1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)raw_ip.c 8.7 (Berkeley) 5/15/95 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_inet.h" 39 #include "opt_inet6.h" 40 #include "opt_ipsec.h" 41 42 #include <sys/param.h> 43 #include <sys/jail.h> 44 #include <sys/kernel.h> 45 #include <sys/eventhandler.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/protosw.h> 52 #include <sys/rmlock.h> 53 #include <sys/rwlock.h> 54 #include <sys/signalvar.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sx.h> 58 #include <sys/sysctl.h> 59 #include <sys/systm.h> 60 61 #include <vm/uma.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/route.h> 66 #include <net/vnet.h> 67 68 #include <netinet/in.h> 69 #include <netinet/in_systm.h> 70 #include <netinet/in_pcb.h> 71 #include <netinet/in_var.h> 72 #include <netinet/if_ether.h> 73 #include <netinet/ip.h> 74 #include <netinet/ip_var.h> 75 #include <netinet/ip_mroute.h> 76 #include <netinet/ip_icmp.h> 77 78 #include <netipsec/ipsec_support.h> 79 80 #include <machine/stdarg.h> 81 #include <security/mac/mac_framework.h> 82 83 VNET_DEFINE(int, ip_defttl) = IPDEFTTL; 84 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_VNET | CTLFLAG_RW, 85 &VNET_NAME(ip_defttl), 0, 86 "Maximum TTL on IP packets"); 87 88 VNET_DEFINE(struct inpcbhead, ripcb); 89 VNET_DEFINE(struct inpcbinfo, ripcbinfo); 90 91 #define V_ripcb VNET(ripcb) 92 #define V_ripcbinfo VNET(ripcbinfo) 93 94 /* 95 * Control and data hooks for ipfw, dummynet, divert and so on. 96 * The data hooks are not used here but it is convenient 97 * to keep them all in one place. 98 */ 99 VNET_DEFINE(ip_fw_chk_ptr_t, ip_fw_chk_ptr) = NULL; 100 VNET_DEFINE(ip_fw_ctl_ptr_t, ip_fw_ctl_ptr) = NULL; 101 102 int (*ip_dn_ctl_ptr)(struct sockopt *); 103 int (*ip_dn_io_ptr)(struct mbuf **, struct ip_fw_args *); 104 void (*ip_divert_ptr)(struct mbuf *, bool); 105 int (*ng_ipfw_input_p)(struct mbuf **, struct ip_fw_args *, bool); 106 107 #ifdef INET 108 /* 109 * Hooks for multicast routing. They all default to NULL, so leave them not 110 * initialized and rely on BSS being set to 0. 111 */ 112 113 /* 114 * The socket used to communicate with the multicast routing daemon. 115 */ 116 VNET_DEFINE(struct socket *, ip_mrouter); 117 118 /* 119 * The various mrouter and rsvp functions. 120 */ 121 int (*ip_mrouter_set)(struct socket *, struct sockopt *); 122 int (*ip_mrouter_get)(struct socket *, struct sockopt *); 123 int (*ip_mrouter_done)(void); 124 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *, 125 struct ip_moptions *); 126 int (*mrt_ioctl)(u_long, caddr_t, int); 127 int (*legal_vif_num)(int); 128 u_long (*ip_mcast_src)(int); 129 130 int (*rsvp_input_p)(struct mbuf **, int *, int); 131 int (*ip_rsvp_vif)(struct socket *, struct sockopt *); 132 void (*ip_rsvp_force_done)(struct socket *); 133 #endif /* INET */ 134 135 extern struct protosw inetsw[]; 136 137 u_long rip_sendspace = 9216; 138 SYSCTL_ULONG(_net_inet_raw, OID_AUTO, maxdgram, CTLFLAG_RW, 139 &rip_sendspace, 0, "Maximum outgoing raw IP datagram size"); 140 141 u_long rip_recvspace = 9216; 142 SYSCTL_ULONG(_net_inet_raw, OID_AUTO, recvspace, CTLFLAG_RW, 143 &rip_recvspace, 0, "Maximum space for incoming raw IP datagrams"); 144 145 /* 146 * Hash functions 147 */ 148 149 #define INP_PCBHASH_RAW_SIZE 256 150 #define INP_PCBHASH_RAW(proto, laddr, faddr, mask) \ 151 (((proto) + (laddr) + (faddr)) % (mask) + 1) 152 153 #ifdef INET 154 static void 155 rip_inshash(struct inpcb *inp) 156 { 157 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 158 struct inpcbhead *pcbhash; 159 int hash; 160 161 INP_INFO_WLOCK_ASSERT(pcbinfo); 162 INP_WLOCK_ASSERT(inp); 163 164 if (inp->inp_ip_p != 0 && 165 inp->inp_laddr.s_addr != INADDR_ANY && 166 inp->inp_faddr.s_addr != INADDR_ANY) { 167 hash = INP_PCBHASH_RAW(inp->inp_ip_p, inp->inp_laddr.s_addr, 168 inp->inp_faddr.s_addr, pcbinfo->ipi_hashmask); 169 } else 170 hash = 0; 171 pcbhash = &pcbinfo->ipi_hashbase[hash]; 172 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 173 } 174 175 static void 176 rip_delhash(struct inpcb *inp) 177 { 178 179 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 180 INP_WLOCK_ASSERT(inp); 181 182 CK_LIST_REMOVE(inp, inp_hash); 183 } 184 #endif /* INET */ 185 186 /* 187 * Raw interface to IP protocol. 188 */ 189 190 /* 191 * Initialize raw connection block q. 192 */ 193 static void 194 rip_zone_change(void *tag) 195 { 196 197 uma_zone_set_max(V_ripcbinfo.ipi_zone, maxsockets); 198 } 199 200 static int 201 rip_inpcb_init(void *mem, int size, int flags) 202 { 203 struct inpcb *inp = mem; 204 205 INP_LOCK_INIT(inp, "inp", "rawinp"); 206 return (0); 207 } 208 209 void 210 rip_init(void) 211 { 212 213 in_pcbinfo_init(&V_ripcbinfo, "rip", &V_ripcb, INP_PCBHASH_RAW_SIZE, 214 1, "ripcb", rip_inpcb_init, IPI_HASHFIELDS_NONE); 215 EVENTHANDLER_REGISTER(maxsockets_change, rip_zone_change, NULL, 216 EVENTHANDLER_PRI_ANY); 217 } 218 219 #ifdef VIMAGE 220 static void 221 rip_destroy(void *unused __unused) 222 { 223 224 in_pcbinfo_destroy(&V_ripcbinfo); 225 } 226 VNET_SYSUNINIT(raw_ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, rip_destroy, NULL); 227 #endif 228 229 #ifdef INET 230 static int 231 rip_append(struct inpcb *last, struct ip *ip, struct mbuf *n, 232 struct sockaddr_in *ripsrc) 233 { 234 int policyfail = 0; 235 236 INP_LOCK_ASSERT(last); 237 238 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 239 /* check AH/ESP integrity. */ 240 if (IPSEC_ENABLED(ipv4)) { 241 if (IPSEC_CHECK_POLICY(ipv4, n, last) != 0) 242 policyfail = 1; 243 } 244 #endif /* IPSEC */ 245 #ifdef MAC 246 if (!policyfail && mac_inpcb_check_deliver(last, n) != 0) 247 policyfail = 1; 248 #endif 249 /* Check the minimum TTL for socket. */ 250 if (last->inp_ip_minttl && last->inp_ip_minttl > ip->ip_ttl) 251 policyfail = 1; 252 if (!policyfail) { 253 struct mbuf *opts = NULL; 254 struct socket *so; 255 256 so = last->inp_socket; 257 if ((last->inp_flags & INP_CONTROLOPTS) || 258 (so->so_options & (SO_TIMESTAMP | SO_BINTIME))) 259 ip_savecontrol(last, &opts, ip, n); 260 SOCKBUF_LOCK(&so->so_rcv); 261 if (sbappendaddr_locked(&so->so_rcv, 262 (struct sockaddr *)ripsrc, n, opts) == 0) { 263 /* should notify about lost packet */ 264 m_freem(n); 265 if (opts) 266 m_freem(opts); 267 SOCKBUF_UNLOCK(&so->so_rcv); 268 } else 269 sorwakeup_locked(so); 270 } else 271 m_freem(n); 272 return (policyfail); 273 } 274 275 /* 276 * Setup generic address and protocol structures for raw_input routine, then 277 * pass them along with mbuf chain. 278 */ 279 int 280 rip_input(struct mbuf **mp, int *offp, int proto) 281 { 282 struct ifnet *ifp; 283 struct mbuf *m = *mp; 284 struct ip *ip = mtod(m, struct ip *); 285 struct inpcb *inp, *last; 286 struct sockaddr_in ripsrc; 287 struct epoch_tracker et; 288 int hash; 289 290 *mp = NULL; 291 292 bzero(&ripsrc, sizeof(ripsrc)); 293 ripsrc.sin_len = sizeof(ripsrc); 294 ripsrc.sin_family = AF_INET; 295 ripsrc.sin_addr = ip->ip_src; 296 last = NULL; 297 298 ifp = m->m_pkthdr.rcvif; 299 300 hash = INP_PCBHASH_RAW(proto, ip->ip_src.s_addr, 301 ip->ip_dst.s_addr, V_ripcbinfo.ipi_hashmask); 302 INP_INFO_RLOCK_ET(&V_ripcbinfo, et); 303 CK_LIST_FOREACH(inp, &V_ripcbinfo.ipi_hashbase[hash], inp_hash) { 304 if (inp->inp_ip_p != proto) 305 continue; 306 #ifdef INET6 307 /* XXX inp locking */ 308 if ((inp->inp_vflag & INP_IPV4) == 0) 309 continue; 310 #endif 311 if (inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 312 continue; 313 if (inp->inp_faddr.s_addr != ip->ip_src.s_addr) 314 continue; 315 if (last != NULL) { 316 struct mbuf *n; 317 318 n = m_copym(m, 0, M_COPYALL, M_NOWAIT); 319 if (n != NULL) 320 (void) rip_append(last, ip, n, &ripsrc); 321 /* XXX count dropped packet */ 322 INP_RUNLOCK(last); 323 last = NULL; 324 } 325 INP_RLOCK(inp); 326 if (__predict_false(inp->inp_flags2 & INP_FREED)) 327 goto skip_1; 328 if (jailed_without_vnet(inp->inp_cred)) { 329 /* 330 * XXX: If faddr was bound to multicast group, 331 * jailed raw socket will drop datagram. 332 */ 333 if (prison_check_ip4(inp->inp_cred, &ip->ip_dst) != 0) 334 goto skip_1; 335 } 336 last = inp; 337 continue; 338 skip_1: 339 INP_RUNLOCK(inp); 340 } 341 CK_LIST_FOREACH(inp, &V_ripcbinfo.ipi_hashbase[0], inp_hash) { 342 if (inp->inp_ip_p && inp->inp_ip_p != proto) 343 continue; 344 #ifdef INET6 345 /* XXX inp locking */ 346 if ((inp->inp_vflag & INP_IPV4) == 0) 347 continue; 348 #endif 349 if (!in_nullhost(inp->inp_laddr) && 350 !in_hosteq(inp->inp_laddr, ip->ip_dst)) 351 continue; 352 if (!in_nullhost(inp->inp_faddr) && 353 !in_hosteq(inp->inp_faddr, ip->ip_src)) 354 continue; 355 if (last != NULL) { 356 struct mbuf *n; 357 358 n = m_copym(m, 0, M_COPYALL, M_NOWAIT); 359 if (n != NULL) 360 (void) rip_append(last, ip, n, &ripsrc); 361 /* XXX count dropped packet */ 362 INP_RUNLOCK(last); 363 last = NULL; 364 } 365 INP_RLOCK(inp); 366 if (__predict_false(inp->inp_flags2 & INP_FREED)) 367 goto skip_2; 368 if (jailed_without_vnet(inp->inp_cred)) { 369 /* 370 * Allow raw socket in jail to receive multicast; 371 * assume process had PRIV_NETINET_RAW at attach, 372 * and fall through into normal filter path if so. 373 */ 374 if (!IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 375 prison_check_ip4(inp->inp_cred, &ip->ip_dst) != 0) 376 goto skip_2; 377 } 378 /* 379 * If this raw socket has multicast state, and we 380 * have received a multicast, check if this socket 381 * should receive it, as multicast filtering is now 382 * the responsibility of the transport layer. 383 */ 384 if (inp->inp_moptions != NULL && 385 IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 386 /* 387 * If the incoming datagram is for IGMP, allow it 388 * through unconditionally to the raw socket. 389 * 390 * In the case of IGMPv2, we may not have explicitly 391 * joined the group, and may have set IFF_ALLMULTI 392 * on the interface. imo_multi_filter() may discard 393 * control traffic we actually need to see. 394 * 395 * Userland multicast routing daemons should continue 396 * filter the control traffic appropriately. 397 */ 398 int blocked; 399 400 blocked = MCAST_PASS; 401 if (proto != IPPROTO_IGMP) { 402 struct sockaddr_in group; 403 404 bzero(&group, sizeof(struct sockaddr_in)); 405 group.sin_len = sizeof(struct sockaddr_in); 406 group.sin_family = AF_INET; 407 group.sin_addr = ip->ip_dst; 408 409 blocked = imo_multi_filter(inp->inp_moptions, 410 ifp, 411 (struct sockaddr *)&group, 412 (struct sockaddr *)&ripsrc); 413 } 414 415 if (blocked != MCAST_PASS) { 416 IPSTAT_INC(ips_notmember); 417 goto skip_2; 418 } 419 } 420 last = inp; 421 continue; 422 skip_2: 423 INP_RUNLOCK(inp); 424 } 425 INP_INFO_RUNLOCK_ET(&V_ripcbinfo, et); 426 if (last != NULL) { 427 if (rip_append(last, ip, m, &ripsrc) != 0) 428 IPSTAT_INC(ips_delivered); 429 INP_RUNLOCK(last); 430 } else { 431 if (inetsw[ip_protox[ip->ip_p]].pr_input == rip_input) { 432 IPSTAT_INC(ips_noproto); 433 IPSTAT_DEC(ips_delivered); 434 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PROTOCOL, 0, 0); 435 } else { 436 m_freem(m); 437 } 438 } 439 return (IPPROTO_DONE); 440 } 441 442 /* 443 * Generate IP header and pass packet to ip_output. Tack on options user may 444 * have setup with control call. 445 */ 446 int 447 rip_output(struct mbuf *m, struct socket *so, ...) 448 { 449 struct ip *ip; 450 int error; 451 struct inpcb *inp = sotoinpcb(so); 452 va_list ap; 453 u_long dst; 454 int flags = ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0) | 455 IP_ALLOWBROADCAST; 456 int cnt, hlen; 457 u_char opttype, optlen, *cp; 458 459 va_start(ap, so); 460 dst = va_arg(ap, u_long); 461 va_end(ap); 462 463 /* 464 * If the user handed us a complete IP packet, use it. Otherwise, 465 * allocate an mbuf for a header and fill it in. 466 */ 467 if ((inp->inp_flags & INP_HDRINCL) == 0) { 468 if (m->m_pkthdr.len + sizeof(struct ip) > IP_MAXPACKET) { 469 m_freem(m); 470 return(EMSGSIZE); 471 } 472 M_PREPEND(m, sizeof(struct ip), M_NOWAIT); 473 if (m == NULL) 474 return(ENOBUFS); 475 476 INP_RLOCK(inp); 477 ip = mtod(m, struct ip *); 478 ip->ip_tos = inp->inp_ip_tos; 479 if (inp->inp_flags & INP_DONTFRAG) 480 ip->ip_off = htons(IP_DF); 481 else 482 ip->ip_off = htons(0); 483 ip->ip_p = inp->inp_ip_p; 484 ip->ip_len = htons(m->m_pkthdr.len); 485 ip->ip_src = inp->inp_laddr; 486 ip->ip_dst.s_addr = dst; 487 if (jailed(inp->inp_cred)) { 488 /* 489 * prison_local_ip4() would be good enough but would 490 * let a source of INADDR_ANY pass, which we do not 491 * want to see from jails. 492 */ 493 if (ip->ip_src.s_addr == INADDR_ANY) { 494 error = in_pcbladdr(inp, &ip->ip_dst, &ip->ip_src, 495 inp->inp_cred); 496 } else { 497 error = prison_local_ip4(inp->inp_cred, 498 &ip->ip_src); 499 } 500 if (error != 0) { 501 INP_RUNLOCK(inp); 502 m_freem(m); 503 return (error); 504 } 505 } 506 ip->ip_ttl = inp->inp_ip_ttl; 507 } else { 508 if (m->m_pkthdr.len > IP_MAXPACKET) { 509 m_freem(m); 510 return(EMSGSIZE); 511 } 512 ip = mtod(m, struct ip *); 513 hlen = ip->ip_hl << 2; 514 if (m->m_len < hlen) { 515 m = m_pullup(m, hlen); 516 if (m == NULL) 517 return (EINVAL); 518 ip = mtod(m, struct ip *); 519 } 520 521 INP_RLOCK(inp); 522 /* 523 * Don't allow both user specified and setsockopt options, 524 * and don't allow packet length sizes that will crash. 525 */ 526 if ((hlen < sizeof (*ip)) 527 || ((hlen > sizeof (*ip)) && inp->inp_options) 528 || (ntohs(ip->ip_len) != m->m_pkthdr.len)) { 529 INP_RUNLOCK(inp); 530 m_freem(m); 531 return (EINVAL); 532 } 533 error = prison_check_ip4(inp->inp_cred, &ip->ip_src); 534 if (error != 0) { 535 INP_RUNLOCK(inp); 536 m_freem(m); 537 return (error); 538 } 539 /* 540 * Don't allow IP options which do not have the required 541 * structure as specified in section 3.1 of RFC 791 on 542 * pages 15-23. 543 */ 544 cp = (u_char *)(ip + 1); 545 cnt = hlen - sizeof (struct ip); 546 for (; cnt > 0; cnt -= optlen, cp += optlen) { 547 opttype = cp[IPOPT_OPTVAL]; 548 if (opttype == IPOPT_EOL) 549 break; 550 if (opttype == IPOPT_NOP) { 551 optlen = 1; 552 continue; 553 } 554 if (cnt < IPOPT_OLEN + sizeof(u_char)) { 555 INP_RUNLOCK(inp); 556 m_freem(m); 557 return (EINVAL); 558 } 559 optlen = cp[IPOPT_OLEN]; 560 if (optlen < IPOPT_OLEN + sizeof(u_char) || 561 optlen > cnt) { 562 INP_RUNLOCK(inp); 563 m_freem(m); 564 return (EINVAL); 565 } 566 } 567 /* 568 * This doesn't allow application to specify ID of zero, 569 * but we got this limitation from the beginning of history. 570 */ 571 if (ip->ip_id == 0) 572 ip_fillid(ip); 573 574 /* 575 * XXX prevent ip_output from overwriting header fields. 576 */ 577 flags |= IP_RAWOUTPUT; 578 IPSTAT_INC(ips_rawout); 579 } 580 581 if (inp->inp_flags & INP_ONESBCAST) 582 flags |= IP_SENDONES; 583 584 #ifdef MAC 585 mac_inpcb_create_mbuf(inp, m); 586 #endif 587 588 error = ip_output(m, inp->inp_options, NULL, flags, 589 inp->inp_moptions, inp); 590 INP_RUNLOCK(inp); 591 return (error); 592 } 593 594 /* 595 * Raw IP socket option processing. 596 * 597 * IMPORTANT NOTE regarding access control: Traditionally, raw sockets could 598 * only be created by a privileged process, and as such, socket option 599 * operations to manage system properties on any raw socket were allowed to 600 * take place without explicit additional access control checks. However, 601 * raw sockets can now also be created in jail(), and therefore explicit 602 * checks are now required. Likewise, raw sockets can be used by a process 603 * after it gives up privilege, so some caution is required. For options 604 * passed down to the IP layer via ip_ctloutput(), checks are assumed to be 605 * performed in ip_ctloutput() and therefore no check occurs here. 606 * Unilaterally checking priv_check() here breaks normal IP socket option 607 * operations on raw sockets. 608 * 609 * When adding new socket options here, make sure to add access control 610 * checks here as necessary. 611 * 612 * XXX-BZ inp locking? 613 */ 614 int 615 rip_ctloutput(struct socket *so, struct sockopt *sopt) 616 { 617 struct inpcb *inp = sotoinpcb(so); 618 int error, optval; 619 620 if (sopt->sopt_level != IPPROTO_IP) { 621 if ((sopt->sopt_level == SOL_SOCKET) && 622 (sopt->sopt_name == SO_SETFIB)) { 623 inp->inp_inc.inc_fibnum = so->so_fibnum; 624 return (0); 625 } 626 return (EINVAL); 627 } 628 629 error = 0; 630 switch (sopt->sopt_dir) { 631 case SOPT_GET: 632 switch (sopt->sopt_name) { 633 case IP_HDRINCL: 634 optval = inp->inp_flags & INP_HDRINCL; 635 error = sooptcopyout(sopt, &optval, sizeof optval); 636 break; 637 638 case IP_FW3: /* generic ipfw v.3 functions */ 639 case IP_FW_ADD: /* ADD actually returns the body... */ 640 case IP_FW_GET: 641 case IP_FW_TABLE_GETSIZE: 642 case IP_FW_TABLE_LIST: 643 case IP_FW_NAT_GET_CONFIG: 644 case IP_FW_NAT_GET_LOG: 645 if (V_ip_fw_ctl_ptr != NULL) 646 error = V_ip_fw_ctl_ptr(sopt); 647 else 648 error = ENOPROTOOPT; 649 break; 650 651 case IP_DUMMYNET3: /* generic dummynet v.3 functions */ 652 case IP_DUMMYNET_GET: 653 if (ip_dn_ctl_ptr != NULL) 654 error = ip_dn_ctl_ptr(sopt); 655 else 656 error = ENOPROTOOPT; 657 break ; 658 659 case MRT_INIT: 660 case MRT_DONE: 661 case MRT_ADD_VIF: 662 case MRT_DEL_VIF: 663 case MRT_ADD_MFC: 664 case MRT_DEL_MFC: 665 case MRT_VERSION: 666 case MRT_ASSERT: 667 case MRT_API_SUPPORT: 668 case MRT_API_CONFIG: 669 case MRT_ADD_BW_UPCALL: 670 case MRT_DEL_BW_UPCALL: 671 error = priv_check(curthread, PRIV_NETINET_MROUTE); 672 if (error != 0) 673 return (error); 674 error = ip_mrouter_get ? ip_mrouter_get(so, sopt) : 675 EOPNOTSUPP; 676 break; 677 678 default: 679 error = ip_ctloutput(so, sopt); 680 break; 681 } 682 break; 683 684 case SOPT_SET: 685 switch (sopt->sopt_name) { 686 case IP_HDRINCL: 687 error = sooptcopyin(sopt, &optval, sizeof optval, 688 sizeof optval); 689 if (error) 690 break; 691 if (optval) 692 inp->inp_flags |= INP_HDRINCL; 693 else 694 inp->inp_flags &= ~INP_HDRINCL; 695 break; 696 697 case IP_FW3: /* generic ipfw v.3 functions */ 698 case IP_FW_ADD: 699 case IP_FW_DEL: 700 case IP_FW_FLUSH: 701 case IP_FW_ZERO: 702 case IP_FW_RESETLOG: 703 case IP_FW_TABLE_ADD: 704 case IP_FW_TABLE_DEL: 705 case IP_FW_TABLE_FLUSH: 706 case IP_FW_NAT_CFG: 707 case IP_FW_NAT_DEL: 708 if (V_ip_fw_ctl_ptr != NULL) 709 error = V_ip_fw_ctl_ptr(sopt); 710 else 711 error = ENOPROTOOPT; 712 break; 713 714 case IP_DUMMYNET3: /* generic dummynet v.3 functions */ 715 case IP_DUMMYNET_CONFIGURE: 716 case IP_DUMMYNET_DEL: 717 case IP_DUMMYNET_FLUSH: 718 if (ip_dn_ctl_ptr != NULL) 719 error = ip_dn_ctl_ptr(sopt); 720 else 721 error = ENOPROTOOPT ; 722 break ; 723 724 case IP_RSVP_ON: 725 error = priv_check(curthread, PRIV_NETINET_MROUTE); 726 if (error != 0) 727 return (error); 728 error = ip_rsvp_init(so); 729 break; 730 731 case IP_RSVP_OFF: 732 error = priv_check(curthread, PRIV_NETINET_MROUTE); 733 if (error != 0) 734 return (error); 735 error = ip_rsvp_done(); 736 break; 737 738 case IP_RSVP_VIF_ON: 739 case IP_RSVP_VIF_OFF: 740 error = priv_check(curthread, PRIV_NETINET_MROUTE); 741 if (error != 0) 742 return (error); 743 error = ip_rsvp_vif ? 744 ip_rsvp_vif(so, sopt) : EINVAL; 745 break; 746 747 case MRT_INIT: 748 case MRT_DONE: 749 case MRT_ADD_VIF: 750 case MRT_DEL_VIF: 751 case MRT_ADD_MFC: 752 case MRT_DEL_MFC: 753 case MRT_VERSION: 754 case MRT_ASSERT: 755 case MRT_API_SUPPORT: 756 case MRT_API_CONFIG: 757 case MRT_ADD_BW_UPCALL: 758 case MRT_DEL_BW_UPCALL: 759 error = priv_check(curthread, PRIV_NETINET_MROUTE); 760 if (error != 0) 761 return (error); 762 error = ip_mrouter_set ? ip_mrouter_set(so, sopt) : 763 EOPNOTSUPP; 764 break; 765 766 default: 767 error = ip_ctloutput(so, sopt); 768 break; 769 } 770 break; 771 } 772 773 return (error); 774 } 775 776 /* 777 * This function exists solely to receive the PRC_IFDOWN messages which are 778 * sent by if_down(). It looks for an ifaddr whose ifa_addr is sa, and calls 779 * in_ifadown() to remove all routes corresponding to that address. It also 780 * receives the PRC_IFUP messages from if_up() and reinstalls the interface 781 * routes. 782 */ 783 void 784 rip_ctlinput(int cmd, struct sockaddr *sa, void *vip) 785 { 786 struct rm_priotracker in_ifa_tracker; 787 struct in_ifaddr *ia; 788 struct ifnet *ifp; 789 int err; 790 int flags; 791 792 switch (cmd) { 793 case PRC_IFDOWN: 794 IN_IFADDR_RLOCK(&in_ifa_tracker); 795 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 796 if (ia->ia_ifa.ifa_addr == sa 797 && (ia->ia_flags & IFA_ROUTE)) { 798 ifa_ref(&ia->ia_ifa); 799 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 800 /* 801 * in_scrubprefix() kills the interface route. 802 */ 803 in_scrubprefix(ia, 0); 804 /* 805 * in_ifadown gets rid of all the rest of the 806 * routes. This is not quite the right thing 807 * to do, but at least if we are running a 808 * routing process they will come back. 809 */ 810 in_ifadown(&ia->ia_ifa, 0); 811 ifa_free(&ia->ia_ifa); 812 break; 813 } 814 } 815 if (ia == NULL) /* If ia matched, already unlocked. */ 816 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 817 break; 818 819 case PRC_IFUP: 820 IN_IFADDR_RLOCK(&in_ifa_tracker); 821 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 822 if (ia->ia_ifa.ifa_addr == sa) 823 break; 824 } 825 if (ia == NULL || (ia->ia_flags & IFA_ROUTE)) { 826 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 827 return; 828 } 829 ifa_ref(&ia->ia_ifa); 830 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 831 flags = RTF_UP; 832 ifp = ia->ia_ifa.ifa_ifp; 833 834 if ((ifp->if_flags & IFF_LOOPBACK) 835 || (ifp->if_flags & IFF_POINTOPOINT)) 836 flags |= RTF_HOST; 837 838 err = ifa_del_loopback_route((struct ifaddr *)ia, sa); 839 840 err = rtinit(&ia->ia_ifa, RTM_ADD, flags); 841 if (err == 0) 842 ia->ia_flags |= IFA_ROUTE; 843 844 err = ifa_add_loopback_route((struct ifaddr *)ia, sa); 845 846 ifa_free(&ia->ia_ifa); 847 break; 848 } 849 } 850 851 static int 852 rip_attach(struct socket *so, int proto, struct thread *td) 853 { 854 struct inpcb *inp; 855 int error; 856 857 inp = sotoinpcb(so); 858 KASSERT(inp == NULL, ("rip_attach: inp != NULL")); 859 860 error = priv_check(td, PRIV_NETINET_RAW); 861 if (error) 862 return (error); 863 if (proto >= IPPROTO_MAX || proto < 0) 864 return EPROTONOSUPPORT; 865 error = soreserve(so, rip_sendspace, rip_recvspace); 866 if (error) 867 return (error); 868 INP_INFO_WLOCK(&V_ripcbinfo); 869 error = in_pcballoc(so, &V_ripcbinfo); 870 if (error) { 871 INP_INFO_WUNLOCK(&V_ripcbinfo); 872 return (error); 873 } 874 inp = (struct inpcb *)so->so_pcb; 875 inp->inp_vflag |= INP_IPV4; 876 inp->inp_ip_p = proto; 877 inp->inp_ip_ttl = V_ip_defttl; 878 rip_inshash(inp); 879 INP_INFO_WUNLOCK(&V_ripcbinfo); 880 INP_WUNLOCK(inp); 881 return (0); 882 } 883 884 static void 885 rip_detach(struct socket *so) 886 { 887 struct inpcb *inp; 888 889 inp = sotoinpcb(so); 890 KASSERT(inp != NULL, ("rip_detach: inp == NULL")); 891 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 892 ("rip_detach: not closed")); 893 894 INP_INFO_WLOCK(&V_ripcbinfo); 895 INP_WLOCK(inp); 896 rip_delhash(inp); 897 if (so == V_ip_mrouter && ip_mrouter_done) 898 ip_mrouter_done(); 899 if (ip_rsvp_force_done) 900 ip_rsvp_force_done(so); 901 if (so == V_ip_rsvpd) 902 ip_rsvp_done(); 903 in_pcbdetach(inp); 904 in_pcbfree(inp); 905 INP_INFO_WUNLOCK(&V_ripcbinfo); 906 } 907 908 static void 909 rip_dodisconnect(struct socket *so, struct inpcb *inp) 910 { 911 struct inpcbinfo *pcbinfo; 912 913 pcbinfo = inp->inp_pcbinfo; 914 INP_INFO_WLOCK(pcbinfo); 915 INP_WLOCK(inp); 916 rip_delhash(inp); 917 inp->inp_faddr.s_addr = INADDR_ANY; 918 rip_inshash(inp); 919 SOCK_LOCK(so); 920 so->so_state &= ~SS_ISCONNECTED; 921 SOCK_UNLOCK(so); 922 INP_WUNLOCK(inp); 923 INP_INFO_WUNLOCK(pcbinfo); 924 } 925 926 static void 927 rip_abort(struct socket *so) 928 { 929 struct inpcb *inp; 930 931 inp = sotoinpcb(so); 932 KASSERT(inp != NULL, ("rip_abort: inp == NULL")); 933 934 rip_dodisconnect(so, inp); 935 } 936 937 static void 938 rip_close(struct socket *so) 939 { 940 struct inpcb *inp; 941 942 inp = sotoinpcb(so); 943 KASSERT(inp != NULL, ("rip_close: inp == NULL")); 944 945 rip_dodisconnect(so, inp); 946 } 947 948 static int 949 rip_disconnect(struct socket *so) 950 { 951 struct inpcb *inp; 952 953 if ((so->so_state & SS_ISCONNECTED) == 0) 954 return (ENOTCONN); 955 956 inp = sotoinpcb(so); 957 KASSERT(inp != NULL, ("rip_disconnect: inp == NULL")); 958 959 rip_dodisconnect(so, inp); 960 return (0); 961 } 962 963 static int 964 rip_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 965 { 966 struct sockaddr_in *addr = (struct sockaddr_in *)nam; 967 struct inpcb *inp; 968 int error; 969 970 if (nam->sa_len != sizeof(*addr)) 971 return (EINVAL); 972 973 error = prison_check_ip4(td->td_ucred, &addr->sin_addr); 974 if (error != 0) 975 return (error); 976 977 inp = sotoinpcb(so); 978 KASSERT(inp != NULL, ("rip_bind: inp == NULL")); 979 980 if (CK_STAILQ_EMPTY(&V_ifnet) || 981 (addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK) || 982 (addr->sin_addr.s_addr && 983 (inp->inp_flags & INP_BINDANY) == 0 && 984 ifa_ifwithaddr_check((struct sockaddr *)addr) == 0)) 985 return (EADDRNOTAVAIL); 986 987 INP_INFO_WLOCK(&V_ripcbinfo); 988 INP_WLOCK(inp); 989 rip_delhash(inp); 990 inp->inp_laddr = addr->sin_addr; 991 rip_inshash(inp); 992 INP_WUNLOCK(inp); 993 INP_INFO_WUNLOCK(&V_ripcbinfo); 994 return (0); 995 } 996 997 static int 998 rip_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 999 { 1000 struct sockaddr_in *addr = (struct sockaddr_in *)nam; 1001 struct inpcb *inp; 1002 1003 if (nam->sa_len != sizeof(*addr)) 1004 return (EINVAL); 1005 if (CK_STAILQ_EMPTY(&V_ifnet)) 1006 return (EADDRNOTAVAIL); 1007 if (addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK) 1008 return (EAFNOSUPPORT); 1009 1010 inp = sotoinpcb(so); 1011 KASSERT(inp != NULL, ("rip_connect: inp == NULL")); 1012 1013 INP_INFO_WLOCK(&V_ripcbinfo); 1014 INP_WLOCK(inp); 1015 rip_delhash(inp); 1016 inp->inp_faddr = addr->sin_addr; 1017 rip_inshash(inp); 1018 soisconnected(so); 1019 INP_WUNLOCK(inp); 1020 INP_INFO_WUNLOCK(&V_ripcbinfo); 1021 return (0); 1022 } 1023 1024 static int 1025 rip_shutdown(struct socket *so) 1026 { 1027 struct inpcb *inp; 1028 1029 inp = sotoinpcb(so); 1030 KASSERT(inp != NULL, ("rip_shutdown: inp == NULL")); 1031 1032 INP_WLOCK(inp); 1033 socantsendmore(so); 1034 INP_WUNLOCK(inp); 1035 return (0); 1036 } 1037 1038 static int 1039 rip_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 1040 struct mbuf *control, struct thread *td) 1041 { 1042 struct inpcb *inp; 1043 u_long dst; 1044 1045 inp = sotoinpcb(so); 1046 KASSERT(inp != NULL, ("rip_send: inp == NULL")); 1047 1048 /* 1049 * Note: 'dst' reads below are unlocked. 1050 */ 1051 if (so->so_state & SS_ISCONNECTED) { 1052 if (nam) { 1053 m_freem(m); 1054 return (EISCONN); 1055 } 1056 dst = inp->inp_faddr.s_addr; /* Unlocked read. */ 1057 } else { 1058 if (nam == NULL) { 1059 m_freem(m); 1060 return (ENOTCONN); 1061 } 1062 dst = ((struct sockaddr_in *)nam)->sin_addr.s_addr; 1063 } 1064 return (rip_output(m, so, dst)); 1065 } 1066 #endif /* INET */ 1067 1068 static int 1069 rip_pcblist(SYSCTL_HANDLER_ARGS) 1070 { 1071 int error, i, n; 1072 struct inpcb *inp, **inp_list; 1073 inp_gen_t gencnt; 1074 struct xinpgen xig; 1075 struct epoch_tracker et; 1076 1077 /* 1078 * The process of preparing the TCB list is too time-consuming and 1079 * resource-intensive to repeat twice on every request. 1080 */ 1081 if (req->oldptr == 0) { 1082 n = V_ripcbinfo.ipi_count; 1083 n += imax(n / 8, 10); 1084 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 1085 return (0); 1086 } 1087 1088 if (req->newptr != 0) 1089 return (EPERM); 1090 1091 /* 1092 * OK, now we're committed to doing something. 1093 */ 1094 INP_INFO_WLOCK(&V_ripcbinfo); 1095 gencnt = V_ripcbinfo.ipi_gencnt; 1096 n = V_ripcbinfo.ipi_count; 1097 INP_INFO_WUNLOCK(&V_ripcbinfo); 1098 1099 bzero(&xig, sizeof(xig)); 1100 xig.xig_len = sizeof xig; 1101 xig.xig_count = n; 1102 xig.xig_gen = gencnt; 1103 xig.xig_sogen = so_gencnt; 1104 error = SYSCTL_OUT(req, &xig, sizeof xig); 1105 if (error) 1106 return (error); 1107 1108 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 1109 1110 INP_INFO_RLOCK_ET(&V_ripcbinfo, et); 1111 for (inp = CK_LIST_FIRST(V_ripcbinfo.ipi_listhead), i = 0; inp && i < n; 1112 inp = CK_LIST_NEXT(inp, inp_list)) { 1113 INP_WLOCK(inp); 1114 if (inp->inp_gencnt <= gencnt && 1115 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 1116 in_pcbref(inp); 1117 inp_list[i++] = inp; 1118 } 1119 INP_WUNLOCK(inp); 1120 } 1121 INP_INFO_RUNLOCK_ET(&V_ripcbinfo, et); 1122 n = i; 1123 1124 error = 0; 1125 for (i = 0; i < n; i++) { 1126 inp = inp_list[i]; 1127 INP_RLOCK(inp); 1128 if (inp->inp_gencnt <= gencnt) { 1129 struct xinpcb xi; 1130 1131 in_pcbtoxinpcb(inp, &xi); 1132 INP_RUNLOCK(inp); 1133 error = SYSCTL_OUT(req, &xi, sizeof xi); 1134 } else 1135 INP_RUNLOCK(inp); 1136 } 1137 INP_INFO_WLOCK(&V_ripcbinfo); 1138 for (i = 0; i < n; i++) { 1139 inp = inp_list[i]; 1140 INP_RLOCK(inp); 1141 if (!in_pcbrele_rlocked(inp)) 1142 INP_RUNLOCK(inp); 1143 } 1144 INP_INFO_WUNLOCK(&V_ripcbinfo); 1145 1146 if (!error) { 1147 struct epoch_tracker et; 1148 /* 1149 * Give the user an updated idea of our state. If the 1150 * generation differs from what we told her before, she knows 1151 * that something happened while we were processing this 1152 * request, and it might be necessary to retry. 1153 */ 1154 INP_INFO_RLOCK_ET(&V_ripcbinfo, et); 1155 xig.xig_gen = V_ripcbinfo.ipi_gencnt; 1156 xig.xig_sogen = so_gencnt; 1157 xig.xig_count = V_ripcbinfo.ipi_count; 1158 INP_INFO_RUNLOCK_ET(&V_ripcbinfo, et); 1159 error = SYSCTL_OUT(req, &xig, sizeof xig); 1160 } 1161 free(inp_list, M_TEMP); 1162 return (error); 1163 } 1164 1165 SYSCTL_PROC(_net_inet_raw, OID_AUTO/*XXX*/, pcblist, 1166 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 1167 rip_pcblist, "S,xinpcb", "List of active raw IP sockets"); 1168 1169 #ifdef INET 1170 struct pr_usrreqs rip_usrreqs = { 1171 .pru_abort = rip_abort, 1172 .pru_attach = rip_attach, 1173 .pru_bind = rip_bind, 1174 .pru_connect = rip_connect, 1175 .pru_control = in_control, 1176 .pru_detach = rip_detach, 1177 .pru_disconnect = rip_disconnect, 1178 .pru_peeraddr = in_getpeeraddr, 1179 .pru_send = rip_send, 1180 .pru_shutdown = rip_shutdown, 1181 .pru_sockaddr = in_getsockaddr, 1182 .pru_sosetlabel = in_pcbsosetlabel, 1183 .pru_close = rip_close, 1184 }; 1185 #endif /* INET */ 1186