xref: /freebsd/sys/netinet/ip_reass.c (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 /*-
2  * Copyright (c) 2015 Gleb Smirnoff <glebius@FreeBSD.org>
3  * Copyright (c) 2015 Adrian Chadd <adrian@FreeBSD.org>
4  * Copyright (c) 1982, 1986, 1988, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_rss.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/eventhandler.h>
42 #include <sys/kernel.h>
43 #include <sys/hash.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/limits.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/sysctl.h>
50 #include <sys/socket.h>
51 
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/rss_config.h>
55 #include <net/netisr.h>
56 #include <net/vnet.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/ip_var.h>
61 #include <netinet/in_rss.h>
62 #ifdef MAC
63 #include <security/mac/mac_framework.h>
64 #endif
65 
66 SYSCTL_DECL(_net_inet_ip);
67 
68 /*
69  * Reassembly headers are stored in hash buckets.
70  */
71 #define	IPREASS_NHASH_LOG2	10
72 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
73 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
74 
75 struct ipqbucket {
76 	TAILQ_HEAD(ipqhead, ipq) head;
77 	struct mtx		 lock;
78 	int			 count;
79 };
80 
81 VNET_DEFINE_STATIC(struct ipqbucket, ipq[IPREASS_NHASH]);
82 #define	V_ipq		VNET(ipq)
83 VNET_DEFINE_STATIC(uint32_t, ipq_hashseed);
84 #define V_ipq_hashseed   VNET(ipq_hashseed)
85 
86 #define	IPQ_LOCK(i)	mtx_lock(&V_ipq[i].lock)
87 #define	IPQ_TRYLOCK(i)	mtx_trylock(&V_ipq[i].lock)
88 #define	IPQ_UNLOCK(i)	mtx_unlock(&V_ipq[i].lock)
89 #define	IPQ_LOCK_ASSERT(i)	mtx_assert(&V_ipq[i].lock, MA_OWNED)
90 
91 VNET_DEFINE_STATIC(int, ipreass_maxbucketsize);
92 #define	V_ipreass_maxbucketsize	VNET(ipreass_maxbucketsize)
93 
94 void		ipreass_init(void);
95 void		ipreass_drain(void);
96 void		ipreass_slowtimo(void);
97 #ifdef VIMAGE
98 void		ipreass_destroy(void);
99 #endif
100 static int	sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS);
101 static int	sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS);
102 static void	ipreass_zone_change(void *);
103 static void	ipreass_drain_tomax(void);
104 static void	ipq_free(struct ipqbucket *, struct ipq *);
105 static struct ipq * ipq_reuse(int);
106 
107 static inline void
108 ipq_timeout(struct ipqbucket *bucket, struct ipq *fp)
109 {
110 
111 	IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
112 	ipq_free(bucket, fp);
113 }
114 
115 static inline void
116 ipq_drop(struct ipqbucket *bucket, struct ipq *fp)
117 {
118 
119 	IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
120 	ipq_free(bucket, fp);
121 }
122 
123 /*
124  * By default, limit the number of IP fragments across all reassembly
125  * queues to  1/32 of the total number of mbuf clusters.
126  *
127  * Limit the total number of reassembly queues per VNET to the
128  * IP fragment limit, but ensure the limit will not allow any bucket
129  * to grow above 100 items. (The bucket limit is
130  * IP_MAXFRAGPACKETS / (IPREASS_NHASH / 2), so the 50 is the correct
131  * multiplier to reach a 100-item limit.)
132  * The 100-item limit was chosen as brief testing seems to show that
133  * this produces "reasonable" performance on some subset of systems
134  * under DoS attack.
135  */
136 #define	IP_MAXFRAGS		(nmbclusters / 32)
137 #define	IP_MAXFRAGPACKETS	(imin(IP_MAXFRAGS, IPREASS_NHASH * 50))
138 
139 static int		maxfrags;
140 static volatile u_int	nfrags;
141 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfrags, CTLFLAG_RW,
142     &maxfrags, 0,
143     "Maximum number of IPv4 fragments allowed across all reassembly queues");
144 SYSCTL_UINT(_net_inet_ip, OID_AUTO, curfrags, CTLFLAG_RD,
145     __DEVOLATILE(u_int *, &nfrags), 0,
146     "Current number of IPv4 fragments across all reassembly queues");
147 
148 VNET_DEFINE_STATIC(uma_zone_t, ipq_zone);
149 #define	V_ipq_zone	VNET(ipq_zone)
150 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_VNET |
151     CTLTYPE_INT | CTLFLAG_RW, NULL, 0, sysctl_maxfragpackets, "I",
152     "Maximum number of IPv4 fragment reassembly queue entries");
153 SYSCTL_UMA_CUR(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET,
154     &VNET_NAME(ipq_zone),
155     "Current number of IPv4 fragment reassembly queue entries");
156 
157 VNET_DEFINE_STATIC(int, noreass);
158 #define	V_noreass	VNET(noreass)
159 
160 VNET_DEFINE_STATIC(int, maxfragsperpacket);
161 #define	V_maxfragsperpacket	VNET(maxfragsperpacket)
162 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_VNET | CTLFLAG_RW,
163     &VNET_NAME(maxfragsperpacket), 0,
164     "Maximum number of IPv4 fragments allowed per packet");
165 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragbucketsize,
166     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
167     sysctl_maxfragbucketsize, "I",
168     "Maximum number of IPv4 fragment reassembly queue entries per bucket");
169 
170 /*
171  * Take incoming datagram fragment and try to reassemble it into
172  * whole datagram.  If the argument is the first fragment or one
173  * in between the function will return NULL and store the mbuf
174  * in the fragment chain.  If the argument is the last fragment
175  * the packet will be reassembled and the pointer to the new
176  * mbuf returned for further processing.  Only m_tags attached
177  * to the first packet/fragment are preserved.
178  * The IP header is *NOT* adjusted out of iplen.
179  */
180 #define	M_IP_FRAG	M_PROTO9
181 struct mbuf *
182 ip_reass(struct mbuf *m)
183 {
184 	struct ip *ip;
185 	struct mbuf *p, *q, *nq, *t;
186 	struct ipq *fp;
187 	struct ifnet *srcifp;
188 	struct ipqhead *head;
189 	int i, hlen, next, tmpmax;
190 	u_int8_t ecn, ecn0;
191 	uint32_t hash, hashkey[3];
192 #ifdef	RSS
193 	uint32_t rss_hash, rss_type;
194 #endif
195 
196 	/*
197 	 * If no reassembling or maxfragsperpacket are 0,
198 	 * never accept fragments.
199 	 * Also, drop packet if it would exceed the maximum
200 	 * number of fragments.
201 	 */
202 	tmpmax = maxfrags;
203 	if (V_noreass == 1 || V_maxfragsperpacket == 0 ||
204 	    (tmpmax >= 0 && atomic_load_int(&nfrags) >= (u_int)tmpmax)) {
205 		IPSTAT_INC(ips_fragments);
206 		IPSTAT_INC(ips_fragdropped);
207 		m_freem(m);
208 		return (NULL);
209 	}
210 
211 	ip = mtod(m, struct ip *);
212 	hlen = ip->ip_hl << 2;
213 
214 	/*
215 	 * Adjust ip_len to not reflect header,
216 	 * convert offset of this to bytes.
217 	 */
218 	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
219 	/*
220 	 * Make sure that fragments have a data length
221 	 * that's a non-zero multiple of 8 bytes, unless
222 	 * this is the last fragment.
223 	 */
224 	if (ip->ip_len == htons(0) ||
225 	    ((ip->ip_off & htons(IP_MF)) && (ntohs(ip->ip_len) & 0x7) != 0)) {
226 		IPSTAT_INC(ips_toosmall); /* XXX */
227 		IPSTAT_INC(ips_fragdropped);
228 		m_freem(m);
229 		return (NULL);
230 	}
231 	if (ip->ip_off & htons(IP_MF))
232 		m->m_flags |= M_IP_FRAG;
233 	else
234 		m->m_flags &= ~M_IP_FRAG;
235 	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
236 
237 	/*
238 	 * Make sure the fragment lies within a packet of valid size.
239 	 */
240 	if (ntohs(ip->ip_len) + ntohs(ip->ip_off) > IP_MAXPACKET) {
241 		IPSTAT_INC(ips_toolong);
242 		IPSTAT_INC(ips_fragdropped);
243 		m_freem(m);
244 		return (NULL);
245 	}
246 
247 	/*
248 	 * Store receive network interface pointer for later.
249 	 */
250 	srcifp = m->m_pkthdr.rcvif;
251 
252 	/*
253 	 * Attempt reassembly; if it succeeds, proceed.
254 	 * ip_reass() will return a different mbuf.
255 	 */
256 	IPSTAT_INC(ips_fragments);
257 	m->m_pkthdr.PH_loc.ptr = ip;
258 
259 	/*
260 	 * Presence of header sizes in mbufs
261 	 * would confuse code below.
262 	 */
263 	m->m_data += hlen;
264 	m->m_len -= hlen;
265 
266 	hashkey[0] = ip->ip_src.s_addr;
267 	hashkey[1] = ip->ip_dst.s_addr;
268 	hashkey[2] = (uint32_t)ip->ip_p << 16;
269 	hashkey[2] += ip->ip_id;
270 	hash = jenkins_hash32(hashkey, nitems(hashkey), V_ipq_hashseed);
271 	hash &= IPREASS_HMASK;
272 	head = &V_ipq[hash].head;
273 	IPQ_LOCK(hash);
274 
275 	/*
276 	 * Look for queue of fragments
277 	 * of this datagram.
278 	 */
279 	TAILQ_FOREACH(fp, head, ipq_list)
280 		if (ip->ip_id == fp->ipq_id &&
281 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
282 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
283 #ifdef MAC
284 		    mac_ipq_match(m, fp) &&
285 #endif
286 		    ip->ip_p == fp->ipq_p)
287 			break;
288 	/*
289 	 * If first fragment to arrive, create a reassembly queue.
290 	 */
291 	if (fp == NULL) {
292 		if (V_ipq[hash].count < V_ipreass_maxbucketsize)
293 			fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
294 		if (fp == NULL)
295 			fp = ipq_reuse(hash);
296 		if (fp == NULL)
297 			goto dropfrag;
298 #ifdef MAC
299 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
300 			uma_zfree(V_ipq_zone, fp);
301 			fp = NULL;
302 			goto dropfrag;
303 		}
304 		mac_ipq_create(m, fp);
305 #endif
306 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
307 		V_ipq[hash].count++;
308 		fp->ipq_nfrags = 1;
309 		atomic_add_int(&nfrags, 1);
310 		fp->ipq_ttl = IPFRAGTTL;
311 		fp->ipq_p = ip->ip_p;
312 		fp->ipq_id = ip->ip_id;
313 		fp->ipq_src = ip->ip_src;
314 		fp->ipq_dst = ip->ip_dst;
315 		fp->ipq_frags = m;
316 		if (m->m_flags & M_IP_FRAG)
317 			fp->ipq_maxoff = -1;
318 		else
319 			fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
320 		m->m_nextpkt = NULL;
321 		goto done;
322 	} else {
323 		/*
324 		 * If we already saw the last fragment, make sure
325 		 * this fragment's offset looks sane. Otherwise, if
326 		 * this is the last fragment, record its endpoint.
327 		 */
328 		if (fp->ipq_maxoff > 0) {
329 			i = ntohs(ip->ip_off) + ntohs(ip->ip_len);
330 			if (((m->m_flags & M_IP_FRAG) && i >= fp->ipq_maxoff) ||
331 			    ((m->m_flags & M_IP_FRAG) == 0 &&
332 			    i != fp->ipq_maxoff)) {
333 				fp = NULL;
334 				goto dropfrag;
335 			}
336 		} else if ((m->m_flags & M_IP_FRAG) == 0)
337 			fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
338 		fp->ipq_nfrags++;
339 		atomic_add_int(&nfrags, 1);
340 #ifdef MAC
341 		mac_ipq_update(m, fp);
342 #endif
343 	}
344 
345 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
346 
347 	/*
348 	 * Handle ECN by comparing this segment with the first one;
349 	 * if CE is set, do not lose CE.
350 	 * drop if CE and not-ECT are mixed for the same packet.
351 	 */
352 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
353 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
354 	if (ecn == IPTOS_ECN_CE) {
355 		if (ecn0 == IPTOS_ECN_NOTECT)
356 			goto dropfrag;
357 		if (ecn0 != IPTOS_ECN_CE)
358 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
359 	}
360 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
361 		goto dropfrag;
362 
363 	/*
364 	 * Find a segment which begins after this one does.
365 	 */
366 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
367 		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
368 			break;
369 
370 	/*
371 	 * If there is a preceding segment, it may provide some of
372 	 * our data already.  If so, drop the data from the incoming
373 	 * segment.  If it provides all of our data, drop us, otherwise
374 	 * stick new segment in the proper place.
375 	 *
376 	 * If some of the data is dropped from the preceding
377 	 * segment, then it's checksum is invalidated.
378 	 */
379 	if (p) {
380 		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
381 		    ntohs(ip->ip_off);
382 		if (i > 0) {
383 			if (i >= ntohs(ip->ip_len))
384 				goto dropfrag;
385 			m_adj(m, i);
386 			m->m_pkthdr.csum_flags = 0;
387 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
388 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
389 		}
390 		m->m_nextpkt = p->m_nextpkt;
391 		p->m_nextpkt = m;
392 	} else {
393 		m->m_nextpkt = fp->ipq_frags;
394 		fp->ipq_frags = m;
395 	}
396 
397 	/*
398 	 * While we overlap succeeding segments trim them or,
399 	 * if they are completely covered, dequeue them.
400 	 */
401 	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
402 	    ntohs(GETIP(q)->ip_off); q = nq) {
403 		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
404 		    ntohs(GETIP(q)->ip_off);
405 		if (i < ntohs(GETIP(q)->ip_len)) {
406 			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
407 			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
408 			m_adj(q, i);
409 			q->m_pkthdr.csum_flags = 0;
410 			break;
411 		}
412 		nq = q->m_nextpkt;
413 		m->m_nextpkt = nq;
414 		IPSTAT_INC(ips_fragdropped);
415 		fp->ipq_nfrags--;
416 		atomic_subtract_int(&nfrags, 1);
417 		m_freem(q);
418 	}
419 
420 	/*
421 	 * Check for complete reassembly and perform frag per packet
422 	 * limiting.
423 	 *
424 	 * Frag limiting is performed here so that the nth frag has
425 	 * a chance to complete the packet before we drop the packet.
426 	 * As a result, n+1 frags are actually allowed per packet, but
427 	 * only n will ever be stored. (n = maxfragsperpacket.)
428 	 *
429 	 */
430 	next = 0;
431 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
432 		if (ntohs(GETIP(q)->ip_off) != next) {
433 			if (fp->ipq_nfrags > V_maxfragsperpacket)
434 				ipq_drop(&V_ipq[hash], fp);
435 			goto done;
436 		}
437 		next += ntohs(GETIP(q)->ip_len);
438 	}
439 	/* Make sure the last packet didn't have the IP_MF flag */
440 	if (p->m_flags & M_IP_FRAG) {
441 		if (fp->ipq_nfrags > V_maxfragsperpacket)
442 			ipq_drop(&V_ipq[hash], fp);
443 		goto done;
444 	}
445 
446 	/*
447 	 * Reassembly is complete.  Make sure the packet is a sane size.
448 	 */
449 	q = fp->ipq_frags;
450 	ip = GETIP(q);
451 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
452 		IPSTAT_INC(ips_toolong);
453 		ipq_drop(&V_ipq[hash], fp);
454 		goto done;
455 	}
456 
457 	/*
458 	 * Concatenate fragments.
459 	 */
460 	m = q;
461 	t = m->m_next;
462 	m->m_next = NULL;
463 	m_cat(m, t);
464 	nq = q->m_nextpkt;
465 	q->m_nextpkt = NULL;
466 	for (q = nq; q != NULL; q = nq) {
467 		nq = q->m_nextpkt;
468 		q->m_nextpkt = NULL;
469 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
470 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
471 		m_demote_pkthdr(q);
472 		m_cat(m, q);
473 	}
474 	/*
475 	 * In order to do checksumming faster we do 'end-around carry' here
476 	 * (and not in for{} loop), though it implies we are not going to
477 	 * reassemble more than 64k fragments.
478 	 */
479 	while (m->m_pkthdr.csum_data & 0xffff0000)
480 		m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
481 		    (m->m_pkthdr.csum_data >> 16);
482 	atomic_subtract_int(&nfrags, fp->ipq_nfrags);
483 #ifdef MAC
484 	mac_ipq_reassemble(fp, m);
485 	mac_ipq_destroy(fp);
486 #endif
487 
488 	/*
489 	 * Create header for new ip packet by modifying header of first
490 	 * packet;  dequeue and discard fragment reassembly header.
491 	 * Make header visible.
492 	 */
493 	ip->ip_len = htons((ip->ip_hl << 2) + next);
494 	ip->ip_src = fp->ipq_src;
495 	ip->ip_dst = fp->ipq_dst;
496 	TAILQ_REMOVE(head, fp, ipq_list);
497 	V_ipq[hash].count--;
498 	uma_zfree(V_ipq_zone, fp);
499 	m->m_len += (ip->ip_hl << 2);
500 	m->m_data -= (ip->ip_hl << 2);
501 	/* some debugging cruft by sklower, below, will go away soon */
502 	if (m->m_flags & M_PKTHDR) {	/* XXX this should be done elsewhere */
503 		m_fixhdr(m);
504 		/* set valid receive interface pointer */
505 		m->m_pkthdr.rcvif = srcifp;
506 	}
507 	IPSTAT_INC(ips_reassembled);
508 	IPQ_UNLOCK(hash);
509 
510 #ifdef	RSS
511 	/*
512 	 * Query the RSS layer for the flowid / flowtype for the
513 	 * mbuf payload.
514 	 *
515 	 * For now, just assume we have to calculate a new one.
516 	 * Later on we should check to see if the assigned flowid matches
517 	 * what RSS wants for the given IP protocol and if so, just keep it.
518 	 *
519 	 * We then queue into the relevant netisr so it can be dispatched
520 	 * to the correct CPU.
521 	 *
522 	 * Note - this may return 1, which means the flowid in the mbuf
523 	 * is correct for the configured RSS hash types and can be used.
524 	 */
525 	if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
526 		m->m_pkthdr.flowid = rss_hash;
527 		M_HASHTYPE_SET(m, rss_type);
528 	}
529 
530 	/*
531 	 * Queue/dispatch for reprocessing.
532 	 *
533 	 * Note: this is much slower than just handling the frame in the
534 	 * current receive context.  It's likely worth investigating
535 	 * why this is.
536 	 */
537 	netisr_dispatch(NETISR_IP_DIRECT, m);
538 	return (NULL);
539 #endif
540 
541 	/* Handle in-line */
542 	return (m);
543 
544 dropfrag:
545 	IPSTAT_INC(ips_fragdropped);
546 	if (fp != NULL) {
547 		fp->ipq_nfrags--;
548 		atomic_subtract_int(&nfrags, 1);
549 	}
550 	m_freem(m);
551 done:
552 	IPQ_UNLOCK(hash);
553 	return (NULL);
554 
555 #undef GETIP
556 }
557 
558 /*
559  * Initialize IP reassembly structures.
560  */
561 void
562 ipreass_init(void)
563 {
564 	int max;
565 
566 	for (int i = 0; i < IPREASS_NHASH; i++) {
567 		TAILQ_INIT(&V_ipq[i].head);
568 		mtx_init(&V_ipq[i].lock, "IP reassembly", NULL,
569 		    MTX_DEF | MTX_DUPOK);
570 		V_ipq[i].count = 0;
571 	}
572 	V_ipq_hashseed = arc4random();
573 	V_maxfragsperpacket = 16;
574 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
575 	    NULL, UMA_ALIGN_PTR, 0);
576 	max = IP_MAXFRAGPACKETS;
577 	max = uma_zone_set_max(V_ipq_zone, max);
578 	V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
579 
580 	if (IS_DEFAULT_VNET(curvnet)) {
581 		maxfrags = IP_MAXFRAGS;
582 		EVENTHANDLER_REGISTER(nmbclusters_change, ipreass_zone_change,
583 		    NULL, EVENTHANDLER_PRI_ANY);
584 	}
585 }
586 
587 /*
588  * If a timer expires on a reassembly queue, discard it.
589  */
590 void
591 ipreass_slowtimo(void)
592 {
593 	struct ipq *fp, *tmp;
594 
595 	for (int i = 0; i < IPREASS_NHASH; i++) {
596 		IPQ_LOCK(i);
597 		TAILQ_FOREACH_SAFE(fp, &V_ipq[i].head, ipq_list, tmp)
598 		if (--fp->ipq_ttl == 0)
599 				ipq_timeout(&V_ipq[i], fp);
600 		IPQ_UNLOCK(i);
601 	}
602 }
603 
604 /*
605  * Drain off all datagram fragments.
606  */
607 void
608 ipreass_drain(void)
609 {
610 
611 	for (int i = 0; i < IPREASS_NHASH; i++) {
612 		IPQ_LOCK(i);
613 		while(!TAILQ_EMPTY(&V_ipq[i].head))
614 			ipq_drop(&V_ipq[i], TAILQ_FIRST(&V_ipq[i].head));
615 		KASSERT(V_ipq[i].count == 0,
616 		    ("%s: V_ipq[%d] count %d (V_ipq=%p)", __func__, i,
617 		    V_ipq[i].count, V_ipq));
618 		IPQ_UNLOCK(i);
619 	}
620 }
621 
622 /*
623  * Drain off all datagram fragments belonging to
624  * the given network interface.
625  */
626 static void
627 ipreass_cleanup(void *arg __unused, struct ifnet *ifp)
628 {
629 	struct ipq *fp, *temp;
630 	struct mbuf *m;
631 	int i;
632 
633 	KASSERT(ifp != NULL, ("%s: ifp is NULL", __func__));
634 
635 	CURVNET_SET_QUIET(ifp->if_vnet);
636 
637 	/*
638 	 * Skip processing if IPv4 reassembly is not initialised or
639 	 * torn down by ipreass_destroy().
640 	 */
641 	if (V_ipq_zone == NULL) {
642 		CURVNET_RESTORE();
643 		return;
644 	}
645 
646 	for (i = 0; i < IPREASS_NHASH; i++) {
647 		IPQ_LOCK(i);
648 		/* Scan fragment list. */
649 		TAILQ_FOREACH_SAFE(fp, &V_ipq[i].head, ipq_list, temp) {
650 			for (m = fp->ipq_frags; m != NULL; m = m->m_nextpkt) {
651 				/* clear no longer valid rcvif pointer */
652 				if (m->m_pkthdr.rcvif == ifp)
653 					m->m_pkthdr.rcvif = NULL;
654 			}
655 		}
656 		IPQ_UNLOCK(i);
657 	}
658 	CURVNET_RESTORE();
659 }
660 EVENTHANDLER_DEFINE(ifnet_departure_event, ipreass_cleanup, NULL, 0);
661 
662 #ifdef VIMAGE
663 /*
664  * Destroy IP reassembly structures.
665  */
666 void
667 ipreass_destroy(void)
668 {
669 
670 	ipreass_drain();
671 	uma_zdestroy(V_ipq_zone);
672 	V_ipq_zone = NULL;
673 	for (int i = 0; i < IPREASS_NHASH; i++)
674 		mtx_destroy(&V_ipq[i].lock);
675 }
676 #endif
677 
678 /*
679  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
680  * max has slightly different semantics than the sysctl, for historical
681  * reasons.
682  */
683 static void
684 ipreass_drain_tomax(void)
685 {
686 	struct ipq *fp;
687 	int target;
688 
689 	/*
690 	 * Make sure each bucket is under the new limit. If
691 	 * necessary, drop enough of the oldest elements from
692 	 * each bucket to get under the new limit.
693 	 */
694 	for (int i = 0; i < IPREASS_NHASH; i++) {
695 		IPQ_LOCK(i);
696 		while (V_ipq[i].count > V_ipreass_maxbucketsize &&
697 		    (fp = TAILQ_LAST(&V_ipq[i].head, ipqhead)) != NULL)
698 			ipq_timeout(&V_ipq[i], fp);
699 		IPQ_UNLOCK(i);
700 	}
701 
702 	/*
703 	 * If we are over the maximum number of fragments,
704 	 * drain off enough to get down to the new limit,
705 	 * stripping off last elements on queues.  Every
706 	 * run we strip the oldest element from each bucket.
707 	 */
708 	target = uma_zone_get_max(V_ipq_zone);
709 	while (uma_zone_get_cur(V_ipq_zone) > target) {
710 		for (int i = 0; i < IPREASS_NHASH; i++) {
711 			IPQ_LOCK(i);
712 			fp = TAILQ_LAST(&V_ipq[i].head, ipqhead);
713 			if (fp != NULL)
714 				ipq_timeout(&V_ipq[i], fp);
715 			IPQ_UNLOCK(i);
716 		}
717 	}
718 }
719 
720 static void
721 ipreass_zone_change(void *tag)
722 {
723 	VNET_ITERATOR_DECL(vnet_iter);
724 	int max;
725 
726 	maxfrags = IP_MAXFRAGS;
727 	max = IP_MAXFRAGPACKETS;
728 	VNET_LIST_RLOCK_NOSLEEP();
729 	VNET_FOREACH(vnet_iter) {
730 		CURVNET_SET(vnet_iter);
731 		max = uma_zone_set_max(V_ipq_zone, max);
732 		V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
733 		ipreass_drain_tomax();
734 		CURVNET_RESTORE();
735 	}
736 	VNET_LIST_RUNLOCK_NOSLEEP();
737 }
738 
739 /*
740  * Change the limit on the UMA zone, or disable the fragment allocation
741  * at all.  Since 0 and -1 is a special values here, we need our own handler,
742  * instead of sysctl_handle_uma_zone_max().
743  */
744 static int
745 sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS)
746 {
747 	int error, max;
748 
749 	if (V_noreass == 0) {
750 		max = uma_zone_get_max(V_ipq_zone);
751 		if (max == 0)
752 			max = -1;
753 	} else
754 		max = 0;
755 	error = sysctl_handle_int(oidp, &max, 0, req);
756 	if (error || !req->newptr)
757 		return (error);
758 	if (max > 0) {
759 		/*
760 		 * XXXRW: Might be a good idea to sanity check the argument
761 		 * and place an extreme upper bound.
762 		 */
763 		max = uma_zone_set_max(V_ipq_zone, max);
764 		V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
765 		ipreass_drain_tomax();
766 		V_noreass = 0;
767 	} else if (max == 0) {
768 		V_noreass = 1;
769 		ipreass_drain();
770 	} else if (max == -1) {
771 		V_noreass = 0;
772 		uma_zone_set_max(V_ipq_zone, 0);
773 		V_ipreass_maxbucketsize = INT_MAX;
774 	} else
775 		return (EINVAL);
776 	return (0);
777 }
778 
779 /*
780  * Seek for old fragment queue header that can be reused.  Try to
781  * reuse a header from currently locked hash bucket.
782  */
783 static struct ipq *
784 ipq_reuse(int start)
785 {
786 	struct ipq *fp;
787 	int bucket, i;
788 
789 	IPQ_LOCK_ASSERT(start);
790 
791 	for (i = 0; i < IPREASS_NHASH; i++) {
792 		bucket = (start + i) % IPREASS_NHASH;
793 		if (bucket != start && IPQ_TRYLOCK(bucket) == 0)
794 			continue;
795 		fp = TAILQ_LAST(&V_ipq[bucket].head, ipqhead);
796 		if (fp) {
797 			struct mbuf *m;
798 
799 			IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
800 			atomic_subtract_int(&nfrags, fp->ipq_nfrags);
801 			while (fp->ipq_frags) {
802 				m = fp->ipq_frags;
803 				fp->ipq_frags = m->m_nextpkt;
804 				m_freem(m);
805 			}
806 			TAILQ_REMOVE(&V_ipq[bucket].head, fp, ipq_list);
807 			V_ipq[bucket].count--;
808 			if (bucket != start)
809 				IPQ_UNLOCK(bucket);
810 			break;
811 		}
812 		if (bucket != start)
813 			IPQ_UNLOCK(bucket);
814 	}
815 	IPQ_LOCK_ASSERT(start);
816 	return (fp);
817 }
818 
819 /*
820  * Free a fragment reassembly header and all associated datagrams.
821  */
822 static void
823 ipq_free(struct ipqbucket *bucket, struct ipq *fp)
824 {
825 	struct mbuf *q;
826 
827 	atomic_subtract_int(&nfrags, fp->ipq_nfrags);
828 	while (fp->ipq_frags) {
829 		q = fp->ipq_frags;
830 		fp->ipq_frags = q->m_nextpkt;
831 		m_freem(q);
832 	}
833 	TAILQ_REMOVE(&bucket->head, fp, ipq_list);
834 	bucket->count--;
835 	uma_zfree(V_ipq_zone, fp);
836 }
837 
838 /*
839  * Get or set the maximum number of reassembly queues per bucket.
840  */
841 static int
842 sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS)
843 {
844 	int error, max;
845 
846 	max = V_ipreass_maxbucketsize;
847 	error = sysctl_handle_int(oidp, &max, 0, req);
848 	if (error || !req->newptr)
849 		return (error);
850 	if (max <= 0)
851 		return (EINVAL);
852 	V_ipreass_maxbucketsize = max;
853 	ipreass_drain_tomax();
854 	return (0);
855 }
856