1 /*- 2 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. 3 * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. 4 * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * a) Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * b) Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in 14 * the documentation and/or other materials provided with the distribution. 15 * 16 * c) Neither the name of Cisco Systems, Inc. nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <netinet/sctp_os.h> 37 #include <netinet/sctp.h> 38 #include <netinet/sctp_header.h> 39 #include <netinet/sctp_pcb.h> 40 #include <netinet/sctp_var.h> 41 #include <netinet/sctp_sysctl.h> 42 #include <netinet/sctputil.h> 43 #include <netinet/sctp_indata.h> 44 #include <netinet/sctp_output.h> 45 #include <netinet/sctp_auth.h> 46 47 #ifdef SCTP_DEBUG 48 #define SCTP_AUTH_DEBUG (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1) 49 #define SCTP_AUTH_DEBUG2 (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2) 50 #endif /* SCTP_DEBUG */ 51 52 53 void 54 sctp_clear_chunklist(sctp_auth_chklist_t * chklist) 55 { 56 bzero(chklist, sizeof(*chklist)); 57 /* chklist->num_chunks = 0; */ 58 } 59 60 sctp_auth_chklist_t * 61 sctp_alloc_chunklist(void) 62 { 63 sctp_auth_chklist_t *chklist; 64 65 SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist), 66 SCTP_M_AUTH_CL); 67 if (chklist == NULL) { 68 SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n"); 69 } else { 70 sctp_clear_chunklist(chklist); 71 } 72 return (chklist); 73 } 74 75 void 76 sctp_free_chunklist(sctp_auth_chklist_t * list) 77 { 78 if (list != NULL) 79 SCTP_FREE(list, SCTP_M_AUTH_CL); 80 } 81 82 sctp_auth_chklist_t * 83 sctp_copy_chunklist(sctp_auth_chklist_t * list) 84 { 85 sctp_auth_chklist_t *new_list; 86 87 if (list == NULL) 88 return (NULL); 89 90 /* get a new list */ 91 new_list = sctp_alloc_chunklist(); 92 if (new_list == NULL) 93 return (NULL); 94 /* copy it */ 95 bcopy(list, new_list, sizeof(*new_list)); 96 97 return (new_list); 98 } 99 100 101 /* 102 * add a chunk to the required chunks list 103 */ 104 int 105 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t * list) 106 { 107 if (list == NULL) 108 return (-1); 109 110 /* is chunk restricted? */ 111 if ((chunk == SCTP_INITIATION) || 112 (chunk == SCTP_INITIATION_ACK) || 113 (chunk == SCTP_SHUTDOWN_COMPLETE) || 114 (chunk == SCTP_AUTHENTICATION)) { 115 return (-1); 116 } 117 if (list->chunks[chunk] == 0) { 118 list->chunks[chunk] = 1; 119 list->num_chunks++; 120 SCTPDBG(SCTP_DEBUG_AUTH1, 121 "SCTP: added chunk %u (0x%02x) to Auth list\n", 122 chunk, chunk); 123 } 124 return (0); 125 } 126 127 /* 128 * delete a chunk from the required chunks list 129 */ 130 int 131 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t * list) 132 { 133 if (list == NULL) 134 return (-1); 135 136 /* is chunk restricted? */ 137 if ((chunk == SCTP_ASCONF) || 138 (chunk == SCTP_ASCONF_ACK)) { 139 return (-1); 140 } 141 if (list->chunks[chunk] == 1) { 142 list->chunks[chunk] = 0; 143 list->num_chunks--; 144 SCTPDBG(SCTP_DEBUG_AUTH1, 145 "SCTP: deleted chunk %u (0x%02x) from Auth list\n", 146 chunk, chunk); 147 } 148 return (0); 149 } 150 151 size_t 152 sctp_auth_get_chklist_size(const sctp_auth_chklist_t * list) 153 { 154 if (list == NULL) 155 return (0); 156 else 157 return (list->num_chunks); 158 } 159 160 /* 161 * set the default list of chunks requiring AUTH 162 */ 163 void 164 sctp_auth_set_default_chunks(sctp_auth_chklist_t * list) 165 { 166 (void)sctp_auth_add_chunk(SCTP_ASCONF, list); 167 (void)sctp_auth_add_chunk(SCTP_ASCONF_ACK, list); 168 } 169 170 /* 171 * return the current number and list of required chunks caller must 172 * guarantee ptr has space for up to 256 bytes 173 */ 174 int 175 sctp_serialize_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr) 176 { 177 int i, count = 0; 178 179 if (list == NULL) 180 return (0); 181 182 for (i = 0; i < 256; i++) { 183 if (list->chunks[i] != 0) { 184 *ptr++ = i; 185 count++; 186 } 187 } 188 return (count); 189 } 190 191 int 192 sctp_pack_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr) 193 { 194 int i, size = 0; 195 196 if (list == NULL) 197 return (0); 198 199 if (list->num_chunks <= 32) { 200 /* just list them, one byte each */ 201 for (i = 0; i < 256; i++) { 202 if (list->chunks[i] != 0) { 203 *ptr++ = i; 204 size++; 205 } 206 } 207 } else { 208 int index, offset; 209 210 /* pack into a 32 byte bitfield */ 211 for (i = 0; i < 256; i++) { 212 if (list->chunks[i] != 0) { 213 index = i / 8; 214 offset = i % 8; 215 ptr[index] |= (1 << offset); 216 } 217 } 218 size = 32; 219 } 220 return (size); 221 } 222 223 int 224 sctp_unpack_auth_chunks(const uint8_t * ptr, uint8_t num_chunks, 225 sctp_auth_chklist_t * list) 226 { 227 int i; 228 int size; 229 230 if (list == NULL) 231 return (0); 232 233 if (num_chunks <= 32) { 234 /* just pull them, one byte each */ 235 for (i = 0; i < num_chunks; i++) { 236 (void)sctp_auth_add_chunk(*ptr++, list); 237 } 238 size = num_chunks; 239 } else { 240 int index, offset; 241 242 /* unpack from a 32 byte bitfield */ 243 for (index = 0; index < 32; index++) { 244 for (offset = 0; offset < 8; offset++) { 245 if (ptr[index] & (1 << offset)) { 246 (void)sctp_auth_add_chunk((index * 8) + offset, list); 247 } 248 } 249 } 250 size = 32; 251 } 252 return (size); 253 } 254 255 256 /* 257 * allocate structure space for a key of length keylen 258 */ 259 sctp_key_t * 260 sctp_alloc_key(uint32_t keylen) 261 { 262 sctp_key_t *new_key; 263 264 SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen, 265 SCTP_M_AUTH_KY); 266 if (new_key == NULL) { 267 /* out of memory */ 268 return (NULL); 269 } 270 new_key->keylen = keylen; 271 return (new_key); 272 } 273 274 void 275 sctp_free_key(sctp_key_t * key) 276 { 277 if (key != NULL) 278 SCTP_FREE(key, SCTP_M_AUTH_KY); 279 } 280 281 void 282 sctp_print_key(sctp_key_t * key, const char *str) 283 { 284 uint32_t i; 285 286 if (key == NULL) { 287 SCTP_PRINTF("%s: [Null key]\n", str); 288 return; 289 } 290 SCTP_PRINTF("%s: len %u, ", str, key->keylen); 291 if (key->keylen) { 292 for (i = 0; i < key->keylen; i++) 293 SCTP_PRINTF("%02x", key->key[i]); 294 SCTP_PRINTF("\n"); 295 } else { 296 SCTP_PRINTF("[Null key]\n"); 297 } 298 } 299 300 void 301 sctp_show_key(sctp_key_t * key, const char *str) 302 { 303 uint32_t i; 304 305 if (key == NULL) { 306 SCTP_PRINTF("%s: [Null key]\n", str); 307 return; 308 } 309 SCTP_PRINTF("%s: len %u, ", str, key->keylen); 310 if (key->keylen) { 311 for (i = 0; i < key->keylen; i++) 312 SCTP_PRINTF("%02x", key->key[i]); 313 SCTP_PRINTF("\n"); 314 } else { 315 SCTP_PRINTF("[Null key]\n"); 316 } 317 } 318 319 static uint32_t 320 sctp_get_keylen(sctp_key_t * key) 321 { 322 if (key != NULL) 323 return (key->keylen); 324 else 325 return (0); 326 } 327 328 /* 329 * generate a new random key of length 'keylen' 330 */ 331 sctp_key_t * 332 sctp_generate_random_key(uint32_t keylen) 333 { 334 sctp_key_t *new_key; 335 336 /* validate keylen */ 337 if (keylen > SCTP_AUTH_RANDOM_SIZE_MAX) 338 keylen = SCTP_AUTH_RANDOM_SIZE_MAX; 339 340 new_key = sctp_alloc_key(keylen); 341 if (new_key == NULL) { 342 /* out of memory */ 343 return (NULL); 344 } 345 SCTP_READ_RANDOM(new_key->key, keylen); 346 new_key->keylen = keylen; 347 return (new_key); 348 } 349 350 sctp_key_t * 351 sctp_set_key(uint8_t * key, uint32_t keylen) 352 { 353 sctp_key_t *new_key; 354 355 new_key = sctp_alloc_key(keylen); 356 if (new_key == NULL) { 357 /* out of memory */ 358 return (NULL); 359 } 360 bcopy(key, new_key->key, keylen); 361 return (new_key); 362 } 363 364 /*- 365 * given two keys of variable size, compute which key is "larger/smaller" 366 * returns: 1 if key1 > key2 367 * -1 if key1 < key2 368 * 0 if key1 = key2 369 */ 370 static int 371 sctp_compare_key(sctp_key_t * key1, sctp_key_t * key2) 372 { 373 uint32_t maxlen; 374 uint32_t i; 375 uint32_t key1len, key2len; 376 uint8_t *key_1, *key_2; 377 uint8_t temp[SCTP_AUTH_RANDOM_SIZE_MAX]; 378 379 /* sanity/length check */ 380 key1len = sctp_get_keylen(key1); 381 key2len = sctp_get_keylen(key2); 382 if ((key1len == 0) && (key2len == 0)) 383 return (0); 384 else if (key1len == 0) 385 return (-1); 386 else if (key2len == 0) 387 return (1); 388 389 if (key1len != key2len) { 390 if (key1len >= key2len) 391 maxlen = key1len; 392 else 393 maxlen = key2len; 394 bzero(temp, maxlen); 395 if (key1len < maxlen) { 396 /* prepend zeroes to key1 */ 397 bcopy(key1->key, temp + (maxlen - key1len), key1len); 398 key_1 = temp; 399 key_2 = key2->key; 400 } else { 401 /* prepend zeroes to key2 */ 402 bcopy(key2->key, temp + (maxlen - key2len), key2len); 403 key_1 = key1->key; 404 key_2 = temp; 405 } 406 } else { 407 maxlen = key1len; 408 key_1 = key1->key; 409 key_2 = key2->key; 410 } 411 412 for (i = 0; i < maxlen; i++) { 413 if (*key_1 > *key_2) 414 return (1); 415 else if (*key_1 < *key_2) 416 return (-1); 417 key_1++; 418 key_2++; 419 } 420 421 /* keys are equal value, so check lengths */ 422 if (key1len == key2len) 423 return (0); 424 else if (key1len < key2len) 425 return (-1); 426 else 427 return (1); 428 } 429 430 /* 431 * generate the concatenated keying material based on the two keys and the 432 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific 433 * order for concatenation 434 */ 435 sctp_key_t * 436 sctp_compute_hashkey(sctp_key_t * key1, sctp_key_t * key2, sctp_key_t * shared) 437 { 438 uint32_t keylen; 439 sctp_key_t *new_key; 440 uint8_t *key_ptr; 441 442 keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) + 443 sctp_get_keylen(shared); 444 445 if (keylen > 0) { 446 /* get space for the new key */ 447 new_key = sctp_alloc_key(keylen); 448 if (new_key == NULL) { 449 /* out of memory */ 450 return (NULL); 451 } 452 new_key->keylen = keylen; 453 key_ptr = new_key->key; 454 } else { 455 /* all keys empty/null?! */ 456 return (NULL); 457 } 458 459 /* concatenate the keys */ 460 if (sctp_compare_key(key1, key2) <= 0) { 461 /* key is shared + key1 + key2 */ 462 if (sctp_get_keylen(shared)) { 463 bcopy(shared->key, key_ptr, shared->keylen); 464 key_ptr += shared->keylen; 465 } 466 if (sctp_get_keylen(key1)) { 467 bcopy(key1->key, key_ptr, key1->keylen); 468 key_ptr += key1->keylen; 469 } 470 if (sctp_get_keylen(key2)) { 471 bcopy(key2->key, key_ptr, key2->keylen); 472 } 473 } else { 474 /* key is shared + key2 + key1 */ 475 if (sctp_get_keylen(shared)) { 476 bcopy(shared->key, key_ptr, shared->keylen); 477 key_ptr += shared->keylen; 478 } 479 if (sctp_get_keylen(key2)) { 480 bcopy(key2->key, key_ptr, key2->keylen); 481 key_ptr += key2->keylen; 482 } 483 if (sctp_get_keylen(key1)) { 484 bcopy(key1->key, key_ptr, key1->keylen); 485 } 486 } 487 return (new_key); 488 } 489 490 491 sctp_sharedkey_t * 492 sctp_alloc_sharedkey(void) 493 { 494 sctp_sharedkey_t *new_key; 495 496 SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key), 497 SCTP_M_AUTH_KY); 498 if (new_key == NULL) { 499 /* out of memory */ 500 return (NULL); 501 } 502 new_key->keyid = 0; 503 new_key->key = NULL; 504 new_key->refcount = 1; 505 new_key->deactivated = 0; 506 return (new_key); 507 } 508 509 void 510 sctp_free_sharedkey(sctp_sharedkey_t * skey) 511 { 512 if (skey == NULL) 513 return; 514 515 if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) { 516 if (skey->key != NULL) 517 sctp_free_key(skey->key); 518 SCTP_FREE(skey, SCTP_M_AUTH_KY); 519 } 520 } 521 522 sctp_sharedkey_t * 523 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id) 524 { 525 sctp_sharedkey_t *skey; 526 527 LIST_FOREACH(skey, shared_keys, next) { 528 if (skey->keyid == key_id) 529 return (skey); 530 } 531 return (NULL); 532 } 533 534 int 535 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys, 536 sctp_sharedkey_t * new_skey) 537 { 538 sctp_sharedkey_t *skey; 539 540 if ((shared_keys == NULL) || (new_skey == NULL)) 541 return (EINVAL); 542 543 /* insert into an empty list? */ 544 if (LIST_EMPTY(shared_keys)) { 545 LIST_INSERT_HEAD(shared_keys, new_skey, next); 546 return (0); 547 } 548 /* insert into the existing list, ordered by key id */ 549 LIST_FOREACH(skey, shared_keys, next) { 550 if (new_skey->keyid < skey->keyid) { 551 /* insert it before here */ 552 LIST_INSERT_BEFORE(skey, new_skey, next); 553 return (0); 554 } else if (new_skey->keyid == skey->keyid) { 555 /* replace the existing key */ 556 /* verify this key *can* be replaced */ 557 if ((skey->deactivated) && (skey->refcount > 1)) { 558 SCTPDBG(SCTP_DEBUG_AUTH1, 559 "can't replace shared key id %u\n", 560 new_skey->keyid); 561 return (EBUSY); 562 } 563 SCTPDBG(SCTP_DEBUG_AUTH1, 564 "replacing shared key id %u\n", 565 new_skey->keyid); 566 LIST_INSERT_BEFORE(skey, new_skey, next); 567 LIST_REMOVE(skey, next); 568 sctp_free_sharedkey(skey); 569 return (0); 570 } 571 if (LIST_NEXT(skey, next) == NULL) { 572 /* belongs at the end of the list */ 573 LIST_INSERT_AFTER(skey, new_skey, next); 574 return (0); 575 } 576 } 577 /* shouldn't reach here */ 578 return (0); 579 } 580 581 void 582 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id) 583 { 584 sctp_sharedkey_t *skey; 585 586 /* find the shared key */ 587 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 588 589 /* bump the ref count */ 590 if (skey) { 591 atomic_add_int(&skey->refcount, 1); 592 SCTPDBG(SCTP_DEBUG_AUTH2, 593 "%s: stcb %p key %u refcount acquire to %d\n", 594 __FUNCTION__, (void *)stcb, key_id, skey->refcount); 595 } 596 } 597 598 void 599 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked 600 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) 601 SCTP_UNUSED 602 #endif 603 ) 604 { 605 sctp_sharedkey_t *skey; 606 607 /* find the shared key */ 608 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 609 610 /* decrement the ref count */ 611 if (skey) { 612 sctp_free_sharedkey(skey); 613 SCTPDBG(SCTP_DEBUG_AUTH2, 614 "%s: stcb %p key %u refcount release to %d\n", 615 __FUNCTION__, (void *)stcb, key_id, skey->refcount); 616 617 /* see if a notification should be generated */ 618 if ((skey->refcount <= 1) && (skey->deactivated)) { 619 /* notify ULP that key is no longer used */ 620 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, 621 key_id, 0, so_locked); 622 SCTPDBG(SCTP_DEBUG_AUTH2, 623 "%s: stcb %p key %u no longer used, %d\n", 624 __FUNCTION__, (void *)stcb, key_id, skey->refcount); 625 } 626 } 627 } 628 629 static sctp_sharedkey_t * 630 sctp_copy_sharedkey(const sctp_sharedkey_t * skey) 631 { 632 sctp_sharedkey_t *new_skey; 633 634 if (skey == NULL) 635 return (NULL); 636 new_skey = sctp_alloc_sharedkey(); 637 if (new_skey == NULL) 638 return (NULL); 639 if (skey->key != NULL) 640 new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen); 641 else 642 new_skey->key = NULL; 643 new_skey->keyid = skey->keyid; 644 return (new_skey); 645 } 646 647 int 648 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest) 649 { 650 sctp_sharedkey_t *skey, *new_skey; 651 int count = 0; 652 653 if ((src == NULL) || (dest == NULL)) 654 return (0); 655 LIST_FOREACH(skey, src, next) { 656 new_skey = sctp_copy_sharedkey(skey); 657 if (new_skey != NULL) { 658 (void)sctp_insert_sharedkey(dest, new_skey); 659 count++; 660 } 661 } 662 return (count); 663 } 664 665 666 sctp_hmaclist_t * 667 sctp_alloc_hmaclist(uint8_t num_hmacs) 668 { 669 sctp_hmaclist_t *new_list; 670 int alloc_size; 671 672 alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]); 673 SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size, 674 SCTP_M_AUTH_HL); 675 if (new_list == NULL) { 676 /* out of memory */ 677 return (NULL); 678 } 679 new_list->max_algo = num_hmacs; 680 new_list->num_algo = 0; 681 return (new_list); 682 } 683 684 void 685 sctp_free_hmaclist(sctp_hmaclist_t * list) 686 { 687 if (list != NULL) { 688 SCTP_FREE(list, SCTP_M_AUTH_HL); 689 list = NULL; 690 } 691 } 692 693 int 694 sctp_auth_add_hmacid(sctp_hmaclist_t * list, uint16_t hmac_id) 695 { 696 int i; 697 698 if (list == NULL) 699 return (-1); 700 if (list->num_algo == list->max_algo) { 701 SCTPDBG(SCTP_DEBUG_AUTH1, 702 "SCTP: HMAC id list full, ignoring add %u\n", hmac_id); 703 return (-1); 704 } 705 if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) && 706 (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) { 707 return (-1); 708 } 709 /* Now is it already in the list */ 710 for (i = 0; i < list->num_algo; i++) { 711 if (list->hmac[i] == hmac_id) { 712 /* already in list */ 713 return (-1); 714 } 715 } 716 SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id); 717 list->hmac[list->num_algo++] = hmac_id; 718 return (0); 719 } 720 721 sctp_hmaclist_t * 722 sctp_copy_hmaclist(sctp_hmaclist_t * list) 723 { 724 sctp_hmaclist_t *new_list; 725 int i; 726 727 if (list == NULL) 728 return (NULL); 729 /* get a new list */ 730 new_list = sctp_alloc_hmaclist(list->max_algo); 731 if (new_list == NULL) 732 return (NULL); 733 /* copy it */ 734 new_list->max_algo = list->max_algo; 735 new_list->num_algo = list->num_algo; 736 for (i = 0; i < list->num_algo; i++) 737 new_list->hmac[i] = list->hmac[i]; 738 return (new_list); 739 } 740 741 sctp_hmaclist_t * 742 sctp_default_supported_hmaclist(void) 743 { 744 sctp_hmaclist_t *new_list; 745 746 new_list = sctp_alloc_hmaclist(2); 747 if (new_list == NULL) 748 return (NULL); 749 /* We prefer SHA256, so list it first */ 750 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256); 751 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1); 752 return (new_list); 753 } 754 755 /*- 756 * HMAC algos are listed in priority/preference order 757 * find the best HMAC id to use for the peer based on local support 758 */ 759 uint16_t 760 sctp_negotiate_hmacid(sctp_hmaclist_t * peer, sctp_hmaclist_t * local) 761 { 762 int i, j; 763 764 if ((local == NULL) || (peer == NULL)) 765 return (SCTP_AUTH_HMAC_ID_RSVD); 766 767 for (i = 0; i < peer->num_algo; i++) { 768 for (j = 0; j < local->num_algo; j++) { 769 if (peer->hmac[i] == local->hmac[j]) { 770 /* found the "best" one */ 771 SCTPDBG(SCTP_DEBUG_AUTH1, 772 "SCTP: negotiated peer HMAC id %u\n", 773 peer->hmac[i]); 774 return (peer->hmac[i]); 775 } 776 } 777 } 778 /* didn't find one! */ 779 return (SCTP_AUTH_HMAC_ID_RSVD); 780 } 781 782 /*- 783 * serialize the HMAC algo list and return space used 784 * caller must guarantee ptr has appropriate space 785 */ 786 int 787 sctp_serialize_hmaclist(sctp_hmaclist_t * list, uint8_t * ptr) 788 { 789 int i; 790 uint16_t hmac_id; 791 792 if (list == NULL) 793 return (0); 794 795 for (i = 0; i < list->num_algo; i++) { 796 hmac_id = htons(list->hmac[i]); 797 bcopy(&hmac_id, ptr, sizeof(hmac_id)); 798 ptr += sizeof(hmac_id); 799 } 800 return (list->num_algo * sizeof(hmac_id)); 801 } 802 803 int 804 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs) 805 { 806 uint32_t i; 807 808 for (i = 0; i < num_hmacs; i++) { 809 if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) { 810 return (0); 811 } 812 } 813 return (-1); 814 } 815 816 sctp_authinfo_t * 817 sctp_alloc_authinfo(void) 818 { 819 sctp_authinfo_t *new_authinfo; 820 821 SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo), 822 SCTP_M_AUTH_IF); 823 824 if (new_authinfo == NULL) { 825 /* out of memory */ 826 return (NULL); 827 } 828 bzero(new_authinfo, sizeof(*new_authinfo)); 829 return (new_authinfo); 830 } 831 832 void 833 sctp_free_authinfo(sctp_authinfo_t * authinfo) 834 { 835 if (authinfo == NULL) 836 return; 837 838 if (authinfo->random != NULL) 839 sctp_free_key(authinfo->random); 840 if (authinfo->peer_random != NULL) 841 sctp_free_key(authinfo->peer_random); 842 if (authinfo->assoc_key != NULL) 843 sctp_free_key(authinfo->assoc_key); 844 if (authinfo->recv_key != NULL) 845 sctp_free_key(authinfo->recv_key); 846 847 /* We are NOT dynamically allocating authinfo's right now... */ 848 /* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */ 849 } 850 851 852 uint32_t 853 sctp_get_auth_chunk_len(uint16_t hmac_algo) 854 { 855 int size; 856 857 size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo); 858 return (SCTP_SIZE32(size)); 859 } 860 861 uint32_t 862 sctp_get_hmac_digest_len(uint16_t hmac_algo) 863 { 864 switch (hmac_algo) { 865 case SCTP_AUTH_HMAC_ID_SHA1: 866 return (SCTP_AUTH_DIGEST_LEN_SHA1); 867 case SCTP_AUTH_HMAC_ID_SHA256: 868 return (SCTP_AUTH_DIGEST_LEN_SHA256); 869 default: 870 /* unknown HMAC algorithm: can't do anything */ 871 return (0); 872 } /* end switch */ 873 } 874 875 static inline int 876 sctp_get_hmac_block_len(uint16_t hmac_algo) 877 { 878 switch (hmac_algo) { 879 case SCTP_AUTH_HMAC_ID_SHA1: 880 return (64); 881 case SCTP_AUTH_HMAC_ID_SHA256: 882 return (64); 883 case SCTP_AUTH_HMAC_ID_RSVD: 884 default: 885 /* unknown HMAC algorithm: can't do anything */ 886 return (0); 887 } /* end switch */ 888 } 889 890 static void 891 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t * ctx) 892 { 893 switch (hmac_algo) { 894 case SCTP_AUTH_HMAC_ID_SHA1: 895 SCTP_SHA1_INIT(&ctx->sha1); 896 break; 897 case SCTP_AUTH_HMAC_ID_SHA256: 898 SCTP_SHA256_INIT(&ctx->sha256); 899 break; 900 case SCTP_AUTH_HMAC_ID_RSVD: 901 default: 902 /* unknown HMAC algorithm: can't do anything */ 903 return; 904 } /* end switch */ 905 } 906 907 static void 908 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t * ctx, 909 uint8_t * text, uint32_t textlen) 910 { 911 switch (hmac_algo) { 912 case SCTP_AUTH_HMAC_ID_SHA1: 913 SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen); 914 break; 915 case SCTP_AUTH_HMAC_ID_SHA256: 916 SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen); 917 break; 918 case SCTP_AUTH_HMAC_ID_RSVD: 919 default: 920 /* unknown HMAC algorithm: can't do anything */ 921 return; 922 } /* end switch */ 923 } 924 925 static void 926 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t * ctx, 927 uint8_t * digest) 928 { 929 switch (hmac_algo) { 930 case SCTP_AUTH_HMAC_ID_SHA1: 931 SCTP_SHA1_FINAL(digest, &ctx->sha1); 932 break; 933 case SCTP_AUTH_HMAC_ID_SHA256: 934 SCTP_SHA256_FINAL(digest, &ctx->sha256); 935 break; 936 case SCTP_AUTH_HMAC_ID_RSVD: 937 default: 938 /* unknown HMAC algorithm: can't do anything */ 939 return; 940 } /* end switch */ 941 } 942 943 /*- 944 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104) 945 * 946 * Compute the HMAC digest using the desired hash key, text, and HMAC 947 * algorithm. Resulting digest is placed in 'digest' and digest length 948 * is returned, if the HMAC was performed. 949 * 950 * WARNING: it is up to the caller to supply sufficient space to hold the 951 * resultant digest. 952 */ 953 uint32_t 954 sctp_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen, 955 uint8_t * text, uint32_t textlen, uint8_t * digest) 956 { 957 uint32_t digestlen; 958 uint32_t blocklen; 959 sctp_hash_context_t ctx; 960 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 961 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 962 uint32_t i; 963 964 /* sanity check the material and length */ 965 if ((key == NULL) || (keylen == 0) || (text == NULL) || 966 (textlen == 0) || (digest == NULL)) { 967 /* can't do HMAC with empty key or text or digest store */ 968 return (0); 969 } 970 /* validate the hmac algo and get the digest length */ 971 digestlen = sctp_get_hmac_digest_len(hmac_algo); 972 if (digestlen == 0) 973 return (0); 974 975 /* hash the key if it is longer than the hash block size */ 976 blocklen = sctp_get_hmac_block_len(hmac_algo); 977 if (keylen > blocklen) { 978 sctp_hmac_init(hmac_algo, &ctx); 979 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 980 sctp_hmac_final(hmac_algo, &ctx, temp); 981 /* set the hashed key as the key */ 982 keylen = digestlen; 983 key = temp; 984 } 985 /* initialize the inner/outer pads with the key and "append" zeroes */ 986 bzero(ipad, blocklen); 987 bzero(opad, blocklen); 988 bcopy(key, ipad, keylen); 989 bcopy(key, opad, keylen); 990 991 /* XOR the key with ipad and opad values */ 992 for (i = 0; i < blocklen; i++) { 993 ipad[i] ^= 0x36; 994 opad[i] ^= 0x5c; 995 } 996 997 /* perform inner hash */ 998 sctp_hmac_init(hmac_algo, &ctx); 999 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 1000 sctp_hmac_update(hmac_algo, &ctx, text, textlen); 1001 sctp_hmac_final(hmac_algo, &ctx, temp); 1002 1003 /* perform outer hash */ 1004 sctp_hmac_init(hmac_algo, &ctx); 1005 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 1006 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 1007 sctp_hmac_final(hmac_algo, &ctx, digest); 1008 1009 return (digestlen); 1010 } 1011 1012 /* mbuf version */ 1013 uint32_t 1014 sctp_hmac_m(uint16_t hmac_algo, uint8_t * key, uint32_t keylen, 1015 struct mbuf *m, uint32_t m_offset, uint8_t * digest, uint32_t trailer) 1016 { 1017 uint32_t digestlen; 1018 uint32_t blocklen; 1019 sctp_hash_context_t ctx; 1020 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 1021 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1022 uint32_t i; 1023 struct mbuf *m_tmp; 1024 1025 /* sanity check the material and length */ 1026 if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) { 1027 /* can't do HMAC with empty key or text or digest store */ 1028 return (0); 1029 } 1030 /* validate the hmac algo and get the digest length */ 1031 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1032 if (digestlen == 0) 1033 return (0); 1034 1035 /* hash the key if it is longer than the hash block size */ 1036 blocklen = sctp_get_hmac_block_len(hmac_algo); 1037 if (keylen > blocklen) { 1038 sctp_hmac_init(hmac_algo, &ctx); 1039 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 1040 sctp_hmac_final(hmac_algo, &ctx, temp); 1041 /* set the hashed key as the key */ 1042 keylen = digestlen; 1043 key = temp; 1044 } 1045 /* initialize the inner/outer pads with the key and "append" zeroes */ 1046 bzero(ipad, blocklen); 1047 bzero(opad, blocklen); 1048 bcopy(key, ipad, keylen); 1049 bcopy(key, opad, keylen); 1050 1051 /* XOR the key with ipad and opad values */ 1052 for (i = 0; i < blocklen; i++) { 1053 ipad[i] ^= 0x36; 1054 opad[i] ^= 0x5c; 1055 } 1056 1057 /* perform inner hash */ 1058 sctp_hmac_init(hmac_algo, &ctx); 1059 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 1060 /* find the correct starting mbuf and offset (get start of text) */ 1061 m_tmp = m; 1062 while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) { 1063 m_offset -= SCTP_BUF_LEN(m_tmp); 1064 m_tmp = SCTP_BUF_NEXT(m_tmp); 1065 } 1066 /* now use the rest of the mbuf chain for the text */ 1067 while (m_tmp != NULL) { 1068 if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) { 1069 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset, 1070 SCTP_BUF_LEN(m_tmp) - (trailer + m_offset)); 1071 } else { 1072 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset, 1073 SCTP_BUF_LEN(m_tmp) - m_offset); 1074 } 1075 1076 /* clear the offset since it's only for the first mbuf */ 1077 m_offset = 0; 1078 m_tmp = SCTP_BUF_NEXT(m_tmp); 1079 } 1080 sctp_hmac_final(hmac_algo, &ctx, temp); 1081 1082 /* perform outer hash */ 1083 sctp_hmac_init(hmac_algo, &ctx); 1084 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 1085 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 1086 sctp_hmac_final(hmac_algo, &ctx, digest); 1087 1088 return (digestlen); 1089 } 1090 1091 /*- 1092 * verify the HMAC digest using the desired hash key, text, and HMAC 1093 * algorithm. 1094 * Returns -1 on error, 0 on success. 1095 */ 1096 int 1097 sctp_verify_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen, 1098 uint8_t * text, uint32_t textlen, 1099 uint8_t * digest, uint32_t digestlen) 1100 { 1101 uint32_t len; 1102 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1103 1104 /* sanity check the material and length */ 1105 if ((key == NULL) || (keylen == 0) || 1106 (text == NULL) || (textlen == 0) || (digest == NULL)) { 1107 /* can't do HMAC with empty key or text or digest */ 1108 return (-1); 1109 } 1110 len = sctp_get_hmac_digest_len(hmac_algo); 1111 if ((len == 0) || (digestlen != len)) 1112 return (-1); 1113 1114 /* compute the expected hash */ 1115 if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len) 1116 return (-1); 1117 1118 if (memcmp(digest, temp, digestlen) != 0) 1119 return (-1); 1120 else 1121 return (0); 1122 } 1123 1124 1125 /* 1126 * computes the requested HMAC using a key struct (which may be modified if 1127 * the keylen exceeds the HMAC block len). 1128 */ 1129 uint32_t 1130 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t * key, uint8_t * text, 1131 uint32_t textlen, uint8_t * digest) 1132 { 1133 uint32_t digestlen; 1134 uint32_t blocklen; 1135 sctp_hash_context_t ctx; 1136 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1137 1138 /* sanity check */ 1139 if ((key == NULL) || (text == NULL) || (textlen == 0) || 1140 (digest == NULL)) { 1141 /* can't do HMAC with empty key or text or digest store */ 1142 return (0); 1143 } 1144 /* validate the hmac algo and get the digest length */ 1145 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1146 if (digestlen == 0) 1147 return (0); 1148 1149 /* hash the key if it is longer than the hash block size */ 1150 blocklen = sctp_get_hmac_block_len(hmac_algo); 1151 if (key->keylen > blocklen) { 1152 sctp_hmac_init(hmac_algo, &ctx); 1153 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1154 sctp_hmac_final(hmac_algo, &ctx, temp); 1155 /* save the hashed key as the new key */ 1156 key->keylen = digestlen; 1157 bcopy(temp, key->key, key->keylen); 1158 } 1159 return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen, 1160 digest)); 1161 } 1162 1163 /* mbuf version */ 1164 uint32_t 1165 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t * key, struct mbuf *m, 1166 uint32_t m_offset, uint8_t * digest) 1167 { 1168 uint32_t digestlen; 1169 uint32_t blocklen; 1170 sctp_hash_context_t ctx; 1171 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1172 1173 /* sanity check */ 1174 if ((key == NULL) || (m == NULL) || (digest == NULL)) { 1175 /* can't do HMAC with empty key or text or digest store */ 1176 return (0); 1177 } 1178 /* validate the hmac algo and get the digest length */ 1179 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1180 if (digestlen == 0) 1181 return (0); 1182 1183 /* hash the key if it is longer than the hash block size */ 1184 blocklen = sctp_get_hmac_block_len(hmac_algo); 1185 if (key->keylen > blocklen) { 1186 sctp_hmac_init(hmac_algo, &ctx); 1187 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1188 sctp_hmac_final(hmac_algo, &ctx, temp); 1189 /* save the hashed key as the new key */ 1190 key->keylen = digestlen; 1191 bcopy(temp, key->key, key->keylen); 1192 } 1193 return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0)); 1194 } 1195 1196 int 1197 sctp_auth_is_supported_hmac(sctp_hmaclist_t * list, uint16_t id) 1198 { 1199 int i; 1200 1201 if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD)) 1202 return (0); 1203 1204 for (i = 0; i < list->num_algo; i++) 1205 if (list->hmac[i] == id) 1206 return (1); 1207 1208 /* not in the list */ 1209 return (0); 1210 } 1211 1212 1213 /*- 1214 * clear any cached key(s) if they match the given key id on an association. 1215 * the cached key(s) will be recomputed and re-cached at next use. 1216 * ASSUMES TCB_LOCK is already held 1217 */ 1218 void 1219 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid) 1220 { 1221 if (stcb == NULL) 1222 return; 1223 1224 if (keyid == stcb->asoc.authinfo.assoc_keyid) { 1225 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1226 stcb->asoc.authinfo.assoc_key = NULL; 1227 } 1228 if (keyid == stcb->asoc.authinfo.recv_keyid) { 1229 sctp_free_key(stcb->asoc.authinfo.recv_key); 1230 stcb->asoc.authinfo.recv_key = NULL; 1231 } 1232 } 1233 1234 /*- 1235 * clear any cached key(s) if they match the given key id for all assocs on 1236 * an endpoint. 1237 * ASSUMES INP_WLOCK is already held 1238 */ 1239 void 1240 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid) 1241 { 1242 struct sctp_tcb *stcb; 1243 1244 if (inp == NULL) 1245 return; 1246 1247 /* clear the cached keys on all assocs on this instance */ 1248 LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { 1249 SCTP_TCB_LOCK(stcb); 1250 sctp_clear_cachedkeys(stcb, keyid); 1251 SCTP_TCB_UNLOCK(stcb); 1252 } 1253 } 1254 1255 /*- 1256 * delete a shared key from an association 1257 * ASSUMES TCB_LOCK is already held 1258 */ 1259 int 1260 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1261 { 1262 sctp_sharedkey_t *skey; 1263 1264 if (stcb == NULL) 1265 return (-1); 1266 1267 /* is the keyid the assoc active sending key */ 1268 if (keyid == stcb->asoc.authinfo.active_keyid) 1269 return (-1); 1270 1271 /* does the key exist? */ 1272 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1273 if (skey == NULL) 1274 return (-1); 1275 1276 /* are there other refcount holders on the key? */ 1277 if (skey->refcount > 1) 1278 return (-1); 1279 1280 /* remove it */ 1281 LIST_REMOVE(skey, next); 1282 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1283 1284 /* clear any cached keys */ 1285 sctp_clear_cachedkeys(stcb, keyid); 1286 return (0); 1287 } 1288 1289 /*- 1290 * deletes a shared key from the endpoint 1291 * ASSUMES INP_WLOCK is already held 1292 */ 1293 int 1294 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1295 { 1296 sctp_sharedkey_t *skey; 1297 1298 if (inp == NULL) 1299 return (-1); 1300 1301 /* is the keyid the active sending key on the endpoint */ 1302 if (keyid == inp->sctp_ep.default_keyid) 1303 return (-1); 1304 1305 /* does the key exist? */ 1306 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1307 if (skey == NULL) 1308 return (-1); 1309 1310 /* endpoint keys are not refcounted */ 1311 1312 /* remove it */ 1313 LIST_REMOVE(skey, next); 1314 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1315 1316 /* clear any cached keys */ 1317 sctp_clear_cachedkeys_ep(inp, keyid); 1318 return (0); 1319 } 1320 1321 /*- 1322 * set the active key on an association 1323 * ASSUMES TCB_LOCK is already held 1324 */ 1325 int 1326 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid) 1327 { 1328 sctp_sharedkey_t *skey = NULL; 1329 1330 /* find the key on the assoc */ 1331 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1332 if (skey == NULL) { 1333 /* that key doesn't exist */ 1334 return (-1); 1335 } 1336 if ((skey->deactivated) && (skey->refcount > 1)) { 1337 /* can't reactivate a deactivated key with other refcounts */ 1338 return (-1); 1339 } 1340 /* set the (new) active key */ 1341 stcb->asoc.authinfo.active_keyid = keyid; 1342 /* reset the deactivated flag */ 1343 skey->deactivated = 0; 1344 1345 return (0); 1346 } 1347 1348 /*- 1349 * set the active key on an endpoint 1350 * ASSUMES INP_WLOCK is already held 1351 */ 1352 int 1353 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1354 { 1355 sctp_sharedkey_t *skey; 1356 1357 /* find the key */ 1358 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1359 if (skey == NULL) { 1360 /* that key doesn't exist */ 1361 return (-1); 1362 } 1363 inp->sctp_ep.default_keyid = keyid; 1364 return (0); 1365 } 1366 1367 /*- 1368 * deactivates a shared key from the association 1369 * ASSUMES INP_WLOCK is already held 1370 */ 1371 int 1372 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1373 { 1374 sctp_sharedkey_t *skey; 1375 1376 if (stcb == NULL) 1377 return (-1); 1378 1379 /* is the keyid the assoc active sending key */ 1380 if (keyid == stcb->asoc.authinfo.active_keyid) 1381 return (-1); 1382 1383 /* does the key exist? */ 1384 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1385 if (skey == NULL) 1386 return (-1); 1387 1388 /* are there other refcount holders on the key? */ 1389 if (skey->refcount == 1) { 1390 /* no other users, send a notification for this key */ 1391 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0, 1392 SCTP_SO_LOCKED); 1393 } 1394 /* mark the key as deactivated */ 1395 skey->deactivated = 1; 1396 1397 return (0); 1398 } 1399 1400 /*- 1401 * deactivates a shared key from the endpoint 1402 * ASSUMES INP_WLOCK is already held 1403 */ 1404 int 1405 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1406 { 1407 sctp_sharedkey_t *skey; 1408 1409 if (inp == NULL) 1410 return (-1); 1411 1412 /* is the keyid the active sending key on the endpoint */ 1413 if (keyid == inp->sctp_ep.default_keyid) 1414 return (-1); 1415 1416 /* does the key exist? */ 1417 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1418 if (skey == NULL) 1419 return (-1); 1420 1421 /* endpoint keys are not refcounted */ 1422 1423 /* remove it */ 1424 LIST_REMOVE(skey, next); 1425 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1426 1427 return (0); 1428 } 1429 1430 /* 1431 * get local authentication parameters from cookie (from INIT-ACK) 1432 */ 1433 void 1434 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m, 1435 uint32_t offset, uint32_t length) 1436 { 1437 struct sctp_paramhdr *phdr, tmp_param; 1438 uint16_t plen, ptype; 1439 uint8_t random_store[SCTP_PARAM_BUFFER_SIZE]; 1440 struct sctp_auth_random *p_random = NULL; 1441 uint16_t random_len = 0; 1442 uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE]; 1443 struct sctp_auth_hmac_algo *hmacs = NULL; 1444 uint16_t hmacs_len = 0; 1445 uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE]; 1446 struct sctp_auth_chunk_list *chunks = NULL; 1447 uint16_t num_chunks = 0; 1448 sctp_key_t *new_key; 1449 uint32_t keylen; 1450 1451 /* convert to upper bound */ 1452 length += offset; 1453 1454 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, 1455 sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param); 1456 while (phdr != NULL) { 1457 ptype = ntohs(phdr->param_type); 1458 plen = ntohs(phdr->param_length); 1459 1460 if ((plen == 0) || (offset + plen > length)) 1461 break; 1462 1463 if (ptype == SCTP_RANDOM) { 1464 if (plen > sizeof(random_store)) 1465 break; 1466 phdr = sctp_get_next_param(m, offset, 1467 (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store))); 1468 if (phdr == NULL) 1469 return; 1470 /* save the random and length for the key */ 1471 p_random = (struct sctp_auth_random *)phdr; 1472 random_len = plen - sizeof(*p_random); 1473 } else if (ptype == SCTP_HMAC_LIST) { 1474 int num_hmacs; 1475 int i; 1476 1477 if (plen > sizeof(hmacs_store)) 1478 break; 1479 phdr = sctp_get_next_param(m, offset, 1480 (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store))); 1481 if (phdr == NULL) 1482 return; 1483 /* save the hmacs list and num for the key */ 1484 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1485 hmacs_len = plen - sizeof(*hmacs); 1486 num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]); 1487 if (stcb->asoc.local_hmacs != NULL) 1488 sctp_free_hmaclist(stcb->asoc.local_hmacs); 1489 stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs); 1490 if (stcb->asoc.local_hmacs != NULL) { 1491 for (i = 0; i < num_hmacs; i++) { 1492 (void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs, 1493 ntohs(hmacs->hmac_ids[i])); 1494 } 1495 } 1496 } else if (ptype == SCTP_CHUNK_LIST) { 1497 int i; 1498 1499 if (plen > sizeof(chunks_store)) 1500 break; 1501 phdr = sctp_get_next_param(m, offset, 1502 (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store))); 1503 if (phdr == NULL) 1504 return; 1505 chunks = (struct sctp_auth_chunk_list *)phdr; 1506 num_chunks = plen - sizeof(*chunks); 1507 /* save chunks list and num for the key */ 1508 if (stcb->asoc.local_auth_chunks != NULL) 1509 sctp_clear_chunklist(stcb->asoc.local_auth_chunks); 1510 else 1511 stcb->asoc.local_auth_chunks = sctp_alloc_chunklist(); 1512 for (i = 0; i < num_chunks; i++) { 1513 (void)sctp_auth_add_chunk(chunks->chunk_types[i], 1514 stcb->asoc.local_auth_chunks); 1515 } 1516 } 1517 /* get next parameter */ 1518 offset += SCTP_SIZE32(plen); 1519 if (offset + sizeof(struct sctp_paramhdr) > length) 1520 break; 1521 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), 1522 (uint8_t *) & tmp_param); 1523 } 1524 /* concatenate the full random key */ 1525 keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len; 1526 if (chunks != NULL) { 1527 keylen += sizeof(*chunks) + num_chunks; 1528 } 1529 new_key = sctp_alloc_key(keylen); 1530 if (new_key != NULL) { 1531 /* copy in the RANDOM */ 1532 if (p_random != NULL) { 1533 keylen = sizeof(*p_random) + random_len; 1534 bcopy(p_random, new_key->key, keylen); 1535 } 1536 /* append in the AUTH chunks */ 1537 if (chunks != NULL) { 1538 bcopy(chunks, new_key->key + keylen, 1539 sizeof(*chunks) + num_chunks); 1540 keylen += sizeof(*chunks) + num_chunks; 1541 } 1542 /* append in the HMACs */ 1543 if (hmacs != NULL) { 1544 bcopy(hmacs, new_key->key + keylen, 1545 sizeof(*hmacs) + hmacs_len); 1546 } 1547 } 1548 if (stcb->asoc.authinfo.random != NULL) 1549 sctp_free_key(stcb->asoc.authinfo.random); 1550 stcb->asoc.authinfo.random = new_key; 1551 stcb->asoc.authinfo.random_len = random_len; 1552 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid); 1553 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid); 1554 1555 /* negotiate what HMAC to use for the peer */ 1556 stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs, 1557 stcb->asoc.local_hmacs); 1558 1559 /* copy defaults from the endpoint */ 1560 /* FIX ME: put in cookie? */ 1561 stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid; 1562 /* copy out the shared key list (by reference) from the endpoint */ 1563 (void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys, 1564 &stcb->asoc.shared_keys); 1565 } 1566 1567 /* 1568 * compute and fill in the HMAC digest for a packet 1569 */ 1570 void 1571 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset, 1572 struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid) 1573 { 1574 uint32_t digestlen; 1575 sctp_sharedkey_t *skey; 1576 sctp_key_t *key; 1577 1578 if ((stcb == NULL) || (auth == NULL)) 1579 return; 1580 1581 /* zero the digest + chunk padding */ 1582 digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id); 1583 bzero(auth->hmac, SCTP_SIZE32(digestlen)); 1584 1585 /* is the desired key cached? */ 1586 if ((keyid != stcb->asoc.authinfo.assoc_keyid) || 1587 (stcb->asoc.authinfo.assoc_key == NULL)) { 1588 if (stcb->asoc.authinfo.assoc_key != NULL) { 1589 /* free the old cached key */ 1590 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1591 } 1592 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1593 /* the only way skey is NULL is if null key id 0 is used */ 1594 if (skey != NULL) 1595 key = skey->key; 1596 else 1597 key = NULL; 1598 /* compute a new assoc key and cache it */ 1599 stcb->asoc.authinfo.assoc_key = 1600 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1601 stcb->asoc.authinfo.peer_random, key); 1602 stcb->asoc.authinfo.assoc_keyid = keyid; 1603 SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n", 1604 stcb->asoc.authinfo.assoc_keyid); 1605 #ifdef SCTP_DEBUG 1606 if (SCTP_AUTH_DEBUG) 1607 sctp_print_key(stcb->asoc.authinfo.assoc_key, 1608 "Assoc Key"); 1609 #endif 1610 } 1611 /* set in the active key id */ 1612 auth->shared_key_id = htons(keyid); 1613 1614 /* compute and fill in the digest */ 1615 (void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key, 1616 m, auth_offset, auth->hmac); 1617 } 1618 1619 1620 static void 1621 sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size) 1622 { 1623 struct mbuf *m_tmp; 1624 uint8_t *data; 1625 1626 /* sanity check */ 1627 if (m == NULL) 1628 return; 1629 1630 /* find the correct starting mbuf and offset (get start position) */ 1631 m_tmp = m; 1632 while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) { 1633 m_offset -= SCTP_BUF_LEN(m_tmp); 1634 m_tmp = SCTP_BUF_NEXT(m_tmp); 1635 } 1636 /* now use the rest of the mbuf chain */ 1637 while ((m_tmp != NULL) && (size > 0)) { 1638 data = mtod(m_tmp, uint8_t *) + m_offset; 1639 if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) { 1640 bzero(data, SCTP_BUF_LEN(m_tmp)); 1641 size -= SCTP_BUF_LEN(m_tmp); 1642 } else { 1643 bzero(data, size); 1644 size = 0; 1645 } 1646 /* clear the offset since it's only for the first mbuf */ 1647 m_offset = 0; 1648 m_tmp = SCTP_BUF_NEXT(m_tmp); 1649 } 1650 } 1651 1652 /*- 1653 * process the incoming Authentication chunk 1654 * return codes: 1655 * -1 on any authentication error 1656 * 0 on authentication verification 1657 */ 1658 int 1659 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth, 1660 struct mbuf *m, uint32_t offset) 1661 { 1662 uint16_t chunklen; 1663 uint16_t shared_key_id; 1664 uint16_t hmac_id; 1665 sctp_sharedkey_t *skey; 1666 uint32_t digestlen; 1667 uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1668 uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1669 1670 /* auth is checked for NULL by caller */ 1671 chunklen = ntohs(auth->ch.chunk_length); 1672 if (chunklen < sizeof(*auth)) { 1673 SCTP_STAT_INCR(sctps_recvauthfailed); 1674 return (-1); 1675 } 1676 SCTP_STAT_INCR(sctps_recvauth); 1677 1678 /* get the auth params */ 1679 shared_key_id = ntohs(auth->shared_key_id); 1680 hmac_id = ntohs(auth->hmac_id); 1681 SCTPDBG(SCTP_DEBUG_AUTH1, 1682 "SCTP AUTH Chunk: shared key %u, HMAC id %u\n", 1683 shared_key_id, hmac_id); 1684 1685 /* is the indicated HMAC supported? */ 1686 if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) { 1687 struct mbuf *m_err; 1688 struct sctp_auth_invalid_hmac *err; 1689 1690 SCTP_STAT_INCR(sctps_recvivalhmacid); 1691 SCTPDBG(SCTP_DEBUG_AUTH1, 1692 "SCTP Auth: unsupported HMAC id %u\n", 1693 hmac_id); 1694 /* 1695 * report this in an Error Chunk: Unsupported HMAC 1696 * Identifier 1697 */ 1698 m_err = sctp_get_mbuf_for_msg(sizeof(*err), 0, M_NOWAIT, 1699 1, MT_HEADER); 1700 if (m_err != NULL) { 1701 /* pre-reserve some space */ 1702 SCTP_BUF_RESV_UF(m_err, sizeof(struct sctp_chunkhdr)); 1703 /* fill in the error */ 1704 err = mtod(m_err, struct sctp_auth_invalid_hmac *); 1705 bzero(err, sizeof(*err)); 1706 err->ph.param_type = htons(SCTP_CAUSE_UNSUPPORTED_HMACID); 1707 err->ph.param_length = htons(sizeof(*err)); 1708 err->hmac_id = ntohs(hmac_id); 1709 SCTP_BUF_LEN(m_err) = sizeof(*err); 1710 /* queue it */ 1711 sctp_queue_op_err(stcb, m_err); 1712 } 1713 return (-1); 1714 } 1715 /* get the indicated shared key, if available */ 1716 if ((stcb->asoc.authinfo.recv_key == NULL) || 1717 (stcb->asoc.authinfo.recv_keyid != shared_key_id)) { 1718 /* find the shared key on the assoc first */ 1719 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, 1720 shared_key_id); 1721 /* if the shared key isn't found, discard the chunk */ 1722 if (skey == NULL) { 1723 SCTP_STAT_INCR(sctps_recvivalkeyid); 1724 SCTPDBG(SCTP_DEBUG_AUTH1, 1725 "SCTP Auth: unknown key id %u\n", 1726 shared_key_id); 1727 return (-1); 1728 } 1729 /* generate a notification if this is a new key id */ 1730 if (stcb->asoc.authinfo.recv_keyid != shared_key_id) 1731 /* 1732 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb, 1733 * shared_key_id, (void 1734 * *)stcb->asoc.authinfo.recv_keyid); 1735 */ 1736 sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY, 1737 shared_key_id, stcb->asoc.authinfo.recv_keyid, 1738 SCTP_SO_NOT_LOCKED); 1739 /* compute a new recv assoc key and cache it */ 1740 if (stcb->asoc.authinfo.recv_key != NULL) 1741 sctp_free_key(stcb->asoc.authinfo.recv_key); 1742 stcb->asoc.authinfo.recv_key = 1743 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1744 stcb->asoc.authinfo.peer_random, skey->key); 1745 stcb->asoc.authinfo.recv_keyid = shared_key_id; 1746 #ifdef SCTP_DEBUG 1747 if (SCTP_AUTH_DEBUG) 1748 sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key"); 1749 #endif 1750 } 1751 /* validate the digest length */ 1752 digestlen = sctp_get_hmac_digest_len(hmac_id); 1753 if (chunklen < (sizeof(*auth) + digestlen)) { 1754 /* invalid digest length */ 1755 SCTP_STAT_INCR(sctps_recvauthfailed); 1756 SCTPDBG(SCTP_DEBUG_AUTH1, 1757 "SCTP Auth: chunk too short for HMAC\n"); 1758 return (-1); 1759 } 1760 /* save a copy of the digest, zero the pseudo header, and validate */ 1761 bcopy(auth->hmac, digest, digestlen); 1762 sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen)); 1763 (void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key, 1764 m, offset, computed_digest); 1765 1766 /* compare the computed digest with the one in the AUTH chunk */ 1767 if (memcmp(digest, computed_digest, digestlen) != 0) { 1768 SCTP_STAT_INCR(sctps_recvauthfailed); 1769 SCTPDBG(SCTP_DEBUG_AUTH1, 1770 "SCTP Auth: HMAC digest check failed\n"); 1771 return (-1); 1772 } 1773 return (0); 1774 } 1775 1776 /* 1777 * Generate NOTIFICATION 1778 */ 1779 void 1780 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication, 1781 uint16_t keyid, uint16_t alt_keyid, int so_locked 1782 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) 1783 SCTP_UNUSED 1784 #endif 1785 ) 1786 { 1787 struct mbuf *m_notify; 1788 struct sctp_authkey_event *auth; 1789 struct sctp_queued_to_read *control; 1790 1791 if ((stcb == NULL) || 1792 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || 1793 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || 1794 (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) 1795 ) { 1796 /* If the socket is gone we are out of here */ 1797 return; 1798 } 1799 if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT)) 1800 /* event not enabled */ 1801 return; 1802 1803 m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event), 1804 0, M_NOWAIT, 1, MT_HEADER); 1805 if (m_notify == NULL) 1806 /* no space left */ 1807 return; 1808 1809 SCTP_BUF_LEN(m_notify) = 0; 1810 auth = mtod(m_notify, struct sctp_authkey_event *); 1811 auth->auth_type = SCTP_AUTHENTICATION_EVENT; 1812 auth->auth_flags = 0; 1813 auth->auth_length = sizeof(*auth); 1814 auth->auth_keynumber = keyid; 1815 auth->auth_altkeynumber = alt_keyid; 1816 auth->auth_indication = indication; 1817 auth->auth_assoc_id = sctp_get_associd(stcb); 1818 1819 SCTP_BUF_LEN(m_notify) = sizeof(*auth); 1820 SCTP_BUF_NEXT(m_notify) = NULL; 1821 1822 /* append to socket */ 1823 control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 1824 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); 1825 if (control == NULL) { 1826 /* no memory */ 1827 sctp_m_freem(m_notify); 1828 return; 1829 } 1830 control->spec_flags = M_NOTIFICATION; 1831 control->length = SCTP_BUF_LEN(m_notify); 1832 /* not that we need this */ 1833 control->tail_mbuf = m_notify; 1834 sctp_add_to_readq(stcb->sctp_ep, stcb, control, 1835 &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); 1836 } 1837 1838 1839 /*- 1840 * validates the AUTHentication related parameters in an INIT/INIT-ACK 1841 * Note: currently only used for INIT as INIT-ACK is handled inline 1842 * with sctp_load_addresses_from_init() 1843 */ 1844 int 1845 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit) 1846 { 1847 struct sctp_paramhdr *phdr, parm_buf; 1848 uint16_t ptype, plen; 1849 int peer_supports_asconf = 0; 1850 int peer_supports_auth = 0; 1851 int got_random = 0, got_hmacs = 0, got_chklist = 0; 1852 uint8_t saw_asconf = 0; 1853 uint8_t saw_asconf_ack = 0; 1854 1855 /* go through each of the params. */ 1856 phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf)); 1857 while (phdr) { 1858 ptype = ntohs(phdr->param_type); 1859 plen = ntohs(phdr->param_length); 1860 1861 if (offset + plen > limit) { 1862 break; 1863 } 1864 if (plen < sizeof(struct sctp_paramhdr)) { 1865 break; 1866 } 1867 if (ptype == SCTP_SUPPORTED_CHUNK_EXT) { 1868 /* A supported extension chunk */ 1869 struct sctp_supported_chunk_types_param *pr_supported; 1870 uint8_t local_store[SCTP_PARAM_BUFFER_SIZE]; 1871 int num_ent, i; 1872 1873 phdr = sctp_get_next_param(m, offset, 1874 (struct sctp_paramhdr *)&local_store, min(plen, sizeof(local_store))); 1875 if (phdr == NULL) { 1876 return (-1); 1877 } 1878 pr_supported = (struct sctp_supported_chunk_types_param *)phdr; 1879 num_ent = plen - sizeof(struct sctp_paramhdr); 1880 for (i = 0; i < num_ent; i++) { 1881 switch (pr_supported->chunk_types[i]) { 1882 case SCTP_ASCONF: 1883 case SCTP_ASCONF_ACK: 1884 peer_supports_asconf = 1; 1885 break; 1886 default: 1887 /* one we don't care about */ 1888 break; 1889 } 1890 } 1891 } else if (ptype == SCTP_RANDOM) { 1892 got_random = 1; 1893 /* enforce the random length */ 1894 if (plen != (sizeof(struct sctp_auth_random) + 1895 SCTP_AUTH_RANDOM_SIZE_REQUIRED)) { 1896 SCTPDBG(SCTP_DEBUG_AUTH1, 1897 "SCTP: invalid RANDOM len\n"); 1898 return (-1); 1899 } 1900 } else if (ptype == SCTP_HMAC_LIST) { 1901 uint8_t store[SCTP_PARAM_BUFFER_SIZE]; 1902 struct sctp_auth_hmac_algo *hmacs; 1903 int num_hmacs; 1904 1905 if (plen > sizeof(store)) 1906 break; 1907 phdr = sctp_get_next_param(m, offset, 1908 (struct sctp_paramhdr *)store, min(plen, sizeof(store))); 1909 if (phdr == NULL) 1910 return (-1); 1911 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1912 num_hmacs = (plen - sizeof(*hmacs)) / 1913 sizeof(hmacs->hmac_ids[0]); 1914 /* validate the hmac list */ 1915 if (sctp_verify_hmac_param(hmacs, num_hmacs)) { 1916 SCTPDBG(SCTP_DEBUG_AUTH1, 1917 "SCTP: invalid HMAC param\n"); 1918 return (-1); 1919 } 1920 got_hmacs = 1; 1921 } else if (ptype == SCTP_CHUNK_LIST) { 1922 int i, num_chunks; 1923 uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE]; 1924 1925 /* did the peer send a non-empty chunk list? */ 1926 struct sctp_auth_chunk_list *chunks = NULL; 1927 1928 phdr = sctp_get_next_param(m, offset, 1929 (struct sctp_paramhdr *)chunks_store, 1930 min(plen, sizeof(chunks_store))); 1931 if (phdr == NULL) 1932 return (-1); 1933 1934 /*- 1935 * Flip through the list and mark that the 1936 * peer supports asconf/asconf_ack. 1937 */ 1938 chunks = (struct sctp_auth_chunk_list *)phdr; 1939 num_chunks = plen - sizeof(*chunks); 1940 for (i = 0; i < num_chunks; i++) { 1941 /* record asconf/asconf-ack if listed */ 1942 if (chunks->chunk_types[i] == SCTP_ASCONF) 1943 saw_asconf = 1; 1944 if (chunks->chunk_types[i] == SCTP_ASCONF_ACK) 1945 saw_asconf_ack = 1; 1946 1947 } 1948 if (num_chunks) 1949 got_chklist = 1; 1950 } 1951 offset += SCTP_SIZE32(plen); 1952 if (offset >= limit) { 1953 break; 1954 } 1955 phdr = sctp_get_next_param(m, offset, &parm_buf, 1956 sizeof(parm_buf)); 1957 } 1958 /* validate authentication required parameters */ 1959 if (got_random && got_hmacs) { 1960 peer_supports_auth = 1; 1961 } else { 1962 peer_supports_auth = 0; 1963 } 1964 if (!peer_supports_auth && got_chklist) { 1965 SCTPDBG(SCTP_DEBUG_AUTH1, 1966 "SCTP: peer sent chunk list w/o AUTH\n"); 1967 return (-1); 1968 } 1969 if (!SCTP_BASE_SYSCTL(sctp_asconf_auth_nochk) && peer_supports_asconf && 1970 !peer_supports_auth) { 1971 SCTPDBG(SCTP_DEBUG_AUTH1, 1972 "SCTP: peer supports ASCONF but not AUTH\n"); 1973 return (-1); 1974 } else if ((peer_supports_asconf) && (peer_supports_auth) && 1975 ((saw_asconf == 0) || (saw_asconf_ack == 0))) { 1976 return (-2); 1977 } 1978 return (0); 1979 } 1980 1981 void 1982 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb) 1983 { 1984 uint16_t chunks_len = 0; 1985 uint16_t hmacs_len = 0; 1986 uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT; 1987 sctp_key_t *new_key; 1988 uint16_t keylen; 1989 1990 /* initialize hmac list from endpoint */ 1991 stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs); 1992 if (stcb->asoc.local_hmacs != NULL) { 1993 hmacs_len = stcb->asoc.local_hmacs->num_algo * 1994 sizeof(stcb->asoc.local_hmacs->hmac[0]); 1995 } 1996 /* initialize auth chunks list from endpoint */ 1997 stcb->asoc.local_auth_chunks = 1998 sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks); 1999 if (stcb->asoc.local_auth_chunks != NULL) { 2000 int i; 2001 2002 for (i = 0; i < 256; i++) { 2003 if (stcb->asoc.local_auth_chunks->chunks[i]) 2004 chunks_len++; 2005 } 2006 } 2007 /* copy defaults from the endpoint */ 2008 stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid; 2009 2010 /* copy out the shared key list (by reference) from the endpoint */ 2011 (void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys, 2012 &stcb->asoc.shared_keys); 2013 2014 /* now set the concatenated key (random + chunks + hmacs) */ 2015 /* key includes parameter headers */ 2016 keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len + 2017 hmacs_len; 2018 new_key = sctp_alloc_key(keylen); 2019 if (new_key != NULL) { 2020 struct sctp_paramhdr *ph; 2021 int plen; 2022 2023 /* generate and copy in the RANDOM */ 2024 ph = (struct sctp_paramhdr *)new_key->key; 2025 ph->param_type = htons(SCTP_RANDOM); 2026 plen = sizeof(*ph) + random_len; 2027 ph->param_length = htons(plen); 2028 SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len); 2029 keylen = plen; 2030 2031 /* append in the AUTH chunks */ 2032 /* NOTE: currently we always have chunks to list */ 2033 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 2034 ph->param_type = htons(SCTP_CHUNK_LIST); 2035 plen = sizeof(*ph) + chunks_len; 2036 ph->param_length = htons(plen); 2037 keylen += sizeof(*ph); 2038 if (stcb->asoc.local_auth_chunks) { 2039 int i; 2040 2041 for (i = 0; i < 256; i++) { 2042 if (stcb->asoc.local_auth_chunks->chunks[i]) 2043 new_key->key[keylen++] = i; 2044 } 2045 } 2046 /* append in the HMACs */ 2047 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 2048 ph->param_type = htons(SCTP_HMAC_LIST); 2049 plen = sizeof(*ph) + hmacs_len; 2050 ph->param_length = htons(plen); 2051 keylen += sizeof(*ph); 2052 (void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs, 2053 new_key->key + keylen); 2054 } 2055 if (stcb->asoc.authinfo.random != NULL) 2056 sctp_free_key(stcb->asoc.authinfo.random); 2057 stcb->asoc.authinfo.random = new_key; 2058 stcb->asoc.authinfo.random_len = random_len; 2059 } 2060