xref: /freebsd/sys/netinet/sctp_auth.c (revision 09d325677d53a12c79a43664ff29871e92247629)
1 /*-
2  * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
3  * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
4  * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * a) Redistributions of source code must retain the above copyright notice,
10  *    this list of conditions and the following disclaimer.
11  *
12  * b) Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the distribution.
15  *
16  * c) Neither the name of Cisco Systems, Inc. nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <netinet/sctp_os.h>
37 #include <netinet/sctp.h>
38 #include <netinet/sctp_header.h>
39 #include <netinet/sctp_pcb.h>
40 #include <netinet/sctp_var.h>
41 #include <netinet/sctp_sysctl.h>
42 #include <netinet/sctputil.h>
43 #include <netinet/sctp_indata.h>
44 #include <netinet/sctp_output.h>
45 #include <netinet/sctp_auth.h>
46 
47 #ifdef SCTP_DEBUG
48 #define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
49 #define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
50 #endif				/* SCTP_DEBUG */
51 
52 
53 void
54 sctp_clear_chunklist(sctp_auth_chklist_t * chklist)
55 {
56 	bzero(chklist, sizeof(*chklist));
57 	/* chklist->num_chunks = 0; */
58 }
59 
60 sctp_auth_chklist_t *
61 sctp_alloc_chunklist(void)
62 {
63 	sctp_auth_chklist_t *chklist;
64 
65 	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
66 	    SCTP_M_AUTH_CL);
67 	if (chklist == NULL) {
68 		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
69 	} else {
70 		sctp_clear_chunklist(chklist);
71 	}
72 	return (chklist);
73 }
74 
75 void
76 sctp_free_chunklist(sctp_auth_chklist_t * list)
77 {
78 	if (list != NULL)
79 		SCTP_FREE(list, SCTP_M_AUTH_CL);
80 }
81 
82 sctp_auth_chklist_t *
83 sctp_copy_chunklist(sctp_auth_chklist_t * list)
84 {
85 	sctp_auth_chklist_t *new_list;
86 
87 	if (list == NULL)
88 		return (NULL);
89 
90 	/* get a new list */
91 	new_list = sctp_alloc_chunklist();
92 	if (new_list == NULL)
93 		return (NULL);
94 	/* copy it */
95 	bcopy(list, new_list, sizeof(*new_list));
96 
97 	return (new_list);
98 }
99 
100 
101 /*
102  * add a chunk to the required chunks list
103  */
104 int
105 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
106 {
107 	if (list == NULL)
108 		return (-1);
109 
110 	/* is chunk restricted? */
111 	if ((chunk == SCTP_INITIATION) ||
112 	    (chunk == SCTP_INITIATION_ACK) ||
113 	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
114 	    (chunk == SCTP_AUTHENTICATION)) {
115 		return (-1);
116 	}
117 	if (list->chunks[chunk] == 0) {
118 		list->chunks[chunk] = 1;
119 		list->num_chunks++;
120 		SCTPDBG(SCTP_DEBUG_AUTH1,
121 		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
122 		    chunk, chunk);
123 	}
124 	return (0);
125 }
126 
127 /*
128  * delete a chunk from the required chunks list
129  */
130 int
131 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
132 {
133 	if (list == NULL)
134 		return (-1);
135 
136 	/* is chunk restricted? */
137 	if ((chunk == SCTP_ASCONF) ||
138 	    (chunk == SCTP_ASCONF_ACK)) {
139 		return (-1);
140 	}
141 	if (list->chunks[chunk] == 1) {
142 		list->chunks[chunk] = 0;
143 		list->num_chunks--;
144 		SCTPDBG(SCTP_DEBUG_AUTH1,
145 		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
146 		    chunk, chunk);
147 	}
148 	return (0);
149 }
150 
151 size_t
152 sctp_auth_get_chklist_size(const sctp_auth_chklist_t * list)
153 {
154 	if (list == NULL)
155 		return (0);
156 	else
157 		return (list->num_chunks);
158 }
159 
160 /*
161  * set the default list of chunks requiring AUTH
162  */
163 void
164 sctp_auth_set_default_chunks(sctp_auth_chklist_t * list)
165 {
166 	(void)sctp_auth_add_chunk(SCTP_ASCONF, list);
167 	(void)sctp_auth_add_chunk(SCTP_ASCONF_ACK, list);
168 }
169 
170 /*
171  * return the current number and list of required chunks caller must
172  * guarantee ptr has space for up to 256 bytes
173  */
174 int
175 sctp_serialize_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
176 {
177 	int i, count = 0;
178 
179 	if (list == NULL)
180 		return (0);
181 
182 	for (i = 0; i < 256; i++) {
183 		if (list->chunks[i] != 0) {
184 			*ptr++ = i;
185 			count++;
186 		}
187 	}
188 	return (count);
189 }
190 
191 int
192 sctp_pack_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
193 {
194 	int i, size = 0;
195 
196 	if (list == NULL)
197 		return (0);
198 
199 	if (list->num_chunks <= 32) {
200 		/* just list them, one byte each */
201 		for (i = 0; i < 256; i++) {
202 			if (list->chunks[i] != 0) {
203 				*ptr++ = i;
204 				size++;
205 			}
206 		}
207 	} else {
208 		int index, offset;
209 
210 		/* pack into a 32 byte bitfield */
211 		for (i = 0; i < 256; i++) {
212 			if (list->chunks[i] != 0) {
213 				index = i / 8;
214 				offset = i % 8;
215 				ptr[index] |= (1 << offset);
216 			}
217 		}
218 		size = 32;
219 	}
220 	return (size);
221 }
222 
223 int
224 sctp_unpack_auth_chunks(const uint8_t * ptr, uint8_t num_chunks,
225     sctp_auth_chklist_t * list)
226 {
227 	int i;
228 	int size;
229 
230 	if (list == NULL)
231 		return (0);
232 
233 	if (num_chunks <= 32) {
234 		/* just pull them, one byte each */
235 		for (i = 0; i < num_chunks; i++) {
236 			(void)sctp_auth_add_chunk(*ptr++, list);
237 		}
238 		size = num_chunks;
239 	} else {
240 		int index, offset;
241 
242 		/* unpack from a 32 byte bitfield */
243 		for (index = 0; index < 32; index++) {
244 			for (offset = 0; offset < 8; offset++) {
245 				if (ptr[index] & (1 << offset)) {
246 					(void)sctp_auth_add_chunk((index * 8) + offset, list);
247 				}
248 			}
249 		}
250 		size = 32;
251 	}
252 	return (size);
253 }
254 
255 
256 /*
257  * allocate structure space for a key of length keylen
258  */
259 sctp_key_t *
260 sctp_alloc_key(uint32_t keylen)
261 {
262 	sctp_key_t *new_key;
263 
264 	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
265 	    SCTP_M_AUTH_KY);
266 	if (new_key == NULL) {
267 		/* out of memory */
268 		return (NULL);
269 	}
270 	new_key->keylen = keylen;
271 	return (new_key);
272 }
273 
274 void
275 sctp_free_key(sctp_key_t * key)
276 {
277 	if (key != NULL)
278 		SCTP_FREE(key, SCTP_M_AUTH_KY);
279 }
280 
281 void
282 sctp_print_key(sctp_key_t * key, const char *str)
283 {
284 	uint32_t i;
285 
286 	if (key == NULL) {
287 		SCTP_PRINTF("%s: [Null key]\n", str);
288 		return;
289 	}
290 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
291 	if (key->keylen) {
292 		for (i = 0; i < key->keylen; i++)
293 			SCTP_PRINTF("%02x", key->key[i]);
294 		SCTP_PRINTF("\n");
295 	} else {
296 		SCTP_PRINTF("[Null key]\n");
297 	}
298 }
299 
300 void
301 sctp_show_key(sctp_key_t * key, const char *str)
302 {
303 	uint32_t i;
304 
305 	if (key == NULL) {
306 		SCTP_PRINTF("%s: [Null key]\n", str);
307 		return;
308 	}
309 	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
310 	if (key->keylen) {
311 		for (i = 0; i < key->keylen; i++)
312 			SCTP_PRINTF("%02x", key->key[i]);
313 		SCTP_PRINTF("\n");
314 	} else {
315 		SCTP_PRINTF("[Null key]\n");
316 	}
317 }
318 
319 static uint32_t
320 sctp_get_keylen(sctp_key_t * key)
321 {
322 	if (key != NULL)
323 		return (key->keylen);
324 	else
325 		return (0);
326 }
327 
328 /*
329  * generate a new random key of length 'keylen'
330  */
331 sctp_key_t *
332 sctp_generate_random_key(uint32_t keylen)
333 {
334 	sctp_key_t *new_key;
335 
336 	/* validate keylen */
337 	if (keylen > SCTP_AUTH_RANDOM_SIZE_MAX)
338 		keylen = SCTP_AUTH_RANDOM_SIZE_MAX;
339 
340 	new_key = sctp_alloc_key(keylen);
341 	if (new_key == NULL) {
342 		/* out of memory */
343 		return (NULL);
344 	}
345 	SCTP_READ_RANDOM(new_key->key, keylen);
346 	new_key->keylen = keylen;
347 	return (new_key);
348 }
349 
350 sctp_key_t *
351 sctp_set_key(uint8_t * key, uint32_t keylen)
352 {
353 	sctp_key_t *new_key;
354 
355 	new_key = sctp_alloc_key(keylen);
356 	if (new_key == NULL) {
357 		/* out of memory */
358 		return (NULL);
359 	}
360 	bcopy(key, new_key->key, keylen);
361 	return (new_key);
362 }
363 
364 /*-
365  * given two keys of variable size, compute which key is "larger/smaller"
366  * returns:  1 if key1 > key2
367  *          -1 if key1 < key2
368  *           0 if key1 = key2
369  */
370 static int
371 sctp_compare_key(sctp_key_t * key1, sctp_key_t * key2)
372 {
373 	uint32_t maxlen;
374 	uint32_t i;
375 	uint32_t key1len, key2len;
376 	uint8_t *key_1, *key_2;
377 	uint8_t temp[SCTP_AUTH_RANDOM_SIZE_MAX];
378 
379 	/* sanity/length check */
380 	key1len = sctp_get_keylen(key1);
381 	key2len = sctp_get_keylen(key2);
382 	if ((key1len == 0) && (key2len == 0))
383 		return (0);
384 	else if (key1len == 0)
385 		return (-1);
386 	else if (key2len == 0)
387 		return (1);
388 
389 	if (key1len != key2len) {
390 		if (key1len >= key2len)
391 			maxlen = key1len;
392 		else
393 			maxlen = key2len;
394 		bzero(temp, maxlen);
395 		if (key1len < maxlen) {
396 			/* prepend zeroes to key1 */
397 			bcopy(key1->key, temp + (maxlen - key1len), key1len);
398 			key_1 = temp;
399 			key_2 = key2->key;
400 		} else {
401 			/* prepend zeroes to key2 */
402 			bcopy(key2->key, temp + (maxlen - key2len), key2len);
403 			key_1 = key1->key;
404 			key_2 = temp;
405 		}
406 	} else {
407 		maxlen = key1len;
408 		key_1 = key1->key;
409 		key_2 = key2->key;
410 	}
411 
412 	for (i = 0; i < maxlen; i++) {
413 		if (*key_1 > *key_2)
414 			return (1);
415 		else if (*key_1 < *key_2)
416 			return (-1);
417 		key_1++;
418 		key_2++;
419 	}
420 
421 	/* keys are equal value, so check lengths */
422 	if (key1len == key2len)
423 		return (0);
424 	else if (key1len < key2len)
425 		return (-1);
426 	else
427 		return (1);
428 }
429 
430 /*
431  * generate the concatenated keying material based on the two keys and the
432  * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
433  * order for concatenation
434  */
435 sctp_key_t *
436 sctp_compute_hashkey(sctp_key_t * key1, sctp_key_t * key2, sctp_key_t * shared)
437 {
438 	uint32_t keylen;
439 	sctp_key_t *new_key;
440 	uint8_t *key_ptr;
441 
442 	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
443 	    sctp_get_keylen(shared);
444 
445 	if (keylen > 0) {
446 		/* get space for the new key */
447 		new_key = sctp_alloc_key(keylen);
448 		if (new_key == NULL) {
449 			/* out of memory */
450 			return (NULL);
451 		}
452 		new_key->keylen = keylen;
453 		key_ptr = new_key->key;
454 	} else {
455 		/* all keys empty/null?! */
456 		return (NULL);
457 	}
458 
459 	/* concatenate the keys */
460 	if (sctp_compare_key(key1, key2) <= 0) {
461 		/* key is shared + key1 + key2 */
462 		if (sctp_get_keylen(shared)) {
463 			bcopy(shared->key, key_ptr, shared->keylen);
464 			key_ptr += shared->keylen;
465 		}
466 		if (sctp_get_keylen(key1)) {
467 			bcopy(key1->key, key_ptr, key1->keylen);
468 			key_ptr += key1->keylen;
469 		}
470 		if (sctp_get_keylen(key2)) {
471 			bcopy(key2->key, key_ptr, key2->keylen);
472 		}
473 	} else {
474 		/* key is shared + key2 + key1 */
475 		if (sctp_get_keylen(shared)) {
476 			bcopy(shared->key, key_ptr, shared->keylen);
477 			key_ptr += shared->keylen;
478 		}
479 		if (sctp_get_keylen(key2)) {
480 			bcopy(key2->key, key_ptr, key2->keylen);
481 			key_ptr += key2->keylen;
482 		}
483 		if (sctp_get_keylen(key1)) {
484 			bcopy(key1->key, key_ptr, key1->keylen);
485 		}
486 	}
487 	return (new_key);
488 }
489 
490 
491 sctp_sharedkey_t *
492 sctp_alloc_sharedkey(void)
493 {
494 	sctp_sharedkey_t *new_key;
495 
496 	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
497 	    SCTP_M_AUTH_KY);
498 	if (new_key == NULL) {
499 		/* out of memory */
500 		return (NULL);
501 	}
502 	new_key->keyid = 0;
503 	new_key->key = NULL;
504 	new_key->refcount = 1;
505 	new_key->deactivated = 0;
506 	return (new_key);
507 }
508 
509 void
510 sctp_free_sharedkey(sctp_sharedkey_t * skey)
511 {
512 	if (skey == NULL)
513 		return;
514 
515 	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
516 		if (skey->key != NULL)
517 			sctp_free_key(skey->key);
518 		SCTP_FREE(skey, SCTP_M_AUTH_KY);
519 	}
520 }
521 
522 sctp_sharedkey_t *
523 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
524 {
525 	sctp_sharedkey_t *skey;
526 
527 	LIST_FOREACH(skey, shared_keys, next) {
528 		if (skey->keyid == key_id)
529 			return (skey);
530 	}
531 	return (NULL);
532 }
533 
534 int
535 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
536     sctp_sharedkey_t * new_skey)
537 {
538 	sctp_sharedkey_t *skey;
539 
540 	if ((shared_keys == NULL) || (new_skey == NULL))
541 		return (EINVAL);
542 
543 	/* insert into an empty list? */
544 	if (LIST_EMPTY(shared_keys)) {
545 		LIST_INSERT_HEAD(shared_keys, new_skey, next);
546 		return (0);
547 	}
548 	/* insert into the existing list, ordered by key id */
549 	LIST_FOREACH(skey, shared_keys, next) {
550 		if (new_skey->keyid < skey->keyid) {
551 			/* insert it before here */
552 			LIST_INSERT_BEFORE(skey, new_skey, next);
553 			return (0);
554 		} else if (new_skey->keyid == skey->keyid) {
555 			/* replace the existing key */
556 			/* verify this key *can* be replaced */
557 			if ((skey->deactivated) && (skey->refcount > 1)) {
558 				SCTPDBG(SCTP_DEBUG_AUTH1,
559 				    "can't replace shared key id %u\n",
560 				    new_skey->keyid);
561 				return (EBUSY);
562 			}
563 			SCTPDBG(SCTP_DEBUG_AUTH1,
564 			    "replacing shared key id %u\n",
565 			    new_skey->keyid);
566 			LIST_INSERT_BEFORE(skey, new_skey, next);
567 			LIST_REMOVE(skey, next);
568 			sctp_free_sharedkey(skey);
569 			return (0);
570 		}
571 		if (LIST_NEXT(skey, next) == NULL) {
572 			/* belongs at the end of the list */
573 			LIST_INSERT_AFTER(skey, new_skey, next);
574 			return (0);
575 		}
576 	}
577 	/* shouldn't reach here */
578 	return (0);
579 }
580 
581 void
582 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
583 {
584 	sctp_sharedkey_t *skey;
585 
586 	/* find the shared key */
587 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
588 
589 	/* bump the ref count */
590 	if (skey) {
591 		atomic_add_int(&skey->refcount, 1);
592 		SCTPDBG(SCTP_DEBUG_AUTH2,
593 		    "%s: stcb %p key %u refcount acquire to %d\n",
594 		    __FUNCTION__, (void *)stcb, key_id, skey->refcount);
595 	}
596 }
597 
598 void
599 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked
600 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
601     SCTP_UNUSED
602 #endif
603 )
604 {
605 	sctp_sharedkey_t *skey;
606 
607 	/* find the shared key */
608 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
609 
610 	/* decrement the ref count */
611 	if (skey) {
612 		sctp_free_sharedkey(skey);
613 		SCTPDBG(SCTP_DEBUG_AUTH2,
614 		    "%s: stcb %p key %u refcount release to %d\n",
615 		    __FUNCTION__, (void *)stcb, key_id, skey->refcount);
616 
617 		/* see if a notification should be generated */
618 		if ((skey->refcount <= 1) && (skey->deactivated)) {
619 			/* notify ULP that key is no longer used */
620 			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
621 			    key_id, 0, so_locked);
622 			SCTPDBG(SCTP_DEBUG_AUTH2,
623 			    "%s: stcb %p key %u no longer used, %d\n",
624 			    __FUNCTION__, (void *)stcb, key_id, skey->refcount);
625 		}
626 	}
627 }
628 
629 static sctp_sharedkey_t *
630 sctp_copy_sharedkey(const sctp_sharedkey_t * skey)
631 {
632 	sctp_sharedkey_t *new_skey;
633 
634 	if (skey == NULL)
635 		return (NULL);
636 	new_skey = sctp_alloc_sharedkey();
637 	if (new_skey == NULL)
638 		return (NULL);
639 	if (skey->key != NULL)
640 		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
641 	else
642 		new_skey->key = NULL;
643 	new_skey->keyid = skey->keyid;
644 	return (new_skey);
645 }
646 
647 int
648 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
649 {
650 	sctp_sharedkey_t *skey, *new_skey;
651 	int count = 0;
652 
653 	if ((src == NULL) || (dest == NULL))
654 		return (0);
655 	LIST_FOREACH(skey, src, next) {
656 		new_skey = sctp_copy_sharedkey(skey);
657 		if (new_skey != NULL) {
658 			(void)sctp_insert_sharedkey(dest, new_skey);
659 			count++;
660 		}
661 	}
662 	return (count);
663 }
664 
665 
666 sctp_hmaclist_t *
667 sctp_alloc_hmaclist(uint8_t num_hmacs)
668 {
669 	sctp_hmaclist_t *new_list;
670 	int alloc_size;
671 
672 	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
673 	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
674 	    SCTP_M_AUTH_HL);
675 	if (new_list == NULL) {
676 		/* out of memory */
677 		return (NULL);
678 	}
679 	new_list->max_algo = num_hmacs;
680 	new_list->num_algo = 0;
681 	return (new_list);
682 }
683 
684 void
685 sctp_free_hmaclist(sctp_hmaclist_t * list)
686 {
687 	if (list != NULL) {
688 		SCTP_FREE(list, SCTP_M_AUTH_HL);
689 		list = NULL;
690 	}
691 }
692 
693 int
694 sctp_auth_add_hmacid(sctp_hmaclist_t * list, uint16_t hmac_id)
695 {
696 	int i;
697 
698 	if (list == NULL)
699 		return (-1);
700 	if (list->num_algo == list->max_algo) {
701 		SCTPDBG(SCTP_DEBUG_AUTH1,
702 		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
703 		return (-1);
704 	}
705 	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
706 	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) {
707 		return (-1);
708 	}
709 	/* Now is it already in the list */
710 	for (i = 0; i < list->num_algo; i++) {
711 		if (list->hmac[i] == hmac_id) {
712 			/* already in list */
713 			return (-1);
714 		}
715 	}
716 	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
717 	list->hmac[list->num_algo++] = hmac_id;
718 	return (0);
719 }
720 
721 sctp_hmaclist_t *
722 sctp_copy_hmaclist(sctp_hmaclist_t * list)
723 {
724 	sctp_hmaclist_t *new_list;
725 	int i;
726 
727 	if (list == NULL)
728 		return (NULL);
729 	/* get a new list */
730 	new_list = sctp_alloc_hmaclist(list->max_algo);
731 	if (new_list == NULL)
732 		return (NULL);
733 	/* copy it */
734 	new_list->max_algo = list->max_algo;
735 	new_list->num_algo = list->num_algo;
736 	for (i = 0; i < list->num_algo; i++)
737 		new_list->hmac[i] = list->hmac[i];
738 	return (new_list);
739 }
740 
741 sctp_hmaclist_t *
742 sctp_default_supported_hmaclist(void)
743 {
744 	sctp_hmaclist_t *new_list;
745 
746 	new_list = sctp_alloc_hmaclist(2);
747 	if (new_list == NULL)
748 		return (NULL);
749 	/* We prefer SHA256, so list it first */
750 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
751 	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
752 	return (new_list);
753 }
754 
755 /*-
756  * HMAC algos are listed in priority/preference order
757  * find the best HMAC id to use for the peer based on local support
758  */
759 uint16_t
760 sctp_negotiate_hmacid(sctp_hmaclist_t * peer, sctp_hmaclist_t * local)
761 {
762 	int i, j;
763 
764 	if ((local == NULL) || (peer == NULL))
765 		return (SCTP_AUTH_HMAC_ID_RSVD);
766 
767 	for (i = 0; i < peer->num_algo; i++) {
768 		for (j = 0; j < local->num_algo; j++) {
769 			if (peer->hmac[i] == local->hmac[j]) {
770 				/* found the "best" one */
771 				SCTPDBG(SCTP_DEBUG_AUTH1,
772 				    "SCTP: negotiated peer HMAC id %u\n",
773 				    peer->hmac[i]);
774 				return (peer->hmac[i]);
775 			}
776 		}
777 	}
778 	/* didn't find one! */
779 	return (SCTP_AUTH_HMAC_ID_RSVD);
780 }
781 
782 /*-
783  * serialize the HMAC algo list and return space used
784  * caller must guarantee ptr has appropriate space
785  */
786 int
787 sctp_serialize_hmaclist(sctp_hmaclist_t * list, uint8_t * ptr)
788 {
789 	int i;
790 	uint16_t hmac_id;
791 
792 	if (list == NULL)
793 		return (0);
794 
795 	for (i = 0; i < list->num_algo; i++) {
796 		hmac_id = htons(list->hmac[i]);
797 		bcopy(&hmac_id, ptr, sizeof(hmac_id));
798 		ptr += sizeof(hmac_id);
799 	}
800 	return (list->num_algo * sizeof(hmac_id));
801 }
802 
803 int
804 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
805 {
806 	uint32_t i;
807 
808 	for (i = 0; i < num_hmacs; i++) {
809 		if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) {
810 			return (0);
811 		}
812 	}
813 	return (-1);
814 }
815 
816 sctp_authinfo_t *
817 sctp_alloc_authinfo(void)
818 {
819 	sctp_authinfo_t *new_authinfo;
820 
821 	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
822 	    SCTP_M_AUTH_IF);
823 
824 	if (new_authinfo == NULL) {
825 		/* out of memory */
826 		return (NULL);
827 	}
828 	bzero(new_authinfo, sizeof(*new_authinfo));
829 	return (new_authinfo);
830 }
831 
832 void
833 sctp_free_authinfo(sctp_authinfo_t * authinfo)
834 {
835 	if (authinfo == NULL)
836 		return;
837 
838 	if (authinfo->random != NULL)
839 		sctp_free_key(authinfo->random);
840 	if (authinfo->peer_random != NULL)
841 		sctp_free_key(authinfo->peer_random);
842 	if (authinfo->assoc_key != NULL)
843 		sctp_free_key(authinfo->assoc_key);
844 	if (authinfo->recv_key != NULL)
845 		sctp_free_key(authinfo->recv_key);
846 
847 	/* We are NOT dynamically allocating authinfo's right now... */
848 	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
849 }
850 
851 
852 uint32_t
853 sctp_get_auth_chunk_len(uint16_t hmac_algo)
854 {
855 	int size;
856 
857 	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
858 	return (SCTP_SIZE32(size));
859 }
860 
861 uint32_t
862 sctp_get_hmac_digest_len(uint16_t hmac_algo)
863 {
864 	switch (hmac_algo) {
865 	case SCTP_AUTH_HMAC_ID_SHA1:
866 		return (SCTP_AUTH_DIGEST_LEN_SHA1);
867 	case SCTP_AUTH_HMAC_ID_SHA256:
868 		return (SCTP_AUTH_DIGEST_LEN_SHA256);
869 	default:
870 		/* unknown HMAC algorithm: can't do anything */
871 		return (0);
872 	}			/* end switch */
873 }
874 
875 static inline int
876 sctp_get_hmac_block_len(uint16_t hmac_algo)
877 {
878 	switch (hmac_algo) {
879 	case SCTP_AUTH_HMAC_ID_SHA1:
880 		return (64);
881 	case SCTP_AUTH_HMAC_ID_SHA256:
882 		return (64);
883 	case SCTP_AUTH_HMAC_ID_RSVD:
884 	default:
885 		/* unknown HMAC algorithm: can't do anything */
886 		return (0);
887 	}			/* end switch */
888 }
889 
890 static void
891 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t * ctx)
892 {
893 	switch (hmac_algo) {
894 	case SCTP_AUTH_HMAC_ID_SHA1:
895 		SCTP_SHA1_INIT(&ctx->sha1);
896 		break;
897 	case SCTP_AUTH_HMAC_ID_SHA256:
898 		SCTP_SHA256_INIT(&ctx->sha256);
899 		break;
900 	case SCTP_AUTH_HMAC_ID_RSVD:
901 	default:
902 		/* unknown HMAC algorithm: can't do anything */
903 		return;
904 	}			/* end switch */
905 }
906 
907 static void
908 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t * ctx,
909     uint8_t * text, uint32_t textlen)
910 {
911 	switch (hmac_algo) {
912 	case SCTP_AUTH_HMAC_ID_SHA1:
913 		SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen);
914 		break;
915 	case SCTP_AUTH_HMAC_ID_SHA256:
916 		SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen);
917 		break;
918 	case SCTP_AUTH_HMAC_ID_RSVD:
919 	default:
920 		/* unknown HMAC algorithm: can't do anything */
921 		return;
922 	}			/* end switch */
923 }
924 
925 static void
926 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t * ctx,
927     uint8_t * digest)
928 {
929 	switch (hmac_algo) {
930 	case SCTP_AUTH_HMAC_ID_SHA1:
931 		SCTP_SHA1_FINAL(digest, &ctx->sha1);
932 		break;
933 	case SCTP_AUTH_HMAC_ID_SHA256:
934 		SCTP_SHA256_FINAL(digest, &ctx->sha256);
935 		break;
936 	case SCTP_AUTH_HMAC_ID_RSVD:
937 	default:
938 		/* unknown HMAC algorithm: can't do anything */
939 		return;
940 	}			/* end switch */
941 }
942 
943 /*-
944  * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
945  *
946  * Compute the HMAC digest using the desired hash key, text, and HMAC
947  * algorithm.  Resulting digest is placed in 'digest' and digest length
948  * is returned, if the HMAC was performed.
949  *
950  * WARNING: it is up to the caller to supply sufficient space to hold the
951  * resultant digest.
952  */
953 uint32_t
954 sctp_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
955     uint8_t * text, uint32_t textlen, uint8_t * digest)
956 {
957 	uint32_t digestlen;
958 	uint32_t blocklen;
959 	sctp_hash_context_t ctx;
960 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
961 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
962 	uint32_t i;
963 
964 	/* sanity check the material and length */
965 	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
966 	    (textlen == 0) || (digest == NULL)) {
967 		/* can't do HMAC with empty key or text or digest store */
968 		return (0);
969 	}
970 	/* validate the hmac algo and get the digest length */
971 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
972 	if (digestlen == 0)
973 		return (0);
974 
975 	/* hash the key if it is longer than the hash block size */
976 	blocklen = sctp_get_hmac_block_len(hmac_algo);
977 	if (keylen > blocklen) {
978 		sctp_hmac_init(hmac_algo, &ctx);
979 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
980 		sctp_hmac_final(hmac_algo, &ctx, temp);
981 		/* set the hashed key as the key */
982 		keylen = digestlen;
983 		key = temp;
984 	}
985 	/* initialize the inner/outer pads with the key and "append" zeroes */
986 	bzero(ipad, blocklen);
987 	bzero(opad, blocklen);
988 	bcopy(key, ipad, keylen);
989 	bcopy(key, opad, keylen);
990 
991 	/* XOR the key with ipad and opad values */
992 	for (i = 0; i < blocklen; i++) {
993 		ipad[i] ^= 0x36;
994 		opad[i] ^= 0x5c;
995 	}
996 
997 	/* perform inner hash */
998 	sctp_hmac_init(hmac_algo, &ctx);
999 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1000 	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
1001 	sctp_hmac_final(hmac_algo, &ctx, temp);
1002 
1003 	/* perform outer hash */
1004 	sctp_hmac_init(hmac_algo, &ctx);
1005 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1006 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1007 	sctp_hmac_final(hmac_algo, &ctx, digest);
1008 
1009 	return (digestlen);
1010 }
1011 
1012 /* mbuf version */
1013 uint32_t
1014 sctp_hmac_m(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1015     struct mbuf *m, uint32_t m_offset, uint8_t * digest, uint32_t trailer)
1016 {
1017 	uint32_t digestlen;
1018 	uint32_t blocklen;
1019 	sctp_hash_context_t ctx;
1020 	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
1021 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1022 	uint32_t i;
1023 	struct mbuf *m_tmp;
1024 
1025 	/* sanity check the material and length */
1026 	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
1027 		/* can't do HMAC with empty key or text or digest store */
1028 		return (0);
1029 	}
1030 	/* validate the hmac algo and get the digest length */
1031 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1032 	if (digestlen == 0)
1033 		return (0);
1034 
1035 	/* hash the key if it is longer than the hash block size */
1036 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1037 	if (keylen > blocklen) {
1038 		sctp_hmac_init(hmac_algo, &ctx);
1039 		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1040 		sctp_hmac_final(hmac_algo, &ctx, temp);
1041 		/* set the hashed key as the key */
1042 		keylen = digestlen;
1043 		key = temp;
1044 	}
1045 	/* initialize the inner/outer pads with the key and "append" zeroes */
1046 	bzero(ipad, blocklen);
1047 	bzero(opad, blocklen);
1048 	bcopy(key, ipad, keylen);
1049 	bcopy(key, opad, keylen);
1050 
1051 	/* XOR the key with ipad and opad values */
1052 	for (i = 0; i < blocklen; i++) {
1053 		ipad[i] ^= 0x36;
1054 		opad[i] ^= 0x5c;
1055 	}
1056 
1057 	/* perform inner hash */
1058 	sctp_hmac_init(hmac_algo, &ctx);
1059 	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1060 	/* find the correct starting mbuf and offset (get start of text) */
1061 	m_tmp = m;
1062 	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1063 		m_offset -= SCTP_BUF_LEN(m_tmp);
1064 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1065 	}
1066 	/* now use the rest of the mbuf chain for the text */
1067 	while (m_tmp != NULL) {
1068 		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1069 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1070 			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1071 		} else {
1072 			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1073 			    SCTP_BUF_LEN(m_tmp) - m_offset);
1074 		}
1075 
1076 		/* clear the offset since it's only for the first mbuf */
1077 		m_offset = 0;
1078 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1079 	}
1080 	sctp_hmac_final(hmac_algo, &ctx, temp);
1081 
1082 	/* perform outer hash */
1083 	sctp_hmac_init(hmac_algo, &ctx);
1084 	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1085 	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1086 	sctp_hmac_final(hmac_algo, &ctx, digest);
1087 
1088 	return (digestlen);
1089 }
1090 
1091 /*-
1092  * verify the HMAC digest using the desired hash key, text, and HMAC
1093  * algorithm.
1094  * Returns -1 on error, 0 on success.
1095  */
1096 int
1097 sctp_verify_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1098     uint8_t * text, uint32_t textlen,
1099     uint8_t * digest, uint32_t digestlen)
1100 {
1101 	uint32_t len;
1102 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1103 
1104 	/* sanity check the material and length */
1105 	if ((key == NULL) || (keylen == 0) ||
1106 	    (text == NULL) || (textlen == 0) || (digest == NULL)) {
1107 		/* can't do HMAC with empty key or text or digest */
1108 		return (-1);
1109 	}
1110 	len = sctp_get_hmac_digest_len(hmac_algo);
1111 	if ((len == 0) || (digestlen != len))
1112 		return (-1);
1113 
1114 	/* compute the expected hash */
1115 	if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len)
1116 		return (-1);
1117 
1118 	if (memcmp(digest, temp, digestlen) != 0)
1119 		return (-1);
1120 	else
1121 		return (0);
1122 }
1123 
1124 
1125 /*
1126  * computes the requested HMAC using a key struct (which may be modified if
1127  * the keylen exceeds the HMAC block len).
1128  */
1129 uint32_t
1130 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t * key, uint8_t * text,
1131     uint32_t textlen, uint8_t * digest)
1132 {
1133 	uint32_t digestlen;
1134 	uint32_t blocklen;
1135 	sctp_hash_context_t ctx;
1136 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1137 
1138 	/* sanity check */
1139 	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1140 	    (digest == NULL)) {
1141 		/* can't do HMAC with empty key or text or digest store */
1142 		return (0);
1143 	}
1144 	/* validate the hmac algo and get the digest length */
1145 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1146 	if (digestlen == 0)
1147 		return (0);
1148 
1149 	/* hash the key if it is longer than the hash block size */
1150 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1151 	if (key->keylen > blocklen) {
1152 		sctp_hmac_init(hmac_algo, &ctx);
1153 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1154 		sctp_hmac_final(hmac_algo, &ctx, temp);
1155 		/* save the hashed key as the new key */
1156 		key->keylen = digestlen;
1157 		bcopy(temp, key->key, key->keylen);
1158 	}
1159 	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1160 	    digest));
1161 }
1162 
1163 /* mbuf version */
1164 uint32_t
1165 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t * key, struct mbuf *m,
1166     uint32_t m_offset, uint8_t * digest)
1167 {
1168 	uint32_t digestlen;
1169 	uint32_t blocklen;
1170 	sctp_hash_context_t ctx;
1171 	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1172 
1173 	/* sanity check */
1174 	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1175 		/* can't do HMAC with empty key or text or digest store */
1176 		return (0);
1177 	}
1178 	/* validate the hmac algo and get the digest length */
1179 	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1180 	if (digestlen == 0)
1181 		return (0);
1182 
1183 	/* hash the key if it is longer than the hash block size */
1184 	blocklen = sctp_get_hmac_block_len(hmac_algo);
1185 	if (key->keylen > blocklen) {
1186 		sctp_hmac_init(hmac_algo, &ctx);
1187 		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1188 		sctp_hmac_final(hmac_algo, &ctx, temp);
1189 		/* save the hashed key as the new key */
1190 		key->keylen = digestlen;
1191 		bcopy(temp, key->key, key->keylen);
1192 	}
1193 	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1194 }
1195 
1196 int
1197 sctp_auth_is_supported_hmac(sctp_hmaclist_t * list, uint16_t id)
1198 {
1199 	int i;
1200 
1201 	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1202 		return (0);
1203 
1204 	for (i = 0; i < list->num_algo; i++)
1205 		if (list->hmac[i] == id)
1206 			return (1);
1207 
1208 	/* not in the list */
1209 	return (0);
1210 }
1211 
1212 
1213 /*-
1214  * clear any cached key(s) if they match the given key id on an association.
1215  * the cached key(s) will be recomputed and re-cached at next use.
1216  * ASSUMES TCB_LOCK is already held
1217  */
1218 void
1219 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1220 {
1221 	if (stcb == NULL)
1222 		return;
1223 
1224 	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1225 		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1226 		stcb->asoc.authinfo.assoc_key = NULL;
1227 	}
1228 	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1229 		sctp_free_key(stcb->asoc.authinfo.recv_key);
1230 		stcb->asoc.authinfo.recv_key = NULL;
1231 	}
1232 }
1233 
1234 /*-
1235  * clear any cached key(s) if they match the given key id for all assocs on
1236  * an endpoint.
1237  * ASSUMES INP_WLOCK is already held
1238  */
1239 void
1240 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1241 {
1242 	struct sctp_tcb *stcb;
1243 
1244 	if (inp == NULL)
1245 		return;
1246 
1247 	/* clear the cached keys on all assocs on this instance */
1248 	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1249 		SCTP_TCB_LOCK(stcb);
1250 		sctp_clear_cachedkeys(stcb, keyid);
1251 		SCTP_TCB_UNLOCK(stcb);
1252 	}
1253 }
1254 
1255 /*-
1256  * delete a shared key from an association
1257  * ASSUMES TCB_LOCK is already held
1258  */
1259 int
1260 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1261 {
1262 	sctp_sharedkey_t *skey;
1263 
1264 	if (stcb == NULL)
1265 		return (-1);
1266 
1267 	/* is the keyid the assoc active sending key */
1268 	if (keyid == stcb->asoc.authinfo.active_keyid)
1269 		return (-1);
1270 
1271 	/* does the key exist? */
1272 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1273 	if (skey == NULL)
1274 		return (-1);
1275 
1276 	/* are there other refcount holders on the key? */
1277 	if (skey->refcount > 1)
1278 		return (-1);
1279 
1280 	/* remove it */
1281 	LIST_REMOVE(skey, next);
1282 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1283 
1284 	/* clear any cached keys */
1285 	sctp_clear_cachedkeys(stcb, keyid);
1286 	return (0);
1287 }
1288 
1289 /*-
1290  * deletes a shared key from the endpoint
1291  * ASSUMES INP_WLOCK is already held
1292  */
1293 int
1294 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1295 {
1296 	sctp_sharedkey_t *skey;
1297 
1298 	if (inp == NULL)
1299 		return (-1);
1300 
1301 	/* is the keyid the active sending key on the endpoint */
1302 	if (keyid == inp->sctp_ep.default_keyid)
1303 		return (-1);
1304 
1305 	/* does the key exist? */
1306 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1307 	if (skey == NULL)
1308 		return (-1);
1309 
1310 	/* endpoint keys are not refcounted */
1311 
1312 	/* remove it */
1313 	LIST_REMOVE(skey, next);
1314 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1315 
1316 	/* clear any cached keys */
1317 	sctp_clear_cachedkeys_ep(inp, keyid);
1318 	return (0);
1319 }
1320 
1321 /*-
1322  * set the active key on an association
1323  * ASSUMES TCB_LOCK is already held
1324  */
1325 int
1326 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1327 {
1328 	sctp_sharedkey_t *skey = NULL;
1329 
1330 	/* find the key on the assoc */
1331 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1332 	if (skey == NULL) {
1333 		/* that key doesn't exist */
1334 		return (-1);
1335 	}
1336 	if ((skey->deactivated) && (skey->refcount > 1)) {
1337 		/* can't reactivate a deactivated key with other refcounts */
1338 		return (-1);
1339 	}
1340 	/* set the (new) active key */
1341 	stcb->asoc.authinfo.active_keyid = keyid;
1342 	/* reset the deactivated flag */
1343 	skey->deactivated = 0;
1344 
1345 	return (0);
1346 }
1347 
1348 /*-
1349  * set the active key on an endpoint
1350  * ASSUMES INP_WLOCK is already held
1351  */
1352 int
1353 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1354 {
1355 	sctp_sharedkey_t *skey;
1356 
1357 	/* find the key */
1358 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1359 	if (skey == NULL) {
1360 		/* that key doesn't exist */
1361 		return (-1);
1362 	}
1363 	inp->sctp_ep.default_keyid = keyid;
1364 	return (0);
1365 }
1366 
1367 /*-
1368  * deactivates a shared key from the association
1369  * ASSUMES INP_WLOCK is already held
1370  */
1371 int
1372 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1373 {
1374 	sctp_sharedkey_t *skey;
1375 
1376 	if (stcb == NULL)
1377 		return (-1);
1378 
1379 	/* is the keyid the assoc active sending key */
1380 	if (keyid == stcb->asoc.authinfo.active_keyid)
1381 		return (-1);
1382 
1383 	/* does the key exist? */
1384 	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1385 	if (skey == NULL)
1386 		return (-1);
1387 
1388 	/* are there other refcount holders on the key? */
1389 	if (skey->refcount == 1) {
1390 		/* no other users, send a notification for this key */
1391 		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1392 		    SCTP_SO_LOCKED);
1393 	}
1394 	/* mark the key as deactivated */
1395 	skey->deactivated = 1;
1396 
1397 	return (0);
1398 }
1399 
1400 /*-
1401  * deactivates a shared key from the endpoint
1402  * ASSUMES INP_WLOCK is already held
1403  */
1404 int
1405 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1406 {
1407 	sctp_sharedkey_t *skey;
1408 
1409 	if (inp == NULL)
1410 		return (-1);
1411 
1412 	/* is the keyid the active sending key on the endpoint */
1413 	if (keyid == inp->sctp_ep.default_keyid)
1414 		return (-1);
1415 
1416 	/* does the key exist? */
1417 	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1418 	if (skey == NULL)
1419 		return (-1);
1420 
1421 	/* endpoint keys are not refcounted */
1422 
1423 	/* remove it */
1424 	LIST_REMOVE(skey, next);
1425 	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1426 
1427 	return (0);
1428 }
1429 
1430 /*
1431  * get local authentication parameters from cookie (from INIT-ACK)
1432  */
1433 void
1434 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1435     uint32_t offset, uint32_t length)
1436 {
1437 	struct sctp_paramhdr *phdr, tmp_param;
1438 	uint16_t plen, ptype;
1439 	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1440 	struct sctp_auth_random *p_random = NULL;
1441 	uint16_t random_len = 0;
1442 	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1443 	struct sctp_auth_hmac_algo *hmacs = NULL;
1444 	uint16_t hmacs_len = 0;
1445 	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1446 	struct sctp_auth_chunk_list *chunks = NULL;
1447 	uint16_t num_chunks = 0;
1448 	sctp_key_t *new_key;
1449 	uint32_t keylen;
1450 
1451 	/* convert to upper bound */
1452 	length += offset;
1453 
1454 	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1455 	    sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param);
1456 	while (phdr != NULL) {
1457 		ptype = ntohs(phdr->param_type);
1458 		plen = ntohs(phdr->param_length);
1459 
1460 		if ((plen == 0) || (offset + plen > length))
1461 			break;
1462 
1463 		if (ptype == SCTP_RANDOM) {
1464 			if (plen > sizeof(random_store))
1465 				break;
1466 			phdr = sctp_get_next_param(m, offset,
1467 			    (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store)));
1468 			if (phdr == NULL)
1469 				return;
1470 			/* save the random and length for the key */
1471 			p_random = (struct sctp_auth_random *)phdr;
1472 			random_len = plen - sizeof(*p_random);
1473 		} else if (ptype == SCTP_HMAC_LIST) {
1474 			int num_hmacs;
1475 			int i;
1476 
1477 			if (plen > sizeof(hmacs_store))
1478 				break;
1479 			phdr = sctp_get_next_param(m, offset,
1480 			    (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store)));
1481 			if (phdr == NULL)
1482 				return;
1483 			/* save the hmacs list and num for the key */
1484 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1485 			hmacs_len = plen - sizeof(*hmacs);
1486 			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1487 			if (stcb->asoc.local_hmacs != NULL)
1488 				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1489 			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1490 			if (stcb->asoc.local_hmacs != NULL) {
1491 				for (i = 0; i < num_hmacs; i++) {
1492 					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1493 					    ntohs(hmacs->hmac_ids[i]));
1494 				}
1495 			}
1496 		} else if (ptype == SCTP_CHUNK_LIST) {
1497 			int i;
1498 
1499 			if (plen > sizeof(chunks_store))
1500 				break;
1501 			phdr = sctp_get_next_param(m, offset,
1502 			    (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store)));
1503 			if (phdr == NULL)
1504 				return;
1505 			chunks = (struct sctp_auth_chunk_list *)phdr;
1506 			num_chunks = plen - sizeof(*chunks);
1507 			/* save chunks list and num for the key */
1508 			if (stcb->asoc.local_auth_chunks != NULL)
1509 				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1510 			else
1511 				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1512 			for (i = 0; i < num_chunks; i++) {
1513 				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1514 				    stcb->asoc.local_auth_chunks);
1515 			}
1516 		}
1517 		/* get next parameter */
1518 		offset += SCTP_SIZE32(plen);
1519 		if (offset + sizeof(struct sctp_paramhdr) > length)
1520 			break;
1521 		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1522 		    (uint8_t *) & tmp_param);
1523 	}
1524 	/* concatenate the full random key */
1525 	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1526 	if (chunks != NULL) {
1527 		keylen += sizeof(*chunks) + num_chunks;
1528 	}
1529 	new_key = sctp_alloc_key(keylen);
1530 	if (new_key != NULL) {
1531 		/* copy in the RANDOM */
1532 		if (p_random != NULL) {
1533 			keylen = sizeof(*p_random) + random_len;
1534 			bcopy(p_random, new_key->key, keylen);
1535 		}
1536 		/* append in the AUTH chunks */
1537 		if (chunks != NULL) {
1538 			bcopy(chunks, new_key->key + keylen,
1539 			    sizeof(*chunks) + num_chunks);
1540 			keylen += sizeof(*chunks) + num_chunks;
1541 		}
1542 		/* append in the HMACs */
1543 		if (hmacs != NULL) {
1544 			bcopy(hmacs, new_key->key + keylen,
1545 			    sizeof(*hmacs) + hmacs_len);
1546 		}
1547 	}
1548 	if (stcb->asoc.authinfo.random != NULL)
1549 		sctp_free_key(stcb->asoc.authinfo.random);
1550 	stcb->asoc.authinfo.random = new_key;
1551 	stcb->asoc.authinfo.random_len = random_len;
1552 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1553 	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1554 
1555 	/* negotiate what HMAC to use for the peer */
1556 	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1557 	    stcb->asoc.local_hmacs);
1558 
1559 	/* copy defaults from the endpoint */
1560 	/* FIX ME: put in cookie? */
1561 	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1562 	/* copy out the shared key list (by reference) from the endpoint */
1563 	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1564 	    &stcb->asoc.shared_keys);
1565 }
1566 
1567 /*
1568  * compute and fill in the HMAC digest for a packet
1569  */
1570 void
1571 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1572     struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1573 {
1574 	uint32_t digestlen;
1575 	sctp_sharedkey_t *skey;
1576 	sctp_key_t *key;
1577 
1578 	if ((stcb == NULL) || (auth == NULL))
1579 		return;
1580 
1581 	/* zero the digest + chunk padding */
1582 	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1583 	bzero(auth->hmac, SCTP_SIZE32(digestlen));
1584 
1585 	/* is the desired key cached? */
1586 	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1587 	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1588 		if (stcb->asoc.authinfo.assoc_key != NULL) {
1589 			/* free the old cached key */
1590 			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1591 		}
1592 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1593 		/* the only way skey is NULL is if null key id 0 is used */
1594 		if (skey != NULL)
1595 			key = skey->key;
1596 		else
1597 			key = NULL;
1598 		/* compute a new assoc key and cache it */
1599 		stcb->asoc.authinfo.assoc_key =
1600 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1601 		    stcb->asoc.authinfo.peer_random, key);
1602 		stcb->asoc.authinfo.assoc_keyid = keyid;
1603 		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1604 		    stcb->asoc.authinfo.assoc_keyid);
1605 #ifdef SCTP_DEBUG
1606 		if (SCTP_AUTH_DEBUG)
1607 			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1608 			    "Assoc Key");
1609 #endif
1610 	}
1611 	/* set in the active key id */
1612 	auth->shared_key_id = htons(keyid);
1613 
1614 	/* compute and fill in the digest */
1615 	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1616 	    m, auth_offset, auth->hmac);
1617 }
1618 
1619 
1620 static void
1621 sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1622 {
1623 	struct mbuf *m_tmp;
1624 	uint8_t *data;
1625 
1626 	/* sanity check */
1627 	if (m == NULL)
1628 		return;
1629 
1630 	/* find the correct starting mbuf and offset (get start position) */
1631 	m_tmp = m;
1632 	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1633 		m_offset -= SCTP_BUF_LEN(m_tmp);
1634 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1635 	}
1636 	/* now use the rest of the mbuf chain */
1637 	while ((m_tmp != NULL) && (size > 0)) {
1638 		data = mtod(m_tmp, uint8_t *) + m_offset;
1639 		if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) {
1640 			bzero(data, SCTP_BUF_LEN(m_tmp));
1641 			size -= SCTP_BUF_LEN(m_tmp);
1642 		} else {
1643 			bzero(data, size);
1644 			size = 0;
1645 		}
1646 		/* clear the offset since it's only for the first mbuf */
1647 		m_offset = 0;
1648 		m_tmp = SCTP_BUF_NEXT(m_tmp);
1649 	}
1650 }
1651 
1652 /*-
1653  * process the incoming Authentication chunk
1654  * return codes:
1655  *   -1 on any authentication error
1656  *    0 on authentication verification
1657  */
1658 int
1659 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1660     struct mbuf *m, uint32_t offset)
1661 {
1662 	uint16_t chunklen;
1663 	uint16_t shared_key_id;
1664 	uint16_t hmac_id;
1665 	sctp_sharedkey_t *skey;
1666 	uint32_t digestlen;
1667 	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1668 	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1669 
1670 	/* auth is checked for NULL by caller */
1671 	chunklen = ntohs(auth->ch.chunk_length);
1672 	if (chunklen < sizeof(*auth)) {
1673 		SCTP_STAT_INCR(sctps_recvauthfailed);
1674 		return (-1);
1675 	}
1676 	SCTP_STAT_INCR(sctps_recvauth);
1677 
1678 	/* get the auth params */
1679 	shared_key_id = ntohs(auth->shared_key_id);
1680 	hmac_id = ntohs(auth->hmac_id);
1681 	SCTPDBG(SCTP_DEBUG_AUTH1,
1682 	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1683 	    shared_key_id, hmac_id);
1684 
1685 	/* is the indicated HMAC supported? */
1686 	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1687 		struct mbuf *m_err;
1688 		struct sctp_auth_invalid_hmac *err;
1689 
1690 		SCTP_STAT_INCR(sctps_recvivalhmacid);
1691 		SCTPDBG(SCTP_DEBUG_AUTH1,
1692 		    "SCTP Auth: unsupported HMAC id %u\n",
1693 		    hmac_id);
1694 		/*
1695 		 * report this in an Error Chunk: Unsupported HMAC
1696 		 * Identifier
1697 		 */
1698 		m_err = sctp_get_mbuf_for_msg(sizeof(*err), 0, M_NOWAIT,
1699 		    1, MT_HEADER);
1700 		if (m_err != NULL) {
1701 			/* pre-reserve some space */
1702 			SCTP_BUF_RESV_UF(m_err, sizeof(struct sctp_chunkhdr));
1703 			/* fill in the error */
1704 			err = mtod(m_err, struct sctp_auth_invalid_hmac *);
1705 			bzero(err, sizeof(*err));
1706 			err->ph.param_type = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1707 			err->ph.param_length = htons(sizeof(*err));
1708 			err->hmac_id = ntohs(hmac_id);
1709 			SCTP_BUF_LEN(m_err) = sizeof(*err);
1710 			/* queue it */
1711 			sctp_queue_op_err(stcb, m_err);
1712 		}
1713 		return (-1);
1714 	}
1715 	/* get the indicated shared key, if available */
1716 	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1717 	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1718 		/* find the shared key on the assoc first */
1719 		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1720 		    shared_key_id);
1721 		/* if the shared key isn't found, discard the chunk */
1722 		if (skey == NULL) {
1723 			SCTP_STAT_INCR(sctps_recvivalkeyid);
1724 			SCTPDBG(SCTP_DEBUG_AUTH1,
1725 			    "SCTP Auth: unknown key id %u\n",
1726 			    shared_key_id);
1727 			return (-1);
1728 		}
1729 		/* generate a notification if this is a new key id */
1730 		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1731 			/*
1732 			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1733 			 * shared_key_id, (void
1734 			 * *)stcb->asoc.authinfo.recv_keyid);
1735 			 */
1736 			sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY,
1737 			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1738 			    SCTP_SO_NOT_LOCKED);
1739 		/* compute a new recv assoc key and cache it */
1740 		if (stcb->asoc.authinfo.recv_key != NULL)
1741 			sctp_free_key(stcb->asoc.authinfo.recv_key);
1742 		stcb->asoc.authinfo.recv_key =
1743 		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1744 		    stcb->asoc.authinfo.peer_random, skey->key);
1745 		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1746 #ifdef SCTP_DEBUG
1747 		if (SCTP_AUTH_DEBUG)
1748 			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1749 #endif
1750 	}
1751 	/* validate the digest length */
1752 	digestlen = sctp_get_hmac_digest_len(hmac_id);
1753 	if (chunklen < (sizeof(*auth) + digestlen)) {
1754 		/* invalid digest length */
1755 		SCTP_STAT_INCR(sctps_recvauthfailed);
1756 		SCTPDBG(SCTP_DEBUG_AUTH1,
1757 		    "SCTP Auth: chunk too short for HMAC\n");
1758 		return (-1);
1759 	}
1760 	/* save a copy of the digest, zero the pseudo header, and validate */
1761 	bcopy(auth->hmac, digest, digestlen);
1762 	sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1763 	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1764 	    m, offset, computed_digest);
1765 
1766 	/* compare the computed digest with the one in the AUTH chunk */
1767 	if (memcmp(digest, computed_digest, digestlen) != 0) {
1768 		SCTP_STAT_INCR(sctps_recvauthfailed);
1769 		SCTPDBG(SCTP_DEBUG_AUTH1,
1770 		    "SCTP Auth: HMAC digest check failed\n");
1771 		return (-1);
1772 	}
1773 	return (0);
1774 }
1775 
1776 /*
1777  * Generate NOTIFICATION
1778  */
1779 void
1780 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1781     uint16_t keyid, uint16_t alt_keyid, int so_locked
1782 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
1783     SCTP_UNUSED
1784 #endif
1785 )
1786 {
1787 	struct mbuf *m_notify;
1788 	struct sctp_authkey_event *auth;
1789 	struct sctp_queued_to_read *control;
1790 
1791 	if ((stcb == NULL) ||
1792 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1793 	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1794 	    (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1795 	    ) {
1796 		/* If the socket is gone we are out of here */
1797 		return;
1798 	}
1799 	if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT))
1800 		/* event not enabled */
1801 		return;
1802 
1803 	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1804 	    0, M_NOWAIT, 1, MT_HEADER);
1805 	if (m_notify == NULL)
1806 		/* no space left */
1807 		return;
1808 
1809 	SCTP_BUF_LEN(m_notify) = 0;
1810 	auth = mtod(m_notify, struct sctp_authkey_event *);
1811 	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1812 	auth->auth_flags = 0;
1813 	auth->auth_length = sizeof(*auth);
1814 	auth->auth_keynumber = keyid;
1815 	auth->auth_altkeynumber = alt_keyid;
1816 	auth->auth_indication = indication;
1817 	auth->auth_assoc_id = sctp_get_associd(stcb);
1818 
1819 	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1820 	SCTP_BUF_NEXT(m_notify) = NULL;
1821 
1822 	/* append to socket */
1823 	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1824 	    0, 0, stcb->asoc.context, 0, 0, 0, m_notify);
1825 	if (control == NULL) {
1826 		/* no memory */
1827 		sctp_m_freem(m_notify);
1828 		return;
1829 	}
1830 	control->spec_flags = M_NOTIFICATION;
1831 	control->length = SCTP_BUF_LEN(m_notify);
1832 	/* not that we need this */
1833 	control->tail_mbuf = m_notify;
1834 	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1835 	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1836 }
1837 
1838 
1839 /*-
1840  * validates the AUTHentication related parameters in an INIT/INIT-ACK
1841  * Note: currently only used for INIT as INIT-ACK is handled inline
1842  * with sctp_load_addresses_from_init()
1843  */
1844 int
1845 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1846 {
1847 	struct sctp_paramhdr *phdr, parm_buf;
1848 	uint16_t ptype, plen;
1849 	int peer_supports_asconf = 0;
1850 	int peer_supports_auth = 0;
1851 	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1852 	uint8_t saw_asconf = 0;
1853 	uint8_t saw_asconf_ack = 0;
1854 
1855 	/* go through each of the params. */
1856 	phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf));
1857 	while (phdr) {
1858 		ptype = ntohs(phdr->param_type);
1859 		plen = ntohs(phdr->param_length);
1860 
1861 		if (offset + plen > limit) {
1862 			break;
1863 		}
1864 		if (plen < sizeof(struct sctp_paramhdr)) {
1865 			break;
1866 		}
1867 		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1868 			/* A supported extension chunk */
1869 			struct sctp_supported_chunk_types_param *pr_supported;
1870 			uint8_t local_store[SCTP_PARAM_BUFFER_SIZE];
1871 			int num_ent, i;
1872 
1873 			phdr = sctp_get_next_param(m, offset,
1874 			    (struct sctp_paramhdr *)&local_store, min(plen, sizeof(local_store)));
1875 			if (phdr == NULL) {
1876 				return (-1);
1877 			}
1878 			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1879 			num_ent = plen - sizeof(struct sctp_paramhdr);
1880 			for (i = 0; i < num_ent; i++) {
1881 				switch (pr_supported->chunk_types[i]) {
1882 				case SCTP_ASCONF:
1883 				case SCTP_ASCONF_ACK:
1884 					peer_supports_asconf = 1;
1885 					break;
1886 				default:
1887 					/* one we don't care about */
1888 					break;
1889 				}
1890 			}
1891 		} else if (ptype == SCTP_RANDOM) {
1892 			got_random = 1;
1893 			/* enforce the random length */
1894 			if (plen != (sizeof(struct sctp_auth_random) +
1895 			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1896 				SCTPDBG(SCTP_DEBUG_AUTH1,
1897 				    "SCTP: invalid RANDOM len\n");
1898 				return (-1);
1899 			}
1900 		} else if (ptype == SCTP_HMAC_LIST) {
1901 			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1902 			struct sctp_auth_hmac_algo *hmacs;
1903 			int num_hmacs;
1904 
1905 			if (plen > sizeof(store))
1906 				break;
1907 			phdr = sctp_get_next_param(m, offset,
1908 			    (struct sctp_paramhdr *)store, min(plen, sizeof(store)));
1909 			if (phdr == NULL)
1910 				return (-1);
1911 			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1912 			num_hmacs = (plen - sizeof(*hmacs)) /
1913 			    sizeof(hmacs->hmac_ids[0]);
1914 			/* validate the hmac list */
1915 			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1916 				SCTPDBG(SCTP_DEBUG_AUTH1,
1917 				    "SCTP: invalid HMAC param\n");
1918 				return (-1);
1919 			}
1920 			got_hmacs = 1;
1921 		} else if (ptype == SCTP_CHUNK_LIST) {
1922 			int i, num_chunks;
1923 			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1924 
1925 			/* did the peer send a non-empty chunk list? */
1926 			struct sctp_auth_chunk_list *chunks = NULL;
1927 
1928 			phdr = sctp_get_next_param(m, offset,
1929 			    (struct sctp_paramhdr *)chunks_store,
1930 			    min(plen, sizeof(chunks_store)));
1931 			if (phdr == NULL)
1932 				return (-1);
1933 
1934 			/*-
1935 			 * Flip through the list and mark that the
1936 			 * peer supports asconf/asconf_ack.
1937 			 */
1938 			chunks = (struct sctp_auth_chunk_list *)phdr;
1939 			num_chunks = plen - sizeof(*chunks);
1940 			for (i = 0; i < num_chunks; i++) {
1941 				/* record asconf/asconf-ack if listed */
1942 				if (chunks->chunk_types[i] == SCTP_ASCONF)
1943 					saw_asconf = 1;
1944 				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
1945 					saw_asconf_ack = 1;
1946 
1947 			}
1948 			if (num_chunks)
1949 				got_chklist = 1;
1950 		}
1951 		offset += SCTP_SIZE32(plen);
1952 		if (offset >= limit) {
1953 			break;
1954 		}
1955 		phdr = sctp_get_next_param(m, offset, &parm_buf,
1956 		    sizeof(parm_buf));
1957 	}
1958 	/* validate authentication required parameters */
1959 	if (got_random && got_hmacs) {
1960 		peer_supports_auth = 1;
1961 	} else {
1962 		peer_supports_auth = 0;
1963 	}
1964 	if (!peer_supports_auth && got_chklist) {
1965 		SCTPDBG(SCTP_DEBUG_AUTH1,
1966 		    "SCTP: peer sent chunk list w/o AUTH\n");
1967 		return (-1);
1968 	}
1969 	if (!SCTP_BASE_SYSCTL(sctp_asconf_auth_nochk) && peer_supports_asconf &&
1970 	    !peer_supports_auth) {
1971 		SCTPDBG(SCTP_DEBUG_AUTH1,
1972 		    "SCTP: peer supports ASCONF but not AUTH\n");
1973 		return (-1);
1974 	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
1975 	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
1976 		return (-2);
1977 	}
1978 	return (0);
1979 }
1980 
1981 void
1982 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
1983 {
1984 	uint16_t chunks_len = 0;
1985 	uint16_t hmacs_len = 0;
1986 	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
1987 	sctp_key_t *new_key;
1988 	uint16_t keylen;
1989 
1990 	/* initialize hmac list from endpoint */
1991 	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
1992 	if (stcb->asoc.local_hmacs != NULL) {
1993 		hmacs_len = stcb->asoc.local_hmacs->num_algo *
1994 		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
1995 	}
1996 	/* initialize auth chunks list from endpoint */
1997 	stcb->asoc.local_auth_chunks =
1998 	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
1999 	if (stcb->asoc.local_auth_chunks != NULL) {
2000 		int i;
2001 
2002 		for (i = 0; i < 256; i++) {
2003 			if (stcb->asoc.local_auth_chunks->chunks[i])
2004 				chunks_len++;
2005 		}
2006 	}
2007 	/* copy defaults from the endpoint */
2008 	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
2009 
2010 	/* copy out the shared key list (by reference) from the endpoint */
2011 	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
2012 	    &stcb->asoc.shared_keys);
2013 
2014 	/* now set the concatenated key (random + chunks + hmacs) */
2015 	/* key includes parameter headers */
2016 	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
2017 	    hmacs_len;
2018 	new_key = sctp_alloc_key(keylen);
2019 	if (new_key != NULL) {
2020 		struct sctp_paramhdr *ph;
2021 		int plen;
2022 
2023 		/* generate and copy in the RANDOM */
2024 		ph = (struct sctp_paramhdr *)new_key->key;
2025 		ph->param_type = htons(SCTP_RANDOM);
2026 		plen = sizeof(*ph) + random_len;
2027 		ph->param_length = htons(plen);
2028 		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
2029 		keylen = plen;
2030 
2031 		/* append in the AUTH chunks */
2032 		/* NOTE: currently we always have chunks to list */
2033 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2034 		ph->param_type = htons(SCTP_CHUNK_LIST);
2035 		plen = sizeof(*ph) + chunks_len;
2036 		ph->param_length = htons(plen);
2037 		keylen += sizeof(*ph);
2038 		if (stcb->asoc.local_auth_chunks) {
2039 			int i;
2040 
2041 			for (i = 0; i < 256; i++) {
2042 				if (stcb->asoc.local_auth_chunks->chunks[i])
2043 					new_key->key[keylen++] = i;
2044 			}
2045 		}
2046 		/* append in the HMACs */
2047 		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2048 		ph->param_type = htons(SCTP_HMAC_LIST);
2049 		plen = sizeof(*ph) + hmacs_len;
2050 		ph->param_length = htons(plen);
2051 		keylen += sizeof(*ph);
2052 		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
2053 		    new_key->key + keylen);
2054 	}
2055 	if (stcb->asoc.authinfo.random != NULL)
2056 		sctp_free_key(stcb->asoc.authinfo.random);
2057 	stcb->asoc.authinfo.random = new_key;
2058 	stcb->asoc.authinfo.random_len = random_len;
2059 }
2060