1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ratelimit.h" 39 #include "opt_ipsec.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_mpath.h" 42 #include "opt_route.h" 43 #include "opt_sctp.h" 44 #include "opt_rss.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/malloc.h> 51 #include <sys/mbuf.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/protosw.h> 55 #include <sys/rmlock.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sysctl.h> 60 #include <sys/ucred.h> 61 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_llatbl.h> 65 #include <net/netisr.h> 66 #include <net/pfil.h> 67 #include <net/route.h> 68 #ifdef RADIX_MPATH 69 #include <net/radix_mpath.h> 70 #endif 71 #include <net/rss_config.h> 72 #include <net/vnet.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_kdtrace.h> 76 #include <netinet/in_systm.h> 77 #include <netinet/ip.h> 78 #include <netinet/in_pcb.h> 79 #include <netinet/in_rss.h> 80 #include <netinet/in_var.h> 81 #include <netinet/ip_var.h> 82 #include <netinet/ip_options.h> 83 84 #include <netinet/udp.h> 85 #include <netinet/udp_var.h> 86 87 #ifdef SCTP 88 #include <netinet/sctp.h> 89 #include <netinet/sctp_crc32.h> 90 #endif 91 92 #include <netipsec/ipsec_support.h> 93 94 #include <machine/in_cksum.h> 95 96 #include <security/mac/mac_framework.h> 97 98 #ifdef MBUF_STRESS_TEST 99 static int mbuf_frag_size = 0; 100 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 101 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 102 #endif 103 104 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 105 106 107 extern int in_mcast_loop; 108 extern struct protosw inetsw[]; 109 110 static inline int 111 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp, 112 struct sockaddr_in *dst, int *fibnum, int *error) 113 { 114 struct m_tag *fwd_tag = NULL; 115 struct mbuf *m; 116 struct in_addr odst; 117 struct ip *ip; 118 119 m = *mp; 120 ip = mtod(m, struct ip *); 121 122 /* Run through list of hooks for output packets. */ 123 odst.s_addr = ip->ip_dst.s_addr; 124 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, PFIL_OUT, inp)) { 125 case PFIL_DROPPED: 126 *error = EPERM; 127 /* FALLTHROUGH */ 128 case PFIL_CONSUMED: 129 return 1; /* Finished */ 130 case PFIL_PASS: 131 *error = 0; 132 } 133 m = *mp; 134 ip = mtod(m, struct ip *); 135 136 /* See if destination IP address was changed by packet filter. */ 137 if (odst.s_addr != ip->ip_dst.s_addr) { 138 m->m_flags |= M_SKIP_FIREWALL; 139 /* If destination is now ourself drop to ip_input(). */ 140 if (in_localip(ip->ip_dst)) { 141 m->m_flags |= M_FASTFWD_OURS; 142 if (m->m_pkthdr.rcvif == NULL) 143 m->m_pkthdr.rcvif = V_loif; 144 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 145 m->m_pkthdr.csum_flags |= 146 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 147 m->m_pkthdr.csum_data = 0xffff; 148 } 149 m->m_pkthdr.csum_flags |= 150 CSUM_IP_CHECKED | CSUM_IP_VALID; 151 #ifdef SCTP 152 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 153 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 154 #endif 155 *error = netisr_queue(NETISR_IP, m); 156 return 1; /* Finished */ 157 } 158 159 bzero(dst, sizeof(*dst)); 160 dst->sin_family = AF_INET; 161 dst->sin_len = sizeof(*dst); 162 dst->sin_addr = ip->ip_dst; 163 164 return -1; /* Reloop */ 165 } 166 /* See if fib was changed by packet filter. */ 167 if ((*fibnum) != M_GETFIB(m)) { 168 m->m_flags |= M_SKIP_FIREWALL; 169 *fibnum = M_GETFIB(m); 170 return -1; /* Reloop for FIB change */ 171 } 172 173 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 174 if (m->m_flags & M_FASTFWD_OURS) { 175 if (m->m_pkthdr.rcvif == NULL) 176 m->m_pkthdr.rcvif = V_loif; 177 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 178 m->m_pkthdr.csum_flags |= 179 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 180 m->m_pkthdr.csum_data = 0xffff; 181 } 182 #ifdef SCTP 183 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 184 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 185 #endif 186 m->m_pkthdr.csum_flags |= 187 CSUM_IP_CHECKED | CSUM_IP_VALID; 188 189 *error = netisr_queue(NETISR_IP, m); 190 return 1; /* Finished */ 191 } 192 /* Or forward to some other address? */ 193 if ((m->m_flags & M_IP_NEXTHOP) && 194 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 195 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 196 m->m_flags |= M_SKIP_FIREWALL; 197 m->m_flags &= ~M_IP_NEXTHOP; 198 m_tag_delete(m, fwd_tag); 199 200 return -1; /* Reloop for CHANGE of dst */ 201 } 202 203 return 0; 204 } 205 206 /* 207 * IP output. The packet in mbuf chain m contains a skeletal IP 208 * header (with len, off, ttl, proto, tos, src, dst). 209 * The mbuf chain containing the packet will be freed. 210 * The mbuf opt, if present, will not be freed. 211 * If route ro is present and has ro_rt initialized, route lookup would be 212 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 213 * then result of route lookup is stored in ro->ro_rt. 214 * 215 * In the IP forwarding case, the packet will arrive with options already 216 * inserted, so must have a NULL opt pointer. 217 */ 218 int 219 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 220 struct ip_moptions *imo, struct inpcb *inp) 221 { 222 struct rm_priotracker in_ifa_tracker; 223 struct epoch_tracker et; 224 struct ip *ip; 225 struct ifnet *ifp = NULL; /* keep compiler happy */ 226 struct mbuf *m0; 227 int hlen = sizeof (struct ip); 228 int mtu; 229 int error = 0; 230 struct sockaddr_in *dst; 231 const struct sockaddr_in *gw; 232 struct in_ifaddr *ia; 233 int isbroadcast; 234 uint16_t ip_len, ip_off; 235 struct route iproute; 236 struct rtentry *rte; /* cache for ro->ro_rt */ 237 uint32_t fibnum; 238 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 239 int no_route_but_check_spd = 0; 240 #endif 241 M_ASSERTPKTHDR(m); 242 243 if (inp != NULL) { 244 INP_LOCK_ASSERT(inp); 245 M_SETFIB(m, inp->inp_inc.inc_fibnum); 246 if ((flags & IP_NODEFAULTFLOWID) == 0) { 247 m->m_pkthdr.flowid = inp->inp_flowid; 248 M_HASHTYPE_SET(m, inp->inp_flowtype); 249 } 250 } 251 252 if (ro == NULL) { 253 ro = &iproute; 254 bzero(ro, sizeof (*ro)); 255 } 256 257 if (opt) { 258 int len = 0; 259 m = ip_insertoptions(m, opt, &len); 260 if (len != 0) 261 hlen = len; /* ip->ip_hl is updated above */ 262 } 263 ip = mtod(m, struct ip *); 264 ip_len = ntohs(ip->ip_len); 265 ip_off = ntohs(ip->ip_off); 266 267 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 268 ip->ip_v = IPVERSION; 269 ip->ip_hl = hlen >> 2; 270 ip_fillid(ip); 271 } else { 272 /* Header already set, fetch hlen from there */ 273 hlen = ip->ip_hl << 2; 274 } 275 if ((flags & IP_FORWARDING) == 0) 276 IPSTAT_INC(ips_localout); 277 278 /* 279 * dst/gw handling: 280 * 281 * dst can be rewritten but always points to &ro->ro_dst. 282 * gw is readonly but can point either to dst OR rt_gateway, 283 * therefore we need restore gw if we're redoing lookup. 284 */ 285 gw = dst = (struct sockaddr_in *)&ro->ro_dst; 286 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 287 rte = ro->ro_rt; 288 if (rte == NULL) { 289 bzero(dst, sizeof(*dst)); 290 dst->sin_family = AF_INET; 291 dst->sin_len = sizeof(*dst); 292 dst->sin_addr = ip->ip_dst; 293 } 294 NET_EPOCH_ENTER(et); 295 again: 296 /* 297 * Validate route against routing table additions; 298 * a better/more specific route might have been added. 299 */ 300 if (inp) 301 RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 302 /* 303 * If there is a cached route, 304 * check that it is to the same destination 305 * and is still up. If not, free it and try again. 306 * The address family should also be checked in case of sharing the 307 * cache with IPv6. 308 * Also check whether routing cache needs invalidation. 309 */ 310 rte = ro->ro_rt; 311 if (rte && ((rte->rt_flags & RTF_UP) == 0 || 312 rte->rt_ifp == NULL || 313 !RT_LINK_IS_UP(rte->rt_ifp) || 314 dst->sin_family != AF_INET || 315 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) { 316 RO_INVALIDATE_CACHE(ro); 317 rte = NULL; 318 } 319 ia = NULL; 320 /* 321 * If routing to interface only, short circuit routing lookup. 322 * The use of an all-ones broadcast address implies this; an 323 * interface is specified by the broadcast address of an interface, 324 * or the destination address of a ptp interface. 325 */ 326 if (flags & IP_SENDONES) { 327 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 328 M_GETFIB(m)))) == NULL && 329 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 330 M_GETFIB(m)))) == NULL) { 331 IPSTAT_INC(ips_noroute); 332 error = ENETUNREACH; 333 goto bad; 334 } 335 ip->ip_dst.s_addr = INADDR_BROADCAST; 336 dst->sin_addr = ip->ip_dst; 337 ifp = ia->ia_ifp; 338 ip->ip_ttl = 1; 339 isbroadcast = 1; 340 } else if (flags & IP_ROUTETOIF) { 341 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 342 M_GETFIB(m)))) == NULL && 343 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 344 M_GETFIB(m)))) == NULL) { 345 IPSTAT_INC(ips_noroute); 346 error = ENETUNREACH; 347 goto bad; 348 } 349 ifp = ia->ia_ifp; 350 ip->ip_ttl = 1; 351 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 352 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 353 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 354 imo != NULL && imo->imo_multicast_ifp != NULL) { 355 /* 356 * Bypass the normal routing lookup for multicast 357 * packets if the interface is specified. 358 */ 359 ifp = imo->imo_multicast_ifp; 360 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 361 isbroadcast = 0; /* fool gcc */ 362 } else { 363 /* 364 * We want to do any cloning requested by the link layer, 365 * as this is probably required in all cases for correct 366 * operation (as it is for ARP). 367 */ 368 if (rte == NULL) { 369 #ifdef RADIX_MPATH 370 rtalloc_mpath_fib(ro, 371 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 372 fibnum); 373 #else 374 in_rtalloc_ign(ro, 0, fibnum); 375 #endif 376 rte = ro->ro_rt; 377 } 378 if (rte == NULL || 379 (rte->rt_flags & RTF_UP) == 0 || 380 rte->rt_ifp == NULL || 381 !RT_LINK_IS_UP(rte->rt_ifp)) { 382 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 383 /* 384 * There is no route for this packet, but it is 385 * possible that a matching SPD entry exists. 386 */ 387 no_route_but_check_spd = 1; 388 mtu = 0; /* Silence GCC warning. */ 389 goto sendit; 390 #endif 391 IPSTAT_INC(ips_noroute); 392 error = EHOSTUNREACH; 393 goto bad; 394 } 395 ia = ifatoia(rte->rt_ifa); 396 ifp = rte->rt_ifp; 397 counter_u64_add(rte->rt_pksent, 1); 398 rt_update_ro_flags(ro); 399 if (rte->rt_flags & RTF_GATEWAY) 400 gw = (struct sockaddr_in *)rte->rt_gateway; 401 if (rte->rt_flags & RTF_HOST) 402 isbroadcast = (rte->rt_flags & RTF_BROADCAST); 403 else if (ifp->if_flags & IFF_BROADCAST) 404 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 405 else 406 isbroadcast = 0; 407 } 408 409 /* 410 * Calculate MTU. If we have a route that is up, use that, 411 * otherwise use the interface's MTU. 412 */ 413 if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) 414 mtu = rte->rt_mtu; 415 else 416 mtu = ifp->if_mtu; 417 /* Catch a possible divide by zero later. */ 418 KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p", 419 __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp)); 420 421 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 422 m->m_flags |= M_MCAST; 423 /* 424 * IP destination address is multicast. Make sure "gw" 425 * still points to the address in "ro". (It may have been 426 * changed to point to a gateway address, above.) 427 */ 428 gw = dst; 429 /* 430 * See if the caller provided any multicast options 431 */ 432 if (imo != NULL) { 433 ip->ip_ttl = imo->imo_multicast_ttl; 434 if (imo->imo_multicast_vif != -1) 435 ip->ip_src.s_addr = 436 ip_mcast_src ? 437 ip_mcast_src(imo->imo_multicast_vif) : 438 INADDR_ANY; 439 } else 440 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 441 /* 442 * Confirm that the outgoing interface supports multicast. 443 */ 444 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 445 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 446 IPSTAT_INC(ips_noroute); 447 error = ENETUNREACH; 448 goto bad; 449 } 450 } 451 /* 452 * If source address not specified yet, use address 453 * of outgoing interface. 454 */ 455 if (ip->ip_src.s_addr == INADDR_ANY) { 456 /* Interface may have no addresses. */ 457 if (ia != NULL) 458 ip->ip_src = IA_SIN(ia)->sin_addr; 459 } 460 461 if ((imo == NULL && in_mcast_loop) || 462 (imo && imo->imo_multicast_loop)) { 463 /* 464 * Loop back multicast datagram if not expressly 465 * forbidden to do so, even if we are not a member 466 * of the group; ip_input() will filter it later, 467 * thus deferring a hash lookup and mutex acquisition 468 * at the expense of a cheap copy using m_copym(). 469 */ 470 ip_mloopback(ifp, m, hlen); 471 } else { 472 /* 473 * If we are acting as a multicast router, perform 474 * multicast forwarding as if the packet had just 475 * arrived on the interface to which we are about 476 * to send. The multicast forwarding function 477 * recursively calls this function, using the 478 * IP_FORWARDING flag to prevent infinite recursion. 479 * 480 * Multicasts that are looped back by ip_mloopback(), 481 * above, will be forwarded by the ip_input() routine, 482 * if necessary. 483 */ 484 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 485 /* 486 * If rsvp daemon is not running, do not 487 * set ip_moptions. This ensures that the packet 488 * is multicast and not just sent down one link 489 * as prescribed by rsvpd. 490 */ 491 if (!V_rsvp_on) 492 imo = NULL; 493 if (ip_mforward && 494 ip_mforward(ip, ifp, m, imo) != 0) { 495 m_freem(m); 496 goto done; 497 } 498 } 499 } 500 501 /* 502 * Multicasts with a time-to-live of zero may be looped- 503 * back, above, but must not be transmitted on a network. 504 * Also, multicasts addressed to the loopback interface 505 * are not sent -- the above call to ip_mloopback() will 506 * loop back a copy. ip_input() will drop the copy if 507 * this host does not belong to the destination group on 508 * the loopback interface. 509 */ 510 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 511 m_freem(m); 512 goto done; 513 } 514 515 goto sendit; 516 } 517 518 /* 519 * If the source address is not specified yet, use the address 520 * of the outoing interface. 521 */ 522 if (ip->ip_src.s_addr == INADDR_ANY) { 523 /* Interface may have no addresses. */ 524 if (ia != NULL) { 525 ip->ip_src = IA_SIN(ia)->sin_addr; 526 } 527 } 528 529 /* 530 * Look for broadcast address and 531 * verify user is allowed to send 532 * such a packet. 533 */ 534 if (isbroadcast) { 535 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 536 error = EADDRNOTAVAIL; 537 goto bad; 538 } 539 if ((flags & IP_ALLOWBROADCAST) == 0) { 540 error = EACCES; 541 goto bad; 542 } 543 /* don't allow broadcast messages to be fragmented */ 544 if (ip_len > mtu) { 545 error = EMSGSIZE; 546 goto bad; 547 } 548 m->m_flags |= M_BCAST; 549 } else { 550 m->m_flags &= ~M_BCAST; 551 } 552 553 sendit: 554 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 555 if (IPSEC_ENABLED(ipv4)) { 556 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 557 if (error == EINPROGRESS) 558 error = 0; 559 goto done; 560 } 561 } 562 /* 563 * Check if there was a route for this packet; return error if not. 564 */ 565 if (no_route_but_check_spd) { 566 IPSTAT_INC(ips_noroute); 567 error = EHOSTUNREACH; 568 goto bad; 569 } 570 /* Update variables that are affected by ipsec4_output(). */ 571 ip = mtod(m, struct ip *); 572 hlen = ip->ip_hl << 2; 573 #endif /* IPSEC */ 574 575 /* Jump over all PFIL processing if hooks are not active. */ 576 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 577 switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) { 578 case 1: /* Finished */ 579 goto done; 580 581 case 0: /* Continue normally */ 582 ip = mtod(m, struct ip *); 583 break; 584 585 case -1: /* Need to try again */ 586 /* Reset everything for a new round */ 587 RO_RTFREE(ro); 588 ro->ro_prepend = NULL; 589 rte = NULL; 590 gw = dst; 591 ip = mtod(m, struct ip *); 592 goto again; 593 594 } 595 } 596 597 /* 127/8 must not appear on wire - RFC1122. */ 598 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 599 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 600 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 601 IPSTAT_INC(ips_badaddr); 602 error = EADDRNOTAVAIL; 603 goto bad; 604 } 605 } 606 607 m->m_pkthdr.csum_flags |= CSUM_IP; 608 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 609 in_delayed_cksum(m); 610 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 611 } 612 #ifdef SCTP 613 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 614 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 615 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 616 } 617 #endif 618 619 /* 620 * If small enough for interface, or the interface will take 621 * care of the fragmentation for us, we can just send directly. 622 */ 623 if (ip_len <= mtu || 624 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 625 ip->ip_sum = 0; 626 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 627 ip->ip_sum = in_cksum(m, hlen); 628 m->m_pkthdr.csum_flags &= ~CSUM_IP; 629 } 630 631 /* 632 * Record statistics for this interface address. 633 * With CSUM_TSO the byte/packet count will be slightly 634 * incorrect because we count the IP+TCP headers only 635 * once instead of for every generated packet. 636 */ 637 if (!(flags & IP_FORWARDING) && ia) { 638 if (m->m_pkthdr.csum_flags & CSUM_TSO) 639 counter_u64_add(ia->ia_ifa.ifa_opackets, 640 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 641 else 642 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 643 644 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 645 } 646 #ifdef MBUF_STRESS_TEST 647 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 648 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 649 #endif 650 /* 651 * Reset layer specific mbuf flags 652 * to avoid confusing lower layers. 653 */ 654 m_clrprotoflags(m); 655 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 656 #ifdef RATELIMIT 657 if (inp != NULL) { 658 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 659 in_pcboutput_txrtlmt(inp, ifp, m); 660 /* stamp send tag on mbuf */ 661 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 662 } else { 663 m->m_pkthdr.snd_tag = NULL; 664 } 665 #endif 666 error = (*ifp->if_output)(ifp, m, 667 (const struct sockaddr *)gw, ro); 668 #ifdef RATELIMIT 669 /* check for route change */ 670 if (error == EAGAIN) 671 in_pcboutput_eagain(inp); 672 #endif 673 goto done; 674 } 675 676 /* Balk when DF bit is set or the interface didn't support TSO. */ 677 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 678 error = EMSGSIZE; 679 IPSTAT_INC(ips_cantfrag); 680 goto bad; 681 } 682 683 /* 684 * Too large for interface; fragment if possible. If successful, 685 * on return, m will point to a list of packets to be sent. 686 */ 687 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 688 if (error) 689 goto bad; 690 for (; m; m = m0) { 691 m0 = m->m_nextpkt; 692 m->m_nextpkt = 0; 693 if (error == 0) { 694 /* Record statistics for this interface address. */ 695 if (ia != NULL) { 696 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 697 counter_u64_add(ia->ia_ifa.ifa_obytes, 698 m->m_pkthdr.len); 699 } 700 /* 701 * Reset layer specific mbuf flags 702 * to avoid confusing upper layers. 703 */ 704 m_clrprotoflags(m); 705 706 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 707 mtod(m, struct ip *), NULL); 708 #ifdef RATELIMIT 709 if (inp != NULL) { 710 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 711 in_pcboutput_txrtlmt(inp, ifp, m); 712 /* stamp send tag on mbuf */ 713 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 714 } else { 715 m->m_pkthdr.snd_tag = NULL; 716 } 717 #endif 718 error = (*ifp->if_output)(ifp, m, 719 (const struct sockaddr *)gw, ro); 720 #ifdef RATELIMIT 721 /* check for route change */ 722 if (error == EAGAIN) 723 in_pcboutput_eagain(inp); 724 #endif 725 } else 726 m_freem(m); 727 } 728 729 if (error == 0) 730 IPSTAT_INC(ips_fragmented); 731 732 done: 733 if (ro == &iproute) 734 RO_RTFREE(ro); 735 else if (rte == NULL) 736 /* 737 * If the caller supplied a route but somehow the reference 738 * to it has been released need to prevent the caller 739 * calling RTFREE on it again. 740 */ 741 ro->ro_rt = NULL; 742 NET_EPOCH_EXIT(et); 743 return (error); 744 bad: 745 m_freem(m); 746 goto done; 747 } 748 749 /* 750 * Create a chain of fragments which fit the given mtu. m_frag points to the 751 * mbuf to be fragmented; on return it points to the chain with the fragments. 752 * Return 0 if no error. If error, m_frag may contain a partially built 753 * chain of fragments that should be freed by the caller. 754 * 755 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 756 */ 757 int 758 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 759 u_long if_hwassist_flags) 760 { 761 int error = 0; 762 int hlen = ip->ip_hl << 2; 763 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 764 int off; 765 struct mbuf *m0 = *m_frag; /* the original packet */ 766 int firstlen; 767 struct mbuf **mnext; 768 int nfrags; 769 uint16_t ip_len, ip_off; 770 771 ip_len = ntohs(ip->ip_len); 772 ip_off = ntohs(ip->ip_off); 773 774 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 775 IPSTAT_INC(ips_cantfrag); 776 return EMSGSIZE; 777 } 778 779 /* 780 * Must be able to put at least 8 bytes per fragment. 781 */ 782 if (len < 8) 783 return EMSGSIZE; 784 785 /* 786 * If the interface will not calculate checksums on 787 * fragmented packets, then do it here. 788 */ 789 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 790 in_delayed_cksum(m0); 791 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 792 } 793 #ifdef SCTP 794 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 795 sctp_delayed_cksum(m0, hlen); 796 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 797 } 798 #endif 799 if (len > PAGE_SIZE) { 800 /* 801 * Fragment large datagrams such that each segment 802 * contains a multiple of PAGE_SIZE amount of data, 803 * plus headers. This enables a receiver to perform 804 * page-flipping zero-copy optimizations. 805 * 806 * XXX When does this help given that sender and receiver 807 * could have different page sizes, and also mtu could 808 * be less than the receiver's page size ? 809 */ 810 int newlen; 811 812 off = MIN(mtu, m0->m_pkthdr.len); 813 814 /* 815 * firstlen (off - hlen) must be aligned on an 816 * 8-byte boundary 817 */ 818 if (off < hlen) 819 goto smart_frag_failure; 820 off = ((off - hlen) & ~7) + hlen; 821 newlen = (~PAGE_MASK) & mtu; 822 if ((newlen + sizeof (struct ip)) > mtu) { 823 /* we failed, go back the default */ 824 smart_frag_failure: 825 newlen = len; 826 off = hlen + len; 827 } 828 len = newlen; 829 830 } else { 831 off = hlen + len; 832 } 833 834 firstlen = off - hlen; 835 mnext = &m0->m_nextpkt; /* pointer to next packet */ 836 837 /* 838 * Loop through length of segment after first fragment, 839 * make new header and copy data of each part and link onto chain. 840 * Here, m0 is the original packet, m is the fragment being created. 841 * The fragments are linked off the m_nextpkt of the original 842 * packet, which after processing serves as the first fragment. 843 */ 844 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 845 struct ip *mhip; /* ip header on the fragment */ 846 struct mbuf *m; 847 int mhlen = sizeof (struct ip); 848 849 m = m_gethdr(M_NOWAIT, MT_DATA); 850 if (m == NULL) { 851 error = ENOBUFS; 852 IPSTAT_INC(ips_odropped); 853 goto done; 854 } 855 /* 856 * Make sure the complete packet header gets copied 857 * from the originating mbuf to the newly created 858 * mbuf. This also ensures that existing firewall 859 * classification(s), VLAN tags and so on get copied 860 * to the resulting fragmented packet(s): 861 */ 862 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 863 m_free(m); 864 error = ENOBUFS; 865 IPSTAT_INC(ips_odropped); 866 goto done; 867 } 868 /* 869 * In the first mbuf, leave room for the link header, then 870 * copy the original IP header including options. The payload 871 * goes into an additional mbuf chain returned by m_copym(). 872 */ 873 m->m_data += max_linkhdr; 874 mhip = mtod(m, struct ip *); 875 *mhip = *ip; 876 if (hlen > sizeof (struct ip)) { 877 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 878 mhip->ip_v = IPVERSION; 879 mhip->ip_hl = mhlen >> 2; 880 } 881 m->m_len = mhlen; 882 /* XXX do we need to add ip_off below ? */ 883 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 884 if (off + len >= ip_len) 885 len = ip_len - off; 886 else 887 mhip->ip_off |= IP_MF; 888 mhip->ip_len = htons((u_short)(len + mhlen)); 889 m->m_next = m_copym(m0, off, len, M_NOWAIT); 890 if (m->m_next == NULL) { /* copy failed */ 891 m_free(m); 892 error = ENOBUFS; /* ??? */ 893 IPSTAT_INC(ips_odropped); 894 goto done; 895 } 896 m->m_pkthdr.len = mhlen + len; 897 #ifdef MAC 898 mac_netinet_fragment(m0, m); 899 #endif 900 mhip->ip_off = htons(mhip->ip_off); 901 mhip->ip_sum = 0; 902 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 903 mhip->ip_sum = in_cksum(m, mhlen); 904 m->m_pkthdr.csum_flags &= ~CSUM_IP; 905 } 906 *mnext = m; 907 mnext = &m->m_nextpkt; 908 } 909 IPSTAT_ADD(ips_ofragments, nfrags); 910 911 /* 912 * Update first fragment by trimming what's been copied out 913 * and updating header. 914 */ 915 m_adj(m0, hlen + firstlen - ip_len); 916 m0->m_pkthdr.len = hlen + firstlen; 917 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 918 ip->ip_off = htons(ip_off | IP_MF); 919 ip->ip_sum = 0; 920 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 921 ip->ip_sum = in_cksum(m0, hlen); 922 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 923 } 924 925 done: 926 *m_frag = m0; 927 return error; 928 } 929 930 void 931 in_delayed_cksum(struct mbuf *m) 932 { 933 struct ip *ip; 934 struct udphdr *uh; 935 uint16_t cklen, csum, offset; 936 937 ip = mtod(m, struct ip *); 938 offset = ip->ip_hl << 2 ; 939 940 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 941 /* if udp header is not in the first mbuf copy udplen */ 942 if (offset + sizeof(struct udphdr) > m->m_len) { 943 m_copydata(m, offset + offsetof(struct udphdr, 944 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 945 cklen = ntohs(cklen); 946 } else { 947 uh = (struct udphdr *)mtodo(m, offset); 948 cklen = ntohs(uh->uh_ulen); 949 } 950 csum = in_cksum_skip(m, cklen + offset, offset); 951 if (csum == 0) 952 csum = 0xffff; 953 } else { 954 cklen = ntohs(ip->ip_len); 955 csum = in_cksum_skip(m, cklen, offset); 956 } 957 offset += m->m_pkthdr.csum_data; /* checksum offset */ 958 959 if (offset + sizeof(csum) > m->m_len) 960 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 961 else 962 *(u_short *)mtodo(m, offset) = csum; 963 } 964 965 /* 966 * IP socket option processing. 967 */ 968 int 969 ip_ctloutput(struct socket *so, struct sockopt *sopt) 970 { 971 struct inpcb *inp = sotoinpcb(so); 972 int error, optval; 973 #ifdef RSS 974 uint32_t rss_bucket; 975 int retval; 976 #endif 977 978 error = optval = 0; 979 if (sopt->sopt_level != IPPROTO_IP) { 980 error = EINVAL; 981 982 if (sopt->sopt_level == SOL_SOCKET && 983 sopt->sopt_dir == SOPT_SET) { 984 switch (sopt->sopt_name) { 985 case SO_REUSEADDR: 986 INP_WLOCK(inp); 987 if ((so->so_options & SO_REUSEADDR) != 0) 988 inp->inp_flags2 |= INP_REUSEADDR; 989 else 990 inp->inp_flags2 &= ~INP_REUSEADDR; 991 INP_WUNLOCK(inp); 992 error = 0; 993 break; 994 case SO_REUSEPORT: 995 INP_WLOCK(inp); 996 if ((so->so_options & SO_REUSEPORT) != 0) 997 inp->inp_flags2 |= INP_REUSEPORT; 998 else 999 inp->inp_flags2 &= ~INP_REUSEPORT; 1000 INP_WUNLOCK(inp); 1001 error = 0; 1002 break; 1003 case SO_REUSEPORT_LB: 1004 INP_WLOCK(inp); 1005 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1006 inp->inp_flags2 |= INP_REUSEPORT_LB; 1007 else 1008 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1009 INP_WUNLOCK(inp); 1010 error = 0; 1011 break; 1012 case SO_SETFIB: 1013 INP_WLOCK(inp); 1014 inp->inp_inc.inc_fibnum = so->so_fibnum; 1015 INP_WUNLOCK(inp); 1016 error = 0; 1017 break; 1018 case SO_MAX_PACING_RATE: 1019 #ifdef RATELIMIT 1020 INP_WLOCK(inp); 1021 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1022 INP_WUNLOCK(inp); 1023 error = 0; 1024 #else 1025 error = EOPNOTSUPP; 1026 #endif 1027 break; 1028 default: 1029 break; 1030 } 1031 } 1032 return (error); 1033 } 1034 1035 switch (sopt->sopt_dir) { 1036 case SOPT_SET: 1037 switch (sopt->sopt_name) { 1038 case IP_OPTIONS: 1039 #ifdef notyet 1040 case IP_RETOPTS: 1041 #endif 1042 { 1043 struct mbuf *m; 1044 if (sopt->sopt_valsize > MLEN) { 1045 error = EMSGSIZE; 1046 break; 1047 } 1048 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1049 if (m == NULL) { 1050 error = ENOBUFS; 1051 break; 1052 } 1053 m->m_len = sopt->sopt_valsize; 1054 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1055 m->m_len); 1056 if (error) { 1057 m_free(m); 1058 break; 1059 } 1060 INP_WLOCK(inp); 1061 error = ip_pcbopts(inp, sopt->sopt_name, m); 1062 INP_WUNLOCK(inp); 1063 return (error); 1064 } 1065 1066 case IP_BINDANY: 1067 if (sopt->sopt_td != NULL) { 1068 error = priv_check(sopt->sopt_td, 1069 PRIV_NETINET_BINDANY); 1070 if (error) 1071 break; 1072 } 1073 /* FALLTHROUGH */ 1074 case IP_BINDMULTI: 1075 #ifdef RSS 1076 case IP_RSS_LISTEN_BUCKET: 1077 #endif 1078 case IP_TOS: 1079 case IP_TTL: 1080 case IP_MINTTL: 1081 case IP_RECVOPTS: 1082 case IP_RECVRETOPTS: 1083 case IP_ORIGDSTADDR: 1084 case IP_RECVDSTADDR: 1085 case IP_RECVTTL: 1086 case IP_RECVIF: 1087 case IP_ONESBCAST: 1088 case IP_DONTFRAG: 1089 case IP_RECVTOS: 1090 case IP_RECVFLOWID: 1091 #ifdef RSS 1092 case IP_RECVRSSBUCKETID: 1093 #endif 1094 error = sooptcopyin(sopt, &optval, sizeof optval, 1095 sizeof optval); 1096 if (error) 1097 break; 1098 1099 switch (sopt->sopt_name) { 1100 case IP_TOS: 1101 inp->inp_ip_tos = optval; 1102 break; 1103 1104 case IP_TTL: 1105 inp->inp_ip_ttl = optval; 1106 break; 1107 1108 case IP_MINTTL: 1109 if (optval >= 0 && optval <= MAXTTL) 1110 inp->inp_ip_minttl = optval; 1111 else 1112 error = EINVAL; 1113 break; 1114 1115 #define OPTSET(bit) do { \ 1116 INP_WLOCK(inp); \ 1117 if (optval) \ 1118 inp->inp_flags |= bit; \ 1119 else \ 1120 inp->inp_flags &= ~bit; \ 1121 INP_WUNLOCK(inp); \ 1122 } while (0) 1123 1124 #define OPTSET2(bit, val) do { \ 1125 INP_WLOCK(inp); \ 1126 if (val) \ 1127 inp->inp_flags2 |= bit; \ 1128 else \ 1129 inp->inp_flags2 &= ~bit; \ 1130 INP_WUNLOCK(inp); \ 1131 } while (0) 1132 1133 case IP_RECVOPTS: 1134 OPTSET(INP_RECVOPTS); 1135 break; 1136 1137 case IP_RECVRETOPTS: 1138 OPTSET(INP_RECVRETOPTS); 1139 break; 1140 1141 case IP_RECVDSTADDR: 1142 OPTSET(INP_RECVDSTADDR); 1143 break; 1144 1145 case IP_ORIGDSTADDR: 1146 OPTSET2(INP_ORIGDSTADDR, optval); 1147 break; 1148 1149 case IP_RECVTTL: 1150 OPTSET(INP_RECVTTL); 1151 break; 1152 1153 case IP_RECVIF: 1154 OPTSET(INP_RECVIF); 1155 break; 1156 1157 case IP_ONESBCAST: 1158 OPTSET(INP_ONESBCAST); 1159 break; 1160 case IP_DONTFRAG: 1161 OPTSET(INP_DONTFRAG); 1162 break; 1163 case IP_BINDANY: 1164 OPTSET(INP_BINDANY); 1165 break; 1166 case IP_RECVTOS: 1167 OPTSET(INP_RECVTOS); 1168 break; 1169 case IP_BINDMULTI: 1170 OPTSET2(INP_BINDMULTI, optval); 1171 break; 1172 case IP_RECVFLOWID: 1173 OPTSET2(INP_RECVFLOWID, optval); 1174 break; 1175 #ifdef RSS 1176 case IP_RSS_LISTEN_BUCKET: 1177 if ((optval >= 0) && 1178 (optval < rss_getnumbuckets())) { 1179 inp->inp_rss_listen_bucket = optval; 1180 OPTSET2(INP_RSS_BUCKET_SET, 1); 1181 } else { 1182 error = EINVAL; 1183 } 1184 break; 1185 case IP_RECVRSSBUCKETID: 1186 OPTSET2(INP_RECVRSSBUCKETID, optval); 1187 break; 1188 #endif 1189 } 1190 break; 1191 #undef OPTSET 1192 #undef OPTSET2 1193 1194 /* 1195 * Multicast socket options are processed by the in_mcast 1196 * module. 1197 */ 1198 case IP_MULTICAST_IF: 1199 case IP_MULTICAST_VIF: 1200 case IP_MULTICAST_TTL: 1201 case IP_MULTICAST_LOOP: 1202 case IP_ADD_MEMBERSHIP: 1203 case IP_DROP_MEMBERSHIP: 1204 case IP_ADD_SOURCE_MEMBERSHIP: 1205 case IP_DROP_SOURCE_MEMBERSHIP: 1206 case IP_BLOCK_SOURCE: 1207 case IP_UNBLOCK_SOURCE: 1208 case IP_MSFILTER: 1209 case MCAST_JOIN_GROUP: 1210 case MCAST_LEAVE_GROUP: 1211 case MCAST_JOIN_SOURCE_GROUP: 1212 case MCAST_LEAVE_SOURCE_GROUP: 1213 case MCAST_BLOCK_SOURCE: 1214 case MCAST_UNBLOCK_SOURCE: 1215 error = inp_setmoptions(inp, sopt); 1216 break; 1217 1218 case IP_PORTRANGE: 1219 error = sooptcopyin(sopt, &optval, sizeof optval, 1220 sizeof optval); 1221 if (error) 1222 break; 1223 1224 INP_WLOCK(inp); 1225 switch (optval) { 1226 case IP_PORTRANGE_DEFAULT: 1227 inp->inp_flags &= ~(INP_LOWPORT); 1228 inp->inp_flags &= ~(INP_HIGHPORT); 1229 break; 1230 1231 case IP_PORTRANGE_HIGH: 1232 inp->inp_flags &= ~(INP_LOWPORT); 1233 inp->inp_flags |= INP_HIGHPORT; 1234 break; 1235 1236 case IP_PORTRANGE_LOW: 1237 inp->inp_flags &= ~(INP_HIGHPORT); 1238 inp->inp_flags |= INP_LOWPORT; 1239 break; 1240 1241 default: 1242 error = EINVAL; 1243 break; 1244 } 1245 INP_WUNLOCK(inp); 1246 break; 1247 1248 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1249 case IP_IPSEC_POLICY: 1250 if (IPSEC_ENABLED(ipv4)) { 1251 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1252 break; 1253 } 1254 /* FALLTHROUGH */ 1255 #endif /* IPSEC */ 1256 1257 default: 1258 error = ENOPROTOOPT; 1259 break; 1260 } 1261 break; 1262 1263 case SOPT_GET: 1264 switch (sopt->sopt_name) { 1265 case IP_OPTIONS: 1266 case IP_RETOPTS: 1267 INP_RLOCK(inp); 1268 if (inp->inp_options) { 1269 struct mbuf *options; 1270 1271 options = m_copym(inp->inp_options, 0, 1272 M_COPYALL, M_NOWAIT); 1273 INP_RUNLOCK(inp); 1274 if (options != NULL) { 1275 error = sooptcopyout(sopt, 1276 mtod(options, char *), 1277 options->m_len); 1278 m_freem(options); 1279 } else 1280 error = ENOMEM; 1281 } else { 1282 INP_RUNLOCK(inp); 1283 sopt->sopt_valsize = 0; 1284 } 1285 break; 1286 1287 case IP_TOS: 1288 case IP_TTL: 1289 case IP_MINTTL: 1290 case IP_RECVOPTS: 1291 case IP_RECVRETOPTS: 1292 case IP_ORIGDSTADDR: 1293 case IP_RECVDSTADDR: 1294 case IP_RECVTTL: 1295 case IP_RECVIF: 1296 case IP_PORTRANGE: 1297 case IP_ONESBCAST: 1298 case IP_DONTFRAG: 1299 case IP_BINDANY: 1300 case IP_RECVTOS: 1301 case IP_BINDMULTI: 1302 case IP_FLOWID: 1303 case IP_FLOWTYPE: 1304 case IP_RECVFLOWID: 1305 #ifdef RSS 1306 case IP_RSSBUCKETID: 1307 case IP_RECVRSSBUCKETID: 1308 #endif 1309 switch (sopt->sopt_name) { 1310 1311 case IP_TOS: 1312 optval = inp->inp_ip_tos; 1313 break; 1314 1315 case IP_TTL: 1316 optval = inp->inp_ip_ttl; 1317 break; 1318 1319 case IP_MINTTL: 1320 optval = inp->inp_ip_minttl; 1321 break; 1322 1323 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1324 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1325 1326 case IP_RECVOPTS: 1327 optval = OPTBIT(INP_RECVOPTS); 1328 break; 1329 1330 case IP_RECVRETOPTS: 1331 optval = OPTBIT(INP_RECVRETOPTS); 1332 break; 1333 1334 case IP_RECVDSTADDR: 1335 optval = OPTBIT(INP_RECVDSTADDR); 1336 break; 1337 1338 case IP_ORIGDSTADDR: 1339 optval = OPTBIT2(INP_ORIGDSTADDR); 1340 break; 1341 1342 case IP_RECVTTL: 1343 optval = OPTBIT(INP_RECVTTL); 1344 break; 1345 1346 case IP_RECVIF: 1347 optval = OPTBIT(INP_RECVIF); 1348 break; 1349 1350 case IP_PORTRANGE: 1351 if (inp->inp_flags & INP_HIGHPORT) 1352 optval = IP_PORTRANGE_HIGH; 1353 else if (inp->inp_flags & INP_LOWPORT) 1354 optval = IP_PORTRANGE_LOW; 1355 else 1356 optval = 0; 1357 break; 1358 1359 case IP_ONESBCAST: 1360 optval = OPTBIT(INP_ONESBCAST); 1361 break; 1362 case IP_DONTFRAG: 1363 optval = OPTBIT(INP_DONTFRAG); 1364 break; 1365 case IP_BINDANY: 1366 optval = OPTBIT(INP_BINDANY); 1367 break; 1368 case IP_RECVTOS: 1369 optval = OPTBIT(INP_RECVTOS); 1370 break; 1371 case IP_FLOWID: 1372 optval = inp->inp_flowid; 1373 break; 1374 case IP_FLOWTYPE: 1375 optval = inp->inp_flowtype; 1376 break; 1377 case IP_RECVFLOWID: 1378 optval = OPTBIT2(INP_RECVFLOWID); 1379 break; 1380 #ifdef RSS 1381 case IP_RSSBUCKETID: 1382 retval = rss_hash2bucket(inp->inp_flowid, 1383 inp->inp_flowtype, 1384 &rss_bucket); 1385 if (retval == 0) 1386 optval = rss_bucket; 1387 else 1388 error = EINVAL; 1389 break; 1390 case IP_RECVRSSBUCKETID: 1391 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1392 break; 1393 #endif 1394 case IP_BINDMULTI: 1395 optval = OPTBIT2(INP_BINDMULTI); 1396 break; 1397 } 1398 error = sooptcopyout(sopt, &optval, sizeof optval); 1399 break; 1400 1401 /* 1402 * Multicast socket options are processed by the in_mcast 1403 * module. 1404 */ 1405 case IP_MULTICAST_IF: 1406 case IP_MULTICAST_VIF: 1407 case IP_MULTICAST_TTL: 1408 case IP_MULTICAST_LOOP: 1409 case IP_MSFILTER: 1410 error = inp_getmoptions(inp, sopt); 1411 break; 1412 1413 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1414 case IP_IPSEC_POLICY: 1415 if (IPSEC_ENABLED(ipv4)) { 1416 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1417 break; 1418 } 1419 /* FALLTHROUGH */ 1420 #endif /* IPSEC */ 1421 1422 default: 1423 error = ENOPROTOOPT; 1424 break; 1425 } 1426 break; 1427 } 1428 return (error); 1429 } 1430 1431 /* 1432 * Routine called from ip_output() to loop back a copy of an IP multicast 1433 * packet to the input queue of a specified interface. Note that this 1434 * calls the output routine of the loopback "driver", but with an interface 1435 * pointer that might NOT be a loopback interface -- evil, but easier than 1436 * replicating that code here. 1437 */ 1438 static void 1439 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1440 { 1441 struct ip *ip; 1442 struct mbuf *copym; 1443 1444 /* 1445 * Make a deep copy of the packet because we're going to 1446 * modify the pack in order to generate checksums. 1447 */ 1448 copym = m_dup(m, M_NOWAIT); 1449 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1450 copym = m_pullup(copym, hlen); 1451 if (copym != NULL) { 1452 /* If needed, compute the checksum and mark it as valid. */ 1453 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1454 in_delayed_cksum(copym); 1455 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1456 copym->m_pkthdr.csum_flags |= 1457 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1458 copym->m_pkthdr.csum_data = 0xffff; 1459 } 1460 /* 1461 * We don't bother to fragment if the IP length is greater 1462 * than the interface's MTU. Can this possibly matter? 1463 */ 1464 ip = mtod(copym, struct ip *); 1465 ip->ip_sum = 0; 1466 ip->ip_sum = in_cksum(copym, hlen); 1467 if_simloop(ifp, copym, AF_INET, 0); 1468 } 1469 } 1470