the keyid the active sending key on the endpoint */
1226 	if (keyid == inp->sctp_ep.default_keyid)
1227 		return (-1);
1228 
1229 	/* does the key exist? */
1230 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1231 	if (skey == NULL)
1232 		return (-1);
1233 
1234 	/* endpoint keys are not refcounted */
1235 
1236 	/* remove it */
1237 	LIST_REMOVE(skey, next);
1238 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1239 
1240 	/* clear any cached keys */
1241 	sctp_clear_cachedkeys_ep(inp, keyid);
1242 	return (0);
1243 }
1244 
1245 /*-
1246  * set the active key on an association
1247  * ASSUMES TCB_LOCK is already held
1248  */
1249 int
1250 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1251 {
1252 	sctp_sharedkey_t *skey = NULL;
1253 
1254 	/* find the key on the assoc */
1255 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1256 	if (skey == NULL) {
1257 		/* that key doesn't exist */
1258 		return (-1);
1259 	}
1260 	if ((skey->deactivated) && (skey->refcount > 1)) {
1261 		/* can't reactivate a deactivated key with other refcounts */
1262 		return (-1);
1263 	}
1264 
1265 	/* set the (new) active key */
1266 	stcb->asoc.authinfo.active_keyid = keyid;
1267 	/* reset the deactivated flag */
1268 	skey->deactivated = 0;
1269 
1270 	return (0);
1271 }
1272 
1273 /*-
1274  * set the active key on an endpoint
1275  * ASSUMES INP_WLOCK is already held
1276  */
1277 int
1278 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1279 {
1280 	sctp_sharedkey_t *skey;
1281 
1282 	/* find the key */
1283 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1284 	if (skey == NULL) {
1285 		/* that key doesn't exist */
1286 		return (-1);
1287 	}
1288 	inp->sctp_ep.default_keyid = keyid;
1289 	return (0);
1290 }
1291 
1292 /*-
1293  * deactivates a shared key from the association
1294  * ASSUMES INP_WLOCK is already held
1295  */
1296 int
1297 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1298 {
1299 	sctp_sharedkey_t *skey;
1300 
1301 	if (stcb == NULL)
1302 		return (-1);
1303 
1304 	/* is the keyid the assoc active sending key */
1305 	if (keyid == stcb->asoc.authinfo.active_keyid)
1306 		return (-1);
1307 
1308 	/* does the key exist? */
1309 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1310 	if (skey == NULL)
1311 		return (-1);
1312 
1313 	/* are there other refcount holders on the key? */
1314 	if (skey->refcount == 1) {
1315 		/* no other users, send a notification for this key */
1316 		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1317 		    SCTP_SO_LOCKED);
1318 	}
1319 
1320 	/* mark the key as deactivated */
1321 	skey->deactivated = 1;
1322 
1323 	return (0);
1324 }
1325 
1326 /*-
1327  * deactivates a shared key from the endpoint
1328  * ASSUMES INP_WLOCK is already held
1329  */
1330 int
1331 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1332 {
1333 	sctp_sharedkey_t *skey;
1334 
1335 	if (inp == NULL)
1336 		return (-1);
1337 
1338 	/* is the keyid the active sending key on the endpoint */
1339 	if (keyid == inp->sctp_ep.default_keyid)
1340 		return (-1);
1341 
1342 	/* does the key exist? */
1343 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1344 	if (skey == NULL)
1345 		return (-1);
1346 
1347 	/* endpoint keys are not refcounted */
1348 
1349 	/* remove it */
1350 	LIST_REMOVE(skey, next);
1351 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1352 
1353 	return (0);
1354 }
1355 
1356 /*
1357  * get local authentication parameters from cookie (from INIT-ACK)
1358  */
1359 void
1360 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1361     uint32_t offset, uint32_t length)
1362 {
1363 	struct sctp_paramhdr *phdr, tmp_param;
1364 	uint16_t plen, ptype;
1365 	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1366 	struct sctp_auth_random *p_random = NULL;
1367 	uint16_t random_len = 0;
1368 	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1369 	struct sctp_auth_hmac_algo *hmacs = NULL;
1370 	uint16_t hmacs_len = 0;
1371 	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1372 	struct sctp_auth_chunk_list *chunks = NULL;
1373 	uint16_t num_chunks = 0;
1374 	sctp_key_t *new_key;
1375 	uint32_t keylen;
1376 
1377 	/* convert to upper bound */
1378 	length += offset;
1379 
1380 	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1381 	    sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param);
1382 	while (phdr != NULL) {
1383 		ptype = ntohs(phdr->param_type);
1384 		plen = ntohs(phdr->param_length);
1385 
1386 		if ((plen < sizeof(struct sctp_paramhdr)) ||
1387 		    (offset + plen > length))
1388 			break;
1389 
1390 		if (ptype == SCTP_RANDOM) {
1391 			if (plen > sizeof(random_store))
1392 				break;
1393 			phdr = sctp_get_next_param(m, offset,
1394 			    (struct sctp_paramhdr *)random_store, plen);
1395 			if (phdr == NULL)
1396 				return;
1397 			/* save the random and length for the key */
1398 			p_random = (struct sctp_auth_random *)phdr;
1399 			random_len = plen - sizeof(*p_random);
1400 		} else if (ptype == SCTP_HMAC_LIST) {
1401 			uint16_t num_hmacs;
1402 			uint16_t i;
1403 
1404 			if (plen > sizeof(hmacs_store))
1405 				break;
1406 			phdr = sctp_get_next_param(m, offset,
1407 			    (struct sctp_paramhdr *)hmacs_store, plen);
1408 			if (phdr == NULL)
1409 				return;
1410 			/* save the hmacs list and num for the key */
1411 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1412 			hmacs_len = plen - sizeof(*hmacs);
1413 			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1414 			if (stcb->asoc.local_hmacs != NULL)
1415 				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1416 			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1417 			if (stcb->asoc.local_hmacs != NULL) {
1418 				for (i = 0; i < num_hmacs; i++) {
1419 					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1420 					    ntohs(hmacs->hmac_ids[i]));
1421 				}
1422 			}
1423 		} else if (ptype == SCTP_CHUNK_LIST) {
1424 			int i;
1425 
1426 			if (plen > sizeof(chunks_store))
1427 				break;
1428 			phdr = sctp_get_next_param(m, offset,
1429 			    (struct sctp_paramhdr *)chunks_store, plen);
1430 			if (phdr == NULL)
1431 				return;
1432 			chunks = (struct sctp_auth_chunk_list *)phdr;
1433 			num_chunks = plen - sizeof(*chunks);
1434 			/* save chunks list and num for the key */
1435 			if (stcb->asoc.local_auth_chunks != NULL)
1436 				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1437 			else
1438 				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1439 			for (i = 0; i < num_chunks; i++) {
1440 				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1441 				    stcb->asoc.local_auth_chunks);
1442 			}
1443 		}
1444 		/* get next parameter */
1445 		offset += SCTP_SIZE32(plen);
1446 		if (offset + sizeof(struct sctp_paramhdr) > length)
1447 			break;
1448 		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1449 		    (uint8_t *)&tmp_param);
1450 	}
1451 	/* concatenate the full random key */
1452 	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1453 	if (chunks != NULL) {
1454 		keylen += sizeof(*chunks) + num_chunks;
1455 	}
1456 	new_key = sctp_alloc_key(keylen);
1457 	if (new_key != NULL) {
1458 		/* copy in the RANDOM */
1459 		if (p_random != NULL) {
1460 			keylen = sizeof(*p_random) + random_len;
1461 			memcpy(new_key->key, p_random, keylen);
1462 		} else {
1463 			keylen = 0;
1464 		}
1465 		/* append in the AUTH chunks */
1466 		if (chunks != NULL) {
1467 			memcpy(new_key->key + keylen, chunks,
1468 			    sizeof(*chunks) + num_chunks);
1469 			keylen += sizeof(*chunks) + num_chunks;
1470 		}
1471 		/* append in the HMACs */
1472 		if (hmacs != NULL) {
1473 			memcpy(new_key->key + keylen, hmacs,
1474 			    sizeof(*hmacs) + hmacs_len);
1475 		}
1476 	}
1477 	if (stcb->asoc.authinfo.random != NULL)
1478 		sctp_free_key(stcb->asoc.authinfo.random);
1479 	stcb->asoc.authinfo.random = new_key;
1480 	stcb->asoc.authinfo.random_len = random_len;
1481 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1482 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1483 
1484 	/* negotiate what HMAC to use for the peer */
1485 	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1486 	    stcb->asoc.local_hmacs);
1487 
1488 	/* copy defaults from the endpoint */
1489 	/* FIX ME: put in cookie? */
1490 	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1491 	/* copy out the shared key list (by reference) from the endpoint */
1492 	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1493 	    &stcb->asoc.shared_keys);
1494 }
1495 
1496 /*
1497  * compute and fill in the HMAC digest for a packet
1498  */
1499 void
1500 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1501     struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1502 {
1503 	uint32_t digestlen;
1504 	sctp_sharedkey_t *skey;
1505 	sctp_key_t *key;
1506 
1507 	if ((stcb == NULL) || (auth == NULL))
1508 		return;
1509 
1510 	/* zero the digest + chunk padding */
1511 	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1512 	memset(auth->hmac, 0, SCTP_SIZE32(digestlen));
1513 
1514 	/* is the desired key cached? */
1515 	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1516 	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1517 		if (stcb->asoc.authinfo.assoc_key != NULL) {
1518 			/* free the old cached key */
1519 			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1520 		}
1521 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1522 		/* the only way skey is NULL is if null key id 0 is used */
1523 		if (skey != NULL)
1524 			key = skey->key;
1525 		else
1526 			key = NULL;
1527 		/* compute a new assoc key and cache it */
1528 		stcb->asoc.authinfo.assoc_key =
1529 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1530 		    stcb->asoc.authinfo.peer_random, key);
1531 		stcb->asoc.authinfo.assoc_keyid = keyid;
1532 		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1533 		    stcb->asoc.authinfo.assoc_keyid);
1534 #ifdef SCTP_DEBUG
1535 		if (SCTP_AUTH_DEBUG)
1536 			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1537 			    "Assoc Key");
1538 #endif
1539 	}
1540 
1541 	/* set in the active key id */
1542 	auth->shared_key_id = htons(keyid);
1543 
1544 	/* compute and fill in the digest */
1545 	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1546 	    m, auth_offset, auth->hmac);
1547 }
1548 
1549 static void
1550 sctp_zero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1551 {
1552 	struct mbuf *m_tmp;
1553 	uint8_t *data;
1554 
1555 	/* sanity check */
1556 	if (m == NULL)
1557 		return;
1558 
1559 	/* find the correct starting mbuf and offset (get start position) */
1560 	m_tmp = m;
1561 	while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) {
1562 		m_offset -= SCTP_BUF_LEN(m_tmp);
1563 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1564 	}
1565 	/* now use the rest of the mbuf chain */
1566 	while ((m_tmp != NULL) && (size > 0)) {
1567 		data = mtod(m_tmp, uint8_t *)+m_offset;
1568 		if (size > (uint32_t)(SCTP_BUF_LEN(m_tmp) - m_offset)) {
1569 			memset(data, 0, SCTP_BUF_LEN(m_tmp) - m_offset);
1570 			size -= SCTP_BUF_LEN(m_tmp) - m_offset;
1571 		} else {
1572 			memset(data, 0, size);
1573 			size = 0;
1574 		}
1575 		/* clear the offset since it's only for the first mbuf */
1576 		m_offset = 0;
1577 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1578 	}
1579 }
1580 
1581 /*-
1582  * process the incoming Authentication chunk
1583  * return codes:
1584  *   -1 on any authentication error
1585  *    0 on authentication verification
1586  */
1587 int
1588 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1589     struct mbuf *m, uint32_t offset)
1590 {
1591 	uint16_t chunklen;
1592 	uint16_t shared_key_id;
1593 	uint16_t hmac_id;
1594 	sctp_sharedkey_t *skey;
1595 	uint32_t digestlen;
1596 	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1597 	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1598 
1599 	/* auth is checked for NULL by caller */
1600 	chunklen = ntohs(auth->ch.chunk_length);
1601 	if (chunklen < sizeof(*auth)) {
1602 		SCTP_STAT_INCR(sctps_recvauthfailed);
1603 		return (-1);
1604 	}
1605 	SCTP_STAT_INCR(sctps_recvauth);
1606 
1607 	/* get the auth params */
1608 	shared_key_id = ntohs(auth->shared_key_id);
1609 	hmac_id = ntohs(auth->hmac_id);
1610 	SCTPDBG(SCTP_DEBUG_AUTH1,
1611 	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1612 	    shared_key_id, hmac_id);
1613 
1614 	/* is the indicated HMAC supported? */
1615 	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1616 		struct mbuf *op_err;
1617 		struct sctp_error_auth_invalid_hmac *cause;
1618 
1619 		SCTP_STAT_INCR(sctps_recvivalhmacid);
1620 		SCTPDBG(SCTP_DEBUG_AUTH1,
1621 		    "SCTP Auth: unsupported HMAC id %u\n",
1622 		    hmac_id);
1623 		/*
1624 		 * report this in an Error Chunk: Unsupported HMAC
1625 		 * Identifier
1626 		 */
1627 		op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac),
1628 		    0, M_NOWAIT, 1, MT_HEADER);
1629 		if (op_err != NULL) {
1630 			/* pre-reserve some space */
1631 			SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr));
1632 			/* fill in the error */
1633 			cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *);
1634 			cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1635 			cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac));
1636 			cause->hmac_id = ntohs(hmac_id);
1637 			SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac);
1638 			/* queue it */
1639 			sctp_queue_op_err(stcb, op_err);
1640 		}
1641 		return (-1);
1642 	}
1643 	/* get the indicated shared key, if available */
1644 	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1645 	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1646 		/* find the shared key on the assoc first */
1647 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1648 		    shared_key_id);
1649 		/* if the shared key isn't found, discard the chunk */
1650 		if (skey == NULL) {
1651 			SCTP_STAT_INCR(sctps_recvivalkeyid);
1652 			SCTPDBG(SCTP_DEBUG_AUTH1,
1653 			    "SCTP Auth: unknown key id %u\n",
1654 			    shared_key_id);
1655 			return (-1);
1656 		}
1657 		/* generate a notification if this is a new key id */
1658 		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1659 			/*
1660 			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1661 			 * shared_key_id, (void
1662 			 * *)stcb->asoc.authinfo.recv_keyid);
1663 			 */
1664 			sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY,
1665 			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1666 			    SCTP_SO_NOT_LOCKED);
1667 		/* compute a new recv assoc key and cache it */
1668 		if (stcb->asoc.authinfo.recv_key != NULL)
1669 			sctp_free_key(stcb->asoc.authinfo.recv_key);
1670 		stcb->asoc.authinfo.recv_key =
1671 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1672 		    stcb->asoc.authinfo.peer_random, skey->key);
1673 		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1674 #ifdef SCTP_DEBUG
1675 		if (SCTP_AUTH_DEBUG)
1676 			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1677 #endif
1678 	}
1679 	/* validate the digest length */
1680 	digestlen = sctp_get_hmac_digest_len(hmac_id);
1681 	if (chunklen < (sizeof(*auth) + digestlen)) {
1682 		/* invalid digest length */
1683 		SCTP_STAT_INCR(sctps_recvauthfailed);
1684 		SCTPDBG(SCTP_DEBUG_AUTH1,
1685 		    "SCTP Auth: chunk too short for HMAC\n");
1686 		return (-1);
1687 	}
1688 	/* save a copy of the digest, zero the pseudo header, and validate */
1689 	memcpy(digest, auth->hmac, digestlen);
1690 	sctp_zero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1691 	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1692 	    m, offset, computed_digest);
1693 
1694 	/* compare the computed digest with the one in the AUTH chunk */
1695 	if (timingsafe_bcmp(digest, computed_digest, digestlen) != 0) {
1696 		SCTP_STAT_INCR(sctps_recvauthfailed);
1697 		SCTPDBG(SCTP_DEBUG_AUTH1,
1698 		    "SCTP Auth: HMAC digest check failed\n");
1699 		return (-1);
1700 	}
1701 	return (0);
1702 }
1703 
1704 /*
1705  * Generate NOTIFICATION
1706  */
1707 void
1708 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1709     uint16_t keyid, uint16_t alt_keyid, int so_locked)
1710 {
1711 	struct mbuf *m_notify;
1712 	struct sctp_authkey_event *auth;
1713 	struct sctp_queued_to_read *control;
1714 
1715 	if ((stcb == NULL) ||
1716 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1717 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1718 	    (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1719 	    ) {
1720 		/* If the socket is gone we are out of here */
1721 		return;
1722 	}
1723 
1724 	if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT))
1725 		/* event not enabled */
1726 		return;
1727 
1728 	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1729 	    0, M_NOWAIT, 1, MT_HEADER);
1730 	if (m_notify == NULL)
1731 		/* no space left */
1732 		return;
1733 
1734 	SCTP_BUF_LEN(m_notify) = 0;
1735 	auth = mtod(m_notify, struct sctp_authkey_event *);
1736 	memset(auth, 0, sizeof(struct sctp_authkey_event));
1737 	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1738 	auth->auth_flags = 0;
1739 	auth->auth_length = sizeof(*auth);
1740 	auth->auth_keynumber = keyid;
1741 	auth->auth_altkeynumber = alt_keyid;
1742 	auth->auth_indication = indication;
1743 	auth->auth_assoc_id = sctp_get_associd(stcb);
1744 
1745 	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1746 	SCTP_BUF_NEXT(m_notify) = NULL;
1747 
1748 	/* append to socket */
1749 	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1750 	    0, 0, stcb->asoc.context, 0, 0, 0, m_notify);
1751 	if (control == NULL) {
1752 		/* no memory */
1753 		sctp_m_freem(m_notify);
1754 		return;
1755 	}
1756 	control->length = SCTP_BUF_LEN(m_notify);
1757 	control->spec_flags = M_NOTIFICATION;
1758 	/* not that we need this */
1759 	control->tail_mbuf = m_notify;
1760 	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1761 	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1762 }
1763 
1764 /*-
1765  * validates the AUTHentication related parameters in an INIT/INIT-ACK
1766  * Note: currently only used for INIT as INIT-ACK is handled inline
1767  * with sctp_load_addresses_from_init()
1768  */
1769 int
1770 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1771 {
1772 	struct sctp_paramhdr *phdr, param_buf;
1773 	uint16_t ptype, plen;
1774 	int peer_supports_asconf = 0;
1775 	int peer_supports_auth = 0;
1776 	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1777 	uint8_t saw_asconf = 0;
1778 	uint8_t saw_asconf_ack = 0;
1779 
1780 	/* go through each of the params. */
1781 	phdr = sctp_get_next_param(m, offset, &param_buf, sizeof(param_buf));
1782 	while (phdr) {
1783 		ptype = ntohs(phdr->param_type);
1784 		plen = ntohs(phdr->param_length);
1785 
1786 		if (offset + plen > limit) {
1787 			break;
1788 		}
1789 		if (plen < sizeof(struct sctp_paramhdr)) {
1790 			break;
1791 		}
1792 		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1793 			/* A supported extension chunk */
1794 			struct sctp_supported_chunk_types_param *pr_supported;
1795 			uint8_t local_store[SCTP_SMALL_CHUNK_STORE];
1796 			int num_ent, i;
1797 
1798 			if (plen > sizeof(local_store)) {
1799 				break;
1800 			}
1801 			phdr = sctp_get_next_param(m, offset,
1802 			    (struct sctp_paramhdr *)&local_store,
1803 			    plen);
1804 			if (phdr == NULL) {
1805 				return (-1);
1806 			}
1807 			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1808 			num_ent = plen - sizeof(struct sctp_paramhdr);
1809 			for (i = 0; i < num_ent; i++) {
1810 				switch (pr_supported->chunk_types[i]) {
1811 				case SCTP_ASCONF:
1812 				case SCTP_ASCONF_ACK:
1813 					peer_supports_asconf = 1;
1814 					break;
1815 				default:
1816 					/* one we don't care about */
1817 					break;
1818 				}
1819 			}
1820 		} else if (ptype == SCTP_RANDOM) {
1821 			/* enforce the random length */
1822 			if (plen != (sizeof(struct sctp_auth_random) +
1823 			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1824 				SCTPDBG(SCTP_DEBUG_AUTH1,
1825 				    "SCTP: invalid RANDOM len\n");
1826 				return (-1);
1827 			}
1828 			got_random = 1;
1829 		} else if (ptype == SCTP_HMAC_LIST) {
1830 			struct sctp_auth_hmac_algo *hmacs;
1831 			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1832 			int num_hmacs;
1833 
1834 			if (plen > sizeof(store)) {
1835 				break;
1836 			}
1837 			phdr = sctp_get_next_param(m, offset,
1838 			    (struct sctp_paramhdr *)store,
1839 			    plen);
1840 			if (phdr == NULL) {
1841 				return (-1);
1842 			}
1843 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1844 			num_hmacs = (plen - sizeof(*hmacs)) / sizeof(hmacs->hmac_ids[0]);
1845 			/* validate the hmac list */
1846 			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1847 				SCTPDBG(SCTP_DEBUG_AUTH1,
1848 				    "SCTP: invalid HMAC param\n");
1849 				return (-1);
1850 			}
1851 			got_hmacs = 1;
1852 		} else if (ptype == SCTP_CHUNK_LIST) {
1853 			struct sctp_auth_chunk_list *chunks;
1854 			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1855 			int i, num_chunks;
1856 
1857 			if (plen > sizeof(chunks_store)) {
1858 				break;
1859 			}
1860 			phdr = sctp_get_next_param(m, offset,
1861 			    (struct sctp_paramhdr *)chunks_store,
1862 			    plen);
1863 			if (phdr == NULL) {
1864 				return (-1);
1865 			}
1866 			/*-
1867 			 * Flip through the list and mark that the
1868 			 * peer supports asconf/asconf_ack.
1869 			 */
1870 			chunks = (struct sctp_auth_chunk_list *)phdr;
1871 			num_chunks = plen - sizeof(*chunks);
1872 			for (i = 0; i < num_chunks; i++) {
1873 				/* record asconf/asconf-ack if listed */
1874 				if (chunks->chunk_types[i] == SCTP_ASCONF)
1875 					saw_asconf = 1;
1876 				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
1877 					saw_asconf_ack = 1;
1878 			}
1879 			if (num_chunks)
1880 				got_chklist = 1;
1881 		}
1882 
1883 		offset += SCTP_SIZE32(plen);
1884 		if (offset >= limit) {
1885 			break;
1886 		}
1887 		phdr = sctp_get_next_param(m, offset, &param_buf,
1888 		    sizeof(param_buf));
1889 	}
1890 	/* validate authentication required parameters */
1891 	if (got_random && got_hmacs) {
1892 		peer_supports_auth = 1;
1893 	} else {
1894 		peer_supports_auth = 0;
1895 	}
1896 	if (!peer_supports_auth && got_chklist) {
1897 		SCTPDBG(SCTP_DEBUG_AUTH1,
1898 		    "SCTP: peer sent chunk list w/o AUTH\n");
1899 		return (-1);
1900 	}
1901 	if (peer_supports_asconf && !peer_supports_auth) {
1902 		SCTPDBG(SCTP_DEBUG_AUTH1,
1903 		    "SCTP: peer supports ASCONF but not AUTH\n");
1904 		return (-1);
1905 	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
1906 	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
1907 		return (-2);
1908 	}
1909 	return (0);
1910 }
1911 
1912 void
1913 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
1914 {
1915 	uint16_t chunks_len = 0;
1916 	uint16_t hmacs_len = 0;
1917 	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
1918 	sctp_key_t *new_key;
1919 	uint16_t keylen;
1920 
1921 	/* initialize hmac list from endpoint */
1922 	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
1923 	if (stcb->asoc.local_hmacs != NULL) {
1924 		hmacs_len = stcb->asoc.local_hmacs->num_algo *
1925 		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
1926 	}
1927 	/* initialize auth chunks list from endpoint */
1928 	stcb->asoc.local_auth_chunks =
1929 	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
1930 	if (stcb->asoc.local_auth_chunks != NULL) {
1931 		int i;
1932 
1933 		for (i = 0; i < 256; i++) {
1934 			if (stcb->asoc.local_auth_chunks->chunks[i])
1935 				chunks_len++;
1936 		}
1937 	}
1938 	/* copy defaults from the endpoint */
1939 	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
1940 
1941 	/* copy out the shared key list (by reference) from the endpoint */
1942 	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
1943 	    &stcb->asoc.shared_keys);
1944 
1945 	/* now set the concatenated key (random + chunks + hmacs) */
1946 	/* key includes parameter headers */
1947 	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
1948 	    hmacs_len;
1949 	new_key = sctp_alloc_key(keylen);
1950 	if (new_key != NULL) {
1951 		struct sctp_paramhdr *ph;
1952 		int plen;
1953 
1954 		/* generate and copy in the RANDOM */
1955 		ph = (struct sctp_paramhdr *)new_key->key;
1956 		ph->param_type = htons(SCTP_RANDOM);
1957 		plen = sizeof(*ph) + random_len;
1958 		ph->param_length = htons(plen);
1959 		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
1960 		keylen = plen;
1961 
1962 		/* append in the AUTH chunks */
1963 		/* NOTE: currently we always have chunks to list */
1964 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
1965 		ph->param_type = htons(SCTP_CHUNK_LIST);
1966 		plen = sizeof(*ph) + chunks_len;
1967 		ph->param_length = htons(plen);
1968 		keylen += sizeof(*ph);
1969 		if (stcb->asoc.local_auth_chunks) {
1970 			int i;
1971 
1972 			for (i = 0; i < 256; i++) {
1973 				if (stcb->asoc.local_auth_chunks->chunks[i])
1974 					new_key->key[keylen++] = i;
1975 			}
1976 		}
1977 
1978 		/* append in the HMACs */
1979 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
1980 		ph->param_type = htons(SCTP_HMAC_LIST);
1981 		plen = sizeof(*ph) + hmacs_len;
1982 		ph->param_length = htons(plen);
1983 		keylen += sizeof(*ph);
1984 		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
1985 		    new_key->key + keylen);
1986 	}
1987 	if (stcb->asoc.authinfo.random != NULL)
1988 		sctp_free_key(stcb->asoc.authinfo.random);
1989 	stcb->asoc.authinfo.random = new_key;
1990 	stcb->asoc.authinfo.random_len = random_len;
1991 }
1992