xref: /freebsd/sys/netinet/ip_reass.c (revision a03411e84728e9b267056fd31c7d1d9d1dc1b01e)
1 /*-
2  * Copyright (c) 2015 Gleb Smirnoff <glebius@FreeBSD.org>
3  * Copyright (c) 2015 Adrian Chadd <adrian@FreeBSD.org>
4  * Copyright (c) 1982, 1986, 1988, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #include "opt_rss.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/eventhandler.h>
38 #include <sys/kernel.h>
39 #include <sys/hash.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/sysctl.h>
46 #include <sys/socket.h>
47 
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_private.h>
51 #include <net/rss_config.h>
52 #include <net/netisr.h>
53 #include <net/vnet.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/ip.h>
57 #include <netinet/ip_var.h>
58 #include <netinet/in_rss.h>
59 #ifdef MAC
60 #include <security/mac/mac_framework.h>
61 #endif
62 
63 SYSCTL_DECL(_net_inet_ip);
64 
65 /*
66  * Reassembly headers are stored in hash buckets.
67  */
68 #define	IPREASS_NHASH_LOG2	10
69 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
70 #define	IPREASS_HMASK		(V_ipq_hashsize - 1)
71 
72 struct ipqbucket {
73 	TAILQ_HEAD(ipqhead, ipq) head;
74 	struct mtx		 lock;
75 	struct callout		 timer;
76 #ifdef VIMAGE
77 	struct vnet		 *vnet;
78 #endif
79 	int			 count;
80 };
81 
82 VNET_DEFINE_STATIC(struct ipqbucket *, ipq);
83 #define	V_ipq		VNET(ipq)
84 VNET_DEFINE_STATIC(uint32_t, ipq_hashseed);
85 #define	V_ipq_hashseed	VNET(ipq_hashseed)
86 VNET_DEFINE_STATIC(uint32_t, ipq_hashsize);
87 #define	V_ipq_hashsize	VNET(ipq_hashsize)
88 
89 #define	IPQ_LOCK(i)	mtx_lock(&V_ipq[i].lock)
90 #define	IPQ_TRYLOCK(i)	mtx_trylock(&V_ipq[i].lock)
91 #define	IPQ_UNLOCK(i)	mtx_unlock(&V_ipq[i].lock)
92 #define	IPQ_LOCK_ASSERT(i)	mtx_assert(&V_ipq[i].lock, MA_OWNED)
93 #define	IPQ_BUCKET_LOCK_ASSERT(b)	mtx_assert(&(b)->lock, MA_OWNED)
94 
95 VNET_DEFINE_STATIC(int, ipreass_maxbucketsize);
96 #define	V_ipreass_maxbucketsize	VNET(ipreass_maxbucketsize)
97 
98 void		ipreass_init(void);
99 void		ipreass_vnet_init(void);
100 #ifdef VIMAGE
101 void		ipreass_destroy(void);
102 #endif
103 static int	sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS);
104 static int	sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS);
105 static int	sysctl_fragttl(SYSCTL_HANDLER_ARGS);
106 static void	ipreass_zone_change(void *);
107 static void	ipreass_drain_tomax(void);
108 static void	ipq_free(struct ipqbucket *, struct ipq *);
109 static struct ipq * ipq_reuse(int);
110 static void	ipreass_callout(void *);
111 static void	ipreass_reschedule(struct ipqbucket *);
112 
113 static inline void
114 ipq_timeout(struct ipqbucket *bucket, struct ipq *fp)
115 {
116 
117 	IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
118 	ipq_free(bucket, fp);
119 }
120 
121 static inline void
122 ipq_drop(struct ipqbucket *bucket, struct ipq *fp)
123 {
124 
125 	IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
126 	ipq_free(bucket, fp);
127 	ipreass_reschedule(bucket);
128 }
129 
130 /*
131  * By default, limit the number of IP fragments across all reassembly
132  * queues to  1/32 of the total number of mbuf clusters.
133  *
134  * Limit the total number of reassembly queues per VNET to the
135  * IP fragment limit, but ensure the limit will not allow any bucket
136  * to grow above 100 items. (The bucket limit is
137  * IP_MAXFRAGPACKETS / (V_ipq_hashsize / 2), so the 50 is the correct
138  * multiplier to reach a 100-item limit.)
139  * The 100-item limit was chosen as brief testing seems to show that
140  * this produces "reasonable" performance on some subset of systems
141  * under DoS attack.
142  */
143 #define	IP_MAXFRAGS		(nmbclusters / 32)
144 #define	IP_MAXFRAGPACKETS	(imin(IP_MAXFRAGS, V_ipq_hashsize * 50))
145 
146 static int		maxfrags;
147 static u_int __exclusive_cache_line	nfrags;
148 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfrags, CTLFLAG_RW,
149     &maxfrags, 0,
150     "Maximum number of IPv4 fragments allowed across all reassembly queues");
151 SYSCTL_UINT(_net_inet_ip, OID_AUTO, curfrags, CTLFLAG_RD,
152     &nfrags, 0,
153     "Current number of IPv4 fragments across all reassembly queues");
154 
155 VNET_DEFINE_STATIC(uma_zone_t, ipq_zone);
156 #define	V_ipq_zone	VNET(ipq_zone)
157 
158 SYSCTL_UINT(_net_inet_ip, OID_AUTO, reass_hashsize,
159     CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(ipq_hashsize), 0,
160     "Size of IP fragment reassembly hashtable");
161 
162 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets,
163     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
164     NULL, 0, sysctl_maxfragpackets, "I",
165     "Maximum number of IPv4 fragment reassembly queue entries");
166 SYSCTL_UMA_CUR(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET,
167     &VNET_NAME(ipq_zone),
168     "Current number of IPv4 fragment reassembly queue entries");
169 
170 VNET_DEFINE_STATIC(int, noreass);
171 #define	V_noreass	VNET(noreass)
172 
173 VNET_DEFINE_STATIC(int, maxfragsperpacket);
174 #define	V_maxfragsperpacket	VNET(maxfragsperpacket)
175 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_VNET | CTLFLAG_RW,
176     &VNET_NAME(maxfragsperpacket), 0,
177     "Maximum number of IPv4 fragments allowed per packet");
178 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragbucketsize,
179     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
180     sysctl_maxfragbucketsize, "I",
181     "Maximum number of IPv4 fragment reassembly queue entries per bucket");
182 
183 VNET_DEFINE_STATIC(u_int, ipfragttl) = 30;
184 #define	V_ipfragttl	VNET(ipfragttl)
185 SYSCTL_PROC(_net_inet_ip, OID_AUTO, fragttl, CTLTYPE_INT | CTLFLAG_RW |
186     CTLFLAG_MPSAFE | CTLFLAG_VNET, NULL, 0, sysctl_fragttl, "IU",
187     "IP fragment life time on reassembly queue (seconds)");
188 
189 /*
190  * Take incoming datagram fragment and try to reassemble it into
191  * whole datagram.  If the argument is the first fragment or one
192  * in between the function will return NULL and store the mbuf
193  * in the fragment chain.  If the argument is the last fragment
194  * the packet will be reassembled and the pointer to the new
195  * mbuf returned for further processing.  Only m_tags attached
196  * to the first packet/fragment are preserved.
197  * The IP header is *NOT* adjusted out of iplen.
198  */
199 #define	M_IP_FRAG	M_PROTO9
200 struct mbuf *
201 ip_reass(struct mbuf *m)
202 {
203 	struct ip *ip;
204 	struct mbuf *p, *q, *nq, *t;
205 	struct ipq *fp;
206 	struct ifnet *srcifp;
207 	struct ipqhead *head;
208 	int i, hlen, next, tmpmax;
209 	u_int8_t ecn, ecn0;
210 	uint32_t hash, hashkey[3];
211 #ifdef	RSS
212 	uint32_t rss_hash, rss_type;
213 #endif
214 
215 	/*
216 	 * If no reassembling or maxfragsperpacket are 0,
217 	 * never accept fragments.
218 	 * Also, drop packet if it would exceed the maximum
219 	 * number of fragments.
220 	 */
221 	tmpmax = maxfrags;
222 	if (V_noreass == 1 || V_maxfragsperpacket == 0 ||
223 	    (tmpmax >= 0 && atomic_load_int(&nfrags) >= (u_int)tmpmax)) {
224 		IPSTAT_INC(ips_fragments);
225 		IPSTAT_INC(ips_fragdropped);
226 		m_freem(m);
227 		return (NULL);
228 	}
229 
230 	ip = mtod(m, struct ip *);
231 	hlen = ip->ip_hl << 2;
232 
233 	/*
234 	 * Adjust ip_len to not reflect header,
235 	 * convert offset of this to bytes.
236 	 */
237 	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
238 	/*
239 	 * Make sure that fragments have a data length
240 	 * that's a non-zero multiple of 8 bytes, unless
241 	 * this is the last fragment.
242 	 */
243 	if (ip->ip_len == htons(0) ||
244 	    ((ip->ip_off & htons(IP_MF)) && (ntohs(ip->ip_len) & 0x7) != 0)) {
245 		IPSTAT_INC(ips_toosmall); /* XXX */
246 		IPSTAT_INC(ips_fragdropped);
247 		m_freem(m);
248 		return (NULL);
249 	}
250 	if (ip->ip_off & htons(IP_MF))
251 		m->m_flags |= M_IP_FRAG;
252 	else
253 		m->m_flags &= ~M_IP_FRAG;
254 	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
255 
256 	/*
257 	 * Make sure the fragment lies within a packet of valid size.
258 	 */
259 	if (ntohs(ip->ip_len) + ntohs(ip->ip_off) > IP_MAXPACKET) {
260 		IPSTAT_INC(ips_toolong);
261 		IPSTAT_INC(ips_fragdropped);
262 		m_freem(m);
263 		return (NULL);
264 	}
265 
266 	/*
267 	 * Store receive network interface pointer for later.
268 	 */
269 	srcifp = m->m_pkthdr.rcvif;
270 
271 	/*
272 	 * Attempt reassembly; if it succeeds, proceed.
273 	 * ip_reass() will return a different mbuf.
274 	 */
275 	IPSTAT_INC(ips_fragments);
276 	m->m_pkthdr.PH_loc.ptr = ip;
277 
278 	/*
279 	 * Presence of header sizes in mbufs
280 	 * would confuse code below.
281 	 */
282 	m->m_data += hlen;
283 	m->m_len -= hlen;
284 
285 	hashkey[0] = ip->ip_src.s_addr;
286 	hashkey[1] = ip->ip_dst.s_addr;
287 	hashkey[2] = (uint32_t)ip->ip_p << 16;
288 	hashkey[2] += ip->ip_id;
289 	hash = jenkins_hash32(hashkey, nitems(hashkey), V_ipq_hashseed);
290 	hash &= IPREASS_HMASK;
291 	head = &V_ipq[hash].head;
292 	IPQ_LOCK(hash);
293 
294 	/*
295 	 * Look for queue of fragments
296 	 * of this datagram.
297 	 */
298 	TAILQ_FOREACH(fp, head, ipq_list)
299 		if (ip->ip_id == fp->ipq_id &&
300 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
301 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
302 #ifdef MAC
303 		    mac_ipq_match(m, fp) &&
304 #endif
305 		    ip->ip_p == fp->ipq_p)
306 			break;
307 	/*
308 	 * If first fragment to arrive, create a reassembly queue.
309 	 */
310 	if (fp == NULL) {
311 		if (V_ipq[hash].count < V_ipreass_maxbucketsize)
312 			fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
313 		if (fp == NULL)
314 			fp = ipq_reuse(hash);
315 		if (fp == NULL)
316 			goto dropfrag;
317 #ifdef MAC
318 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
319 			uma_zfree(V_ipq_zone, fp);
320 			fp = NULL;
321 			goto dropfrag;
322 		}
323 		mac_ipq_create(m, fp);
324 #endif
325 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
326 		V_ipq[hash].count++;
327 		fp->ipq_nfrags = 1;
328 		atomic_add_int(&nfrags, 1);
329 		fp->ipq_expire = time_uptime + V_ipfragttl;
330 		fp->ipq_p = ip->ip_p;
331 		fp->ipq_id = ip->ip_id;
332 		fp->ipq_src = ip->ip_src;
333 		fp->ipq_dst = ip->ip_dst;
334 		fp->ipq_frags = m;
335 		if (m->m_flags & M_IP_FRAG)
336 			fp->ipq_maxoff = -1;
337 		else
338 			fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
339 		m->m_nextpkt = NULL;
340 		if (fp == TAILQ_LAST(head, ipqhead))
341 			callout_reset_sbt(&V_ipq[hash].timer,
342 			    SBT_1S * V_ipfragttl, SBT_1S, ipreass_callout,
343 			    &V_ipq[hash], 0);
344 		else
345 			MPASS(callout_active(&V_ipq[hash].timer));
346 		goto done;
347 	} else {
348 		/*
349 		 * If we already saw the last fragment, make sure
350 		 * this fragment's offset looks sane. Otherwise, if
351 		 * this is the last fragment, record its endpoint.
352 		 */
353 		if (fp->ipq_maxoff > 0) {
354 			i = ntohs(ip->ip_off) + ntohs(ip->ip_len);
355 			if (((m->m_flags & M_IP_FRAG) && i >= fp->ipq_maxoff) ||
356 			    ((m->m_flags & M_IP_FRAG) == 0 &&
357 			    i != fp->ipq_maxoff)) {
358 				fp = NULL;
359 				goto dropfrag;
360 			}
361 		} else if ((m->m_flags & M_IP_FRAG) == 0)
362 			fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
363 		fp->ipq_nfrags++;
364 		atomic_add_int(&nfrags, 1);
365 #ifdef MAC
366 		mac_ipq_update(m, fp);
367 #endif
368 	}
369 
370 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
371 
372 	/*
373 	 * Handle ECN by comparing this segment with the first one;
374 	 * if CE is set, do not lose CE.
375 	 * drop if CE and not-ECT are mixed for the same packet.
376 	 */
377 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
378 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
379 	if (ecn == IPTOS_ECN_CE) {
380 		if (ecn0 == IPTOS_ECN_NOTECT)
381 			goto dropfrag;
382 		if (ecn0 != IPTOS_ECN_CE)
383 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
384 	}
385 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
386 		goto dropfrag;
387 
388 	/*
389 	 * Find a segment which begins after this one does.
390 	 */
391 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
392 		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
393 			break;
394 
395 	/*
396 	 * If there is a preceding segment, it may provide some of
397 	 * our data already.  If so, drop the data from the incoming
398 	 * segment.  If it provides all of our data, drop us, otherwise
399 	 * stick new segment in the proper place.
400 	 *
401 	 * If some of the data is dropped from the preceding
402 	 * segment, then it's checksum is invalidated.
403 	 */
404 	if (p) {
405 		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
406 		    ntohs(ip->ip_off);
407 		if (i > 0) {
408 			if (i >= ntohs(ip->ip_len))
409 				goto dropfrag;
410 			m_adj(m, i);
411 			m->m_pkthdr.csum_flags = 0;
412 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
413 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
414 		}
415 		m->m_nextpkt = p->m_nextpkt;
416 		p->m_nextpkt = m;
417 	} else {
418 		m->m_nextpkt = fp->ipq_frags;
419 		fp->ipq_frags = m;
420 	}
421 
422 	/*
423 	 * While we overlap succeeding segments trim them or,
424 	 * if they are completely covered, dequeue them.
425 	 */
426 	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
427 	    ntohs(GETIP(q)->ip_off); q = nq) {
428 		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
429 		    ntohs(GETIP(q)->ip_off);
430 		if (i < ntohs(GETIP(q)->ip_len)) {
431 			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
432 			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
433 			m_adj(q, i);
434 			q->m_pkthdr.csum_flags = 0;
435 			break;
436 		}
437 		nq = q->m_nextpkt;
438 		m->m_nextpkt = nq;
439 		IPSTAT_INC(ips_fragdropped);
440 		fp->ipq_nfrags--;
441 		atomic_subtract_int(&nfrags, 1);
442 		m_freem(q);
443 	}
444 
445 	/*
446 	 * Check for complete reassembly and perform frag per packet
447 	 * limiting.
448 	 *
449 	 * Frag limiting is performed here so that the nth frag has
450 	 * a chance to complete the packet before we drop the packet.
451 	 * As a result, n+1 frags are actually allowed per packet, but
452 	 * only n will ever be stored. (n = maxfragsperpacket.)
453 	 *
454 	 */
455 	next = 0;
456 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
457 		if (ntohs(GETIP(q)->ip_off) != next) {
458 			if (fp->ipq_nfrags > V_maxfragsperpacket)
459 				ipq_drop(&V_ipq[hash], fp);
460 			goto done;
461 		}
462 		next += ntohs(GETIP(q)->ip_len);
463 	}
464 	/* Make sure the last packet didn't have the IP_MF flag */
465 	if (p->m_flags & M_IP_FRAG) {
466 		if (fp->ipq_nfrags > V_maxfragsperpacket)
467 			ipq_drop(&V_ipq[hash], fp);
468 		goto done;
469 	}
470 
471 	/*
472 	 * Reassembly is complete.  Make sure the packet is a sane size.
473 	 */
474 	q = fp->ipq_frags;
475 	ip = GETIP(q);
476 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
477 		IPSTAT_INC(ips_toolong);
478 		ipq_drop(&V_ipq[hash], fp);
479 		goto done;
480 	}
481 
482 	/*
483 	 * Concatenate fragments.
484 	 */
485 	m = q;
486 	t = m->m_next;
487 	m->m_next = NULL;
488 	m_cat(m, t);
489 	nq = q->m_nextpkt;
490 	q->m_nextpkt = NULL;
491 	for (q = nq; q != NULL; q = nq) {
492 		nq = q->m_nextpkt;
493 		q->m_nextpkt = NULL;
494 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
495 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
496 		m_demote_pkthdr(q);
497 		m_cat(m, q);
498 	}
499 	/*
500 	 * In order to do checksumming faster we do 'end-around carry' here
501 	 * (and not in for{} loop), though it implies we are not going to
502 	 * reassemble more than 64k fragments.
503 	 */
504 	while (m->m_pkthdr.csum_data & 0xffff0000)
505 		m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
506 		    (m->m_pkthdr.csum_data >> 16);
507 	atomic_subtract_int(&nfrags, fp->ipq_nfrags);
508 #ifdef MAC
509 	mac_ipq_reassemble(fp, m);
510 	mac_ipq_destroy(fp);
511 #endif
512 
513 	/*
514 	 * Create header for new ip packet by modifying header of first
515 	 * packet;  dequeue and discard fragment reassembly header.
516 	 * Make header visible.
517 	 */
518 	ip->ip_len = htons((ip->ip_hl << 2) + next);
519 	ip->ip_src = fp->ipq_src;
520 	ip->ip_dst = fp->ipq_dst;
521 	TAILQ_REMOVE(head, fp, ipq_list);
522 	V_ipq[hash].count--;
523 	uma_zfree(V_ipq_zone, fp);
524 	m->m_len += (ip->ip_hl << 2);
525 	m->m_data -= (ip->ip_hl << 2);
526 	/* some debugging cruft by sklower, below, will go away soon */
527 	if (m->m_flags & M_PKTHDR) {	/* XXX this should be done elsewhere */
528 		m_fixhdr(m);
529 		/* set valid receive interface pointer */
530 		m->m_pkthdr.rcvif = srcifp;
531 	}
532 	IPSTAT_INC(ips_reassembled);
533 	ipreass_reschedule(&V_ipq[hash]);
534 	IPQ_UNLOCK(hash);
535 
536 #ifdef	RSS
537 	/*
538 	 * Query the RSS layer for the flowid / flowtype for the
539 	 * mbuf payload.
540 	 *
541 	 * For now, just assume we have to calculate a new one.
542 	 * Later on we should check to see if the assigned flowid matches
543 	 * what RSS wants for the given IP protocol and if so, just keep it.
544 	 *
545 	 * We then queue into the relevant netisr so it can be dispatched
546 	 * to the correct CPU.
547 	 *
548 	 * Note - this may return 1, which means the flowid in the mbuf
549 	 * is correct for the configured RSS hash types and can be used.
550 	 */
551 	if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
552 		m->m_pkthdr.flowid = rss_hash;
553 		M_HASHTYPE_SET(m, rss_type);
554 	}
555 
556 	/*
557 	 * Queue/dispatch for reprocessing.
558 	 *
559 	 * Note: this is much slower than just handling the frame in the
560 	 * current receive context.  It's likely worth investigating
561 	 * why this is.
562 	 */
563 	netisr_dispatch(NETISR_IP_DIRECT, m);
564 	return (NULL);
565 #endif
566 
567 	/* Handle in-line */
568 	return (m);
569 
570 dropfrag:
571 	IPSTAT_INC(ips_fragdropped);
572 	if (fp != NULL) {
573 		fp->ipq_nfrags--;
574 		atomic_subtract_int(&nfrags, 1);
575 	}
576 	m_freem(m);
577 done:
578 	IPQ_UNLOCK(hash);
579 	return (NULL);
580 
581 #undef GETIP
582 }
583 
584 /*
585  * Timer expired on a bucket.
586  * There should be at least one ipq to be timed out.
587  */
588 static void
589 ipreass_callout(void *arg)
590 {
591 	struct ipqbucket *bucket = arg;
592 	struct ipq *fp;
593 
594 	IPQ_BUCKET_LOCK_ASSERT(bucket);
595 	MPASS(atomic_load_int(&nfrags) > 0);
596 
597 	CURVNET_SET(bucket->vnet);
598 	fp = TAILQ_LAST(&bucket->head, ipqhead);
599 	KASSERT(fp != NULL && fp->ipq_expire <= time_uptime,
600 	    ("%s: stray callout on bucket %p, %ju < %ju", __func__, bucket,
601 	    fp ? (uintmax_t)fp->ipq_expire : 0, (uintmax_t)time_uptime));
602 
603 	while (fp != NULL && fp->ipq_expire <= time_uptime) {
604 		ipq_timeout(bucket, fp);
605 		fp = TAILQ_LAST(&bucket->head, ipqhead);
606 	}
607 	ipreass_reschedule(bucket);
608 	CURVNET_RESTORE();
609 }
610 
611 static void
612 ipreass_reschedule(struct ipqbucket *bucket)
613 {
614 	struct ipq *fp;
615 
616 	IPQ_BUCKET_LOCK_ASSERT(bucket);
617 
618 	if ((fp = TAILQ_LAST(&bucket->head, ipqhead)) != NULL) {
619 		time_t t;
620 
621 		/* Protect against time_uptime tick. */
622 		t = fp->ipq_expire - time_uptime;
623 		t = (t > 0) ? t : 1;
624 		callout_reset_sbt(&bucket->timer, SBT_1S * t, SBT_1S,
625 		    ipreass_callout, bucket, 0);
626 	} else
627 		callout_stop(&bucket->timer);
628 }
629 
630 static void
631 ipreass_drain_vnet(void)
632 {
633 	u_int dropped = 0;
634 
635 	for (int i = 0; i < V_ipq_hashsize; i++) {
636 		bool resched;
637 
638 		IPQ_LOCK(i);
639 		resched = !TAILQ_EMPTY(&V_ipq[i].head);
640 		while(!TAILQ_EMPTY(&V_ipq[i].head)) {
641 			struct ipq *fp = TAILQ_FIRST(&V_ipq[i].head);
642 
643 			dropped += fp->ipq_nfrags;
644 			ipq_free(&V_ipq[i], fp);
645 		}
646 		if (resched)
647 			ipreass_reschedule(&V_ipq[i]);
648 		KASSERT(V_ipq[i].count == 0,
649 		    ("%s: V_ipq[%d] count %d (V_ipq=%p)", __func__, i,
650 		    V_ipq[i].count, V_ipq));
651 		IPQ_UNLOCK(i);
652 	}
653 	IPSTAT_ADD(ips_fragdropped, dropped);
654 }
655 
656 /*
657  * Drain off all datagram fragments.
658  */
659 static void
660 ipreass_drain(void)
661 {
662 	VNET_ITERATOR_DECL(vnet_iter);
663 
664 	VNET_LIST_RLOCK();
665 	VNET_FOREACH(vnet_iter) {
666 		CURVNET_SET(vnet_iter);
667 		ipreass_drain_vnet();
668 		CURVNET_RESTORE();
669 	}
670 	VNET_LIST_RUNLOCK();
671 }
672 
673 
674 /*
675  * Initialize IP reassembly structures.
676  */
677 MALLOC_DEFINE(M_IPREASS_HASH, "IP reass", "IP packet reassembly hash headers");
678 void
679 ipreass_vnet_init(void)
680 {
681 	int max;
682 
683 	V_ipq_hashsize = IPREASS_NHASH;
684 	TUNABLE_INT_FETCH("net.inet.ip.reass_hashsize", &V_ipq_hashsize);
685 	V_ipq = malloc(sizeof(struct ipqbucket) * V_ipq_hashsize,
686 	    M_IPREASS_HASH, M_WAITOK);
687 
688 	for (int i = 0; i < V_ipq_hashsize; i++) {
689 		TAILQ_INIT(&V_ipq[i].head);
690 		mtx_init(&V_ipq[i].lock, "IP reassembly", NULL,
691 		    MTX_DEF | MTX_DUPOK | MTX_NEW);
692 		callout_init_mtx(&V_ipq[i].timer, &V_ipq[i].lock, 0);
693 		V_ipq[i].count = 0;
694 #ifdef VIMAGE
695 		V_ipq[i].vnet = curvnet;
696 #endif
697 	}
698 	V_ipq_hashseed = arc4random();
699 	V_maxfragsperpacket = 16;
700 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
701 	    NULL, UMA_ALIGN_PTR, 0);
702 	max = IP_MAXFRAGPACKETS;
703 	max = uma_zone_set_max(V_ipq_zone, max);
704 	V_ipreass_maxbucketsize = imax(max / (V_ipq_hashsize / 2), 1);
705 }
706 
707 void
708 ipreass_init(void)
709 {
710 
711 	maxfrags = IP_MAXFRAGS;
712 	EVENTHANDLER_REGISTER(nmbclusters_change, ipreass_zone_change,
713 	    NULL, EVENTHANDLER_PRI_ANY);
714 	EVENTHANDLER_REGISTER(vm_lowmem, ipreass_drain, NULL,
715 	    LOWMEM_PRI_DEFAULT);
716 	EVENTHANDLER_REGISTER(mbuf_lowmem, ipreass_drain, NULL,
717 		LOWMEM_PRI_DEFAULT);
718 }
719 
720 /*
721  * Drain off all datagram fragments belonging to
722  * the given network interface.
723  */
724 static void
725 ipreass_cleanup(void *arg __unused, struct ifnet *ifp)
726 {
727 	struct ipq *fp, *temp;
728 	struct mbuf *m;
729 	int i;
730 
731 	KASSERT(ifp != NULL, ("%s: ifp is NULL", __func__));
732 
733 	CURVNET_SET_QUIET(ifp->if_vnet);
734 
735 	/*
736 	 * Skip processing if IPv4 reassembly is not initialised or
737 	 * torn down by ipreass_destroy().
738 	 */
739 	if (V_ipq_zone == NULL) {
740 		CURVNET_RESTORE();
741 		return;
742 	}
743 
744 	for (i = 0; i < V_ipq_hashsize; i++) {
745 		IPQ_LOCK(i);
746 		/* Scan fragment list. */
747 		TAILQ_FOREACH_SAFE(fp, &V_ipq[i].head, ipq_list, temp) {
748 			for (m = fp->ipq_frags; m != NULL; m = m->m_nextpkt) {
749 				/* clear no longer valid rcvif pointer */
750 				if (m->m_pkthdr.rcvif == ifp)
751 					m->m_pkthdr.rcvif = NULL;
752 			}
753 		}
754 		IPQ_UNLOCK(i);
755 	}
756 	CURVNET_RESTORE();
757 }
758 EVENTHANDLER_DEFINE(ifnet_departure_event, ipreass_cleanup, NULL, 0);
759 
760 #ifdef VIMAGE
761 /*
762  * Destroy IP reassembly structures.
763  */
764 void
765 ipreass_destroy(void)
766 {
767 
768 	ipreass_drain_vnet();
769 	uma_zdestroy(V_ipq_zone);
770 	V_ipq_zone = NULL;
771 	for (int i = 0; i < V_ipq_hashsize; i++)
772 		mtx_destroy(&V_ipq[i].lock);
773 	free(V_ipq, M_IPREASS_HASH);
774 }
775 #endif
776 
777 /*
778  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
779  * max has slightly different semantics than the sysctl, for historical
780  * reasons.
781  */
782 static void
783 ipreass_drain_tomax(void)
784 {
785 	struct ipq *fp;
786 	int target;
787 
788 	/*
789 	 * Make sure each bucket is under the new limit. If
790 	 * necessary, drop enough of the oldest elements from
791 	 * each bucket to get under the new limit.
792 	 */
793 	for (int i = 0; i < V_ipq_hashsize; i++) {
794 		IPQ_LOCK(i);
795 		while (V_ipq[i].count > V_ipreass_maxbucketsize &&
796 		    (fp = TAILQ_LAST(&V_ipq[i].head, ipqhead)) != NULL)
797 			ipq_timeout(&V_ipq[i], fp);
798 		ipreass_reschedule(&V_ipq[i]);
799 		IPQ_UNLOCK(i);
800 	}
801 
802 	/*
803 	 * If we are over the maximum number of fragments,
804 	 * drain off enough to get down to the new limit,
805 	 * stripping off last elements on queues.  Every
806 	 * run we strip the oldest element from each bucket.
807 	 */
808 	target = uma_zone_get_max(V_ipq_zone);
809 	while (uma_zone_get_cur(V_ipq_zone) > target) {
810 		for (int i = 0; i < V_ipq_hashsize; i++) {
811 			IPQ_LOCK(i);
812 			fp = TAILQ_LAST(&V_ipq[i].head, ipqhead);
813 			if (fp != NULL) {
814 				ipq_timeout(&V_ipq[i], fp);
815 				ipreass_reschedule(&V_ipq[i]);
816 			}
817 			IPQ_UNLOCK(i);
818 		}
819 	}
820 }
821 
822 static void
823 ipreass_zone_change(void *tag)
824 {
825 	VNET_ITERATOR_DECL(vnet_iter);
826 	int max;
827 
828 	maxfrags = IP_MAXFRAGS;
829 	max = IP_MAXFRAGPACKETS;
830 	VNET_LIST_RLOCK_NOSLEEP();
831 	VNET_FOREACH(vnet_iter) {
832 		CURVNET_SET(vnet_iter);
833 		max = uma_zone_set_max(V_ipq_zone, max);
834 		V_ipreass_maxbucketsize = imax(max / (V_ipq_hashsize / 2), 1);
835 		ipreass_drain_tomax();
836 		CURVNET_RESTORE();
837 	}
838 	VNET_LIST_RUNLOCK_NOSLEEP();
839 }
840 
841 /*
842  * Change the limit on the UMA zone, or disable the fragment allocation
843  * at all.  Since 0 and -1 is a special values here, we need our own handler,
844  * instead of sysctl_handle_uma_zone_max().
845  */
846 static int
847 sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS)
848 {
849 	int error, max;
850 
851 	if (V_noreass == 0) {
852 		max = uma_zone_get_max(V_ipq_zone);
853 		if (max == 0)
854 			max = -1;
855 	} else
856 		max = 0;
857 	error = sysctl_handle_int(oidp, &max, 0, req);
858 	if (error || !req->newptr)
859 		return (error);
860 	if (max > 0) {
861 		/*
862 		 * XXXRW: Might be a good idea to sanity check the argument
863 		 * and place an extreme upper bound.
864 		 */
865 		max = uma_zone_set_max(V_ipq_zone, max);
866 		V_ipreass_maxbucketsize = imax(max / (V_ipq_hashsize / 2), 1);
867 		ipreass_drain_tomax();
868 		V_noreass = 0;
869 	} else if (max == 0) {
870 		V_noreass = 1;
871 		ipreass_drain();
872 	} else if (max == -1) {
873 		V_noreass = 0;
874 		uma_zone_set_max(V_ipq_zone, 0);
875 		V_ipreass_maxbucketsize = INT_MAX;
876 	} else
877 		return (EINVAL);
878 	return (0);
879 }
880 
881 /*
882  * Seek for old fragment queue header that can be reused.  Try to
883  * reuse a header from currently locked hash bucket.
884  */
885 static struct ipq *
886 ipq_reuse(int start)
887 {
888 	struct ipq *fp;
889 	int bucket, i;
890 
891 	IPQ_LOCK_ASSERT(start);
892 
893 	for (i = 0; i < V_ipq_hashsize; i++) {
894 		bucket = (start + i) % V_ipq_hashsize;
895 		if (bucket != start && IPQ_TRYLOCK(bucket) == 0)
896 			continue;
897 		fp = TAILQ_LAST(&V_ipq[bucket].head, ipqhead);
898 		if (fp) {
899 			struct mbuf *m;
900 
901 			IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
902 			atomic_subtract_int(&nfrags, fp->ipq_nfrags);
903 			while (fp->ipq_frags) {
904 				m = fp->ipq_frags;
905 				fp->ipq_frags = m->m_nextpkt;
906 				m_freem(m);
907 			}
908 			TAILQ_REMOVE(&V_ipq[bucket].head, fp, ipq_list);
909 			V_ipq[bucket].count--;
910 			ipreass_reschedule(&V_ipq[bucket]);
911 			if (bucket != start)
912 				IPQ_UNLOCK(bucket);
913 			break;
914 		}
915 		if (bucket != start)
916 			IPQ_UNLOCK(bucket);
917 	}
918 	IPQ_LOCK_ASSERT(start);
919 	return (fp);
920 }
921 
922 /*
923  * Free a fragment reassembly header and all associated datagrams.
924  */
925 static void
926 ipq_free(struct ipqbucket *bucket, struct ipq *fp)
927 {
928 	struct mbuf *q;
929 
930 	atomic_subtract_int(&nfrags, fp->ipq_nfrags);
931 	while (fp->ipq_frags) {
932 		q = fp->ipq_frags;
933 		fp->ipq_frags = q->m_nextpkt;
934 		m_freem(q);
935 	}
936 	TAILQ_REMOVE(&bucket->head, fp, ipq_list);
937 	bucket->count--;
938 	uma_zfree(V_ipq_zone, fp);
939 }
940 
941 /*
942  * Get or set the maximum number of reassembly queues per bucket.
943  */
944 static int
945 sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS)
946 {
947 	int error, max;
948 
949 	max = V_ipreass_maxbucketsize;
950 	error = sysctl_handle_int(oidp, &max, 0, req);
951 	if (error || !req->newptr)
952 		return (error);
953 	if (max <= 0)
954 		return (EINVAL);
955 	V_ipreass_maxbucketsize = max;
956 	ipreass_drain_tomax();
957 	return (0);
958 }
959 
960 /*
961  * Get or set the IP fragment time to live.
962  */
963 static int
964 sysctl_fragttl(SYSCTL_HANDLER_ARGS)
965 {
966 	u_int ttl;
967 	int error;
968 
969 	ttl = V_ipfragttl;
970 	error = sysctl_handle_int(oidp, &ttl, 0, req);
971 	if (error || !req->newptr)
972 		return (error);
973 
974 	if (ttl < 1 || ttl > MAXTTL)
975 		return (EINVAL);
976 
977 	atomic_store_int(&V_ipfragttl, ttl);
978 	return (0);
979 }
980