xref: /freebsd/sys/netinet/ip_output.c (revision f7c4bd95ba735bd6a5454b4953945a99cefbb80c)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ipfw.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mpath.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/sysctl.h>
52 #include <sys/ucred.h>
53 
54 #include <net/if.h>
55 #include <net/netisr.h>
56 #include <net/pfil.h>
57 #include <net/route.h>
58 #ifdef RADIX_MPATH
59 #include <net/radix_mpath.h>
60 #endif
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/ip.h>
65 #include <netinet/in_pcb.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip_var.h>
68 #include <netinet/ip_options.h>
69 
70 #ifdef IPSEC
71 #include <netinet/ip_ipsec.h>
72 #include <netipsec/ipsec.h>
73 #endif /* IPSEC*/
74 
75 #include <machine/in_cksum.h>
76 
77 #include <security/mac/mac_framework.h>
78 
79 #define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
80 				x, (ntohl(a.s_addr)>>24)&0xFF,\
81 				  (ntohl(a.s_addr)>>16)&0xFF,\
82 				  (ntohl(a.s_addr)>>8)&0xFF,\
83 				  (ntohl(a.s_addr))&0xFF, y);
84 
85 u_short ip_id;
86 
87 #ifdef MBUF_STRESS_TEST
88 int mbuf_frag_size = 0;
89 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
90 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
91 #endif
92 
93 static void	ip_mloopback
94 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
95 
96 
97 extern	struct protosw inetsw[];
98 
99 /*
100  * IP output.  The packet in mbuf chain m contains a skeletal IP
101  * header (with len, off, ttl, proto, tos, src, dst).
102  * The mbuf chain containing the packet will be freed.
103  * The mbuf opt, if present, will not be freed.
104  * In the IP forwarding case, the packet will arrive with options already
105  * inserted, so must have a NULL opt pointer.
106  */
107 int
108 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
109     struct ip_moptions *imo, struct inpcb *inp)
110 {
111 	struct ip *ip;
112 	struct ifnet *ifp = NULL;	/* keep compiler happy */
113 	struct mbuf *m0;
114 	int hlen = sizeof (struct ip);
115 	int mtu;
116 	int len, error = 0;
117 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
118 	struct in_ifaddr *ia = NULL;
119 	int isbroadcast, sw_csum;
120 	struct route iproute;
121 	struct in_addr odst;
122 #ifdef IPFIREWALL_FORWARD
123 	struct m_tag *fwd_tag = NULL;
124 #endif
125 	M_ASSERTPKTHDR(m);
126 
127 	if (ro == NULL) {
128 		ro = &iproute;
129 		bzero(ro, sizeof (*ro));
130 	}
131 
132 	if (inp != NULL)
133 		INP_LOCK_ASSERT(inp);
134 
135 	if (opt) {
136 		len = 0;
137 		m = ip_insertoptions(m, opt, &len);
138 		if (len != 0)
139 			hlen = len;
140 	}
141 	ip = mtod(m, struct ip *);
142 
143 	/*
144 	 * Fill in IP header.  If we are not allowing fragmentation,
145 	 * then the ip_id field is meaningless, but we don't set it
146 	 * to zero.  Doing so causes various problems when devices along
147 	 * the path (routers, load balancers, firewalls, etc.) illegally
148 	 * disable DF on our packet.  Note that a 16-bit counter
149 	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
150 	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
151 	 * for Counting NATted Hosts", Proc. IMW'02, available at
152 	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
153 	 */
154 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
155 		ip->ip_v = IPVERSION;
156 		ip->ip_hl = hlen >> 2;
157 		ip->ip_id = ip_newid();
158 		ipstat.ips_localout++;
159 	} else {
160 		hlen = ip->ip_hl << 2;
161 	}
162 
163 	dst = (struct sockaddr_in *)&ro->ro_dst;
164 again:
165 	/*
166 	 * If there is a cached route,
167 	 * check that it is to the same destination
168 	 * and is still up.  If not, free it and try again.
169 	 * The address family should also be checked in case of sharing the
170 	 * cache with IPv6.
171 	 */
172 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
173 			  dst->sin_family != AF_INET ||
174 			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
175 		RTFREE(ro->ro_rt);
176 		ro->ro_rt = (struct rtentry *)NULL;
177 	}
178 #ifdef IPFIREWALL_FORWARD
179 	if (ro->ro_rt == NULL && fwd_tag == NULL) {
180 #else
181 	if (ro->ro_rt == NULL) {
182 #endif
183 		bzero(dst, sizeof(*dst));
184 		dst->sin_family = AF_INET;
185 		dst->sin_len = sizeof(*dst);
186 		dst->sin_addr = ip->ip_dst;
187 	}
188 	/*
189 	 * If routing to interface only, short circuit routing lookup.
190 	 * The use of an all-ones broadcast address implies this; an
191 	 * interface is specified by the broadcast address of an interface,
192 	 * or the destination address of a ptp interface.
193 	 */
194 	if (flags & IP_SENDONES) {
195 		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
196 		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
197 			ipstat.ips_noroute++;
198 			error = ENETUNREACH;
199 			goto bad;
200 		}
201 		ip->ip_dst.s_addr = INADDR_BROADCAST;
202 		dst->sin_addr = ip->ip_dst;
203 		ifp = ia->ia_ifp;
204 		ip->ip_ttl = 1;
205 		isbroadcast = 1;
206 	} else if (flags & IP_ROUTETOIF) {
207 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
208 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
209 			ipstat.ips_noroute++;
210 			error = ENETUNREACH;
211 			goto bad;
212 		}
213 		ifp = ia->ia_ifp;
214 		ip->ip_ttl = 1;
215 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
216 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
217 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
218 		/*
219 		 * Bypass the normal routing lookup for multicast
220 		 * packets if the interface is specified.
221 		 */
222 		ifp = imo->imo_multicast_ifp;
223 		IFP_TO_IA(ifp, ia);
224 		isbroadcast = 0;	/* fool gcc */
225 	} else {
226 		/*
227 		 * We want to do any cloning requested by the link layer,
228 		 * as this is probably required in all cases for correct
229 		 * operation (as it is for ARP).
230 		 */
231 		if (ro->ro_rt == NULL)
232 #ifdef RADIX_MPATH
233 			rtalloc_mpath_fib(ro,
234 			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
235 			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
236 #else
237 			in_rtalloc_ign(ro, 0,
238 			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
239 #endif
240 		if (ro->ro_rt == NULL) {
241 			ipstat.ips_noroute++;
242 			error = EHOSTUNREACH;
243 			goto bad;
244 		}
245 		ia = ifatoia(ro->ro_rt->rt_ifa);
246 		ifp = ro->ro_rt->rt_ifp;
247 		ro->ro_rt->rt_rmx.rmx_pksent++;
248 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
249 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
250 		if (ro->ro_rt->rt_flags & RTF_HOST)
251 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
252 		else
253 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
254 	}
255 	/*
256 	 * Calculate MTU.  If we have a route that is up, use that,
257 	 * otherwise use the interface's MTU.
258 	 */
259 	if (ro->ro_rt != NULL && (ro->ro_rt->rt_flags & (RTF_UP|RTF_HOST))) {
260 		/*
261 		 * This case can happen if the user changed the MTU
262 		 * of an interface after enabling IP on it.  Because
263 		 * most netifs don't keep track of routes pointing to
264 		 * them, there is no way for one to update all its
265 		 * routes when the MTU is changed.
266 		 */
267 		if (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)
268 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
269 		mtu = ro->ro_rt->rt_rmx.rmx_mtu;
270 	} else {
271 		mtu = ifp->if_mtu;
272 	}
273 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
274 		struct in_multi *inm;
275 
276 		m->m_flags |= M_MCAST;
277 		/*
278 		 * IP destination address is multicast.  Make sure "dst"
279 		 * still points to the address in "ro".  (It may have been
280 		 * changed to point to a gateway address, above.)
281 		 */
282 		dst = (struct sockaddr_in *)&ro->ro_dst;
283 		/*
284 		 * See if the caller provided any multicast options
285 		 */
286 		if (imo != NULL) {
287 			ip->ip_ttl = imo->imo_multicast_ttl;
288 			if (imo->imo_multicast_vif != -1)
289 				ip->ip_src.s_addr =
290 				    ip_mcast_src ?
291 				    ip_mcast_src(imo->imo_multicast_vif) :
292 				    INADDR_ANY;
293 		} else
294 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
295 		/*
296 		 * Confirm that the outgoing interface supports multicast.
297 		 */
298 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
299 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
300 				ipstat.ips_noroute++;
301 				error = ENETUNREACH;
302 				goto bad;
303 			}
304 		}
305 		/*
306 		 * If source address not specified yet, use address
307 		 * of outgoing interface.
308 		 */
309 		if (ip->ip_src.s_addr == INADDR_ANY) {
310 			/* Interface may have no addresses. */
311 			if (ia != NULL)
312 				ip->ip_src = IA_SIN(ia)->sin_addr;
313 		}
314 
315 		IN_MULTI_LOCK();
316 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
317 		if (inm != NULL &&
318 		   (imo == NULL || imo->imo_multicast_loop)) {
319 			IN_MULTI_UNLOCK();
320 			/*
321 			 * If we belong to the destination multicast group
322 			 * on the outgoing interface, and the caller did not
323 			 * forbid loopback, loop back a copy.
324 			 */
325 			ip_mloopback(ifp, m, dst, hlen);
326 		}
327 		else {
328 			IN_MULTI_UNLOCK();
329 			/*
330 			 * If we are acting as a multicast router, perform
331 			 * multicast forwarding as if the packet had just
332 			 * arrived on the interface to which we are about
333 			 * to send.  The multicast forwarding function
334 			 * recursively calls this function, using the
335 			 * IP_FORWARDING flag to prevent infinite recursion.
336 			 *
337 			 * Multicasts that are looped back by ip_mloopback(),
338 			 * above, will be forwarded by the ip_input() routine,
339 			 * if necessary.
340 			 */
341 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
342 				/*
343 				 * If rsvp daemon is not running, do not
344 				 * set ip_moptions. This ensures that the packet
345 				 * is multicast and not just sent down one link
346 				 * as prescribed by rsvpd.
347 				 */
348 				if (!rsvp_on)
349 					imo = NULL;
350 				if (ip_mforward &&
351 				    ip_mforward(ip, ifp, m, imo) != 0) {
352 					m_freem(m);
353 					goto done;
354 				}
355 			}
356 		}
357 
358 		/*
359 		 * Multicasts with a time-to-live of zero may be looped-
360 		 * back, above, but must not be transmitted on a network.
361 		 * Also, multicasts addressed to the loopback interface
362 		 * are not sent -- the above call to ip_mloopback() will
363 		 * loop back a copy if this host actually belongs to the
364 		 * destination group on the loopback interface.
365 		 */
366 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
367 			m_freem(m);
368 			goto done;
369 		}
370 
371 		goto sendit;
372 	}
373 
374 	/*
375 	 * If the source address is not specified yet, use the address
376 	 * of the outoing interface.
377 	 */
378 	if (ip->ip_src.s_addr == INADDR_ANY) {
379 		/* Interface may have no addresses. */
380 		if (ia != NULL) {
381 			ip->ip_src = IA_SIN(ia)->sin_addr;
382 		}
383 	}
384 
385 	/*
386 	 * Verify that we have any chance at all of being able to queue the
387 	 * packet or packet fragments, unless ALTQ is enabled on the given
388 	 * interface in which case packetdrop should be done by queueing.
389 	 */
390 #ifdef ALTQ
391 	if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
392 	    ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
393 	    ifp->if_snd.ifq_maxlen))
394 #else
395 	if ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
396 	    ifp->if_snd.ifq_maxlen)
397 #endif /* ALTQ */
398 	{
399 		error = ENOBUFS;
400 		ipstat.ips_odropped++;
401 		ifp->if_snd.ifq_drops += (ip->ip_len / ifp->if_mtu + 1);
402 		goto bad;
403 	}
404 
405 	/*
406 	 * Look for broadcast address and
407 	 * verify user is allowed to send
408 	 * such a packet.
409 	 */
410 	if (isbroadcast) {
411 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
412 			error = EADDRNOTAVAIL;
413 			goto bad;
414 		}
415 		if ((flags & IP_ALLOWBROADCAST) == 0) {
416 			error = EACCES;
417 			goto bad;
418 		}
419 		/* don't allow broadcast messages to be fragmented */
420 		if (ip->ip_len > mtu) {
421 			error = EMSGSIZE;
422 			goto bad;
423 		}
424 		m->m_flags |= M_BCAST;
425 	} else {
426 		m->m_flags &= ~M_BCAST;
427 	}
428 
429 sendit:
430 #ifdef IPSEC
431 	switch(ip_ipsec_output(&m, inp, &flags, &error, &ro, &iproute, &dst, &ia, &ifp)) {
432 	case 1:
433 		goto bad;
434 	case -1:
435 		goto done;
436 	case 0:
437 	default:
438 		break;	/* Continue with packet processing. */
439 	}
440 	/* Update variables that are affected by ipsec4_output(). */
441 	ip = mtod(m, struct ip *);
442 	hlen = ip->ip_hl << 2;
443 #endif /* IPSEC */
444 
445 	/* Jump over all PFIL processing if hooks are not active. */
446 	if (!PFIL_HOOKED(&inet_pfil_hook))
447 		goto passout;
448 
449 	/* Run through list of hooks for output packets. */
450 	odst.s_addr = ip->ip_dst.s_addr;
451 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
452 	if (error != 0 || m == NULL)
453 		goto done;
454 
455 	ip = mtod(m, struct ip *);
456 
457 	/* See if destination IP address was changed by packet filter. */
458 	if (odst.s_addr != ip->ip_dst.s_addr) {
459 		m->m_flags |= M_SKIP_FIREWALL;
460 		/* If destination is now ourself drop to ip_input(). */
461 		if (in_localip(ip->ip_dst)) {
462 			m->m_flags |= M_FASTFWD_OURS;
463 			if (m->m_pkthdr.rcvif == NULL)
464 				m->m_pkthdr.rcvif = loif;
465 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
466 				m->m_pkthdr.csum_flags |=
467 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
468 				m->m_pkthdr.csum_data = 0xffff;
469 			}
470 			m->m_pkthdr.csum_flags |=
471 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
472 
473 			error = netisr_queue(NETISR_IP, m);
474 			goto done;
475 		} else
476 			goto again;	/* Redo the routing table lookup. */
477 	}
478 
479 #ifdef IPFIREWALL_FORWARD
480 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
481 	if (m->m_flags & M_FASTFWD_OURS) {
482 		if (m->m_pkthdr.rcvif == NULL)
483 			m->m_pkthdr.rcvif = loif;
484 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
485 			m->m_pkthdr.csum_flags |=
486 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
487 			m->m_pkthdr.csum_data = 0xffff;
488 		}
489 		m->m_pkthdr.csum_flags |=
490 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
491 
492 		error = netisr_queue(NETISR_IP, m);
493 		goto done;
494 	}
495 	/* Or forward to some other address? */
496 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
497 	if (fwd_tag) {
498 		dst = (struct sockaddr_in *)&ro->ro_dst;
499 		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
500 		m->m_flags |= M_SKIP_FIREWALL;
501 		m_tag_delete(m, fwd_tag);
502 		goto again;
503 	}
504 #endif /* IPFIREWALL_FORWARD */
505 
506 passout:
507 	/* 127/8 must not appear on wire - RFC1122. */
508 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
509 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
510 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
511 			ipstat.ips_badaddr++;
512 			error = EADDRNOTAVAIL;
513 			goto bad;
514 		}
515 	}
516 
517 	m->m_pkthdr.csum_flags |= CSUM_IP;
518 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
519 	if (sw_csum & CSUM_DELAY_DATA) {
520 		in_delayed_cksum(m);
521 		sw_csum &= ~CSUM_DELAY_DATA;
522 	}
523 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
524 
525 	/*
526 	 * If small enough for interface, or the interface will take
527 	 * care of the fragmentation for us, we can just send directly.
528 	 */
529 	if (ip->ip_len <= mtu ||
530 	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
531 	    ((ip->ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
532 		ip->ip_len = htons(ip->ip_len);
533 		ip->ip_off = htons(ip->ip_off);
534 		ip->ip_sum = 0;
535 		if (sw_csum & CSUM_DELAY_IP)
536 			ip->ip_sum = in_cksum(m, hlen);
537 
538 		/*
539 		 * Record statistics for this interface address.
540 		 * With CSUM_TSO the byte/packet count will be slightly
541 		 * incorrect because we count the IP+TCP headers only
542 		 * once instead of for every generated packet.
543 		 */
544 		if (!(flags & IP_FORWARDING) && ia) {
545 			if (m->m_pkthdr.csum_flags & CSUM_TSO)
546 				ia->ia_ifa.if_opackets +=
547 				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
548 			else
549 				ia->ia_ifa.if_opackets++;
550 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
551 		}
552 #ifdef MBUF_STRESS_TEST
553 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
554 			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
555 #endif
556 		/*
557 		 * Reset layer specific mbuf flags
558 		 * to avoid confusing lower layers.
559 		 */
560 		m->m_flags &= ~(M_PROTOFLAGS);
561 
562 		error = (*ifp->if_output)(ifp, m,
563 				(struct sockaddr *)dst, ro->ro_rt);
564 		goto done;
565 	}
566 
567 	/* Balk when DF bit is set or the interface didn't support TSO. */
568 	if ((ip->ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
569 		error = EMSGSIZE;
570 		ipstat.ips_cantfrag++;
571 		goto bad;
572 	}
573 
574 	/*
575 	 * Too large for interface; fragment if possible. If successful,
576 	 * on return, m will point to a list of packets to be sent.
577 	 */
578 	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist, sw_csum);
579 	if (error)
580 		goto bad;
581 	for (; m; m = m0) {
582 		m0 = m->m_nextpkt;
583 		m->m_nextpkt = 0;
584 		if (error == 0) {
585 			/* Record statistics for this interface address. */
586 			if (ia != NULL) {
587 				ia->ia_ifa.if_opackets++;
588 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
589 			}
590 			/*
591 			 * Reset layer specific mbuf flags
592 			 * to avoid confusing upper layers.
593 			 */
594 			m->m_flags &= ~(M_PROTOFLAGS);
595 
596 			error = (*ifp->if_output)(ifp, m,
597 			    (struct sockaddr *)dst, ro->ro_rt);
598 		} else
599 			m_freem(m);
600 	}
601 
602 	if (error == 0)
603 		ipstat.ips_fragmented++;
604 
605 done:
606 	if (ro == &iproute && ro->ro_rt) {
607 		RTFREE(ro->ro_rt);
608 	}
609 	return (error);
610 bad:
611 	m_freem(m);
612 	goto done;
613 }
614 
615 /*
616  * Create a chain of fragments which fit the given mtu. m_frag points to the
617  * mbuf to be fragmented; on return it points to the chain with the fragments.
618  * Return 0 if no error. If error, m_frag may contain a partially built
619  * chain of fragments that should be freed by the caller.
620  *
621  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
622  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
623  */
624 int
625 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
626     u_long if_hwassist_flags, int sw_csum)
627 {
628 	int error = 0;
629 	int hlen = ip->ip_hl << 2;
630 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
631 	int off;
632 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
633 	int firstlen;
634 	struct mbuf **mnext;
635 	int nfrags;
636 
637 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
638 		ipstat.ips_cantfrag++;
639 		return EMSGSIZE;
640 	}
641 
642 	/*
643 	 * Must be able to put at least 8 bytes per fragment.
644 	 */
645 	if (len < 8)
646 		return EMSGSIZE;
647 
648 	/*
649 	 * If the interface will not calculate checksums on
650 	 * fragmented packets, then do it here.
651 	 */
652 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
653 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
654 		in_delayed_cksum(m0);
655 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
656 	}
657 
658 	if (len > PAGE_SIZE) {
659 		/*
660 		 * Fragment large datagrams such that each segment
661 		 * contains a multiple of PAGE_SIZE amount of data,
662 		 * plus headers. This enables a receiver to perform
663 		 * page-flipping zero-copy optimizations.
664 		 *
665 		 * XXX When does this help given that sender and receiver
666 		 * could have different page sizes, and also mtu could
667 		 * be less than the receiver's page size ?
668 		 */
669 		int newlen;
670 		struct mbuf *m;
671 
672 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
673 			off += m->m_len;
674 
675 		/*
676 		 * firstlen (off - hlen) must be aligned on an
677 		 * 8-byte boundary
678 		 */
679 		if (off < hlen)
680 			goto smart_frag_failure;
681 		off = ((off - hlen) & ~7) + hlen;
682 		newlen = (~PAGE_MASK) & mtu;
683 		if ((newlen + sizeof (struct ip)) > mtu) {
684 			/* we failed, go back the default */
685 smart_frag_failure:
686 			newlen = len;
687 			off = hlen + len;
688 		}
689 		len = newlen;
690 
691 	} else {
692 		off = hlen + len;
693 	}
694 
695 	firstlen = off - hlen;
696 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
697 
698 	/*
699 	 * Loop through length of segment after first fragment,
700 	 * make new header and copy data of each part and link onto chain.
701 	 * Here, m0 is the original packet, m is the fragment being created.
702 	 * The fragments are linked off the m_nextpkt of the original
703 	 * packet, which after processing serves as the first fragment.
704 	 */
705 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
706 		struct ip *mhip;	/* ip header on the fragment */
707 		struct mbuf *m;
708 		int mhlen = sizeof (struct ip);
709 
710 		MGETHDR(m, M_DONTWAIT, MT_DATA);
711 		if (m == NULL) {
712 			error = ENOBUFS;
713 			ipstat.ips_odropped++;
714 			goto done;
715 		}
716 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
717 		/*
718 		 * In the first mbuf, leave room for the link header, then
719 		 * copy the original IP header including options. The payload
720 		 * goes into an additional mbuf chain returned by m_copy().
721 		 */
722 		m->m_data += max_linkhdr;
723 		mhip = mtod(m, struct ip *);
724 		*mhip = *ip;
725 		if (hlen > sizeof (struct ip)) {
726 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
727 			mhip->ip_v = IPVERSION;
728 			mhip->ip_hl = mhlen >> 2;
729 		}
730 		m->m_len = mhlen;
731 		/* XXX do we need to add ip->ip_off below ? */
732 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
733 		if (off + len >= ip->ip_len) {	/* last fragment */
734 			len = ip->ip_len - off;
735 			m->m_flags |= M_LASTFRAG;
736 		} else
737 			mhip->ip_off |= IP_MF;
738 		mhip->ip_len = htons((u_short)(len + mhlen));
739 		m->m_next = m_copy(m0, off, len);
740 		if (m->m_next == NULL) {	/* copy failed */
741 			m_free(m);
742 			error = ENOBUFS;	/* ??? */
743 			ipstat.ips_odropped++;
744 			goto done;
745 		}
746 		m->m_pkthdr.len = mhlen + len;
747 		m->m_pkthdr.rcvif = NULL;
748 #ifdef MAC
749 		mac_netinet_fragment(m0, m);
750 #endif
751 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
752 		mhip->ip_off = htons(mhip->ip_off);
753 		mhip->ip_sum = 0;
754 		if (sw_csum & CSUM_DELAY_IP)
755 			mhip->ip_sum = in_cksum(m, mhlen);
756 		*mnext = m;
757 		mnext = &m->m_nextpkt;
758 	}
759 	ipstat.ips_ofragments += nfrags;
760 
761 	/* set first marker for fragment chain */
762 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
763 	m0->m_pkthdr.csum_data = nfrags;
764 
765 	/*
766 	 * Update first fragment by trimming what's been copied out
767 	 * and updating header.
768 	 */
769 	m_adj(m0, hlen + firstlen - ip->ip_len);
770 	m0->m_pkthdr.len = hlen + firstlen;
771 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
772 	ip->ip_off |= IP_MF;
773 	ip->ip_off = htons(ip->ip_off);
774 	ip->ip_sum = 0;
775 	if (sw_csum & CSUM_DELAY_IP)
776 		ip->ip_sum = in_cksum(m0, hlen);
777 
778 done:
779 	*m_frag = m0;
780 	return error;
781 }
782 
783 void
784 in_delayed_cksum(struct mbuf *m)
785 {
786 	struct ip *ip;
787 	u_short csum, offset;
788 
789 	ip = mtod(m, struct ip *);
790 	offset = ip->ip_hl << 2 ;
791 	csum = in_cksum_skip(m, ip->ip_len, offset);
792 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
793 		csum = 0xffff;
794 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
795 
796 	if (offset + sizeof(u_short) > m->m_len) {
797 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
798 		    m->m_len, offset, ip->ip_p);
799 		/*
800 		 * XXX
801 		 * this shouldn't happen, but if it does, the
802 		 * correct behavior may be to insert the checksum
803 		 * in the appropriate next mbuf in the chain.
804 		 */
805 		return;
806 	}
807 	*(u_short *)(m->m_data + offset) = csum;
808 }
809 
810 /*
811  * IP socket option processing.
812  */
813 int
814 ip_ctloutput(struct socket *so, struct sockopt *sopt)
815 {
816 	struct	inpcb *inp = sotoinpcb(so);
817 	int	error, optval;
818 
819 	error = optval = 0;
820 	if (sopt->sopt_level != IPPROTO_IP) {
821 		return (EINVAL);
822 	}
823 
824 	switch (sopt->sopt_dir) {
825 	case SOPT_SET:
826 		switch (sopt->sopt_name) {
827 		case IP_OPTIONS:
828 #ifdef notyet
829 		case IP_RETOPTS:
830 #endif
831 		{
832 			struct mbuf *m;
833 			if (sopt->sopt_valsize > MLEN) {
834 				error = EMSGSIZE;
835 				break;
836 			}
837 			MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
838 			if (m == NULL) {
839 				error = ENOBUFS;
840 				break;
841 			}
842 			m->m_len = sopt->sopt_valsize;
843 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
844 					    m->m_len);
845 			if (error) {
846 				m_free(m);
847 				break;
848 			}
849 			INP_WLOCK(inp);
850 			error = ip_pcbopts(inp, sopt->sopt_name, m);
851 			INP_WUNLOCK(inp);
852 			return (error);
853 		}
854 
855 		case IP_TOS:
856 		case IP_TTL:
857 		case IP_MINTTL:
858 		case IP_RECVOPTS:
859 		case IP_RECVRETOPTS:
860 		case IP_RECVDSTADDR:
861 		case IP_RECVTTL:
862 		case IP_RECVIF:
863 		case IP_FAITH:
864 		case IP_ONESBCAST:
865 		case IP_DONTFRAG:
866 			error = sooptcopyin(sopt, &optval, sizeof optval,
867 					    sizeof optval);
868 			if (error)
869 				break;
870 
871 			switch (sopt->sopt_name) {
872 			case IP_TOS:
873 				inp->inp_ip_tos = optval;
874 				break;
875 
876 			case IP_TTL:
877 				inp->inp_ip_ttl = optval;
878 				break;
879 
880 			case IP_MINTTL:
881 				if (optval > 0 && optval <= MAXTTL)
882 					inp->inp_ip_minttl = optval;
883 				else
884 					error = EINVAL;
885 				break;
886 
887 #define	OPTSET(bit) do {						\
888 	INP_WLOCK(inp);							\
889 	if (optval)							\
890 		inp->inp_flags |= bit;					\
891 	else								\
892 		inp->inp_flags &= ~bit;					\
893 	INP_WUNLOCK(inp);						\
894 } while (0)
895 
896 			case IP_RECVOPTS:
897 				OPTSET(INP_RECVOPTS);
898 				break;
899 
900 			case IP_RECVRETOPTS:
901 				OPTSET(INP_RECVRETOPTS);
902 				break;
903 
904 			case IP_RECVDSTADDR:
905 				OPTSET(INP_RECVDSTADDR);
906 				break;
907 
908 			case IP_RECVTTL:
909 				OPTSET(INP_RECVTTL);
910 				break;
911 
912 			case IP_RECVIF:
913 				OPTSET(INP_RECVIF);
914 				break;
915 
916 			case IP_FAITH:
917 				OPTSET(INP_FAITH);
918 				break;
919 
920 			case IP_ONESBCAST:
921 				OPTSET(INP_ONESBCAST);
922 				break;
923 			case IP_DONTFRAG:
924 				OPTSET(INP_DONTFRAG);
925 				break;
926 			}
927 			break;
928 #undef OPTSET
929 
930 		/*
931 		 * Multicast socket options are processed by the in_mcast
932 		 * module.
933 		 */
934 		case IP_MULTICAST_IF:
935 		case IP_MULTICAST_VIF:
936 		case IP_MULTICAST_TTL:
937 		case IP_MULTICAST_LOOP:
938 		case IP_ADD_MEMBERSHIP:
939 		case IP_DROP_MEMBERSHIP:
940 		case IP_ADD_SOURCE_MEMBERSHIP:
941 		case IP_DROP_SOURCE_MEMBERSHIP:
942 		case IP_BLOCK_SOURCE:
943 		case IP_UNBLOCK_SOURCE:
944 		case IP_MSFILTER:
945 		case MCAST_JOIN_GROUP:
946 		case MCAST_LEAVE_GROUP:
947 		case MCAST_JOIN_SOURCE_GROUP:
948 		case MCAST_LEAVE_SOURCE_GROUP:
949 		case MCAST_BLOCK_SOURCE:
950 		case MCAST_UNBLOCK_SOURCE:
951 			error = inp_setmoptions(inp, sopt);
952 			break;
953 
954 		case IP_PORTRANGE:
955 			error = sooptcopyin(sopt, &optval, sizeof optval,
956 					    sizeof optval);
957 			if (error)
958 				break;
959 
960 			INP_WLOCK(inp);
961 			switch (optval) {
962 			case IP_PORTRANGE_DEFAULT:
963 				inp->inp_flags &= ~(INP_LOWPORT);
964 				inp->inp_flags &= ~(INP_HIGHPORT);
965 				break;
966 
967 			case IP_PORTRANGE_HIGH:
968 				inp->inp_flags &= ~(INP_LOWPORT);
969 				inp->inp_flags |= INP_HIGHPORT;
970 				break;
971 
972 			case IP_PORTRANGE_LOW:
973 				inp->inp_flags &= ~(INP_HIGHPORT);
974 				inp->inp_flags |= INP_LOWPORT;
975 				break;
976 
977 			default:
978 				error = EINVAL;
979 				break;
980 			}
981 			INP_WUNLOCK(inp);
982 			break;
983 
984 #ifdef IPSEC
985 		case IP_IPSEC_POLICY:
986 		{
987 			caddr_t req;
988 			struct mbuf *m;
989 
990 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
991 				break;
992 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
993 				break;
994 			req = mtod(m, caddr_t);
995 			error = ipsec4_set_policy(inp, sopt->sopt_name, req,
996 			    m->m_len, (sopt->sopt_td != NULL) ?
997 			    sopt->sopt_td->td_ucred : NULL);
998 			m_freem(m);
999 			break;
1000 		}
1001 #endif /* IPSEC */
1002 
1003 		default:
1004 			error = ENOPROTOOPT;
1005 			break;
1006 		}
1007 		break;
1008 
1009 	case SOPT_GET:
1010 		switch (sopt->sopt_name) {
1011 		case IP_OPTIONS:
1012 		case IP_RETOPTS:
1013 			if (inp->inp_options)
1014 				error = sooptcopyout(sopt,
1015 						     mtod(inp->inp_options,
1016 							  char *),
1017 						     inp->inp_options->m_len);
1018 			else
1019 				sopt->sopt_valsize = 0;
1020 			break;
1021 
1022 		case IP_TOS:
1023 		case IP_TTL:
1024 		case IP_MINTTL:
1025 		case IP_RECVOPTS:
1026 		case IP_RECVRETOPTS:
1027 		case IP_RECVDSTADDR:
1028 		case IP_RECVTTL:
1029 		case IP_RECVIF:
1030 		case IP_PORTRANGE:
1031 		case IP_FAITH:
1032 		case IP_ONESBCAST:
1033 		case IP_DONTFRAG:
1034 			switch (sopt->sopt_name) {
1035 
1036 			case IP_TOS:
1037 				optval = inp->inp_ip_tos;
1038 				break;
1039 
1040 			case IP_TTL:
1041 				optval = inp->inp_ip_ttl;
1042 				break;
1043 
1044 			case IP_MINTTL:
1045 				optval = inp->inp_ip_minttl;
1046 				break;
1047 
1048 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1049 
1050 			case IP_RECVOPTS:
1051 				optval = OPTBIT(INP_RECVOPTS);
1052 				break;
1053 
1054 			case IP_RECVRETOPTS:
1055 				optval = OPTBIT(INP_RECVRETOPTS);
1056 				break;
1057 
1058 			case IP_RECVDSTADDR:
1059 				optval = OPTBIT(INP_RECVDSTADDR);
1060 				break;
1061 
1062 			case IP_RECVTTL:
1063 				optval = OPTBIT(INP_RECVTTL);
1064 				break;
1065 
1066 			case IP_RECVIF:
1067 				optval = OPTBIT(INP_RECVIF);
1068 				break;
1069 
1070 			case IP_PORTRANGE:
1071 				if (inp->inp_flags & INP_HIGHPORT)
1072 					optval = IP_PORTRANGE_HIGH;
1073 				else if (inp->inp_flags & INP_LOWPORT)
1074 					optval = IP_PORTRANGE_LOW;
1075 				else
1076 					optval = 0;
1077 				break;
1078 
1079 			case IP_FAITH:
1080 				optval = OPTBIT(INP_FAITH);
1081 				break;
1082 
1083 			case IP_ONESBCAST:
1084 				optval = OPTBIT(INP_ONESBCAST);
1085 				break;
1086 			case IP_DONTFRAG:
1087 				optval = OPTBIT(INP_DONTFRAG);
1088 				break;
1089 			}
1090 			error = sooptcopyout(sopt, &optval, sizeof optval);
1091 			break;
1092 
1093 		/*
1094 		 * Multicast socket options are processed by the in_mcast
1095 		 * module.
1096 		 */
1097 		case IP_MULTICAST_IF:
1098 		case IP_MULTICAST_VIF:
1099 		case IP_MULTICAST_TTL:
1100 		case IP_MULTICAST_LOOP:
1101 		case IP_MSFILTER:
1102 			error = inp_getmoptions(inp, sopt);
1103 			break;
1104 
1105 #ifdef IPSEC
1106 		case IP_IPSEC_POLICY:
1107 		{
1108 			struct mbuf *m = NULL;
1109 			caddr_t req = NULL;
1110 			size_t len = 0;
1111 
1112 			if (m != 0) {
1113 				req = mtod(m, caddr_t);
1114 				len = m->m_len;
1115 			}
1116 			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1117 			if (error == 0)
1118 				error = soopt_mcopyout(sopt, m); /* XXX */
1119 			if (error == 0)
1120 				m_freem(m);
1121 			break;
1122 		}
1123 #endif /* IPSEC */
1124 
1125 		default:
1126 			error = ENOPROTOOPT;
1127 			break;
1128 		}
1129 		break;
1130 	}
1131 	return (error);
1132 }
1133 
1134 /*
1135  * Routine called from ip_output() to loop back a copy of an IP multicast
1136  * packet to the input queue of a specified interface.  Note that this
1137  * calls the output routine of the loopback "driver", but with an interface
1138  * pointer that might NOT be a loopback interface -- evil, but easier than
1139  * replicating that code here.
1140  */
1141 static void
1142 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1143     int hlen)
1144 {
1145 	register struct ip *ip;
1146 	struct mbuf *copym;
1147 
1148 	copym = m_copy(m, 0, M_COPYALL);
1149 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1150 		copym = m_pullup(copym, hlen);
1151 	if (copym != NULL) {
1152 		/* If needed, compute the checksum and mark it as valid. */
1153 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1154 			in_delayed_cksum(copym);
1155 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1156 			copym->m_pkthdr.csum_flags |=
1157 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1158 			copym->m_pkthdr.csum_data = 0xffff;
1159 		}
1160 		/*
1161 		 * We don't bother to fragment if the IP length is greater
1162 		 * than the interface's MTU.  Can this possibly matter?
1163 		 */
1164 		ip = mtod(copym, struct ip *);
1165 		ip->ip_len = htons(ip->ip_len);
1166 		ip->ip_off = htons(ip->ip_off);
1167 		ip->ip_sum = 0;
1168 		ip->ip_sum = in_cksum(copym, hlen);
1169 		/*
1170 		 * NB:
1171 		 * It's not clear whether there are any lingering
1172 		 * reentrancy problems in other areas which might
1173 		 * be exposed by using ip_input directly (in
1174 		 * particular, everything which modifies the packet
1175 		 * in-place).  Yet another option is using the
1176 		 * protosw directly to deliver the looped back
1177 		 * packet.  For the moment, we'll err on the side
1178 		 * of safety by using if_simloop().
1179 		 */
1180 #if 1 /* XXX */
1181 		if (dst->sin_family != AF_INET) {
1182 			printf("ip_mloopback: bad address family %d\n",
1183 						dst->sin_family);
1184 			dst->sin_family = AF_INET;
1185 		}
1186 #endif
1187 
1188 #ifdef notdef
1189 		copym->m_pkthdr.rcvif = ifp;
1190 		ip_input(copym);
1191 #else
1192 		if_simloop(ifp, copym, dst->sin_family, 0);
1193 #endif
1194 	}
1195 }
1196