xref: /freebsd/sys/netinet/ip_reass.c (revision 9a41926bfb664dd77659d1615ba55d75c2c530a8)
1 /*-
2  * Copyright (c) 2015 Gleb Smirnoff <glebius@FreeBSD.org>
3  * Copyright (c) 2015 Adrian Chadd <adrian@FreeBSD.org>
4  * Copyright (c) 1982, 1986, 1988, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_rss.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/eventhandler.h>
42 #include <sys/hash.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/sysctl.h>
49 
50 #include <net/rss_config.h>
51 #include <net/netisr.h>
52 #include <net/vnet.h>
53 
54 #include <netinet/in.h>
55 #include <netinet/ip.h>
56 #include <netinet/ip_var.h>
57 #include <netinet/in_rss.h>
58 #ifdef MAC
59 #include <security/mac/mac_framework.h>
60 #endif
61 
62 SYSCTL_DECL(_net_inet_ip);
63 
64 /*
65  * Reassembly headers are stored in hash buckets.
66  */
67 #define	IPREASS_NHASH_LOG2	10
68 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
69 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
70 
71 struct ipqbucket {
72 	TAILQ_HEAD(ipqhead, ipq) head;
73 	struct mtx		 lock;
74 	int			 count;
75 };
76 
77 VNET_DEFINE_STATIC(struct ipqbucket, ipq[IPREASS_NHASH]);
78 #define	V_ipq		VNET(ipq)
79 VNET_DEFINE_STATIC(uint32_t, ipq_hashseed);
80 #define V_ipq_hashseed   VNET(ipq_hashseed)
81 
82 #define	IPQ_LOCK(i)	mtx_lock(&V_ipq[i].lock)
83 #define	IPQ_TRYLOCK(i)	mtx_trylock(&V_ipq[i].lock)
84 #define	IPQ_UNLOCK(i)	mtx_unlock(&V_ipq[i].lock)
85 #define	IPQ_LOCK_ASSERT(i)	mtx_assert(&V_ipq[i].lock, MA_OWNED)
86 
87 VNET_DEFINE_STATIC(int, ipreass_maxbucketsize);
88 #define	V_ipreass_maxbucketsize	VNET(ipreass_maxbucketsize)
89 
90 void		ipreass_init(void);
91 void		ipreass_drain(void);
92 void		ipreass_slowtimo(void);
93 #ifdef VIMAGE
94 void		ipreass_destroy(void);
95 #endif
96 static int	sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS);
97 static int	sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS);
98 static void	ipreass_zone_change(void *);
99 static void	ipreass_drain_tomax(void);
100 static void	ipq_free(struct ipqbucket *, struct ipq *);
101 static struct ipq * ipq_reuse(int);
102 
103 static inline void
104 ipq_timeout(struct ipqbucket *bucket, struct ipq *fp)
105 {
106 
107 	IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
108 	ipq_free(bucket, fp);
109 }
110 
111 static inline void
112 ipq_drop(struct ipqbucket *bucket, struct ipq *fp)
113 {
114 
115 	IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
116 	ipq_free(bucket, fp);
117 }
118 
119 /*
120  * By default, limit the number of IP fragments across all reassembly
121  * queues to  1/32 of the total number of mbuf clusters.
122  *
123  * Limit the total number of reassembly queues per VNET to the
124  * IP fragment limit, but ensure the limit will not allow any bucket
125  * to grow above 100 items. (The bucket limit is
126  * IP_MAXFRAGPACKETS / (IPREASS_NHASH / 2), so the 50 is the correct
127  * multiplier to reach a 100-item limit.)
128  * The 100-item limit was chosen as brief testing seems to show that
129  * this produces "reasonable" performance on some subset of systems
130  * under DoS attack.
131  */
132 #define	IP_MAXFRAGS		(nmbclusters / 32)
133 #define	IP_MAXFRAGPACKETS	(imin(IP_MAXFRAGS, IPREASS_NHASH * 50))
134 
135 static int		maxfrags;
136 static volatile u_int	nfrags;
137 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfrags, CTLFLAG_RW,
138     &maxfrags, 0,
139     "Maximum number of IPv4 fragments allowed across all reassembly queues");
140 SYSCTL_UINT(_net_inet_ip, OID_AUTO, curfrags, CTLFLAG_RD,
141     __DEVOLATILE(u_int *, &nfrags), 0,
142     "Current number of IPv4 fragments across all reassembly queues");
143 
144 VNET_DEFINE_STATIC(uma_zone_t, ipq_zone);
145 #define	V_ipq_zone	VNET(ipq_zone)
146 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_VNET |
147     CTLTYPE_INT | CTLFLAG_RW, NULL, 0, sysctl_maxfragpackets, "I",
148     "Maximum number of IPv4 fragment reassembly queue entries");
149 SYSCTL_UMA_CUR(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET,
150     &VNET_NAME(ipq_zone),
151     "Current number of IPv4 fragment reassembly queue entries");
152 
153 VNET_DEFINE_STATIC(int, noreass);
154 #define	V_noreass	VNET(noreass)
155 
156 VNET_DEFINE_STATIC(int, maxfragsperpacket);
157 #define	V_maxfragsperpacket	VNET(maxfragsperpacket)
158 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_VNET | CTLFLAG_RW,
159     &VNET_NAME(maxfragsperpacket), 0,
160     "Maximum number of IPv4 fragments allowed per packet");
161 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragbucketsize,
162     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
163     sysctl_maxfragbucketsize, "I",
164     "Maximum number of IPv4 fragment reassembly queue entries per bucket");
165 
166 /*
167  * Take incoming datagram fragment and try to reassemble it into
168  * whole datagram.  If the argument is the first fragment or one
169  * in between the function will return NULL and store the mbuf
170  * in the fragment chain.  If the argument is the last fragment
171  * the packet will be reassembled and the pointer to the new
172  * mbuf returned for further processing.  Only m_tags attached
173  * to the first packet/fragment are preserved.
174  * The IP header is *NOT* adjusted out of iplen.
175  */
176 #define	M_IP_FRAG	M_PROTO9
177 struct mbuf *
178 ip_reass(struct mbuf *m)
179 {
180 	struct ip *ip;
181 	struct mbuf *p, *q, *nq, *t;
182 	struct ipq *fp;
183 	struct ipqhead *head;
184 	int i, hlen, next, tmpmax;
185 	u_int8_t ecn, ecn0;
186 	uint32_t hash, hashkey[3];
187 #ifdef	RSS
188 	uint32_t rss_hash, rss_type;
189 #endif
190 
191 	/*
192 	 * If no reassembling or maxfragsperpacket are 0,
193 	 * never accept fragments.
194 	 * Also, drop packet if it would exceed the maximum
195 	 * number of fragments.
196 	 */
197 	tmpmax = maxfrags;
198 	if (V_noreass == 1 || V_maxfragsperpacket == 0 ||
199 	    (tmpmax >= 0 && atomic_load_int(&nfrags) >= (u_int)tmpmax)) {
200 		IPSTAT_INC(ips_fragments);
201 		IPSTAT_INC(ips_fragdropped);
202 		m_freem(m);
203 		return (NULL);
204 	}
205 
206 	ip = mtod(m, struct ip *);
207 	hlen = ip->ip_hl << 2;
208 
209 	/*
210 	 * Adjust ip_len to not reflect header,
211 	 * convert offset of this to bytes.
212 	 */
213 	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
214 	/*
215 	 * Make sure that fragments have a data length
216 	 * that's a non-zero multiple of 8 bytes, unless
217 	 * this is the last fragment.
218 	 */
219 	if (ip->ip_len == htons(0) ||
220 	    ((ip->ip_off & htons(IP_MF)) && (ntohs(ip->ip_len) & 0x7) != 0)) {
221 		IPSTAT_INC(ips_toosmall); /* XXX */
222 		IPSTAT_INC(ips_fragdropped);
223 		m_freem(m);
224 		return (NULL);
225 	}
226 	if (ip->ip_off & htons(IP_MF))
227 		m->m_flags |= M_IP_FRAG;
228 	else
229 		m->m_flags &= ~M_IP_FRAG;
230 	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
231 
232 	/*
233 	 * Make sure the fragment lies within a packet of valid size.
234 	 */
235 	if (ntohs(ip->ip_len) + ntohs(ip->ip_off) > IP_MAXPACKET) {
236 		IPSTAT_INC(ips_toolong);
237 		IPSTAT_INC(ips_fragdropped);
238 		m_freem(m);
239 		return (NULL);
240 	}
241 
242 	/*
243 	 * Attempt reassembly; if it succeeds, proceed.
244 	 * ip_reass() will return a different mbuf.
245 	 */
246 	IPSTAT_INC(ips_fragments);
247 	m->m_pkthdr.PH_loc.ptr = ip;
248 
249 	/*
250 	 * Presence of header sizes in mbufs
251 	 * would confuse code below.
252 	 */
253 	m->m_data += hlen;
254 	m->m_len -= hlen;
255 
256 	hashkey[0] = ip->ip_src.s_addr;
257 	hashkey[1] = ip->ip_dst.s_addr;
258 	hashkey[2] = (uint32_t)ip->ip_p << 16;
259 	hashkey[2] += ip->ip_id;
260 	hash = jenkins_hash32(hashkey, nitems(hashkey), V_ipq_hashseed);
261 	hash &= IPREASS_HMASK;
262 	head = &V_ipq[hash].head;
263 	IPQ_LOCK(hash);
264 
265 	/*
266 	 * Look for queue of fragments
267 	 * of this datagram.
268 	 */
269 	TAILQ_FOREACH(fp, head, ipq_list)
270 		if (ip->ip_id == fp->ipq_id &&
271 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
272 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
273 #ifdef MAC
274 		    mac_ipq_match(m, fp) &&
275 #endif
276 		    ip->ip_p == fp->ipq_p)
277 			break;
278 	/*
279 	 * If first fragment to arrive, create a reassembly queue.
280 	 */
281 	if (fp == NULL) {
282 		if (V_ipq[hash].count < V_ipreass_maxbucketsize)
283 			fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
284 		if (fp == NULL)
285 			fp = ipq_reuse(hash);
286 		if (fp == NULL)
287 			goto dropfrag;
288 #ifdef MAC
289 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
290 			uma_zfree(V_ipq_zone, fp);
291 			fp = NULL;
292 			goto dropfrag;
293 		}
294 		mac_ipq_create(m, fp);
295 #endif
296 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
297 		V_ipq[hash].count++;
298 		fp->ipq_nfrags = 1;
299 		atomic_add_int(&nfrags, 1);
300 		fp->ipq_ttl = IPFRAGTTL;
301 		fp->ipq_p = ip->ip_p;
302 		fp->ipq_id = ip->ip_id;
303 		fp->ipq_src = ip->ip_src;
304 		fp->ipq_dst = ip->ip_dst;
305 		fp->ipq_frags = m;
306 		if (m->m_flags & M_IP_FRAG)
307 			fp->ipq_maxoff = -1;
308 		else
309 			fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
310 		m->m_nextpkt = NULL;
311 		goto done;
312 	} else {
313 		/*
314 		 * If we already saw the last fragment, make sure
315 		 * this fragment's offset looks sane. Otherwise, if
316 		 * this is the last fragment, record its endpoint.
317 		 */
318 		if (fp->ipq_maxoff > 0) {
319 			i = ntohs(ip->ip_off) + ntohs(ip->ip_len);
320 			if (((m->m_flags & M_IP_FRAG) && i >= fp->ipq_maxoff) ||
321 			    ((m->m_flags & M_IP_FRAG) == 0 &&
322 			    i != fp->ipq_maxoff)) {
323 				fp = NULL;
324 				goto dropfrag;
325 			}
326 		} else if ((m->m_flags & M_IP_FRAG) == 0)
327 			fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
328 		fp->ipq_nfrags++;
329 		atomic_add_int(&nfrags, 1);
330 #ifdef MAC
331 		mac_ipq_update(m, fp);
332 #endif
333 	}
334 
335 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
336 
337 	/*
338 	 * Handle ECN by comparing this segment with the first one;
339 	 * if CE is set, do not lose CE.
340 	 * drop if CE and not-ECT are mixed for the same packet.
341 	 */
342 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
343 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
344 	if (ecn == IPTOS_ECN_CE) {
345 		if (ecn0 == IPTOS_ECN_NOTECT)
346 			goto dropfrag;
347 		if (ecn0 != IPTOS_ECN_CE)
348 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
349 	}
350 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
351 		goto dropfrag;
352 
353 	/*
354 	 * Find a segment which begins after this one does.
355 	 */
356 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
357 		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
358 			break;
359 
360 	/*
361 	 * If there is a preceding segment, it may provide some of
362 	 * our data already.  If so, drop the data from the incoming
363 	 * segment.  If it provides all of our data, drop us, otherwise
364 	 * stick new segment in the proper place.
365 	 *
366 	 * If some of the data is dropped from the preceding
367 	 * segment, then it's checksum is invalidated.
368 	 */
369 	if (p) {
370 		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
371 		    ntohs(ip->ip_off);
372 		if (i > 0) {
373 			if (i >= ntohs(ip->ip_len))
374 				goto dropfrag;
375 			m_adj(m, i);
376 			m->m_pkthdr.csum_flags = 0;
377 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
378 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
379 		}
380 		m->m_nextpkt = p->m_nextpkt;
381 		p->m_nextpkt = m;
382 	} else {
383 		m->m_nextpkt = fp->ipq_frags;
384 		fp->ipq_frags = m;
385 	}
386 
387 	/*
388 	 * While we overlap succeeding segments trim them or,
389 	 * if they are completely covered, dequeue them.
390 	 */
391 	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
392 	    ntohs(GETIP(q)->ip_off); q = nq) {
393 		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
394 		    ntohs(GETIP(q)->ip_off);
395 		if (i < ntohs(GETIP(q)->ip_len)) {
396 			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
397 			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
398 			m_adj(q, i);
399 			q->m_pkthdr.csum_flags = 0;
400 			break;
401 		}
402 		nq = q->m_nextpkt;
403 		m->m_nextpkt = nq;
404 		IPSTAT_INC(ips_fragdropped);
405 		fp->ipq_nfrags--;
406 		atomic_subtract_int(&nfrags, 1);
407 		m_freem(q);
408 	}
409 
410 	/*
411 	 * Check for complete reassembly and perform frag per packet
412 	 * limiting.
413 	 *
414 	 * Frag limiting is performed here so that the nth frag has
415 	 * a chance to complete the packet before we drop the packet.
416 	 * As a result, n+1 frags are actually allowed per packet, but
417 	 * only n will ever be stored. (n = maxfragsperpacket.)
418 	 *
419 	 */
420 	next = 0;
421 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
422 		if (ntohs(GETIP(q)->ip_off) != next) {
423 			if (fp->ipq_nfrags > V_maxfragsperpacket)
424 				ipq_drop(&V_ipq[hash], fp);
425 			goto done;
426 		}
427 		next += ntohs(GETIP(q)->ip_len);
428 	}
429 	/* Make sure the last packet didn't have the IP_MF flag */
430 	if (p->m_flags & M_IP_FRAG) {
431 		if (fp->ipq_nfrags > V_maxfragsperpacket)
432 			ipq_drop(&V_ipq[hash], fp);
433 		goto done;
434 	}
435 
436 	/*
437 	 * Reassembly is complete.  Make sure the packet is a sane size.
438 	 */
439 	q = fp->ipq_frags;
440 	ip = GETIP(q);
441 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
442 		IPSTAT_INC(ips_toolong);
443 		ipq_drop(&V_ipq[hash], fp);
444 		goto done;
445 	}
446 
447 	/*
448 	 * Concatenate fragments.
449 	 */
450 	m = q;
451 	t = m->m_next;
452 	m->m_next = NULL;
453 	m_cat(m, t);
454 	nq = q->m_nextpkt;
455 	q->m_nextpkt = NULL;
456 	for (q = nq; q != NULL; q = nq) {
457 		nq = q->m_nextpkt;
458 		q->m_nextpkt = NULL;
459 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
460 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
461 		m_demote_pkthdr(q);
462 		m_cat(m, q);
463 	}
464 	/*
465 	 * In order to do checksumming faster we do 'end-around carry' here
466 	 * (and not in for{} loop), though it implies we are not going to
467 	 * reassemble more than 64k fragments.
468 	 */
469 	while (m->m_pkthdr.csum_data & 0xffff0000)
470 		m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
471 		    (m->m_pkthdr.csum_data >> 16);
472 	atomic_subtract_int(&nfrags, fp->ipq_nfrags);
473 #ifdef MAC
474 	mac_ipq_reassemble(fp, m);
475 	mac_ipq_destroy(fp);
476 #endif
477 
478 	/*
479 	 * Create header for new ip packet by modifying header of first
480 	 * packet;  dequeue and discard fragment reassembly header.
481 	 * Make header visible.
482 	 */
483 	ip->ip_len = htons((ip->ip_hl << 2) + next);
484 	ip->ip_src = fp->ipq_src;
485 	ip->ip_dst = fp->ipq_dst;
486 	TAILQ_REMOVE(head, fp, ipq_list);
487 	V_ipq[hash].count--;
488 	uma_zfree(V_ipq_zone, fp);
489 	m->m_len += (ip->ip_hl << 2);
490 	m->m_data -= (ip->ip_hl << 2);
491 	/* some debugging cruft by sklower, below, will go away soon */
492 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
493 		m_fixhdr(m);
494 	IPSTAT_INC(ips_reassembled);
495 	IPQ_UNLOCK(hash);
496 
497 #ifdef	RSS
498 	/*
499 	 * Query the RSS layer for the flowid / flowtype for the
500 	 * mbuf payload.
501 	 *
502 	 * For now, just assume we have to calculate a new one.
503 	 * Later on we should check to see if the assigned flowid matches
504 	 * what RSS wants for the given IP protocol and if so, just keep it.
505 	 *
506 	 * We then queue into the relevant netisr so it can be dispatched
507 	 * to the correct CPU.
508 	 *
509 	 * Note - this may return 1, which means the flowid in the mbuf
510 	 * is correct for the configured RSS hash types and can be used.
511 	 */
512 	if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
513 		m->m_pkthdr.flowid = rss_hash;
514 		M_HASHTYPE_SET(m, rss_type);
515 	}
516 
517 	/*
518 	 * Queue/dispatch for reprocessing.
519 	 *
520 	 * Note: this is much slower than just handling the frame in the
521 	 * current receive context.  It's likely worth investigating
522 	 * why this is.
523 	 */
524 	netisr_dispatch(NETISR_IP_DIRECT, m);
525 	return (NULL);
526 #endif
527 
528 	/* Handle in-line */
529 	return (m);
530 
531 dropfrag:
532 	IPSTAT_INC(ips_fragdropped);
533 	if (fp != NULL) {
534 		fp->ipq_nfrags--;
535 		atomic_subtract_int(&nfrags, 1);
536 	}
537 	m_freem(m);
538 done:
539 	IPQ_UNLOCK(hash);
540 	return (NULL);
541 
542 #undef GETIP
543 }
544 
545 /*
546  * Initialize IP reassembly structures.
547  */
548 void
549 ipreass_init(void)
550 {
551 	int max;
552 
553 	for (int i = 0; i < IPREASS_NHASH; i++) {
554 		TAILQ_INIT(&V_ipq[i].head);
555 		mtx_init(&V_ipq[i].lock, "IP reassembly", NULL,
556 		    MTX_DEF | MTX_DUPOK);
557 		V_ipq[i].count = 0;
558 	}
559 	V_ipq_hashseed = arc4random();
560 	V_maxfragsperpacket = 16;
561 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
562 	    NULL, UMA_ALIGN_PTR, 0);
563 	max = IP_MAXFRAGPACKETS;
564 	max = uma_zone_set_max(V_ipq_zone, max);
565 	V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
566 
567 	if (IS_DEFAULT_VNET(curvnet)) {
568 		maxfrags = IP_MAXFRAGS;
569 		EVENTHANDLER_REGISTER(nmbclusters_change, ipreass_zone_change,
570 		    NULL, EVENTHANDLER_PRI_ANY);
571 	}
572 }
573 
574 /*
575  * If a timer expires on a reassembly queue, discard it.
576  */
577 void
578 ipreass_slowtimo(void)
579 {
580 	struct ipq *fp, *tmp;
581 
582 	for (int i = 0; i < IPREASS_NHASH; i++) {
583 		IPQ_LOCK(i);
584 		TAILQ_FOREACH_SAFE(fp, &V_ipq[i].head, ipq_list, tmp)
585 		if (--fp->ipq_ttl == 0)
586 				ipq_timeout(&V_ipq[i], fp);
587 		IPQ_UNLOCK(i);
588 	}
589 }
590 
591 /*
592  * Drain off all datagram fragments.
593  */
594 void
595 ipreass_drain(void)
596 {
597 
598 	for (int i = 0; i < IPREASS_NHASH; i++) {
599 		IPQ_LOCK(i);
600 		while(!TAILQ_EMPTY(&V_ipq[i].head))
601 			ipq_drop(&V_ipq[i], TAILQ_FIRST(&V_ipq[i].head));
602 		KASSERT(V_ipq[i].count == 0,
603 		    ("%s: V_ipq[%d] count %d (V_ipq=%p)", __func__, i,
604 		    V_ipq[i].count, V_ipq));
605 		IPQ_UNLOCK(i);
606 	}
607 }
608 
609 #ifdef VIMAGE
610 /*
611  * Destroy IP reassembly structures.
612  */
613 void
614 ipreass_destroy(void)
615 {
616 
617 	ipreass_drain();
618 	uma_zdestroy(V_ipq_zone);
619 	for (int i = 0; i < IPREASS_NHASH; i++)
620 		mtx_destroy(&V_ipq[i].lock);
621 }
622 #endif
623 
624 /*
625  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
626  * max has slightly different semantics than the sysctl, for historical
627  * reasons.
628  */
629 static void
630 ipreass_drain_tomax(void)
631 {
632 	struct ipq *fp;
633 	int target;
634 
635 	/*
636 	 * Make sure each bucket is under the new limit. If
637 	 * necessary, drop enough of the oldest elements from
638 	 * each bucket to get under the new limit.
639 	 */
640 	for (int i = 0; i < IPREASS_NHASH; i++) {
641 		IPQ_LOCK(i);
642 		while (V_ipq[i].count > V_ipreass_maxbucketsize &&
643 		    (fp = TAILQ_LAST(&V_ipq[i].head, ipqhead)) != NULL)
644 			ipq_timeout(&V_ipq[i], fp);
645 		IPQ_UNLOCK(i);
646 	}
647 
648 	/*
649 	 * If we are over the maximum number of fragments,
650 	 * drain off enough to get down to the new limit,
651 	 * stripping off last elements on queues.  Every
652 	 * run we strip the oldest element from each bucket.
653 	 */
654 	target = uma_zone_get_max(V_ipq_zone);
655 	while (uma_zone_get_cur(V_ipq_zone) > target) {
656 		for (int i = 0; i < IPREASS_NHASH; i++) {
657 			IPQ_LOCK(i);
658 			fp = TAILQ_LAST(&V_ipq[i].head, ipqhead);
659 			if (fp != NULL)
660 				ipq_timeout(&V_ipq[i], fp);
661 			IPQ_UNLOCK(i);
662 		}
663 	}
664 }
665 
666 static void
667 ipreass_zone_change(void *tag)
668 {
669 	VNET_ITERATOR_DECL(vnet_iter);
670 	int max;
671 
672 	maxfrags = IP_MAXFRAGS;
673 	max = IP_MAXFRAGPACKETS;
674 	VNET_LIST_RLOCK_NOSLEEP();
675 	VNET_FOREACH(vnet_iter) {
676 		CURVNET_SET(vnet_iter);
677 		max = uma_zone_set_max(V_ipq_zone, max);
678 		V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
679 		ipreass_drain_tomax();
680 		CURVNET_RESTORE();
681 	}
682 	VNET_LIST_RUNLOCK_NOSLEEP();
683 }
684 
685 /*
686  * Change the limit on the UMA zone, or disable the fragment allocation
687  * at all.  Since 0 and -1 is a special values here, we need our own handler,
688  * instead of sysctl_handle_uma_zone_max().
689  */
690 static int
691 sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS)
692 {
693 	int error, max;
694 
695 	if (V_noreass == 0) {
696 		max = uma_zone_get_max(V_ipq_zone);
697 		if (max == 0)
698 			max = -1;
699 	} else
700 		max = 0;
701 	error = sysctl_handle_int(oidp, &max, 0, req);
702 	if (error || !req->newptr)
703 		return (error);
704 	if (max > 0) {
705 		/*
706 		 * XXXRW: Might be a good idea to sanity check the argument
707 		 * and place an extreme upper bound.
708 		 */
709 		max = uma_zone_set_max(V_ipq_zone, max);
710 		V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
711 		ipreass_drain_tomax();
712 		V_noreass = 0;
713 	} else if (max == 0) {
714 		V_noreass = 1;
715 		ipreass_drain();
716 	} else if (max == -1) {
717 		V_noreass = 0;
718 		uma_zone_set_max(V_ipq_zone, 0);
719 		V_ipreass_maxbucketsize = INT_MAX;
720 	} else
721 		return (EINVAL);
722 	return (0);
723 }
724 
725 /*
726  * Seek for old fragment queue header that can be reused.  Try to
727  * reuse a header from currently locked hash bucket.
728  */
729 static struct ipq *
730 ipq_reuse(int start)
731 {
732 	struct ipq *fp;
733 	int bucket, i;
734 
735 	IPQ_LOCK_ASSERT(start);
736 
737 	for (i = 0; i < IPREASS_NHASH; i++) {
738 		bucket = (start + i) % IPREASS_NHASH;
739 		if (bucket != start && IPQ_TRYLOCK(bucket) == 0)
740 			continue;
741 		fp = TAILQ_LAST(&V_ipq[bucket].head, ipqhead);
742 		if (fp) {
743 			struct mbuf *m;
744 
745 			IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
746 			atomic_subtract_int(&nfrags, fp->ipq_nfrags);
747 			while (fp->ipq_frags) {
748 				m = fp->ipq_frags;
749 				fp->ipq_frags = m->m_nextpkt;
750 				m_freem(m);
751 			}
752 			TAILQ_REMOVE(&V_ipq[bucket].head, fp, ipq_list);
753 			V_ipq[bucket].count--;
754 			if (bucket != start)
755 				IPQ_UNLOCK(bucket);
756 			break;
757 		}
758 		if (bucket != start)
759 			IPQ_UNLOCK(bucket);
760 	}
761 	IPQ_LOCK_ASSERT(start);
762 	return (fp);
763 }
764 
765 /*
766  * Free a fragment reassembly header and all associated datagrams.
767  */
768 static void
769 ipq_free(struct ipqbucket *bucket, struct ipq *fp)
770 {
771 	struct mbuf *q;
772 
773 	atomic_subtract_int(&nfrags, fp->ipq_nfrags);
774 	while (fp->ipq_frags) {
775 		q = fp->ipq_frags;
776 		fp->ipq_frags = q->m_nextpkt;
777 		m_freem(q);
778 	}
779 	TAILQ_REMOVE(&bucket->head, fp, ipq_list);
780 	bucket->count--;
781 	uma_zfree(V_ipq_zone, fp);
782 }
783 
784 /*
785  * Get or set the maximum number of reassembly queues per bucket.
786  */
787 static int
788 sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS)
789 {
790 	int error, max;
791 
792 	max = V_ipreass_maxbucketsize;
793 	error = sysctl_handle_int(oidp, &max, 0, req);
794 	if (error || !req->newptr)
795 		return (error);
796 	if (max <= 0)
797 		return (EINVAL);
798 	V_ipreass_maxbucketsize = max;
799 	ipreass_drain_tomax();
800 	return (0);
801 }
802