1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. 5 * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. 6 * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions are met: 10 * 11 * a) Redistributions of source code must retain the above copyright notice, 12 * this list of conditions and the following disclaimer. 13 * 14 * b) Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the distribution. 17 * 18 * c) Neither the name of Cisco Systems, Inc. nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 24 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 26 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <netinet/sctp_os.h> 39 #include <netinet/sctp.h> 40 #include <netinet/sctp_header.h> 41 #include <netinet/sctp_pcb.h> 42 #include <netinet/sctp_var.h> 43 #include <netinet/sctp_sysctl.h> 44 #include <netinet/sctputil.h> 45 #include <netinet/sctp_indata.h> 46 #include <netinet/sctp_output.h> 47 #include <netinet/sctp_auth.h> 48 49 #ifdef SCTP_DEBUG 50 #define SCTP_AUTH_DEBUG (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1) 51 #define SCTP_AUTH_DEBUG2 (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2) 52 #endif /* SCTP_DEBUG */ 53 54 55 void 56 sctp_clear_chunklist(sctp_auth_chklist_t *chklist) 57 { 58 memset(chklist, 0, sizeof(*chklist)); 59 /* chklist->num_chunks = 0; */ 60 } 61 62 sctp_auth_chklist_t * 63 sctp_alloc_chunklist(void) 64 { 65 sctp_auth_chklist_t *chklist; 66 67 SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist), 68 SCTP_M_AUTH_CL); 69 if (chklist == NULL) { 70 SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n"); 71 } else { 72 sctp_clear_chunklist(chklist); 73 } 74 return (chklist); 75 } 76 77 void 78 sctp_free_chunklist(sctp_auth_chklist_t *list) 79 { 80 if (list != NULL) 81 SCTP_FREE(list, SCTP_M_AUTH_CL); 82 } 83 84 sctp_auth_chklist_t * 85 sctp_copy_chunklist(sctp_auth_chklist_t *list) 86 { 87 sctp_auth_chklist_t *new_list; 88 89 if (list == NULL) 90 return (NULL); 91 92 /* get a new list */ 93 new_list = sctp_alloc_chunklist(); 94 if (new_list == NULL) 95 return (NULL); 96 /* copy it */ 97 memcpy(new_list, list, sizeof(*new_list)); 98 99 return (new_list); 100 } 101 102 103 /* 104 * add a chunk to the required chunks list 105 */ 106 int 107 sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list) 108 { 109 if (list == NULL) 110 return (-1); 111 112 /* is chunk restricted? */ 113 if ((chunk == SCTP_INITIATION) || 114 (chunk == SCTP_INITIATION_ACK) || 115 (chunk == SCTP_SHUTDOWN_COMPLETE) || 116 (chunk == SCTP_AUTHENTICATION)) { 117 return (-1); 118 } 119 if (list->chunks[chunk] == 0) { 120 list->chunks[chunk] = 1; 121 list->num_chunks++; 122 SCTPDBG(SCTP_DEBUG_AUTH1, 123 "SCTP: added chunk %u (0x%02x) to Auth list\n", 124 chunk, chunk); 125 } 126 return (0); 127 } 128 129 /* 130 * delete a chunk from the required chunks list 131 */ 132 int 133 sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list) 134 { 135 if (list == NULL) 136 return (-1); 137 138 if (list->chunks[chunk] == 1) { 139 list->chunks[chunk] = 0; 140 list->num_chunks--; 141 SCTPDBG(SCTP_DEBUG_AUTH1, 142 "SCTP: deleted chunk %u (0x%02x) from Auth list\n", 143 chunk, chunk); 144 } 145 return (0); 146 } 147 148 size_t 149 sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list) 150 { 151 if (list == NULL) 152 return (0); 153 else 154 return (list->num_chunks); 155 } 156 157 /* 158 * return the current number and list of required chunks caller must 159 * guarantee ptr has space for up to 256 bytes 160 */ 161 int 162 sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr) 163 { 164 int i, count = 0; 165 166 if (list == NULL) 167 return (0); 168 169 for (i = 0; i < 256; i++) { 170 if (list->chunks[i] != 0) { 171 *ptr++ = i; 172 count++; 173 } 174 } 175 return (count); 176 } 177 178 int 179 sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr) 180 { 181 int i, size = 0; 182 183 if (list == NULL) 184 return (0); 185 186 if (list->num_chunks <= 32) { 187 /* just list them, one byte each */ 188 for (i = 0; i < 256; i++) { 189 if (list->chunks[i] != 0) { 190 *ptr++ = i; 191 size++; 192 } 193 } 194 } else { 195 int index, offset; 196 197 /* pack into a 32 byte bitfield */ 198 for (i = 0; i < 256; i++) { 199 if (list->chunks[i] != 0) { 200 index = i / 8; 201 offset = i % 8; 202 ptr[index] |= (1 << offset); 203 } 204 } 205 size = 32; 206 } 207 return (size); 208 } 209 210 int 211 sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks, 212 sctp_auth_chklist_t *list) 213 { 214 int i; 215 int size; 216 217 if (list == NULL) 218 return (0); 219 220 if (num_chunks <= 32) { 221 /* just pull them, one byte each */ 222 for (i = 0; i < num_chunks; i++) { 223 (void)sctp_auth_add_chunk(*ptr++, list); 224 } 225 size = num_chunks; 226 } else { 227 int index, offset; 228 229 /* unpack from a 32 byte bitfield */ 230 for (index = 0; index < 32; index++) { 231 for (offset = 0; offset < 8; offset++) { 232 if (ptr[index] & (1 << offset)) { 233 (void)sctp_auth_add_chunk((index * 8) + offset, list); 234 } 235 } 236 } 237 size = 32; 238 } 239 return (size); 240 } 241 242 243 /* 244 * allocate structure space for a key of length keylen 245 */ 246 sctp_key_t * 247 sctp_alloc_key(uint32_t keylen) 248 { 249 sctp_key_t *new_key; 250 251 SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen, 252 SCTP_M_AUTH_KY); 253 if (new_key == NULL) { 254 /* out of memory */ 255 return (NULL); 256 } 257 new_key->keylen = keylen; 258 return (new_key); 259 } 260 261 void 262 sctp_free_key(sctp_key_t *key) 263 { 264 if (key != NULL) 265 SCTP_FREE(key, SCTP_M_AUTH_KY); 266 } 267 268 void 269 sctp_print_key(sctp_key_t *key, const char *str) 270 { 271 uint32_t i; 272 273 if (key == NULL) { 274 SCTP_PRINTF("%s: [Null key]\n", str); 275 return; 276 } 277 SCTP_PRINTF("%s: len %u, ", str, key->keylen); 278 if (key->keylen) { 279 for (i = 0; i < key->keylen; i++) 280 SCTP_PRINTF("%02x", key->key[i]); 281 SCTP_PRINTF("\n"); 282 } else { 283 SCTP_PRINTF("[Null key]\n"); 284 } 285 } 286 287 void 288 sctp_show_key(sctp_key_t *key, const char *str) 289 { 290 uint32_t i; 291 292 if (key == NULL) { 293 SCTP_PRINTF("%s: [Null key]\n", str); 294 return; 295 } 296 SCTP_PRINTF("%s: len %u, ", str, key->keylen); 297 if (key->keylen) { 298 for (i = 0; i < key->keylen; i++) 299 SCTP_PRINTF("%02x", key->key[i]); 300 SCTP_PRINTF("\n"); 301 } else { 302 SCTP_PRINTF("[Null key]\n"); 303 } 304 } 305 306 static uint32_t 307 sctp_get_keylen(sctp_key_t *key) 308 { 309 if (key != NULL) 310 return (key->keylen); 311 else 312 return (0); 313 } 314 315 /* 316 * generate a new random key of length 'keylen' 317 */ 318 sctp_key_t * 319 sctp_generate_random_key(uint32_t keylen) 320 { 321 sctp_key_t *new_key; 322 323 new_key = sctp_alloc_key(keylen); 324 if (new_key == NULL) { 325 /* out of memory */ 326 return (NULL); 327 } 328 SCTP_READ_RANDOM(new_key->key, keylen); 329 new_key->keylen = keylen; 330 return (new_key); 331 } 332 333 sctp_key_t * 334 sctp_set_key(uint8_t *key, uint32_t keylen) 335 { 336 sctp_key_t *new_key; 337 338 new_key = sctp_alloc_key(keylen); 339 if (new_key == NULL) { 340 /* out of memory */ 341 return (NULL); 342 } 343 memcpy(new_key->key, key, keylen); 344 return (new_key); 345 } 346 347 /*- 348 * given two keys of variable size, compute which key is "larger/smaller" 349 * returns: 1 if key1 > key2 350 * -1 if key1 < key2 351 * 0 if key1 = key2 352 */ 353 static int 354 sctp_compare_key(sctp_key_t *key1, sctp_key_t *key2) 355 { 356 uint32_t maxlen; 357 uint32_t i; 358 uint32_t key1len, key2len; 359 uint8_t *key_1, *key_2; 360 uint8_t val1, val2; 361 362 /* sanity/length check */ 363 key1len = sctp_get_keylen(key1); 364 key2len = sctp_get_keylen(key2); 365 if ((key1len == 0) && (key2len == 0)) 366 return (0); 367 else if (key1len == 0) 368 return (-1); 369 else if (key2len == 0) 370 return (1); 371 372 if (key1len < key2len) { 373 maxlen = key2len; 374 } else { 375 maxlen = key1len; 376 } 377 key_1 = key1->key; 378 key_2 = key2->key; 379 /* check for numeric equality */ 380 for (i = 0; i < maxlen; i++) { 381 /* left-pad with zeros */ 382 val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++); 383 val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++); 384 if (val1 > val2) { 385 return (1); 386 } else if (val1 < val2) { 387 return (-1); 388 } 389 } 390 /* keys are equal value, so check lengths */ 391 if (key1len == key2len) 392 return (0); 393 else if (key1len < key2len) 394 return (-1); 395 else 396 return (1); 397 } 398 399 /* 400 * generate the concatenated keying material based on the two keys and the 401 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific 402 * order for concatenation 403 */ 404 sctp_key_t * 405 sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared) 406 { 407 uint32_t keylen; 408 sctp_key_t *new_key; 409 uint8_t *key_ptr; 410 411 keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) + 412 sctp_get_keylen(shared); 413 414 if (keylen > 0) { 415 /* get space for the new key */ 416 new_key = sctp_alloc_key(keylen); 417 if (new_key == NULL) { 418 /* out of memory */ 419 return (NULL); 420 } 421 new_key->keylen = keylen; 422 key_ptr = new_key->key; 423 } else { 424 /* all keys empty/null?! */ 425 return (NULL); 426 } 427 428 /* concatenate the keys */ 429 if (sctp_compare_key(key1, key2) <= 0) { 430 /* key is shared + key1 + key2 */ 431 if (sctp_get_keylen(shared)) { 432 memcpy(key_ptr, shared->key, shared->keylen); 433 key_ptr += shared->keylen; 434 } 435 if (sctp_get_keylen(key1)) { 436 memcpy(key_ptr, key1->key, key1->keylen); 437 key_ptr += key1->keylen; 438 } 439 if (sctp_get_keylen(key2)) { 440 memcpy(key_ptr, key2->key, key2->keylen); 441 } 442 } else { 443 /* key is shared + key2 + key1 */ 444 if (sctp_get_keylen(shared)) { 445 memcpy(key_ptr, shared->key, shared->keylen); 446 key_ptr += shared->keylen; 447 } 448 if (sctp_get_keylen(key2)) { 449 memcpy(key_ptr, key2->key, key2->keylen); 450 key_ptr += key2->keylen; 451 } 452 if (sctp_get_keylen(key1)) { 453 memcpy(key_ptr, key1->key, key1->keylen); 454 } 455 } 456 return (new_key); 457 } 458 459 460 sctp_sharedkey_t * 461 sctp_alloc_sharedkey(void) 462 { 463 sctp_sharedkey_t *new_key; 464 465 SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key), 466 SCTP_M_AUTH_KY); 467 if (new_key == NULL) { 468 /* out of memory */ 469 return (NULL); 470 } 471 new_key->keyid = 0; 472 new_key->key = NULL; 473 new_key->refcount = 1; 474 new_key->deactivated = 0; 475 return (new_key); 476 } 477 478 void 479 sctp_free_sharedkey(sctp_sharedkey_t *skey) 480 { 481 if (skey == NULL) 482 return; 483 484 if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) { 485 if (skey->key != NULL) 486 sctp_free_key(skey->key); 487 SCTP_FREE(skey, SCTP_M_AUTH_KY); 488 } 489 } 490 491 sctp_sharedkey_t * 492 sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id) 493 { 494 sctp_sharedkey_t *skey; 495 496 LIST_FOREACH(skey, shared_keys, next) { 497 if (skey->keyid == key_id) 498 return (skey); 499 } 500 return (NULL); 501 } 502 503 int 504 sctp_insert_sharedkey(struct sctp_keyhead *shared_keys, 505 sctp_sharedkey_t *new_skey) 506 { 507 sctp_sharedkey_t *skey; 508 509 if ((shared_keys == NULL) || (new_skey == NULL)) 510 return (EINVAL); 511 512 /* insert into an empty list? */ 513 if (LIST_EMPTY(shared_keys)) { 514 LIST_INSERT_HEAD(shared_keys, new_skey, next); 515 return (0); 516 } 517 /* insert into the existing list, ordered by key id */ 518 LIST_FOREACH(skey, shared_keys, next) { 519 if (new_skey->keyid < skey->keyid) { 520 /* insert it before here */ 521 LIST_INSERT_BEFORE(skey, new_skey, next); 522 return (0); 523 } else if (new_skey->keyid == skey->keyid) { 524 /* replace the existing key */ 525 /* verify this key *can* be replaced */ 526 if ((skey->deactivated) && (skey->refcount > 1)) { 527 SCTPDBG(SCTP_DEBUG_AUTH1, 528 "can't replace shared key id %u\n", 529 new_skey->keyid); 530 return (EBUSY); 531 } 532 SCTPDBG(SCTP_DEBUG_AUTH1, 533 "replacing shared key id %u\n", 534 new_skey->keyid); 535 LIST_INSERT_BEFORE(skey, new_skey, next); 536 LIST_REMOVE(skey, next); 537 sctp_free_sharedkey(skey); 538 return (0); 539 } 540 if (LIST_NEXT(skey, next) == NULL) { 541 /* belongs at the end of the list */ 542 LIST_INSERT_AFTER(skey, new_skey, next); 543 return (0); 544 } 545 } 546 /* shouldn't reach here */ 547 return (EINVAL); 548 } 549 550 void 551 sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id) 552 { 553 sctp_sharedkey_t *skey; 554 555 /* find the shared key */ 556 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 557 558 /* bump the ref count */ 559 if (skey) { 560 atomic_add_int(&skey->refcount, 1); 561 SCTPDBG(SCTP_DEBUG_AUTH2, 562 "%s: stcb %p key %u refcount acquire to %d\n", 563 __func__, (void *)stcb, key_id, skey->refcount); 564 } 565 } 566 567 void 568 sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked 569 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) 570 SCTP_UNUSED 571 #endif 572 ) 573 { 574 sctp_sharedkey_t *skey; 575 576 /* find the shared key */ 577 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); 578 579 /* decrement the ref count */ 580 if (skey) { 581 SCTPDBG(SCTP_DEBUG_AUTH2, 582 "%s: stcb %p key %u refcount release to %d\n", 583 __func__, (void *)stcb, key_id, skey->refcount); 584 585 /* see if a notification should be generated */ 586 if ((skey->refcount <= 2) && (skey->deactivated)) { 587 /* notify ULP that key is no longer used */ 588 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, 589 key_id, 0, so_locked); 590 SCTPDBG(SCTP_DEBUG_AUTH2, 591 "%s: stcb %p key %u no longer used, %d\n", 592 __func__, (void *)stcb, key_id, skey->refcount); 593 } 594 sctp_free_sharedkey(skey); 595 } 596 } 597 598 static sctp_sharedkey_t * 599 sctp_copy_sharedkey(const sctp_sharedkey_t *skey) 600 { 601 sctp_sharedkey_t *new_skey; 602 603 if (skey == NULL) 604 return (NULL); 605 new_skey = sctp_alloc_sharedkey(); 606 if (new_skey == NULL) 607 return (NULL); 608 if (skey->key != NULL) 609 new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen); 610 else 611 new_skey->key = NULL; 612 new_skey->keyid = skey->keyid; 613 return (new_skey); 614 } 615 616 int 617 sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest) 618 { 619 sctp_sharedkey_t *skey, *new_skey; 620 int count = 0; 621 622 if ((src == NULL) || (dest == NULL)) 623 return (0); 624 LIST_FOREACH(skey, src, next) { 625 new_skey = sctp_copy_sharedkey(skey); 626 if (new_skey != NULL) { 627 if (sctp_insert_sharedkey(dest, new_skey)) { 628 sctp_free_sharedkey(new_skey); 629 } else { 630 count++; 631 } 632 } 633 } 634 return (count); 635 } 636 637 638 sctp_hmaclist_t * 639 sctp_alloc_hmaclist(uint16_t num_hmacs) 640 { 641 sctp_hmaclist_t *new_list; 642 int alloc_size; 643 644 alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]); 645 SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size, 646 SCTP_M_AUTH_HL); 647 if (new_list == NULL) { 648 /* out of memory */ 649 return (NULL); 650 } 651 new_list->max_algo = num_hmacs; 652 new_list->num_algo = 0; 653 return (new_list); 654 } 655 656 void 657 sctp_free_hmaclist(sctp_hmaclist_t *list) 658 { 659 if (list != NULL) { 660 SCTP_FREE(list, SCTP_M_AUTH_HL); 661 list = NULL; 662 } 663 } 664 665 int 666 sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id) 667 { 668 int i; 669 670 if (list == NULL) 671 return (-1); 672 if (list->num_algo == list->max_algo) { 673 SCTPDBG(SCTP_DEBUG_AUTH1, 674 "SCTP: HMAC id list full, ignoring add %u\n", hmac_id); 675 return (-1); 676 } 677 if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) && 678 (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) { 679 return (-1); 680 } 681 /* Now is it already in the list */ 682 for (i = 0; i < list->num_algo; i++) { 683 if (list->hmac[i] == hmac_id) { 684 /* already in list */ 685 return (-1); 686 } 687 } 688 SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id); 689 list->hmac[list->num_algo++] = hmac_id; 690 return (0); 691 } 692 693 sctp_hmaclist_t * 694 sctp_copy_hmaclist(sctp_hmaclist_t *list) 695 { 696 sctp_hmaclist_t *new_list; 697 int i; 698 699 if (list == NULL) 700 return (NULL); 701 /* get a new list */ 702 new_list = sctp_alloc_hmaclist(list->max_algo); 703 if (new_list == NULL) 704 return (NULL); 705 /* copy it */ 706 new_list->max_algo = list->max_algo; 707 new_list->num_algo = list->num_algo; 708 for (i = 0; i < list->num_algo; i++) 709 new_list->hmac[i] = list->hmac[i]; 710 return (new_list); 711 } 712 713 sctp_hmaclist_t * 714 sctp_default_supported_hmaclist(void) 715 { 716 sctp_hmaclist_t *new_list; 717 718 new_list = sctp_alloc_hmaclist(2); 719 if (new_list == NULL) 720 return (NULL); 721 /* We prefer SHA256, so list it first */ 722 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256); 723 (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1); 724 return (new_list); 725 } 726 727 /*- 728 * HMAC algos are listed in priority/preference order 729 * find the best HMAC id to use for the peer based on local support 730 */ 731 uint16_t 732 sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local) 733 { 734 int i, j; 735 736 if ((local == NULL) || (peer == NULL)) 737 return (SCTP_AUTH_HMAC_ID_RSVD); 738 739 for (i = 0; i < peer->num_algo; i++) { 740 for (j = 0; j < local->num_algo; j++) { 741 if (peer->hmac[i] == local->hmac[j]) { 742 /* found the "best" one */ 743 SCTPDBG(SCTP_DEBUG_AUTH1, 744 "SCTP: negotiated peer HMAC id %u\n", 745 peer->hmac[i]); 746 return (peer->hmac[i]); 747 } 748 } 749 } 750 /* didn't find one! */ 751 return (SCTP_AUTH_HMAC_ID_RSVD); 752 } 753 754 /*- 755 * serialize the HMAC algo list and return space used 756 * caller must guarantee ptr has appropriate space 757 */ 758 int 759 sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr) 760 { 761 int i; 762 uint16_t hmac_id; 763 764 if (list == NULL) 765 return (0); 766 767 for (i = 0; i < list->num_algo; i++) { 768 hmac_id = htons(list->hmac[i]); 769 memcpy(ptr, &hmac_id, sizeof(hmac_id)); 770 ptr += sizeof(hmac_id); 771 } 772 return (list->num_algo * sizeof(hmac_id)); 773 } 774 775 int 776 sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs) 777 { 778 uint32_t i; 779 780 for (i = 0; i < num_hmacs; i++) { 781 if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) { 782 return (0); 783 } 784 } 785 return (-1); 786 } 787 788 sctp_authinfo_t * 789 sctp_alloc_authinfo(void) 790 { 791 sctp_authinfo_t *new_authinfo; 792 793 SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo), 794 SCTP_M_AUTH_IF); 795 796 if (new_authinfo == NULL) { 797 /* out of memory */ 798 return (NULL); 799 } 800 memset(new_authinfo, 0, sizeof(*new_authinfo)); 801 return (new_authinfo); 802 } 803 804 void 805 sctp_free_authinfo(sctp_authinfo_t *authinfo) 806 { 807 if (authinfo == NULL) 808 return; 809 810 if (authinfo->random != NULL) 811 sctp_free_key(authinfo->random); 812 if (authinfo->peer_random != NULL) 813 sctp_free_key(authinfo->peer_random); 814 if (authinfo->assoc_key != NULL) 815 sctp_free_key(authinfo->assoc_key); 816 if (authinfo->recv_key != NULL) 817 sctp_free_key(authinfo->recv_key); 818 819 /* We are NOT dynamically allocating authinfo's right now... */ 820 /* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */ 821 } 822 823 824 uint32_t 825 sctp_get_auth_chunk_len(uint16_t hmac_algo) 826 { 827 int size; 828 829 size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo); 830 return (SCTP_SIZE32(size)); 831 } 832 833 uint32_t 834 sctp_get_hmac_digest_len(uint16_t hmac_algo) 835 { 836 switch (hmac_algo) { 837 case SCTP_AUTH_HMAC_ID_SHA1: 838 return (SCTP_AUTH_DIGEST_LEN_SHA1); 839 case SCTP_AUTH_HMAC_ID_SHA256: 840 return (SCTP_AUTH_DIGEST_LEN_SHA256); 841 default: 842 /* unknown HMAC algorithm: can't do anything */ 843 return (0); 844 } /* end switch */ 845 } 846 847 static inline int 848 sctp_get_hmac_block_len(uint16_t hmac_algo) 849 { 850 switch (hmac_algo) { 851 case SCTP_AUTH_HMAC_ID_SHA1: 852 return (64); 853 case SCTP_AUTH_HMAC_ID_SHA256: 854 return (64); 855 case SCTP_AUTH_HMAC_ID_RSVD: 856 default: 857 /* unknown HMAC algorithm: can't do anything */ 858 return (0); 859 } /* end switch */ 860 } 861 862 static void 863 sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t *ctx) 864 { 865 switch (hmac_algo) { 866 case SCTP_AUTH_HMAC_ID_SHA1: 867 SCTP_SHA1_INIT(&ctx->sha1); 868 break; 869 case SCTP_AUTH_HMAC_ID_SHA256: 870 SCTP_SHA256_INIT(&ctx->sha256); 871 break; 872 case SCTP_AUTH_HMAC_ID_RSVD: 873 default: 874 /* unknown HMAC algorithm: can't do anything */ 875 return; 876 } /* end switch */ 877 } 878 879 static void 880 sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t *ctx, 881 uint8_t *text, uint32_t textlen) 882 { 883 switch (hmac_algo) { 884 case SCTP_AUTH_HMAC_ID_SHA1: 885 SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen); 886 break; 887 case SCTP_AUTH_HMAC_ID_SHA256: 888 SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen); 889 break; 890 case SCTP_AUTH_HMAC_ID_RSVD: 891 default: 892 /* unknown HMAC algorithm: can't do anything */ 893 return; 894 } /* end switch */ 895 } 896 897 static void 898 sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t *ctx, 899 uint8_t *digest) 900 { 901 switch (hmac_algo) { 902 case SCTP_AUTH_HMAC_ID_SHA1: 903 SCTP_SHA1_FINAL(digest, &ctx->sha1); 904 break; 905 case SCTP_AUTH_HMAC_ID_SHA256: 906 SCTP_SHA256_FINAL(digest, &ctx->sha256); 907 break; 908 case SCTP_AUTH_HMAC_ID_RSVD: 909 default: 910 /* unknown HMAC algorithm: can't do anything */ 911 return; 912 } /* end switch */ 913 } 914 915 /*- 916 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104) 917 * 918 * Compute the HMAC digest using the desired hash key, text, and HMAC 919 * algorithm. Resulting digest is placed in 'digest' and digest length 920 * is returned, if the HMAC was performed. 921 * 922 * WARNING: it is up to the caller to supply sufficient space to hold the 923 * resultant digest. 924 */ 925 uint32_t 926 sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, 927 uint8_t *text, uint32_t textlen, uint8_t *digest) 928 { 929 uint32_t digestlen; 930 uint32_t blocklen; 931 sctp_hash_context_t ctx; 932 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 933 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 934 uint32_t i; 935 936 /* sanity check the material and length */ 937 if ((key == NULL) || (keylen == 0) || (text == NULL) || 938 (textlen == 0) || (digest == NULL)) { 939 /* can't do HMAC with empty key or text or digest store */ 940 return (0); 941 } 942 /* validate the hmac algo and get the digest length */ 943 digestlen = sctp_get_hmac_digest_len(hmac_algo); 944 if (digestlen == 0) 945 return (0); 946 947 /* hash the key if it is longer than the hash block size */ 948 blocklen = sctp_get_hmac_block_len(hmac_algo); 949 if (keylen > blocklen) { 950 sctp_hmac_init(hmac_algo, &ctx); 951 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 952 sctp_hmac_final(hmac_algo, &ctx, temp); 953 /* set the hashed key as the key */ 954 keylen = digestlen; 955 key = temp; 956 } 957 /* initialize the inner/outer pads with the key and "append" zeroes */ 958 memset(ipad, 0, blocklen); 959 memset(opad, 0, blocklen); 960 memcpy(ipad, key, keylen); 961 memcpy(opad, key, keylen); 962 963 /* XOR the key with ipad and opad values */ 964 for (i = 0; i < blocklen; i++) { 965 ipad[i] ^= 0x36; 966 opad[i] ^= 0x5c; 967 } 968 969 /* perform inner hash */ 970 sctp_hmac_init(hmac_algo, &ctx); 971 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 972 sctp_hmac_update(hmac_algo, &ctx, text, textlen); 973 sctp_hmac_final(hmac_algo, &ctx, temp); 974 975 /* perform outer hash */ 976 sctp_hmac_init(hmac_algo, &ctx); 977 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 978 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 979 sctp_hmac_final(hmac_algo, &ctx, digest); 980 981 return (digestlen); 982 } 983 984 /* mbuf version */ 985 uint32_t 986 sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, 987 struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer) 988 { 989 uint32_t digestlen; 990 uint32_t blocklen; 991 sctp_hash_context_t ctx; 992 uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ 993 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 994 uint32_t i; 995 struct mbuf *m_tmp; 996 997 /* sanity check the material and length */ 998 if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) { 999 /* can't do HMAC with empty key or text or digest store */ 1000 return (0); 1001 } 1002 /* validate the hmac algo and get the digest length */ 1003 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1004 if (digestlen == 0) 1005 return (0); 1006 1007 /* hash the key if it is longer than the hash block size */ 1008 blocklen = sctp_get_hmac_block_len(hmac_algo); 1009 if (keylen > blocklen) { 1010 sctp_hmac_init(hmac_algo, &ctx); 1011 sctp_hmac_update(hmac_algo, &ctx, key, keylen); 1012 sctp_hmac_final(hmac_algo, &ctx, temp); 1013 /* set the hashed key as the key */ 1014 keylen = digestlen; 1015 key = temp; 1016 } 1017 /* initialize the inner/outer pads with the key and "append" zeroes */ 1018 memset(ipad, 0, blocklen); 1019 memset(opad, 0, blocklen); 1020 memcpy(ipad, key, keylen); 1021 memcpy(opad, key, keylen); 1022 1023 /* XOR the key with ipad and opad values */ 1024 for (i = 0; i < blocklen; i++) { 1025 ipad[i] ^= 0x36; 1026 opad[i] ^= 0x5c; 1027 } 1028 1029 /* perform inner hash */ 1030 sctp_hmac_init(hmac_algo, &ctx); 1031 sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); 1032 /* find the correct starting mbuf and offset (get start of text) */ 1033 m_tmp = m; 1034 while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) { 1035 m_offset -= SCTP_BUF_LEN(m_tmp); 1036 m_tmp = SCTP_BUF_NEXT(m_tmp); 1037 } 1038 /* now use the rest of the mbuf chain for the text */ 1039 while (m_tmp != NULL) { 1040 if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) { 1041 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset, 1042 SCTP_BUF_LEN(m_tmp) - (trailer + m_offset)); 1043 } else { 1044 sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset, 1045 SCTP_BUF_LEN(m_tmp) - m_offset); 1046 } 1047 1048 /* clear the offset since it's only for the first mbuf */ 1049 m_offset = 0; 1050 m_tmp = SCTP_BUF_NEXT(m_tmp); 1051 } 1052 sctp_hmac_final(hmac_algo, &ctx, temp); 1053 1054 /* perform outer hash */ 1055 sctp_hmac_init(hmac_algo, &ctx); 1056 sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); 1057 sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); 1058 sctp_hmac_final(hmac_algo, &ctx, digest); 1059 1060 return (digestlen); 1061 } 1062 1063 /*- 1064 * verify the HMAC digest using the desired hash key, text, and HMAC 1065 * algorithm. 1066 * Returns -1 on error, 0 on success. 1067 */ 1068 int 1069 sctp_verify_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, 1070 uint8_t *text, uint32_t textlen, 1071 uint8_t *digest, uint32_t digestlen) 1072 { 1073 uint32_t len; 1074 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1075 1076 /* sanity check the material and length */ 1077 if ((key == NULL) || (keylen == 0) || 1078 (text == NULL) || (textlen == 0) || (digest == NULL)) { 1079 /* can't do HMAC with empty key or text or digest */ 1080 return (-1); 1081 } 1082 len = sctp_get_hmac_digest_len(hmac_algo); 1083 if ((len == 0) || (digestlen != len)) 1084 return (-1); 1085 1086 /* compute the expected hash */ 1087 if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len) 1088 return (-1); 1089 1090 if (memcmp(digest, temp, digestlen) != 0) 1091 return (-1); 1092 else 1093 return (0); 1094 } 1095 1096 1097 /* 1098 * computes the requested HMAC using a key struct (which may be modified if 1099 * the keylen exceeds the HMAC block len). 1100 */ 1101 uint32_t 1102 sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text, 1103 uint32_t textlen, uint8_t *digest) 1104 { 1105 uint32_t digestlen; 1106 uint32_t blocklen; 1107 sctp_hash_context_t ctx; 1108 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1109 1110 /* sanity check */ 1111 if ((key == NULL) || (text == NULL) || (textlen == 0) || 1112 (digest == NULL)) { 1113 /* can't do HMAC with empty key or text or digest store */ 1114 return (0); 1115 } 1116 /* validate the hmac algo and get the digest length */ 1117 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1118 if (digestlen == 0) 1119 return (0); 1120 1121 /* hash the key if it is longer than the hash block size */ 1122 blocklen = sctp_get_hmac_block_len(hmac_algo); 1123 if (key->keylen > blocklen) { 1124 sctp_hmac_init(hmac_algo, &ctx); 1125 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1126 sctp_hmac_final(hmac_algo, &ctx, temp); 1127 /* save the hashed key as the new key */ 1128 key->keylen = digestlen; 1129 memcpy(key->key, temp, key->keylen); 1130 } 1131 return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen, 1132 digest)); 1133 } 1134 1135 /* mbuf version */ 1136 uint32_t 1137 sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m, 1138 uint32_t m_offset, uint8_t *digest) 1139 { 1140 uint32_t digestlen; 1141 uint32_t blocklen; 1142 sctp_hash_context_t ctx; 1143 uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; 1144 1145 /* sanity check */ 1146 if ((key == NULL) || (m == NULL) || (digest == NULL)) { 1147 /* can't do HMAC with empty key or text or digest store */ 1148 return (0); 1149 } 1150 /* validate the hmac algo and get the digest length */ 1151 digestlen = sctp_get_hmac_digest_len(hmac_algo); 1152 if (digestlen == 0) 1153 return (0); 1154 1155 /* hash the key if it is longer than the hash block size */ 1156 blocklen = sctp_get_hmac_block_len(hmac_algo); 1157 if (key->keylen > blocklen) { 1158 sctp_hmac_init(hmac_algo, &ctx); 1159 sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); 1160 sctp_hmac_final(hmac_algo, &ctx, temp); 1161 /* save the hashed key as the new key */ 1162 key->keylen = digestlen; 1163 memcpy(key->key, temp, key->keylen); 1164 } 1165 return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0)); 1166 } 1167 1168 int 1169 sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id) 1170 { 1171 int i; 1172 1173 if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD)) 1174 return (0); 1175 1176 for (i = 0; i < list->num_algo; i++) 1177 if (list->hmac[i] == id) 1178 return (1); 1179 1180 /* not in the list */ 1181 return (0); 1182 } 1183 1184 1185 /*- 1186 * clear any cached key(s) if they match the given key id on an association. 1187 * the cached key(s) will be recomputed and re-cached at next use. 1188 * ASSUMES TCB_LOCK is already held 1189 */ 1190 void 1191 sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid) 1192 { 1193 if (stcb == NULL) 1194 return; 1195 1196 if (keyid == stcb->asoc.authinfo.assoc_keyid) { 1197 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1198 stcb->asoc.authinfo.assoc_key = NULL; 1199 } 1200 if (keyid == stcb->asoc.authinfo.recv_keyid) { 1201 sctp_free_key(stcb->asoc.authinfo.recv_key); 1202 stcb->asoc.authinfo.recv_key = NULL; 1203 } 1204 } 1205 1206 /*- 1207 * clear any cached key(s) if they match the given key id for all assocs on 1208 * an endpoint. 1209 * ASSUMES INP_WLOCK is already held 1210 */ 1211 void 1212 sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid) 1213 { 1214 struct sctp_tcb *stcb; 1215 1216 if (inp == NULL) 1217 return; 1218 1219 /* clear the cached keys on all assocs on this instance */ 1220 LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { 1221 SCTP_TCB_LOCK(stcb); 1222 sctp_clear_cachedkeys(stcb, keyid); 1223 SCTP_TCB_UNLOCK(stcb); 1224 } 1225 } 1226 1227 /*- 1228 * delete a shared key from an association 1229 * ASSUMES TCB_LOCK is already held 1230 */ 1231 int 1232 sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1233 { 1234 sctp_sharedkey_t *skey; 1235 1236 if (stcb == NULL) 1237 return (-1); 1238 1239 /* is the keyid the assoc active sending key */ 1240 if (keyid == stcb->asoc.authinfo.active_keyid) 1241 return (-1); 1242 1243 /* does the key exist? */ 1244 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1245 if (skey == NULL) 1246 return (-1); 1247 1248 /* are there other refcount holders on the key? */ 1249 if (skey->refcount > 1) 1250 return (-1); 1251 1252 /* remove it */ 1253 LIST_REMOVE(skey, next); 1254 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1255 1256 /* clear any cached keys */ 1257 sctp_clear_cachedkeys(stcb, keyid); 1258 return (0); 1259 } 1260 1261 /*- 1262 * deletes a shared key from the endpoint 1263 * ASSUMES INP_WLOCK is already held 1264 */ 1265 int 1266 sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1267 { 1268 sctp_sharedkey_t *skey; 1269 1270 if (inp == NULL) 1271 return (-1); 1272 1273 /* is the keyid the active sending key on the endpoint */ 1274 if (keyid == inp->sctp_ep.default_keyid) 1275 return (-1); 1276 1277 /* does the key exist? */ 1278 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1279 if (skey == NULL) 1280 return (-1); 1281 1282 /* endpoint keys are not refcounted */ 1283 1284 /* remove it */ 1285 LIST_REMOVE(skey, next); 1286 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1287 1288 /* clear any cached keys */ 1289 sctp_clear_cachedkeys_ep(inp, keyid); 1290 return (0); 1291 } 1292 1293 /*- 1294 * set the active key on an association 1295 * ASSUMES TCB_LOCK is already held 1296 */ 1297 int 1298 sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid) 1299 { 1300 sctp_sharedkey_t *skey = NULL; 1301 1302 /* find the key on the assoc */ 1303 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1304 if (skey == NULL) { 1305 /* that key doesn't exist */ 1306 return (-1); 1307 } 1308 if ((skey->deactivated) && (skey->refcount > 1)) { 1309 /* can't reactivate a deactivated key with other refcounts */ 1310 return (-1); 1311 } 1312 1313 /* set the (new) active key */ 1314 stcb->asoc.authinfo.active_keyid = keyid; 1315 /* reset the deactivated flag */ 1316 skey->deactivated = 0; 1317 1318 return (0); 1319 } 1320 1321 /*- 1322 * set the active key on an endpoint 1323 * ASSUMES INP_WLOCK is already held 1324 */ 1325 int 1326 sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1327 { 1328 sctp_sharedkey_t *skey; 1329 1330 /* find the key */ 1331 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1332 if (skey == NULL) { 1333 /* that key doesn't exist */ 1334 return (-1); 1335 } 1336 inp->sctp_ep.default_keyid = keyid; 1337 return (0); 1338 } 1339 1340 /*- 1341 * deactivates a shared key from the association 1342 * ASSUMES INP_WLOCK is already held 1343 */ 1344 int 1345 sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) 1346 { 1347 sctp_sharedkey_t *skey; 1348 1349 if (stcb == NULL) 1350 return (-1); 1351 1352 /* is the keyid the assoc active sending key */ 1353 if (keyid == stcb->asoc.authinfo.active_keyid) 1354 return (-1); 1355 1356 /* does the key exist? */ 1357 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1358 if (skey == NULL) 1359 return (-1); 1360 1361 /* are there other refcount holders on the key? */ 1362 if (skey->refcount == 1) { 1363 /* no other users, send a notification for this key */ 1364 sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0, 1365 SCTP_SO_LOCKED); 1366 } 1367 1368 /* mark the key as deactivated */ 1369 skey->deactivated = 1; 1370 1371 return (0); 1372 } 1373 1374 /*- 1375 * deactivates a shared key from the endpoint 1376 * ASSUMES INP_WLOCK is already held 1377 */ 1378 int 1379 sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) 1380 { 1381 sctp_sharedkey_t *skey; 1382 1383 if (inp == NULL) 1384 return (-1); 1385 1386 /* is the keyid the active sending key on the endpoint */ 1387 if (keyid == inp->sctp_ep.default_keyid) 1388 return (-1); 1389 1390 /* does the key exist? */ 1391 skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); 1392 if (skey == NULL) 1393 return (-1); 1394 1395 /* endpoint keys are not refcounted */ 1396 1397 /* remove it */ 1398 LIST_REMOVE(skey, next); 1399 sctp_free_sharedkey(skey); /* frees skey->key as well */ 1400 1401 return (0); 1402 } 1403 1404 /* 1405 * get local authentication parameters from cookie (from INIT-ACK) 1406 */ 1407 void 1408 sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m, 1409 uint32_t offset, uint32_t length) 1410 { 1411 struct sctp_paramhdr *phdr, tmp_param; 1412 uint16_t plen, ptype; 1413 uint8_t random_store[SCTP_PARAM_BUFFER_SIZE]; 1414 struct sctp_auth_random *p_random = NULL; 1415 uint16_t random_len = 0; 1416 uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE]; 1417 struct sctp_auth_hmac_algo *hmacs = NULL; 1418 uint16_t hmacs_len = 0; 1419 uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE]; 1420 struct sctp_auth_chunk_list *chunks = NULL; 1421 uint16_t num_chunks = 0; 1422 sctp_key_t *new_key; 1423 uint32_t keylen; 1424 1425 /* convert to upper bound */ 1426 length += offset; 1427 1428 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, 1429 sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param); 1430 while (phdr != NULL) { 1431 ptype = ntohs(phdr->param_type); 1432 plen = ntohs(phdr->param_length); 1433 1434 if ((plen == 0) || (offset + plen > length)) 1435 break; 1436 1437 if (ptype == SCTP_RANDOM) { 1438 if (plen > sizeof(random_store)) 1439 break; 1440 phdr = sctp_get_next_param(m, offset, 1441 (struct sctp_paramhdr *)random_store, plen); 1442 if (phdr == NULL) 1443 return; 1444 /* save the random and length for the key */ 1445 p_random = (struct sctp_auth_random *)phdr; 1446 random_len = plen - sizeof(*p_random); 1447 } else if (ptype == SCTP_HMAC_LIST) { 1448 uint16_t num_hmacs; 1449 uint16_t i; 1450 1451 if (plen > sizeof(hmacs_store)) 1452 break; 1453 phdr = sctp_get_next_param(m, offset, 1454 (struct sctp_paramhdr *)hmacs_store, plen); 1455 if (phdr == NULL) 1456 return; 1457 /* save the hmacs list and num for the key */ 1458 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1459 hmacs_len = plen - sizeof(*hmacs); 1460 num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]); 1461 if (stcb->asoc.local_hmacs != NULL) 1462 sctp_free_hmaclist(stcb->asoc.local_hmacs); 1463 stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs); 1464 if (stcb->asoc.local_hmacs != NULL) { 1465 for (i = 0; i < num_hmacs; i++) { 1466 (void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs, 1467 ntohs(hmacs->hmac_ids[i])); 1468 } 1469 } 1470 } else if (ptype == SCTP_CHUNK_LIST) { 1471 int i; 1472 1473 if (plen > sizeof(chunks_store)) 1474 break; 1475 phdr = sctp_get_next_param(m, offset, 1476 (struct sctp_paramhdr *)chunks_store, plen); 1477 if (phdr == NULL) 1478 return; 1479 chunks = (struct sctp_auth_chunk_list *)phdr; 1480 num_chunks = plen - sizeof(*chunks); 1481 /* save chunks list and num for the key */ 1482 if (stcb->asoc.local_auth_chunks != NULL) 1483 sctp_clear_chunklist(stcb->asoc.local_auth_chunks); 1484 else 1485 stcb->asoc.local_auth_chunks = sctp_alloc_chunklist(); 1486 for (i = 0; i < num_chunks; i++) { 1487 (void)sctp_auth_add_chunk(chunks->chunk_types[i], 1488 stcb->asoc.local_auth_chunks); 1489 } 1490 } 1491 /* get next parameter */ 1492 offset += SCTP_SIZE32(plen); 1493 if (offset + sizeof(struct sctp_paramhdr) > length) 1494 break; 1495 phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), 1496 (uint8_t *)&tmp_param); 1497 } 1498 /* concatenate the full random key */ 1499 keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len; 1500 if (chunks != NULL) { 1501 keylen += sizeof(*chunks) + num_chunks; 1502 } 1503 new_key = sctp_alloc_key(keylen); 1504 if (new_key != NULL) { 1505 /* copy in the RANDOM */ 1506 if (p_random != NULL) { 1507 keylen = sizeof(*p_random) + random_len; 1508 memcpy(new_key->key, p_random, keylen); 1509 } else { 1510 keylen = 0; 1511 } 1512 /* append in the AUTH chunks */ 1513 if (chunks != NULL) { 1514 memcpy(new_key->key + keylen, chunks, 1515 sizeof(*chunks) + num_chunks); 1516 keylen += sizeof(*chunks) + num_chunks; 1517 } 1518 /* append in the HMACs */ 1519 if (hmacs != NULL) { 1520 memcpy(new_key->key + keylen, hmacs, 1521 sizeof(*hmacs) + hmacs_len); 1522 } 1523 } 1524 if (stcb->asoc.authinfo.random != NULL) 1525 sctp_free_key(stcb->asoc.authinfo.random); 1526 stcb->asoc.authinfo.random = new_key; 1527 stcb->asoc.authinfo.random_len = random_len; 1528 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid); 1529 sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid); 1530 1531 /* negotiate what HMAC to use for the peer */ 1532 stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs, 1533 stcb->asoc.local_hmacs); 1534 1535 /* copy defaults from the endpoint */ 1536 /* FIX ME: put in cookie? */ 1537 stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid; 1538 /* copy out the shared key list (by reference) from the endpoint */ 1539 (void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys, 1540 &stcb->asoc.shared_keys); 1541 } 1542 1543 /* 1544 * compute and fill in the HMAC digest for a packet 1545 */ 1546 void 1547 sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset, 1548 struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid) 1549 { 1550 uint32_t digestlen; 1551 sctp_sharedkey_t *skey; 1552 sctp_key_t *key; 1553 1554 if ((stcb == NULL) || (auth == NULL)) 1555 return; 1556 1557 /* zero the digest + chunk padding */ 1558 digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id); 1559 memset(auth->hmac, 0, SCTP_SIZE32(digestlen)); 1560 1561 /* is the desired key cached? */ 1562 if ((keyid != stcb->asoc.authinfo.assoc_keyid) || 1563 (stcb->asoc.authinfo.assoc_key == NULL)) { 1564 if (stcb->asoc.authinfo.assoc_key != NULL) { 1565 /* free the old cached key */ 1566 sctp_free_key(stcb->asoc.authinfo.assoc_key); 1567 } 1568 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); 1569 /* the only way skey is NULL is if null key id 0 is used */ 1570 if (skey != NULL) 1571 key = skey->key; 1572 else 1573 key = NULL; 1574 /* compute a new assoc key and cache it */ 1575 stcb->asoc.authinfo.assoc_key = 1576 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1577 stcb->asoc.authinfo.peer_random, key); 1578 stcb->asoc.authinfo.assoc_keyid = keyid; 1579 SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n", 1580 stcb->asoc.authinfo.assoc_keyid); 1581 #ifdef SCTP_DEBUG 1582 if (SCTP_AUTH_DEBUG) 1583 sctp_print_key(stcb->asoc.authinfo.assoc_key, 1584 "Assoc Key"); 1585 #endif 1586 } 1587 1588 /* set in the active key id */ 1589 auth->shared_key_id = htons(keyid); 1590 1591 /* compute and fill in the digest */ 1592 (void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key, 1593 m, auth_offset, auth->hmac); 1594 } 1595 1596 1597 static void 1598 sctp_zero_m(struct mbuf *m, uint32_t m_offset, uint32_t size) 1599 { 1600 struct mbuf *m_tmp; 1601 uint8_t *data; 1602 1603 /* sanity check */ 1604 if (m == NULL) 1605 return; 1606 1607 /* find the correct starting mbuf and offset (get start position) */ 1608 m_tmp = m; 1609 while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) { 1610 m_offset -= SCTP_BUF_LEN(m_tmp); 1611 m_tmp = SCTP_BUF_NEXT(m_tmp); 1612 } 1613 /* now use the rest of the mbuf chain */ 1614 while ((m_tmp != NULL) && (size > 0)) { 1615 data = mtod(m_tmp, uint8_t *)+m_offset; 1616 if (size > (uint32_t)(SCTP_BUF_LEN(m_tmp) - m_offset)) { 1617 memset(data, 0, SCTP_BUF_LEN(m_tmp) - m_offset); 1618 size -= SCTP_BUF_LEN(m_tmp) - m_offset; 1619 } else { 1620 memset(data, 0, size); 1621 size = 0; 1622 } 1623 /* clear the offset since it's only for the first mbuf */ 1624 m_offset = 0; 1625 m_tmp = SCTP_BUF_NEXT(m_tmp); 1626 } 1627 } 1628 1629 /*- 1630 * process the incoming Authentication chunk 1631 * return codes: 1632 * -1 on any authentication error 1633 * 0 on authentication verification 1634 */ 1635 int 1636 sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth, 1637 struct mbuf *m, uint32_t offset) 1638 { 1639 uint16_t chunklen; 1640 uint16_t shared_key_id; 1641 uint16_t hmac_id; 1642 sctp_sharedkey_t *skey; 1643 uint32_t digestlen; 1644 uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1645 uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX]; 1646 1647 /* auth is checked for NULL by caller */ 1648 chunklen = ntohs(auth->ch.chunk_length); 1649 if (chunklen < sizeof(*auth)) { 1650 SCTP_STAT_INCR(sctps_recvauthfailed); 1651 return (-1); 1652 } 1653 SCTP_STAT_INCR(sctps_recvauth); 1654 1655 /* get the auth params */ 1656 shared_key_id = ntohs(auth->shared_key_id); 1657 hmac_id = ntohs(auth->hmac_id); 1658 SCTPDBG(SCTP_DEBUG_AUTH1, 1659 "SCTP AUTH Chunk: shared key %u, HMAC id %u\n", 1660 shared_key_id, hmac_id); 1661 1662 /* is the indicated HMAC supported? */ 1663 if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) { 1664 struct mbuf *op_err; 1665 struct sctp_error_auth_invalid_hmac *cause; 1666 1667 SCTP_STAT_INCR(sctps_recvivalhmacid); 1668 SCTPDBG(SCTP_DEBUG_AUTH1, 1669 "SCTP Auth: unsupported HMAC id %u\n", 1670 hmac_id); 1671 /* 1672 * report this in an Error Chunk: Unsupported HMAC 1673 * Identifier 1674 */ 1675 op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac), 1676 0, M_NOWAIT, 1, MT_HEADER); 1677 if (op_err != NULL) { 1678 /* pre-reserve some space */ 1679 SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr)); 1680 /* fill in the error */ 1681 cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *); 1682 cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID); 1683 cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac)); 1684 cause->hmac_id = ntohs(hmac_id); 1685 SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac); 1686 /* queue it */ 1687 sctp_queue_op_err(stcb, op_err); 1688 } 1689 return (-1); 1690 } 1691 /* get the indicated shared key, if available */ 1692 if ((stcb->asoc.authinfo.recv_key == NULL) || 1693 (stcb->asoc.authinfo.recv_keyid != shared_key_id)) { 1694 /* find the shared key on the assoc first */ 1695 skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, 1696 shared_key_id); 1697 /* if the shared key isn't found, discard the chunk */ 1698 if (skey == NULL) { 1699 SCTP_STAT_INCR(sctps_recvivalkeyid); 1700 SCTPDBG(SCTP_DEBUG_AUTH1, 1701 "SCTP Auth: unknown key id %u\n", 1702 shared_key_id); 1703 return (-1); 1704 } 1705 /* generate a notification if this is a new key id */ 1706 if (stcb->asoc.authinfo.recv_keyid != shared_key_id) 1707 /* 1708 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb, 1709 * shared_key_id, (void 1710 * *)stcb->asoc.authinfo.recv_keyid); 1711 */ 1712 sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY, 1713 shared_key_id, stcb->asoc.authinfo.recv_keyid, 1714 SCTP_SO_NOT_LOCKED); 1715 /* compute a new recv assoc key and cache it */ 1716 if (stcb->asoc.authinfo.recv_key != NULL) 1717 sctp_free_key(stcb->asoc.authinfo.recv_key); 1718 stcb->asoc.authinfo.recv_key = 1719 sctp_compute_hashkey(stcb->asoc.authinfo.random, 1720 stcb->asoc.authinfo.peer_random, skey->key); 1721 stcb->asoc.authinfo.recv_keyid = shared_key_id; 1722 #ifdef SCTP_DEBUG 1723 if (SCTP_AUTH_DEBUG) 1724 sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key"); 1725 #endif 1726 } 1727 /* validate the digest length */ 1728 digestlen = sctp_get_hmac_digest_len(hmac_id); 1729 if (chunklen < (sizeof(*auth) + digestlen)) { 1730 /* invalid digest length */ 1731 SCTP_STAT_INCR(sctps_recvauthfailed); 1732 SCTPDBG(SCTP_DEBUG_AUTH1, 1733 "SCTP Auth: chunk too short for HMAC\n"); 1734 return (-1); 1735 } 1736 /* save a copy of the digest, zero the pseudo header, and validate */ 1737 memcpy(digest, auth->hmac, digestlen); 1738 sctp_zero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen)); 1739 (void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key, 1740 m, offset, computed_digest); 1741 1742 /* compare the computed digest with the one in the AUTH chunk */ 1743 if (memcmp(digest, computed_digest, digestlen) != 0) { 1744 SCTP_STAT_INCR(sctps_recvauthfailed); 1745 SCTPDBG(SCTP_DEBUG_AUTH1, 1746 "SCTP Auth: HMAC digest check failed\n"); 1747 return (-1); 1748 } 1749 return (0); 1750 } 1751 1752 /* 1753 * Generate NOTIFICATION 1754 */ 1755 void 1756 sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication, 1757 uint16_t keyid, uint16_t alt_keyid, int so_locked 1758 #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) 1759 SCTP_UNUSED 1760 #endif 1761 ) 1762 { 1763 struct mbuf *m_notify; 1764 struct sctp_authkey_event *auth; 1765 struct sctp_queued_to_read *control; 1766 1767 if ((stcb == NULL) || 1768 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || 1769 (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || 1770 (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) 1771 ) { 1772 /* If the socket is gone we are out of here */ 1773 return; 1774 } 1775 1776 if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT)) 1777 /* event not enabled */ 1778 return; 1779 1780 m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event), 1781 0, M_NOWAIT, 1, MT_HEADER); 1782 if (m_notify == NULL) 1783 /* no space left */ 1784 return; 1785 1786 SCTP_BUF_LEN(m_notify) = 0; 1787 auth = mtod(m_notify, struct sctp_authkey_event *); 1788 memset(auth, 0, sizeof(struct sctp_authkey_event)); 1789 auth->auth_type = SCTP_AUTHENTICATION_EVENT; 1790 auth->auth_flags = 0; 1791 auth->auth_length = sizeof(*auth); 1792 auth->auth_keynumber = keyid; 1793 auth->auth_altkeynumber = alt_keyid; 1794 auth->auth_indication = indication; 1795 auth->auth_assoc_id = sctp_get_associd(stcb); 1796 1797 SCTP_BUF_LEN(m_notify) = sizeof(*auth); 1798 SCTP_BUF_NEXT(m_notify) = NULL; 1799 1800 /* append to socket */ 1801 control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 1802 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); 1803 if (control == NULL) { 1804 /* no memory */ 1805 sctp_m_freem(m_notify); 1806 return; 1807 } 1808 control->length = SCTP_BUF_LEN(m_notify); 1809 control->spec_flags = M_NOTIFICATION; 1810 /* not that we need this */ 1811 control->tail_mbuf = m_notify; 1812 sctp_add_to_readq(stcb->sctp_ep, stcb, control, 1813 &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); 1814 } 1815 1816 1817 /*- 1818 * validates the AUTHentication related parameters in an INIT/INIT-ACK 1819 * Note: currently only used for INIT as INIT-ACK is handled inline 1820 * with sctp_load_addresses_from_init() 1821 */ 1822 int 1823 sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit) 1824 { 1825 struct sctp_paramhdr *phdr, param_buf; 1826 uint16_t ptype, plen; 1827 int peer_supports_asconf = 0; 1828 int peer_supports_auth = 0; 1829 int got_random = 0, got_hmacs = 0, got_chklist = 0; 1830 uint8_t saw_asconf = 0; 1831 uint8_t saw_asconf_ack = 0; 1832 1833 /* go through each of the params. */ 1834 phdr = sctp_get_next_param(m, offset, ¶m_buf, sizeof(param_buf)); 1835 while (phdr) { 1836 ptype = ntohs(phdr->param_type); 1837 plen = ntohs(phdr->param_length); 1838 1839 if (offset + plen > limit) { 1840 break; 1841 } 1842 if (plen < sizeof(struct sctp_paramhdr)) { 1843 break; 1844 } 1845 if (ptype == SCTP_SUPPORTED_CHUNK_EXT) { 1846 /* A supported extension chunk */ 1847 struct sctp_supported_chunk_types_param *pr_supported; 1848 uint8_t local_store[SCTP_SMALL_CHUNK_STORE]; 1849 int num_ent, i; 1850 1851 if (plen > sizeof(local_store)) { 1852 break; 1853 } 1854 phdr = sctp_get_next_param(m, offset, 1855 (struct sctp_paramhdr *)&local_store, 1856 plen); 1857 if (phdr == NULL) { 1858 return (-1); 1859 } 1860 pr_supported = (struct sctp_supported_chunk_types_param *)phdr; 1861 num_ent = plen - sizeof(struct sctp_paramhdr); 1862 for (i = 0; i < num_ent; i++) { 1863 switch (pr_supported->chunk_types[i]) { 1864 case SCTP_ASCONF: 1865 case SCTP_ASCONF_ACK: 1866 peer_supports_asconf = 1; 1867 break; 1868 default: 1869 /* one we don't care about */ 1870 break; 1871 } 1872 } 1873 } else if (ptype == SCTP_RANDOM) { 1874 /* enforce the random length */ 1875 if (plen != (sizeof(struct sctp_auth_random) + 1876 SCTP_AUTH_RANDOM_SIZE_REQUIRED)) { 1877 SCTPDBG(SCTP_DEBUG_AUTH1, 1878 "SCTP: invalid RANDOM len\n"); 1879 return (-1); 1880 } 1881 got_random = 1; 1882 } else if (ptype == SCTP_HMAC_LIST) { 1883 struct sctp_auth_hmac_algo *hmacs; 1884 uint8_t store[SCTP_PARAM_BUFFER_SIZE]; 1885 int num_hmacs; 1886 1887 if (plen > sizeof(store)) { 1888 break; 1889 } 1890 phdr = sctp_get_next_param(m, offset, 1891 (struct sctp_paramhdr *)store, 1892 plen); 1893 if (phdr == NULL) { 1894 return (-1); 1895 } 1896 hmacs = (struct sctp_auth_hmac_algo *)phdr; 1897 num_hmacs = (plen - sizeof(*hmacs)) / sizeof(hmacs->hmac_ids[0]); 1898 /* validate the hmac list */ 1899 if (sctp_verify_hmac_param(hmacs, num_hmacs)) { 1900 SCTPDBG(SCTP_DEBUG_AUTH1, 1901 "SCTP: invalid HMAC param\n"); 1902 return (-1); 1903 } 1904 got_hmacs = 1; 1905 } else if (ptype == SCTP_CHUNK_LIST) { 1906 struct sctp_auth_chunk_list *chunks; 1907 uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE]; 1908 int i, num_chunks; 1909 1910 if (plen > sizeof(chunks_store)) { 1911 break; 1912 } 1913 phdr = sctp_get_next_param(m, offset, 1914 (struct sctp_paramhdr *)chunks_store, 1915 plen); 1916 if (phdr == NULL) { 1917 return (-1); 1918 } 1919 /*- 1920 * Flip through the list and mark that the 1921 * peer supports asconf/asconf_ack. 1922 */ 1923 chunks = (struct sctp_auth_chunk_list *)phdr; 1924 num_chunks = plen - sizeof(*chunks); 1925 for (i = 0; i < num_chunks; i++) { 1926 /* record asconf/asconf-ack if listed */ 1927 if (chunks->chunk_types[i] == SCTP_ASCONF) 1928 saw_asconf = 1; 1929 if (chunks->chunk_types[i] == SCTP_ASCONF_ACK) 1930 saw_asconf_ack = 1; 1931 1932 } 1933 if (num_chunks) 1934 got_chklist = 1; 1935 } 1936 1937 offset += SCTP_SIZE32(plen); 1938 if (offset >= limit) { 1939 break; 1940 } 1941 phdr = sctp_get_next_param(m, offset, ¶m_buf, 1942 sizeof(param_buf)); 1943 } 1944 /* validate authentication required parameters */ 1945 if (got_random && got_hmacs) { 1946 peer_supports_auth = 1; 1947 } else { 1948 peer_supports_auth = 0; 1949 } 1950 if (!peer_supports_auth && got_chklist) { 1951 SCTPDBG(SCTP_DEBUG_AUTH1, 1952 "SCTP: peer sent chunk list w/o AUTH\n"); 1953 return (-1); 1954 } 1955 if (peer_supports_asconf && !peer_supports_auth) { 1956 SCTPDBG(SCTP_DEBUG_AUTH1, 1957 "SCTP: peer supports ASCONF but not AUTH\n"); 1958 return (-1); 1959 } else if ((peer_supports_asconf) && (peer_supports_auth) && 1960 ((saw_asconf == 0) || (saw_asconf_ack == 0))) { 1961 return (-2); 1962 } 1963 return (0); 1964 } 1965 1966 void 1967 sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb) 1968 { 1969 uint16_t chunks_len = 0; 1970 uint16_t hmacs_len = 0; 1971 uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT; 1972 sctp_key_t *new_key; 1973 uint16_t keylen; 1974 1975 /* initialize hmac list from endpoint */ 1976 stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs); 1977 if (stcb->asoc.local_hmacs != NULL) { 1978 hmacs_len = stcb->asoc.local_hmacs->num_algo * 1979 sizeof(stcb->asoc.local_hmacs->hmac[0]); 1980 } 1981 /* initialize auth chunks list from endpoint */ 1982 stcb->asoc.local_auth_chunks = 1983 sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks); 1984 if (stcb->asoc.local_auth_chunks != NULL) { 1985 int i; 1986 1987 for (i = 0; i < 256; i++) { 1988 if (stcb->asoc.local_auth_chunks->chunks[i]) 1989 chunks_len++; 1990 } 1991 } 1992 /* copy defaults from the endpoint */ 1993 stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid; 1994 1995 /* copy out the shared key list (by reference) from the endpoint */ 1996 (void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys, 1997 &stcb->asoc.shared_keys); 1998 1999 /* now set the concatenated key (random + chunks + hmacs) */ 2000 /* key includes parameter headers */ 2001 keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len + 2002 hmacs_len; 2003 new_key = sctp_alloc_key(keylen); 2004 if (new_key != NULL) { 2005 struct sctp_paramhdr *ph; 2006 int plen; 2007 2008 /* generate and copy in the RANDOM */ 2009 ph = (struct sctp_paramhdr *)new_key->key; 2010 ph->param_type = htons(SCTP_RANDOM); 2011 plen = sizeof(*ph) + random_len; 2012 ph->param_length = htons(plen); 2013 SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len); 2014 keylen = plen; 2015 2016 /* append in the AUTH chunks */ 2017 /* NOTE: currently we always have chunks to list */ 2018 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 2019 ph->param_type = htons(SCTP_CHUNK_LIST); 2020 plen = sizeof(*ph) + chunks_len; 2021 ph->param_length = htons(plen); 2022 keylen += sizeof(*ph); 2023 if (stcb->asoc.local_auth_chunks) { 2024 int i; 2025 2026 for (i = 0; i < 256; i++) { 2027 if (stcb->asoc.local_auth_chunks->chunks[i]) 2028 new_key->key[keylen++] = i; 2029 } 2030 } 2031 2032 /* append in the HMACs */ 2033 ph = (struct sctp_paramhdr *)(new_key->key + keylen); 2034 ph->param_type = htons(SCTP_HMAC_LIST); 2035 plen = sizeof(*ph) + hmacs_len; 2036 ph->param_length = htons(plen); 2037 keylen += sizeof(*ph); 2038 (void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs, 2039 new_key->key + keylen); 2040 } 2041 if (stcb->asoc.authinfo.random != NULL) 2042 sctp_free_key(stcb->asoc.authinfo.random); 2043 stcb->asoc.authinfo.random = new_key; 2044 stcb->asoc.authinfo.random_len = random_len; 2045 } 2046