1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_kern_tls.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_mpath.h" 42 #include "opt_ratelimit.h" 43 #include "opt_route.h" 44 #include "opt_rss.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/kernel.h> 50 #include <sys/ktls.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mbuf.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/protosw.h> 57 #include <sys/rmlock.h> 58 #include <sys/sdt.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sysctl.h> 62 #include <sys/ucred.h> 63 64 #include <net/if.h> 65 #include <net/if_var.h> 66 #include <net/if_llatbl.h> 67 #include <net/netisr.h> 68 #include <net/pfil.h> 69 #include <net/route.h> 70 #include <net/route/nhop.h> 71 #include <net/rss_config.h> 72 #include <net/vnet.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_fib.h> 76 #include <netinet/in_kdtrace.h> 77 #include <netinet/in_systm.h> 78 #include <netinet/ip.h> 79 #include <netinet/in_fib.h> 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_rss.h> 82 #include <netinet/in_var.h> 83 #include <netinet/ip_var.h> 84 #include <netinet/ip_options.h> 85 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #if defined(SCTP) || defined(SCTP_SUPPORT) 90 #include <netinet/sctp.h> 91 #include <netinet/sctp_crc32.h> 92 #endif 93 94 #include <netipsec/ipsec_support.h> 95 96 #include <machine/in_cksum.h> 97 98 #include <security/mac/mac_framework.h> 99 100 #ifdef MBUF_STRESS_TEST 101 static int mbuf_frag_size = 0; 102 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 103 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 104 #endif 105 106 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 107 108 extern int in_mcast_loop; 109 extern struct protosw inetsw[]; 110 111 static inline int 112 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 113 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 114 { 115 struct m_tag *fwd_tag = NULL; 116 struct mbuf *m; 117 struct in_addr odst; 118 struct ip *ip; 119 int pflags = PFIL_OUT; 120 121 if (flags & IP_FORWARDING) 122 pflags |= PFIL_FWD; 123 124 m = *mp; 125 ip = mtod(m, struct ip *); 126 127 /* Run through list of hooks for output packets. */ 128 odst.s_addr = ip->ip_dst.s_addr; 129 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { 130 case PFIL_DROPPED: 131 *error = EACCES; 132 /* FALLTHROUGH */ 133 case PFIL_CONSUMED: 134 return 1; /* Finished */ 135 case PFIL_PASS: 136 *error = 0; 137 } 138 m = *mp; 139 ip = mtod(m, struct ip *); 140 141 /* See if destination IP address was changed by packet filter. */ 142 if (odst.s_addr != ip->ip_dst.s_addr) { 143 m->m_flags |= M_SKIP_FIREWALL; 144 /* If destination is now ourself drop to ip_input(). */ 145 if (in_localip(ip->ip_dst)) { 146 m->m_flags |= M_FASTFWD_OURS; 147 if (m->m_pkthdr.rcvif == NULL) 148 m->m_pkthdr.rcvif = V_loif; 149 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 150 m->m_pkthdr.csum_flags |= 151 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 152 m->m_pkthdr.csum_data = 0xffff; 153 } 154 m->m_pkthdr.csum_flags |= 155 CSUM_IP_CHECKED | CSUM_IP_VALID; 156 #if defined(SCTP) || defined(SCTP_SUPPORT) 157 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 158 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 159 #endif 160 *error = netisr_queue(NETISR_IP, m); 161 return 1; /* Finished */ 162 } 163 164 bzero(dst, sizeof(*dst)); 165 dst->sin_family = AF_INET; 166 dst->sin_len = sizeof(*dst); 167 dst->sin_addr = ip->ip_dst; 168 169 return -1; /* Reloop */ 170 } 171 /* See if fib was changed by packet filter. */ 172 if ((*fibnum) != M_GETFIB(m)) { 173 m->m_flags |= M_SKIP_FIREWALL; 174 *fibnum = M_GETFIB(m); 175 return -1; /* Reloop for FIB change */ 176 } 177 178 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 179 if (m->m_flags & M_FASTFWD_OURS) { 180 if (m->m_pkthdr.rcvif == NULL) 181 m->m_pkthdr.rcvif = V_loif; 182 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 183 m->m_pkthdr.csum_flags |= 184 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 185 m->m_pkthdr.csum_data = 0xffff; 186 } 187 #if defined(SCTP) || defined(SCTP_SUPPORT) 188 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 189 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 190 #endif 191 m->m_pkthdr.csum_flags |= 192 CSUM_IP_CHECKED | CSUM_IP_VALID; 193 194 *error = netisr_queue(NETISR_IP, m); 195 return 1; /* Finished */ 196 } 197 /* Or forward to some other address? */ 198 if ((m->m_flags & M_IP_NEXTHOP) && 199 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 200 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 201 m->m_flags |= M_SKIP_FIREWALL; 202 m->m_flags &= ~M_IP_NEXTHOP; 203 m_tag_delete(m, fwd_tag); 204 205 return -1; /* Reloop for CHANGE of dst */ 206 } 207 208 return 0; 209 } 210 211 static int 212 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 213 const struct sockaddr_in *gw, struct route *ro, bool stamp_tag) 214 { 215 #ifdef KERN_TLS 216 struct ktls_session *tls = NULL; 217 #endif 218 struct m_snd_tag *mst; 219 int error; 220 221 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 222 mst = NULL; 223 224 #ifdef KERN_TLS 225 /* 226 * If this is an unencrypted TLS record, save a reference to 227 * the record. This local reference is used to call 228 * ktls_output_eagain after the mbuf has been freed (thus 229 * dropping the mbuf's reference) in if_output. 230 */ 231 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 232 tls = ktls_hold(m->m_next->m_epg_tls); 233 mst = tls->snd_tag; 234 235 /* 236 * If a TLS session doesn't have a valid tag, it must 237 * have had an earlier ifp mismatch, so drop this 238 * packet. 239 */ 240 if (mst == NULL) { 241 error = EAGAIN; 242 goto done; 243 } 244 /* 245 * Always stamp tags that include NIC ktls. 246 */ 247 stamp_tag = true; 248 } 249 #endif 250 #ifdef RATELIMIT 251 if (inp != NULL && mst == NULL) { 252 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 253 (inp->inp_snd_tag != NULL && 254 inp->inp_snd_tag->ifp != ifp)) 255 in_pcboutput_txrtlmt(inp, ifp, m); 256 257 if (inp->inp_snd_tag != NULL) 258 mst = inp->inp_snd_tag; 259 } 260 #endif 261 if (stamp_tag && mst != NULL) { 262 KASSERT(m->m_pkthdr.rcvif == NULL, 263 ("trying to add a send tag to a forwarded packet")); 264 if (mst->ifp != ifp) { 265 error = EAGAIN; 266 goto done; 267 } 268 269 /* stamp send tag on mbuf */ 270 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 271 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 272 } 273 274 error = (*ifp->if_output)(ifp, m, (const struct sockaddr *)gw, ro); 275 276 done: 277 /* Check for route change invalidating send tags. */ 278 #ifdef KERN_TLS 279 if (tls != NULL) { 280 if (error == EAGAIN) 281 error = ktls_output_eagain(inp, tls); 282 ktls_free(tls); 283 } 284 #endif 285 #ifdef RATELIMIT 286 if (error == EAGAIN) 287 in_pcboutput_eagain(inp); 288 #endif 289 return (error); 290 } 291 292 /* rte<>ro_flags translation */ 293 static inline void 294 rt_update_ro_flags(struct route *ro) 295 { 296 int nh_flags = ro->ro_nh->nh_flags; 297 298 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 299 300 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 301 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 302 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 303 } 304 305 /* 306 * IP output. The packet in mbuf chain m contains a skeletal IP 307 * header (with len, off, ttl, proto, tos, src, dst). 308 * The mbuf chain containing the packet will be freed. 309 * The mbuf opt, if present, will not be freed. 310 * If route ro is present and has ro_rt initialized, route lookup would be 311 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 312 * then result of route lookup is stored in ro->ro_rt. 313 * 314 * In the IP forwarding case, the packet will arrive with options already 315 * inserted, so must have a NULL opt pointer. 316 */ 317 int 318 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 319 struct ip_moptions *imo, struct inpcb *inp) 320 { 321 struct rm_priotracker in_ifa_tracker; 322 struct ip *ip; 323 struct ifnet *ifp = NULL; /* keep compiler happy */ 324 struct mbuf *m0; 325 int hlen = sizeof (struct ip); 326 int mtu = 0; 327 int error = 0; 328 struct sockaddr_in *dst, sin; 329 const struct sockaddr_in *gw; 330 struct in_ifaddr *ia = NULL; 331 struct in_addr src; 332 int isbroadcast; 333 uint16_t ip_len, ip_off; 334 uint32_t fibnum; 335 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 336 int no_route_but_check_spd = 0; 337 #endif 338 339 M_ASSERTPKTHDR(m); 340 NET_EPOCH_ASSERT(); 341 342 if (inp != NULL) { 343 INP_LOCK_ASSERT(inp); 344 M_SETFIB(m, inp->inp_inc.inc_fibnum); 345 if ((flags & IP_NODEFAULTFLOWID) == 0) { 346 m->m_pkthdr.flowid = inp->inp_flowid; 347 M_HASHTYPE_SET(m, inp->inp_flowtype); 348 } 349 #ifdef NUMA 350 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 351 #endif 352 } 353 354 if (opt) { 355 int len = 0; 356 m = ip_insertoptions(m, opt, &len); 357 if (len != 0) 358 hlen = len; /* ip->ip_hl is updated above */ 359 } 360 ip = mtod(m, struct ip *); 361 ip_len = ntohs(ip->ip_len); 362 ip_off = ntohs(ip->ip_off); 363 364 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 365 ip->ip_v = IPVERSION; 366 ip->ip_hl = hlen >> 2; 367 ip_fillid(ip); 368 } else { 369 /* Header already set, fetch hlen from there */ 370 hlen = ip->ip_hl << 2; 371 } 372 if ((flags & IP_FORWARDING) == 0) 373 IPSTAT_INC(ips_localout); 374 375 /* 376 * dst/gw handling: 377 * 378 * gw is readonly but can point either to dst OR rt_gateway, 379 * therefore we need restore gw if we're redoing lookup. 380 */ 381 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 382 if (ro != NULL) 383 dst = (struct sockaddr_in *)&ro->ro_dst; 384 else 385 dst = &sin; 386 if (ro == NULL || ro->ro_nh == NULL) { 387 bzero(dst, sizeof(*dst)); 388 dst->sin_family = AF_INET; 389 dst->sin_len = sizeof(*dst); 390 dst->sin_addr = ip->ip_dst; 391 } 392 gw = dst; 393 again: 394 /* 395 * Validate route against routing table additions; 396 * a better/more specific route might have been added. 397 */ 398 if (inp != NULL && ro != NULL && ro->ro_nh != NULL) 399 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 400 /* 401 * If there is a cached route, 402 * check that it is to the same destination 403 * and is still up. If not, free it and try again. 404 * The address family should also be checked in case of sharing the 405 * cache with IPv6. 406 * Also check whether routing cache needs invalidation. 407 */ 408 if (ro != NULL && ro->ro_nh != NULL && 409 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 410 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 411 RO_INVALIDATE_CACHE(ro); 412 ia = NULL; 413 /* 414 * If routing to interface only, short circuit routing lookup. 415 * The use of an all-ones broadcast address implies this; an 416 * interface is specified by the broadcast address of an interface, 417 * or the destination address of a ptp interface. 418 */ 419 if (flags & IP_SENDONES) { 420 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 421 M_GETFIB(m)))) == NULL && 422 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 423 M_GETFIB(m)))) == NULL) { 424 IPSTAT_INC(ips_noroute); 425 error = ENETUNREACH; 426 goto bad; 427 } 428 ip->ip_dst.s_addr = INADDR_BROADCAST; 429 dst->sin_addr = ip->ip_dst; 430 ifp = ia->ia_ifp; 431 mtu = ifp->if_mtu; 432 ip->ip_ttl = 1; 433 isbroadcast = 1; 434 src = IA_SIN(ia)->sin_addr; 435 } else if (flags & IP_ROUTETOIF) { 436 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 437 M_GETFIB(m)))) == NULL && 438 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 439 M_GETFIB(m)))) == NULL) { 440 IPSTAT_INC(ips_noroute); 441 error = ENETUNREACH; 442 goto bad; 443 } 444 ifp = ia->ia_ifp; 445 mtu = ifp->if_mtu; 446 ip->ip_ttl = 1; 447 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 448 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 449 src = IA_SIN(ia)->sin_addr; 450 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 451 imo != NULL && imo->imo_multicast_ifp != NULL) { 452 /* 453 * Bypass the normal routing lookup for multicast 454 * packets if the interface is specified. 455 */ 456 ifp = imo->imo_multicast_ifp; 457 mtu = ifp->if_mtu; 458 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 459 isbroadcast = 0; /* fool gcc */ 460 /* Interface may have no addresses. */ 461 if (ia != NULL) 462 src = IA_SIN(ia)->sin_addr; 463 else 464 src.s_addr = INADDR_ANY; 465 } else if (ro != NULL) { 466 if (ro->ro_nh == NULL) { 467 /* 468 * We want to do any cloning requested by the link 469 * layer, as this is probably required in all cases 470 * for correct operation (as it is for ARP). 471 */ 472 uint32_t flowid; 473 #ifdef RADIX_MPATH 474 flowid = ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr); 475 #else 476 flowid = m->m_pkthdr.flowid; 477 #endif 478 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 479 NHR_REF, flowid); 480 481 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 482 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 483 /* 484 * There is no route for this packet, but it is 485 * possible that a matching SPD entry exists. 486 */ 487 no_route_but_check_spd = 1; 488 goto sendit; 489 #endif 490 IPSTAT_INC(ips_noroute); 491 error = EHOSTUNREACH; 492 goto bad; 493 } 494 } 495 ia = ifatoia(ro->ro_nh->nh_ifa); 496 ifp = ro->ro_nh->nh_ifp; 497 counter_u64_add(ro->ro_nh->nh_pksent, 1); 498 rt_update_ro_flags(ro); 499 if (ro->ro_nh->nh_flags & NHF_GATEWAY) 500 gw = &ro->ro_nh->gw4_sa; 501 if (ro->ro_nh->nh_flags & NHF_HOST) 502 isbroadcast = (ro->ro_nh->nh_flags & NHF_BROADCAST); 503 else if (ifp->if_flags & IFF_BROADCAST) 504 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 505 else 506 isbroadcast = 0; 507 if (ro->ro_nh->nh_flags & NHF_HOST) 508 mtu = ro->ro_nh->nh_mtu; 509 else 510 mtu = ifp->if_mtu; 511 src = IA_SIN(ia)->sin_addr; 512 } else { 513 struct nhop_object *nh; 514 515 nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_NONE, 0); 516 if (nh == NULL) { 517 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 518 /* 519 * There is no route for this packet, but it is 520 * possible that a matching SPD entry exists. 521 */ 522 no_route_but_check_spd = 1; 523 goto sendit; 524 #endif 525 IPSTAT_INC(ips_noroute); 526 error = EHOSTUNREACH; 527 goto bad; 528 } 529 ifp = nh->nh_ifp; 530 mtu = nh->nh_mtu; 531 /* 532 * We are rewriting here dst to be gw actually, contradicting 533 * comment at the beginning of the function. However, in this 534 * case we are always dealing with on stack dst. 535 * In case if pfil(9) sends us back to beginning of the 536 * function, the dst would be rewritten by ip_output_pfil(). 537 */ 538 MPASS(dst == &sin); 539 if (nh->nh_flags & NHF_GATEWAY) 540 dst->sin_addr = nh->gw4_sa.sin_addr; 541 ia = ifatoia(nh->nh_ifa); 542 src = IA_SIN(ia)->sin_addr; 543 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 544 (NHF_HOST | NHF_BROADCAST)) || 545 ((ifp->if_flags & IFF_BROADCAST) && 546 in_ifaddr_broadcast(dst->sin_addr, ia))); 547 } 548 549 /* Catch a possible divide by zero later. */ 550 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 551 __func__, mtu, ro, 552 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 553 554 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 555 m->m_flags |= M_MCAST; 556 /* 557 * IP destination address is multicast. Make sure "gw" 558 * still points to the address in "ro". (It may have been 559 * changed to point to a gateway address, above.) 560 */ 561 gw = dst; 562 /* 563 * See if the caller provided any multicast options 564 */ 565 if (imo != NULL) { 566 ip->ip_ttl = imo->imo_multicast_ttl; 567 if (imo->imo_multicast_vif != -1) 568 ip->ip_src.s_addr = 569 ip_mcast_src ? 570 ip_mcast_src(imo->imo_multicast_vif) : 571 INADDR_ANY; 572 } else 573 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 574 /* 575 * Confirm that the outgoing interface supports multicast. 576 */ 577 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 578 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 579 IPSTAT_INC(ips_noroute); 580 error = ENETUNREACH; 581 goto bad; 582 } 583 } 584 /* 585 * If source address not specified yet, use address 586 * of outgoing interface. 587 */ 588 if (ip->ip_src.s_addr == INADDR_ANY) 589 ip->ip_src = src; 590 591 if ((imo == NULL && in_mcast_loop) || 592 (imo && imo->imo_multicast_loop)) { 593 /* 594 * Loop back multicast datagram if not expressly 595 * forbidden to do so, even if we are not a member 596 * of the group; ip_input() will filter it later, 597 * thus deferring a hash lookup and mutex acquisition 598 * at the expense of a cheap copy using m_copym(). 599 */ 600 ip_mloopback(ifp, m, hlen); 601 } else { 602 /* 603 * If we are acting as a multicast router, perform 604 * multicast forwarding as if the packet had just 605 * arrived on the interface to which we are about 606 * to send. The multicast forwarding function 607 * recursively calls this function, using the 608 * IP_FORWARDING flag to prevent infinite recursion. 609 * 610 * Multicasts that are looped back by ip_mloopback(), 611 * above, will be forwarded by the ip_input() routine, 612 * if necessary. 613 */ 614 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 615 /* 616 * If rsvp daemon is not running, do not 617 * set ip_moptions. This ensures that the packet 618 * is multicast and not just sent down one link 619 * as prescribed by rsvpd. 620 */ 621 if (!V_rsvp_on) 622 imo = NULL; 623 if (ip_mforward && 624 ip_mforward(ip, ifp, m, imo) != 0) { 625 m_freem(m); 626 goto done; 627 } 628 } 629 } 630 631 /* 632 * Multicasts with a time-to-live of zero may be looped- 633 * back, above, but must not be transmitted on a network. 634 * Also, multicasts addressed to the loopback interface 635 * are not sent -- the above call to ip_mloopback() will 636 * loop back a copy. ip_input() will drop the copy if 637 * this host does not belong to the destination group on 638 * the loopback interface. 639 */ 640 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 641 m_freem(m); 642 goto done; 643 } 644 645 goto sendit; 646 } 647 648 /* 649 * If the source address is not specified yet, use the address 650 * of the outoing interface. 651 */ 652 if (ip->ip_src.s_addr == INADDR_ANY) 653 ip->ip_src = src; 654 655 /* 656 * Look for broadcast address and 657 * verify user is allowed to send 658 * such a packet. 659 */ 660 if (isbroadcast) { 661 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 662 error = EADDRNOTAVAIL; 663 goto bad; 664 } 665 if ((flags & IP_ALLOWBROADCAST) == 0) { 666 error = EACCES; 667 goto bad; 668 } 669 /* don't allow broadcast messages to be fragmented */ 670 if (ip_len > mtu) { 671 error = EMSGSIZE; 672 goto bad; 673 } 674 m->m_flags |= M_BCAST; 675 } else { 676 m->m_flags &= ~M_BCAST; 677 } 678 679 sendit: 680 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 681 if (IPSEC_ENABLED(ipv4)) { 682 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 683 if (error == EINPROGRESS) 684 error = 0; 685 goto done; 686 } 687 } 688 /* 689 * Check if there was a route for this packet; return error if not. 690 */ 691 if (no_route_but_check_spd) { 692 IPSTAT_INC(ips_noroute); 693 error = EHOSTUNREACH; 694 goto bad; 695 } 696 /* Update variables that are affected by ipsec4_output(). */ 697 ip = mtod(m, struct ip *); 698 hlen = ip->ip_hl << 2; 699 #endif /* IPSEC */ 700 701 /* Jump over all PFIL processing if hooks are not active. */ 702 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 703 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 704 &error)) { 705 case 1: /* Finished */ 706 goto done; 707 708 case 0: /* Continue normally */ 709 ip = mtod(m, struct ip *); 710 break; 711 712 case -1: /* Need to try again */ 713 /* Reset everything for a new round */ 714 if (ro != NULL) { 715 RO_NHFREE(ro); 716 ro->ro_prepend = NULL; 717 } 718 gw = dst; 719 ip = mtod(m, struct ip *); 720 goto again; 721 } 722 } 723 724 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 725 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 726 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 727 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 728 IPSTAT_INC(ips_badaddr); 729 error = EADDRNOTAVAIL; 730 goto bad; 731 } 732 } 733 734 m->m_pkthdr.csum_flags |= CSUM_IP; 735 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 736 m = mb_unmapped_to_ext(m); 737 if (m == NULL) { 738 IPSTAT_INC(ips_odropped); 739 error = ENOBUFS; 740 goto bad; 741 } 742 in_delayed_cksum(m); 743 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 744 } else if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 745 m = mb_unmapped_to_ext(m); 746 if (m == NULL) { 747 IPSTAT_INC(ips_odropped); 748 error = ENOBUFS; 749 goto bad; 750 } 751 } 752 #if defined(SCTP) || defined(SCTP_SUPPORT) 753 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 754 m = mb_unmapped_to_ext(m); 755 if (m == NULL) { 756 IPSTAT_INC(ips_odropped); 757 error = ENOBUFS; 758 goto bad; 759 } 760 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 761 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 762 } 763 #endif 764 765 /* 766 * If small enough for interface, or the interface will take 767 * care of the fragmentation for us, we can just send directly. 768 * Note that if_vxlan could have requested TSO even though the outer 769 * frame is UDP. It is correct to not fragment such datagrams and 770 * instead just pass them on to the driver. 771 */ 772 if (ip_len <= mtu || 773 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 774 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 775 ip->ip_sum = 0; 776 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 777 ip->ip_sum = in_cksum(m, hlen); 778 m->m_pkthdr.csum_flags &= ~CSUM_IP; 779 } 780 781 /* 782 * Record statistics for this interface address. 783 * With CSUM_TSO the byte/packet count will be slightly 784 * incorrect because we count the IP+TCP headers only 785 * once instead of for every generated packet. 786 */ 787 if (!(flags & IP_FORWARDING) && ia) { 788 if (m->m_pkthdr.csum_flags & 789 (CSUM_TSO | CSUM_INNER_TSO)) 790 counter_u64_add(ia->ia_ifa.ifa_opackets, 791 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 792 else 793 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 794 795 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 796 } 797 #ifdef MBUF_STRESS_TEST 798 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 799 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 800 #endif 801 /* 802 * Reset layer specific mbuf flags 803 * to avoid confusing lower layers. 804 */ 805 m_clrprotoflags(m); 806 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 807 error = ip_output_send(inp, ifp, m, gw, ro, 808 (flags & IP_NO_SND_TAG_RL) ? false : true); 809 goto done; 810 } 811 812 /* Balk when DF bit is set or the interface didn't support TSO. */ 813 if ((ip_off & IP_DF) || 814 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 815 error = EMSGSIZE; 816 IPSTAT_INC(ips_cantfrag); 817 goto bad; 818 } 819 820 /* 821 * Too large for interface; fragment if possible. If successful, 822 * on return, m will point to a list of packets to be sent. 823 */ 824 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 825 if (error) 826 goto bad; 827 for (; m; m = m0) { 828 m0 = m->m_nextpkt; 829 m->m_nextpkt = 0; 830 if (error == 0) { 831 /* Record statistics for this interface address. */ 832 if (ia != NULL) { 833 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 834 counter_u64_add(ia->ia_ifa.ifa_obytes, 835 m->m_pkthdr.len); 836 } 837 /* 838 * Reset layer specific mbuf flags 839 * to avoid confusing upper layers. 840 */ 841 m_clrprotoflags(m); 842 843 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 844 mtod(m, struct ip *), NULL); 845 error = ip_output_send(inp, ifp, m, gw, ro, true); 846 } else 847 m_freem(m); 848 } 849 850 if (error == 0) 851 IPSTAT_INC(ips_fragmented); 852 853 done: 854 return (error); 855 bad: 856 m_freem(m); 857 goto done; 858 } 859 860 /* 861 * Create a chain of fragments which fit the given mtu. m_frag points to the 862 * mbuf to be fragmented; on return it points to the chain with the fragments. 863 * Return 0 if no error. If error, m_frag may contain a partially built 864 * chain of fragments that should be freed by the caller. 865 * 866 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 867 */ 868 int 869 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 870 u_long if_hwassist_flags) 871 { 872 int error = 0; 873 int hlen = ip->ip_hl << 2; 874 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 875 int off; 876 struct mbuf *m0 = *m_frag; /* the original packet */ 877 int firstlen; 878 struct mbuf **mnext; 879 int nfrags; 880 uint16_t ip_len, ip_off; 881 882 ip_len = ntohs(ip->ip_len); 883 ip_off = ntohs(ip->ip_off); 884 885 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 886 IPSTAT_INC(ips_cantfrag); 887 return EMSGSIZE; 888 } 889 890 /* 891 * Must be able to put at least 8 bytes per fragment. 892 */ 893 if (len < 8) 894 return EMSGSIZE; 895 896 /* 897 * If the interface will not calculate checksums on 898 * fragmented packets, then do it here. 899 */ 900 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 901 m0 = mb_unmapped_to_ext(m0); 902 if (m0 == NULL) { 903 error = ENOBUFS; 904 IPSTAT_INC(ips_odropped); 905 goto done; 906 } 907 in_delayed_cksum(m0); 908 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 909 } 910 #if defined(SCTP) || defined(SCTP_SUPPORT) 911 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 912 m0 = mb_unmapped_to_ext(m0); 913 if (m0 == NULL) { 914 error = ENOBUFS; 915 IPSTAT_INC(ips_odropped); 916 goto done; 917 } 918 sctp_delayed_cksum(m0, hlen); 919 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 920 } 921 #endif 922 if (len > PAGE_SIZE) { 923 /* 924 * Fragment large datagrams such that each segment 925 * contains a multiple of PAGE_SIZE amount of data, 926 * plus headers. This enables a receiver to perform 927 * page-flipping zero-copy optimizations. 928 * 929 * XXX When does this help given that sender and receiver 930 * could have different page sizes, and also mtu could 931 * be less than the receiver's page size ? 932 */ 933 int newlen; 934 935 off = MIN(mtu, m0->m_pkthdr.len); 936 937 /* 938 * firstlen (off - hlen) must be aligned on an 939 * 8-byte boundary 940 */ 941 if (off < hlen) 942 goto smart_frag_failure; 943 off = ((off - hlen) & ~7) + hlen; 944 newlen = (~PAGE_MASK) & mtu; 945 if ((newlen + sizeof (struct ip)) > mtu) { 946 /* we failed, go back the default */ 947 smart_frag_failure: 948 newlen = len; 949 off = hlen + len; 950 } 951 len = newlen; 952 953 } else { 954 off = hlen + len; 955 } 956 957 firstlen = off - hlen; 958 mnext = &m0->m_nextpkt; /* pointer to next packet */ 959 960 /* 961 * Loop through length of segment after first fragment, 962 * make new header and copy data of each part and link onto chain. 963 * Here, m0 is the original packet, m is the fragment being created. 964 * The fragments are linked off the m_nextpkt of the original 965 * packet, which after processing serves as the first fragment. 966 */ 967 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 968 struct ip *mhip; /* ip header on the fragment */ 969 struct mbuf *m; 970 int mhlen = sizeof (struct ip); 971 972 m = m_gethdr(M_NOWAIT, MT_DATA); 973 if (m == NULL) { 974 error = ENOBUFS; 975 IPSTAT_INC(ips_odropped); 976 goto done; 977 } 978 /* 979 * Make sure the complete packet header gets copied 980 * from the originating mbuf to the newly created 981 * mbuf. This also ensures that existing firewall 982 * classification(s), VLAN tags and so on get copied 983 * to the resulting fragmented packet(s): 984 */ 985 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 986 m_free(m); 987 error = ENOBUFS; 988 IPSTAT_INC(ips_odropped); 989 goto done; 990 } 991 /* 992 * In the first mbuf, leave room for the link header, then 993 * copy the original IP header including options. The payload 994 * goes into an additional mbuf chain returned by m_copym(). 995 */ 996 m->m_data += max_linkhdr; 997 mhip = mtod(m, struct ip *); 998 *mhip = *ip; 999 if (hlen > sizeof (struct ip)) { 1000 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 1001 mhip->ip_v = IPVERSION; 1002 mhip->ip_hl = mhlen >> 2; 1003 } 1004 m->m_len = mhlen; 1005 /* XXX do we need to add ip_off below ? */ 1006 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 1007 if (off + len >= ip_len) 1008 len = ip_len - off; 1009 else 1010 mhip->ip_off |= IP_MF; 1011 mhip->ip_len = htons((u_short)(len + mhlen)); 1012 m->m_next = m_copym(m0, off, len, M_NOWAIT); 1013 if (m->m_next == NULL) { /* copy failed */ 1014 m_free(m); 1015 error = ENOBUFS; /* ??? */ 1016 IPSTAT_INC(ips_odropped); 1017 goto done; 1018 } 1019 m->m_pkthdr.len = mhlen + len; 1020 #ifdef MAC 1021 mac_netinet_fragment(m0, m); 1022 #endif 1023 mhip->ip_off = htons(mhip->ip_off); 1024 mhip->ip_sum = 0; 1025 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1026 mhip->ip_sum = in_cksum(m, mhlen); 1027 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1028 } 1029 *mnext = m; 1030 mnext = &m->m_nextpkt; 1031 } 1032 IPSTAT_ADD(ips_ofragments, nfrags); 1033 1034 /* 1035 * Update first fragment by trimming what's been copied out 1036 * and updating header. 1037 */ 1038 m_adj(m0, hlen + firstlen - ip_len); 1039 m0->m_pkthdr.len = hlen + firstlen; 1040 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1041 ip->ip_off = htons(ip_off | IP_MF); 1042 ip->ip_sum = 0; 1043 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1044 ip->ip_sum = in_cksum(m0, hlen); 1045 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1046 } 1047 1048 done: 1049 *m_frag = m0; 1050 return error; 1051 } 1052 1053 void 1054 in_delayed_cksum(struct mbuf *m) 1055 { 1056 struct ip *ip; 1057 struct udphdr *uh; 1058 uint16_t cklen, csum, offset; 1059 1060 ip = mtod(m, struct ip *); 1061 offset = ip->ip_hl << 2 ; 1062 1063 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1064 /* if udp header is not in the first mbuf copy udplen */ 1065 if (offset + sizeof(struct udphdr) > m->m_len) { 1066 m_copydata(m, offset + offsetof(struct udphdr, 1067 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1068 cklen = ntohs(cklen); 1069 } else { 1070 uh = (struct udphdr *)mtodo(m, offset); 1071 cklen = ntohs(uh->uh_ulen); 1072 } 1073 csum = in_cksum_skip(m, cklen + offset, offset); 1074 if (csum == 0) 1075 csum = 0xffff; 1076 } else { 1077 cklen = ntohs(ip->ip_len); 1078 csum = in_cksum_skip(m, cklen, offset); 1079 } 1080 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1081 1082 if (offset + sizeof(csum) > m->m_len) 1083 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1084 else 1085 *(u_short *)mtodo(m, offset) = csum; 1086 } 1087 1088 /* 1089 * IP socket option processing. 1090 */ 1091 int 1092 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1093 { 1094 struct inpcb *inp = sotoinpcb(so); 1095 int error, optval; 1096 #ifdef RSS 1097 uint32_t rss_bucket; 1098 int retval; 1099 #endif 1100 1101 error = optval = 0; 1102 if (sopt->sopt_level != IPPROTO_IP) { 1103 error = EINVAL; 1104 1105 if (sopt->sopt_level == SOL_SOCKET && 1106 sopt->sopt_dir == SOPT_SET) { 1107 switch (sopt->sopt_name) { 1108 case SO_REUSEADDR: 1109 INP_WLOCK(inp); 1110 if ((so->so_options & SO_REUSEADDR) != 0) 1111 inp->inp_flags2 |= INP_REUSEADDR; 1112 else 1113 inp->inp_flags2 &= ~INP_REUSEADDR; 1114 INP_WUNLOCK(inp); 1115 error = 0; 1116 break; 1117 case SO_REUSEPORT: 1118 INP_WLOCK(inp); 1119 if ((so->so_options & SO_REUSEPORT) != 0) 1120 inp->inp_flags2 |= INP_REUSEPORT; 1121 else 1122 inp->inp_flags2 &= ~INP_REUSEPORT; 1123 INP_WUNLOCK(inp); 1124 error = 0; 1125 break; 1126 case SO_REUSEPORT_LB: 1127 INP_WLOCK(inp); 1128 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1129 inp->inp_flags2 |= INP_REUSEPORT_LB; 1130 else 1131 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1132 INP_WUNLOCK(inp); 1133 error = 0; 1134 break; 1135 case SO_SETFIB: 1136 INP_WLOCK(inp); 1137 inp->inp_inc.inc_fibnum = so->so_fibnum; 1138 INP_WUNLOCK(inp); 1139 error = 0; 1140 break; 1141 case SO_MAX_PACING_RATE: 1142 #ifdef RATELIMIT 1143 INP_WLOCK(inp); 1144 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1145 INP_WUNLOCK(inp); 1146 error = 0; 1147 #else 1148 error = EOPNOTSUPP; 1149 #endif 1150 break; 1151 default: 1152 break; 1153 } 1154 } 1155 return (error); 1156 } 1157 1158 switch (sopt->sopt_dir) { 1159 case SOPT_SET: 1160 switch (sopt->sopt_name) { 1161 case IP_OPTIONS: 1162 #ifdef notyet 1163 case IP_RETOPTS: 1164 #endif 1165 { 1166 struct mbuf *m; 1167 if (sopt->sopt_valsize > MLEN) { 1168 error = EMSGSIZE; 1169 break; 1170 } 1171 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1172 if (m == NULL) { 1173 error = ENOBUFS; 1174 break; 1175 } 1176 m->m_len = sopt->sopt_valsize; 1177 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1178 m->m_len); 1179 if (error) { 1180 m_free(m); 1181 break; 1182 } 1183 INP_WLOCK(inp); 1184 error = ip_pcbopts(inp, sopt->sopt_name, m); 1185 INP_WUNLOCK(inp); 1186 return (error); 1187 } 1188 1189 case IP_BINDANY: 1190 if (sopt->sopt_td != NULL) { 1191 error = priv_check(sopt->sopt_td, 1192 PRIV_NETINET_BINDANY); 1193 if (error) 1194 break; 1195 } 1196 /* FALLTHROUGH */ 1197 case IP_BINDMULTI: 1198 #ifdef RSS 1199 case IP_RSS_LISTEN_BUCKET: 1200 #endif 1201 case IP_TOS: 1202 case IP_TTL: 1203 case IP_MINTTL: 1204 case IP_RECVOPTS: 1205 case IP_RECVRETOPTS: 1206 case IP_ORIGDSTADDR: 1207 case IP_RECVDSTADDR: 1208 case IP_RECVTTL: 1209 case IP_RECVIF: 1210 case IP_ONESBCAST: 1211 case IP_DONTFRAG: 1212 case IP_RECVTOS: 1213 case IP_RECVFLOWID: 1214 #ifdef RSS 1215 case IP_RECVRSSBUCKETID: 1216 #endif 1217 error = sooptcopyin(sopt, &optval, sizeof optval, 1218 sizeof optval); 1219 if (error) 1220 break; 1221 1222 switch (sopt->sopt_name) { 1223 case IP_TOS: 1224 inp->inp_ip_tos = optval; 1225 break; 1226 1227 case IP_TTL: 1228 inp->inp_ip_ttl = optval; 1229 break; 1230 1231 case IP_MINTTL: 1232 if (optval >= 0 && optval <= MAXTTL) 1233 inp->inp_ip_minttl = optval; 1234 else 1235 error = EINVAL; 1236 break; 1237 1238 #define OPTSET(bit) do { \ 1239 INP_WLOCK(inp); \ 1240 if (optval) \ 1241 inp->inp_flags |= bit; \ 1242 else \ 1243 inp->inp_flags &= ~bit; \ 1244 INP_WUNLOCK(inp); \ 1245 } while (0) 1246 1247 #define OPTSET2(bit, val) do { \ 1248 INP_WLOCK(inp); \ 1249 if (val) \ 1250 inp->inp_flags2 |= bit; \ 1251 else \ 1252 inp->inp_flags2 &= ~bit; \ 1253 INP_WUNLOCK(inp); \ 1254 } while (0) 1255 1256 case IP_RECVOPTS: 1257 OPTSET(INP_RECVOPTS); 1258 break; 1259 1260 case IP_RECVRETOPTS: 1261 OPTSET(INP_RECVRETOPTS); 1262 break; 1263 1264 case IP_RECVDSTADDR: 1265 OPTSET(INP_RECVDSTADDR); 1266 break; 1267 1268 case IP_ORIGDSTADDR: 1269 OPTSET2(INP_ORIGDSTADDR, optval); 1270 break; 1271 1272 case IP_RECVTTL: 1273 OPTSET(INP_RECVTTL); 1274 break; 1275 1276 case IP_RECVIF: 1277 OPTSET(INP_RECVIF); 1278 break; 1279 1280 case IP_ONESBCAST: 1281 OPTSET(INP_ONESBCAST); 1282 break; 1283 case IP_DONTFRAG: 1284 OPTSET(INP_DONTFRAG); 1285 break; 1286 case IP_BINDANY: 1287 OPTSET(INP_BINDANY); 1288 break; 1289 case IP_RECVTOS: 1290 OPTSET(INP_RECVTOS); 1291 break; 1292 case IP_BINDMULTI: 1293 OPTSET2(INP_BINDMULTI, optval); 1294 break; 1295 case IP_RECVFLOWID: 1296 OPTSET2(INP_RECVFLOWID, optval); 1297 break; 1298 #ifdef RSS 1299 case IP_RSS_LISTEN_BUCKET: 1300 if ((optval >= 0) && 1301 (optval < rss_getnumbuckets())) { 1302 inp->inp_rss_listen_bucket = optval; 1303 OPTSET2(INP_RSS_BUCKET_SET, 1); 1304 } else { 1305 error = EINVAL; 1306 } 1307 break; 1308 case IP_RECVRSSBUCKETID: 1309 OPTSET2(INP_RECVRSSBUCKETID, optval); 1310 break; 1311 #endif 1312 } 1313 break; 1314 #undef OPTSET 1315 #undef OPTSET2 1316 1317 /* 1318 * Multicast socket options are processed by the in_mcast 1319 * module. 1320 */ 1321 case IP_MULTICAST_IF: 1322 case IP_MULTICAST_VIF: 1323 case IP_MULTICAST_TTL: 1324 case IP_MULTICAST_LOOP: 1325 case IP_ADD_MEMBERSHIP: 1326 case IP_DROP_MEMBERSHIP: 1327 case IP_ADD_SOURCE_MEMBERSHIP: 1328 case IP_DROP_SOURCE_MEMBERSHIP: 1329 case IP_BLOCK_SOURCE: 1330 case IP_UNBLOCK_SOURCE: 1331 case IP_MSFILTER: 1332 case MCAST_JOIN_GROUP: 1333 case MCAST_LEAVE_GROUP: 1334 case MCAST_JOIN_SOURCE_GROUP: 1335 case MCAST_LEAVE_SOURCE_GROUP: 1336 case MCAST_BLOCK_SOURCE: 1337 case MCAST_UNBLOCK_SOURCE: 1338 error = inp_setmoptions(inp, sopt); 1339 break; 1340 1341 case IP_PORTRANGE: 1342 error = sooptcopyin(sopt, &optval, sizeof optval, 1343 sizeof optval); 1344 if (error) 1345 break; 1346 1347 INP_WLOCK(inp); 1348 switch (optval) { 1349 case IP_PORTRANGE_DEFAULT: 1350 inp->inp_flags &= ~(INP_LOWPORT); 1351 inp->inp_flags &= ~(INP_HIGHPORT); 1352 break; 1353 1354 case IP_PORTRANGE_HIGH: 1355 inp->inp_flags &= ~(INP_LOWPORT); 1356 inp->inp_flags |= INP_HIGHPORT; 1357 break; 1358 1359 case IP_PORTRANGE_LOW: 1360 inp->inp_flags &= ~(INP_HIGHPORT); 1361 inp->inp_flags |= INP_LOWPORT; 1362 break; 1363 1364 default: 1365 error = EINVAL; 1366 break; 1367 } 1368 INP_WUNLOCK(inp); 1369 break; 1370 1371 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1372 case IP_IPSEC_POLICY: 1373 if (IPSEC_ENABLED(ipv4)) { 1374 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1375 break; 1376 } 1377 /* FALLTHROUGH */ 1378 #endif /* IPSEC */ 1379 1380 default: 1381 error = ENOPROTOOPT; 1382 break; 1383 } 1384 break; 1385 1386 case SOPT_GET: 1387 switch (sopt->sopt_name) { 1388 case IP_OPTIONS: 1389 case IP_RETOPTS: 1390 INP_RLOCK(inp); 1391 if (inp->inp_options) { 1392 struct mbuf *options; 1393 1394 options = m_copym(inp->inp_options, 0, 1395 M_COPYALL, M_NOWAIT); 1396 INP_RUNLOCK(inp); 1397 if (options != NULL) { 1398 error = sooptcopyout(sopt, 1399 mtod(options, char *), 1400 options->m_len); 1401 m_freem(options); 1402 } else 1403 error = ENOMEM; 1404 } else { 1405 INP_RUNLOCK(inp); 1406 sopt->sopt_valsize = 0; 1407 } 1408 break; 1409 1410 case IP_TOS: 1411 case IP_TTL: 1412 case IP_MINTTL: 1413 case IP_RECVOPTS: 1414 case IP_RECVRETOPTS: 1415 case IP_ORIGDSTADDR: 1416 case IP_RECVDSTADDR: 1417 case IP_RECVTTL: 1418 case IP_RECVIF: 1419 case IP_PORTRANGE: 1420 case IP_ONESBCAST: 1421 case IP_DONTFRAG: 1422 case IP_BINDANY: 1423 case IP_RECVTOS: 1424 case IP_BINDMULTI: 1425 case IP_FLOWID: 1426 case IP_FLOWTYPE: 1427 case IP_RECVFLOWID: 1428 #ifdef RSS 1429 case IP_RSSBUCKETID: 1430 case IP_RECVRSSBUCKETID: 1431 #endif 1432 switch (sopt->sopt_name) { 1433 case IP_TOS: 1434 optval = inp->inp_ip_tos; 1435 break; 1436 1437 case IP_TTL: 1438 optval = inp->inp_ip_ttl; 1439 break; 1440 1441 case IP_MINTTL: 1442 optval = inp->inp_ip_minttl; 1443 break; 1444 1445 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1446 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1447 1448 case IP_RECVOPTS: 1449 optval = OPTBIT(INP_RECVOPTS); 1450 break; 1451 1452 case IP_RECVRETOPTS: 1453 optval = OPTBIT(INP_RECVRETOPTS); 1454 break; 1455 1456 case IP_RECVDSTADDR: 1457 optval = OPTBIT(INP_RECVDSTADDR); 1458 break; 1459 1460 case IP_ORIGDSTADDR: 1461 optval = OPTBIT2(INP_ORIGDSTADDR); 1462 break; 1463 1464 case IP_RECVTTL: 1465 optval = OPTBIT(INP_RECVTTL); 1466 break; 1467 1468 case IP_RECVIF: 1469 optval = OPTBIT(INP_RECVIF); 1470 break; 1471 1472 case IP_PORTRANGE: 1473 if (inp->inp_flags & INP_HIGHPORT) 1474 optval = IP_PORTRANGE_HIGH; 1475 else if (inp->inp_flags & INP_LOWPORT) 1476 optval = IP_PORTRANGE_LOW; 1477 else 1478 optval = 0; 1479 break; 1480 1481 case IP_ONESBCAST: 1482 optval = OPTBIT(INP_ONESBCAST); 1483 break; 1484 case IP_DONTFRAG: 1485 optval = OPTBIT(INP_DONTFRAG); 1486 break; 1487 case IP_BINDANY: 1488 optval = OPTBIT(INP_BINDANY); 1489 break; 1490 case IP_RECVTOS: 1491 optval = OPTBIT(INP_RECVTOS); 1492 break; 1493 case IP_FLOWID: 1494 optval = inp->inp_flowid; 1495 break; 1496 case IP_FLOWTYPE: 1497 optval = inp->inp_flowtype; 1498 break; 1499 case IP_RECVFLOWID: 1500 optval = OPTBIT2(INP_RECVFLOWID); 1501 break; 1502 #ifdef RSS 1503 case IP_RSSBUCKETID: 1504 retval = rss_hash2bucket(inp->inp_flowid, 1505 inp->inp_flowtype, 1506 &rss_bucket); 1507 if (retval == 0) 1508 optval = rss_bucket; 1509 else 1510 error = EINVAL; 1511 break; 1512 case IP_RECVRSSBUCKETID: 1513 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1514 break; 1515 #endif 1516 case IP_BINDMULTI: 1517 optval = OPTBIT2(INP_BINDMULTI); 1518 break; 1519 } 1520 error = sooptcopyout(sopt, &optval, sizeof optval); 1521 break; 1522 1523 /* 1524 * Multicast socket options are processed by the in_mcast 1525 * module. 1526 */ 1527 case IP_MULTICAST_IF: 1528 case IP_MULTICAST_VIF: 1529 case IP_MULTICAST_TTL: 1530 case IP_MULTICAST_LOOP: 1531 case IP_MSFILTER: 1532 error = inp_getmoptions(inp, sopt); 1533 break; 1534 1535 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1536 case IP_IPSEC_POLICY: 1537 if (IPSEC_ENABLED(ipv4)) { 1538 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1539 break; 1540 } 1541 /* FALLTHROUGH */ 1542 #endif /* IPSEC */ 1543 1544 default: 1545 error = ENOPROTOOPT; 1546 break; 1547 } 1548 break; 1549 } 1550 return (error); 1551 } 1552 1553 /* 1554 * Routine called from ip_output() to loop back a copy of an IP multicast 1555 * packet to the input queue of a specified interface. Note that this 1556 * calls the output routine of the loopback "driver", but with an interface 1557 * pointer that might NOT be a loopback interface -- evil, but easier than 1558 * replicating that code here. 1559 */ 1560 static void 1561 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1562 { 1563 struct ip *ip; 1564 struct mbuf *copym; 1565 1566 /* 1567 * Make a deep copy of the packet because we're going to 1568 * modify the pack in order to generate checksums. 1569 */ 1570 copym = m_dup(m, M_NOWAIT); 1571 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1572 copym = m_pullup(copym, hlen); 1573 if (copym != NULL) { 1574 /* If needed, compute the checksum and mark it as valid. */ 1575 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1576 in_delayed_cksum(copym); 1577 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1578 copym->m_pkthdr.csum_flags |= 1579 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1580 copym->m_pkthdr.csum_data = 0xffff; 1581 } 1582 /* 1583 * We don't bother to fragment if the IP length is greater 1584 * than the interface's MTU. Can this possibly matter? 1585 */ 1586 ip = mtod(copym, struct ip *); 1587 ip->ip_sum = 0; 1588 ip->ip_sum = in_cksum(copym, hlen); 1589 if_simloop(ifp, copym, AF_INET, 0); 1590 } 1591 } 1592