1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_ipfw.h" 37 #include "opt_ipsec.h" 38 #include "opt_mbuf_stress_test.h" 39 #include "opt_mpath.h" 40 #include "opt_route.h" 41 #include "opt_sctp.h" 42 #include "opt_rss.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/protosw.h> 52 #include <sys/sdt.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/sysctl.h> 56 #include <sys/ucred.h> 57 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #include <net/if_llatbl.h> 61 #include <net/netisr.h> 62 #include <net/pfil.h> 63 #include <net/route.h> 64 #include <net/flowtable.h> 65 #ifdef RADIX_MPATH 66 #include <net/radix_mpath.h> 67 #endif 68 #include <net/vnet.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_kdtrace.h> 72 #include <netinet/in_systm.h> 73 #include <netinet/ip.h> 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_rss.h> 76 #include <netinet/in_var.h> 77 #include <netinet/ip_var.h> 78 #include <netinet/ip_options.h> 79 #ifdef SCTP 80 #include <netinet/sctp.h> 81 #include <netinet/sctp_crc32.h> 82 #endif 83 84 #ifdef IPSEC 85 #include <netinet/ip_ipsec.h> 86 #include <netipsec/ipsec.h> 87 #endif /* IPSEC*/ 88 89 #include <machine/in_cksum.h> 90 91 #include <security/mac/mac_framework.h> 92 93 VNET_DEFINE(u_short, ip_id); 94 95 #ifdef MBUF_STRESS_TEST 96 static int mbuf_frag_size = 0; 97 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 98 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 99 #endif 100 101 static void ip_mloopback 102 (struct ifnet *, struct mbuf *, struct sockaddr_in *, int); 103 104 105 extern int in_mcast_loop; 106 extern struct protosw inetsw[]; 107 108 /* 109 * IP output. The packet in mbuf chain m contains a skeletal IP 110 * header (with len, off, ttl, proto, tos, src, dst). 111 * The mbuf chain containing the packet will be freed. 112 * The mbuf opt, if present, will not be freed. 113 * If route ro is present and has ro_rt initialized, route lookup would be 114 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 115 * then result of route lookup is stored in ro->ro_rt. 116 * 117 * In the IP forwarding case, the packet will arrive with options already 118 * inserted, so must have a NULL opt pointer. 119 */ 120 int 121 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 122 struct ip_moptions *imo, struct inpcb *inp) 123 { 124 struct ip *ip; 125 struct ifnet *ifp = NULL; /* keep compiler happy */ 126 struct mbuf *m0; 127 int hlen = sizeof (struct ip); 128 int mtu; 129 int error = 0; 130 struct sockaddr_in *dst; 131 const struct sockaddr_in *gw; 132 struct in_ifaddr *ia; 133 int isbroadcast; 134 uint16_t ip_len, ip_off; 135 struct route iproute; 136 struct rtentry *rte; /* cache for ro->ro_rt */ 137 struct in_addr odst; 138 struct m_tag *fwd_tag = NULL; 139 int have_ia_ref; 140 #ifdef IPSEC 141 int no_route_but_check_spd = 0; 142 #endif 143 M_ASSERTPKTHDR(m); 144 145 if (inp != NULL) { 146 INP_LOCK_ASSERT(inp); 147 M_SETFIB(m, inp->inp_inc.inc_fibnum); 148 if (((flags & IP_NODEFAULTFLOWID) == 0) && 149 inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) { 150 m->m_pkthdr.flowid = inp->inp_flowid; 151 M_HASHTYPE_SET(m, inp->inp_flowtype); 152 m->m_flags |= M_FLOWID; 153 } 154 } 155 156 if (ro == NULL) { 157 ro = &iproute; 158 bzero(ro, sizeof (*ro)); 159 } 160 161 #ifdef FLOWTABLE 162 if (ro->ro_rt == NULL) 163 (void )flowtable_lookup(AF_INET, m, ro); 164 #endif 165 166 if (opt) { 167 int len = 0; 168 m = ip_insertoptions(m, opt, &len); 169 if (len != 0) 170 hlen = len; /* ip->ip_hl is updated above */ 171 } 172 ip = mtod(m, struct ip *); 173 ip_len = ntohs(ip->ip_len); 174 ip_off = ntohs(ip->ip_off); 175 176 /* 177 * Fill in IP header. If we are not allowing fragmentation, 178 * then the ip_id field is meaningless, but we don't set it 179 * to zero. Doing so causes various problems when devices along 180 * the path (routers, load balancers, firewalls, etc.) illegally 181 * disable DF on our packet. Note that a 16-bit counter 182 * will wrap around in less than 10 seconds at 100 Mbit/s on a 183 * medium with MTU 1500. See Steven M. Bellovin, "A Technique 184 * for Counting NATted Hosts", Proc. IMW'02, available at 185 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>. 186 */ 187 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 188 ip->ip_v = IPVERSION; 189 ip->ip_hl = hlen >> 2; 190 ip->ip_id = ip_newid(); 191 IPSTAT_INC(ips_localout); 192 } else { 193 /* Header already set, fetch hlen from there */ 194 hlen = ip->ip_hl << 2; 195 } 196 197 /* 198 * dst/gw handling: 199 * 200 * dst can be rewritten but always points to &ro->ro_dst. 201 * gw is readonly but can point either to dst OR rt_gateway, 202 * therefore we need restore gw if we're redoing lookup. 203 */ 204 gw = dst = (struct sockaddr_in *)&ro->ro_dst; 205 again: 206 ia = NULL; 207 have_ia_ref = 0; 208 /* 209 * If there is a cached route, check that it is to the same 210 * destination and is still up. If not, free it and try again. 211 * The address family should also be checked in case of sharing 212 * the cache with IPv6. 213 */ 214 rte = ro->ro_rt; 215 if (rte && ((rte->rt_flags & RTF_UP) == 0 || 216 rte->rt_ifp == NULL || 217 !RT_LINK_IS_UP(rte->rt_ifp) || 218 dst->sin_family != AF_INET || 219 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) { 220 RO_RTFREE(ro); 221 ro->ro_lle = NULL; 222 rte = NULL; 223 gw = dst; 224 } 225 if (rte == NULL && fwd_tag == NULL) { 226 bzero(dst, sizeof(*dst)); 227 dst->sin_family = AF_INET; 228 dst->sin_len = sizeof(*dst); 229 dst->sin_addr = ip->ip_dst; 230 } 231 /* 232 * If routing to interface only, short circuit routing lookup. 233 * The use of an all-ones broadcast address implies this; an 234 * interface is specified by the broadcast address of an interface, 235 * or the destination address of a ptp interface. 236 */ 237 if (flags & IP_SENDONES) { 238 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 239 M_GETFIB(m)))) == NULL && 240 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 241 M_GETFIB(m)))) == NULL) { 242 IPSTAT_INC(ips_noroute); 243 error = ENETUNREACH; 244 goto bad; 245 } 246 have_ia_ref = 1; 247 ip->ip_dst.s_addr = INADDR_BROADCAST; 248 dst->sin_addr = ip->ip_dst; 249 ifp = ia->ia_ifp; 250 ip->ip_ttl = 1; 251 isbroadcast = 1; 252 } else if (flags & IP_ROUTETOIF) { 253 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 254 M_GETFIB(m)))) == NULL && 255 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 256 M_GETFIB(m)))) == NULL) { 257 IPSTAT_INC(ips_noroute); 258 error = ENETUNREACH; 259 goto bad; 260 } 261 have_ia_ref = 1; 262 ifp = ia->ia_ifp; 263 ip->ip_ttl = 1; 264 isbroadcast = in_broadcast(dst->sin_addr, ifp); 265 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 266 imo != NULL && imo->imo_multicast_ifp != NULL) { 267 /* 268 * Bypass the normal routing lookup for multicast 269 * packets if the interface is specified. 270 */ 271 ifp = imo->imo_multicast_ifp; 272 IFP_TO_IA(ifp, ia); 273 if (ia) 274 have_ia_ref = 1; 275 isbroadcast = 0; /* fool gcc */ 276 } else { 277 /* 278 * We want to do any cloning requested by the link layer, 279 * as this is probably required in all cases for correct 280 * operation (as it is for ARP). 281 */ 282 if (rte == NULL) { 283 #ifdef RADIX_MPATH 284 rtalloc_mpath_fib(ro, 285 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 286 inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m)); 287 #else 288 in_rtalloc_ign(ro, 0, 289 inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m)); 290 #endif 291 rte = ro->ro_rt; 292 } 293 if (rte == NULL || 294 rte->rt_ifp == NULL || 295 !RT_LINK_IS_UP(rte->rt_ifp)) { 296 #ifdef IPSEC 297 /* 298 * There is no route for this packet, but it is 299 * possible that a matching SPD entry exists. 300 */ 301 no_route_but_check_spd = 1; 302 mtu = 0; /* Silence GCC warning. */ 303 goto sendit; 304 #endif 305 IPSTAT_INC(ips_noroute); 306 error = EHOSTUNREACH; 307 goto bad; 308 } 309 ia = ifatoia(rte->rt_ifa); 310 ifp = rte->rt_ifp; 311 counter_u64_add(rte->rt_pksent, 1); 312 if (rte->rt_flags & RTF_GATEWAY) 313 gw = (struct sockaddr_in *)rte->rt_gateway; 314 if (rte->rt_flags & RTF_HOST) 315 isbroadcast = (rte->rt_flags & RTF_BROADCAST); 316 else 317 isbroadcast = in_broadcast(gw->sin_addr, ifp); 318 } 319 /* 320 * Calculate MTU. If we have a route that is up, use that, 321 * otherwise use the interface's MTU. 322 */ 323 if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) { 324 /* 325 * This case can happen if the user changed the MTU 326 * of an interface after enabling IP on it. Because 327 * most netifs don't keep track of routes pointing to 328 * them, there is no way for one to update all its 329 * routes when the MTU is changed. 330 */ 331 if (rte->rt_mtu > ifp->if_mtu) 332 rte->rt_mtu = ifp->if_mtu; 333 mtu = rte->rt_mtu; 334 } else { 335 mtu = ifp->if_mtu; 336 } 337 /* Catch a possible divide by zero later. */ 338 KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p", 339 __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp)); 340 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 341 m->m_flags |= M_MCAST; 342 /* 343 * IP destination address is multicast. Make sure "gw" 344 * still points to the address in "ro". (It may have been 345 * changed to point to a gateway address, above.) 346 */ 347 gw = dst; 348 /* 349 * See if the caller provided any multicast options 350 */ 351 if (imo != NULL) { 352 ip->ip_ttl = imo->imo_multicast_ttl; 353 if (imo->imo_multicast_vif != -1) 354 ip->ip_src.s_addr = 355 ip_mcast_src ? 356 ip_mcast_src(imo->imo_multicast_vif) : 357 INADDR_ANY; 358 } else 359 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 360 /* 361 * Confirm that the outgoing interface supports multicast. 362 */ 363 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 364 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 365 IPSTAT_INC(ips_noroute); 366 error = ENETUNREACH; 367 goto bad; 368 } 369 } 370 /* 371 * If source address not specified yet, use address 372 * of outgoing interface. 373 */ 374 if (ip->ip_src.s_addr == INADDR_ANY) { 375 /* Interface may have no addresses. */ 376 if (ia != NULL) 377 ip->ip_src = IA_SIN(ia)->sin_addr; 378 } 379 380 if ((imo == NULL && in_mcast_loop) || 381 (imo && imo->imo_multicast_loop)) { 382 /* 383 * Loop back multicast datagram if not expressly 384 * forbidden to do so, even if we are not a member 385 * of the group; ip_input() will filter it later, 386 * thus deferring a hash lookup and mutex acquisition 387 * at the expense of a cheap copy using m_copym(). 388 */ 389 ip_mloopback(ifp, m, dst, hlen); 390 } else { 391 /* 392 * If we are acting as a multicast router, perform 393 * multicast forwarding as if the packet had just 394 * arrived on the interface to which we are about 395 * to send. The multicast forwarding function 396 * recursively calls this function, using the 397 * IP_FORWARDING flag to prevent infinite recursion. 398 * 399 * Multicasts that are looped back by ip_mloopback(), 400 * above, will be forwarded by the ip_input() routine, 401 * if necessary. 402 */ 403 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 404 /* 405 * If rsvp daemon is not running, do not 406 * set ip_moptions. This ensures that the packet 407 * is multicast and not just sent down one link 408 * as prescribed by rsvpd. 409 */ 410 if (!V_rsvp_on) 411 imo = NULL; 412 if (ip_mforward && 413 ip_mforward(ip, ifp, m, imo) != 0) { 414 m_freem(m); 415 goto done; 416 } 417 } 418 } 419 420 /* 421 * Multicasts with a time-to-live of zero may be looped- 422 * back, above, but must not be transmitted on a network. 423 * Also, multicasts addressed to the loopback interface 424 * are not sent -- the above call to ip_mloopback() will 425 * loop back a copy. ip_input() will drop the copy if 426 * this host does not belong to the destination group on 427 * the loopback interface. 428 */ 429 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 430 m_freem(m); 431 goto done; 432 } 433 434 goto sendit; 435 } 436 437 /* 438 * If the source address is not specified yet, use the address 439 * of the outoing interface. 440 */ 441 if (ip->ip_src.s_addr == INADDR_ANY) { 442 /* Interface may have no addresses. */ 443 if (ia != NULL) { 444 ip->ip_src = IA_SIN(ia)->sin_addr; 445 } 446 } 447 448 /* 449 * Look for broadcast address and 450 * verify user is allowed to send 451 * such a packet. 452 */ 453 if (isbroadcast) { 454 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 455 error = EADDRNOTAVAIL; 456 goto bad; 457 } 458 if ((flags & IP_ALLOWBROADCAST) == 0) { 459 error = EACCES; 460 goto bad; 461 } 462 /* don't allow broadcast messages to be fragmented */ 463 if (ip_len > mtu) { 464 error = EMSGSIZE; 465 goto bad; 466 } 467 m->m_flags |= M_BCAST; 468 } else { 469 m->m_flags &= ~M_BCAST; 470 } 471 472 sendit: 473 #ifdef IPSEC 474 switch(ip_ipsec_output(&m, inp, &flags, &error)) { 475 case 1: 476 goto bad; 477 case -1: 478 goto done; 479 case 0: 480 default: 481 break; /* Continue with packet processing. */ 482 } 483 /* 484 * Check if there was a route for this packet; return error if not. 485 */ 486 if (no_route_but_check_spd) { 487 IPSTAT_INC(ips_noroute); 488 error = EHOSTUNREACH; 489 goto bad; 490 } 491 /* Update variables that are affected by ipsec4_output(). */ 492 ip = mtod(m, struct ip *); 493 hlen = ip->ip_hl << 2; 494 #endif /* IPSEC */ 495 496 /* Jump over all PFIL processing if hooks are not active. */ 497 if (!PFIL_HOOKED(&V_inet_pfil_hook)) 498 goto passout; 499 500 /* Run through list of hooks for output packets. */ 501 odst.s_addr = ip->ip_dst.s_addr; 502 error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp); 503 if (error != 0 || m == NULL) 504 goto done; 505 506 ip = mtod(m, struct ip *); 507 508 /* See if destination IP address was changed by packet filter. */ 509 if (odst.s_addr != ip->ip_dst.s_addr) { 510 m->m_flags |= M_SKIP_FIREWALL; 511 /* If destination is now ourself drop to ip_input(). */ 512 if (in_localip(ip->ip_dst)) { 513 m->m_flags |= M_FASTFWD_OURS; 514 if (m->m_pkthdr.rcvif == NULL) 515 m->m_pkthdr.rcvif = V_loif; 516 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 517 m->m_pkthdr.csum_flags |= 518 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 519 m->m_pkthdr.csum_data = 0xffff; 520 } 521 m->m_pkthdr.csum_flags |= 522 CSUM_IP_CHECKED | CSUM_IP_VALID; 523 #ifdef SCTP 524 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 525 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 526 #endif 527 error = netisr_queue(NETISR_IP, m); 528 goto done; 529 } else { 530 if (have_ia_ref) 531 ifa_free(&ia->ia_ifa); 532 goto again; /* Redo the routing table lookup. */ 533 } 534 } 535 536 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 537 if (m->m_flags & M_FASTFWD_OURS) { 538 if (m->m_pkthdr.rcvif == NULL) 539 m->m_pkthdr.rcvif = V_loif; 540 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 541 m->m_pkthdr.csum_flags |= 542 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 543 m->m_pkthdr.csum_data = 0xffff; 544 } 545 #ifdef SCTP 546 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 547 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 548 #endif 549 m->m_pkthdr.csum_flags |= 550 CSUM_IP_CHECKED | CSUM_IP_VALID; 551 552 error = netisr_queue(NETISR_IP, m); 553 goto done; 554 } 555 /* Or forward to some other address? */ 556 if ((m->m_flags & M_IP_NEXTHOP) && 557 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 558 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 559 m->m_flags |= M_SKIP_FIREWALL; 560 m->m_flags &= ~M_IP_NEXTHOP; 561 m_tag_delete(m, fwd_tag); 562 if (have_ia_ref) 563 ifa_free(&ia->ia_ifa); 564 goto again; 565 } 566 567 passout: 568 /* 127/8 must not appear on wire - RFC1122. */ 569 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 570 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 571 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 572 IPSTAT_INC(ips_badaddr); 573 error = EADDRNOTAVAIL; 574 goto bad; 575 } 576 } 577 578 m->m_pkthdr.csum_flags |= CSUM_IP; 579 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 580 in_delayed_cksum(m); 581 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 582 } 583 #ifdef SCTP 584 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 585 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 586 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 587 } 588 #endif 589 590 /* 591 * If small enough for interface, or the interface will take 592 * care of the fragmentation for us, we can just send directly. 593 */ 594 if (ip_len <= mtu || 595 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 596 ip->ip_sum = 0; 597 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 598 ip->ip_sum = in_cksum(m, hlen); 599 m->m_pkthdr.csum_flags &= ~CSUM_IP; 600 } 601 602 /* 603 * Record statistics for this interface address. 604 * With CSUM_TSO the byte/packet count will be slightly 605 * incorrect because we count the IP+TCP headers only 606 * once instead of for every generated packet. 607 */ 608 if (!(flags & IP_FORWARDING) && ia) { 609 if (m->m_pkthdr.csum_flags & CSUM_TSO) 610 counter_u64_add(ia->ia_ifa.ifa_opackets, 611 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 612 else 613 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 614 615 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 616 } 617 #ifdef MBUF_STRESS_TEST 618 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 619 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 620 #endif 621 /* 622 * Reset layer specific mbuf flags 623 * to avoid confusing lower layers. 624 */ 625 m_clrprotoflags(m); 626 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 627 error = (*ifp->if_output)(ifp, m, 628 (const struct sockaddr *)gw, ro); 629 goto done; 630 } 631 632 /* Balk when DF bit is set or the interface didn't support TSO. */ 633 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 634 error = EMSGSIZE; 635 IPSTAT_INC(ips_cantfrag); 636 goto bad; 637 } 638 639 /* 640 * Too large for interface; fragment if possible. If successful, 641 * on return, m will point to a list of packets to be sent. 642 */ 643 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 644 if (error) 645 goto bad; 646 for (; m; m = m0) { 647 m0 = m->m_nextpkt; 648 m->m_nextpkt = 0; 649 if (error == 0) { 650 /* Record statistics for this interface address. */ 651 if (ia != NULL) { 652 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 653 counter_u64_add(ia->ia_ifa.ifa_obytes, 654 m->m_pkthdr.len); 655 } 656 /* 657 * Reset layer specific mbuf flags 658 * to avoid confusing upper layers. 659 */ 660 m_clrprotoflags(m); 661 662 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 663 error = (*ifp->if_output)(ifp, m, 664 (const struct sockaddr *)gw, ro); 665 } else 666 m_freem(m); 667 } 668 669 if (error == 0) 670 IPSTAT_INC(ips_fragmented); 671 672 done: 673 if (ro == &iproute) 674 RO_RTFREE(ro); 675 if (have_ia_ref) 676 ifa_free(&ia->ia_ifa); 677 return (error); 678 bad: 679 m_freem(m); 680 goto done; 681 } 682 683 /* 684 * Create a chain of fragments which fit the given mtu. m_frag points to the 685 * mbuf to be fragmented; on return it points to the chain with the fragments. 686 * Return 0 if no error. If error, m_frag may contain a partially built 687 * chain of fragments that should be freed by the caller. 688 * 689 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 690 */ 691 int 692 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 693 u_long if_hwassist_flags) 694 { 695 int error = 0; 696 int hlen = ip->ip_hl << 2; 697 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 698 int off; 699 struct mbuf *m0 = *m_frag; /* the original packet */ 700 int firstlen; 701 struct mbuf **mnext; 702 int nfrags; 703 uint16_t ip_len, ip_off; 704 705 ip_len = ntohs(ip->ip_len); 706 ip_off = ntohs(ip->ip_off); 707 708 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 709 IPSTAT_INC(ips_cantfrag); 710 return EMSGSIZE; 711 } 712 713 /* 714 * Must be able to put at least 8 bytes per fragment. 715 */ 716 if (len < 8) 717 return EMSGSIZE; 718 719 /* 720 * If the interface will not calculate checksums on 721 * fragmented packets, then do it here. 722 */ 723 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 724 in_delayed_cksum(m0); 725 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 726 } 727 #ifdef SCTP 728 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 729 sctp_delayed_cksum(m0, hlen); 730 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 731 } 732 #endif 733 if (len > PAGE_SIZE) { 734 /* 735 * Fragment large datagrams such that each segment 736 * contains a multiple of PAGE_SIZE amount of data, 737 * plus headers. This enables a receiver to perform 738 * page-flipping zero-copy optimizations. 739 * 740 * XXX When does this help given that sender and receiver 741 * could have different page sizes, and also mtu could 742 * be less than the receiver's page size ? 743 */ 744 int newlen; 745 struct mbuf *m; 746 747 for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next) 748 off += m->m_len; 749 750 /* 751 * firstlen (off - hlen) must be aligned on an 752 * 8-byte boundary 753 */ 754 if (off < hlen) 755 goto smart_frag_failure; 756 off = ((off - hlen) & ~7) + hlen; 757 newlen = (~PAGE_MASK) & mtu; 758 if ((newlen + sizeof (struct ip)) > mtu) { 759 /* we failed, go back the default */ 760 smart_frag_failure: 761 newlen = len; 762 off = hlen + len; 763 } 764 len = newlen; 765 766 } else { 767 off = hlen + len; 768 } 769 770 firstlen = off - hlen; 771 mnext = &m0->m_nextpkt; /* pointer to next packet */ 772 773 /* 774 * Loop through length of segment after first fragment, 775 * make new header and copy data of each part and link onto chain. 776 * Here, m0 is the original packet, m is the fragment being created. 777 * The fragments are linked off the m_nextpkt of the original 778 * packet, which after processing serves as the first fragment. 779 */ 780 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 781 struct ip *mhip; /* ip header on the fragment */ 782 struct mbuf *m; 783 int mhlen = sizeof (struct ip); 784 785 m = m_gethdr(M_NOWAIT, MT_DATA); 786 if (m == NULL) { 787 error = ENOBUFS; 788 IPSTAT_INC(ips_odropped); 789 goto done; 790 } 791 m->m_flags |= (m0->m_flags & M_MCAST); 792 /* 793 * In the first mbuf, leave room for the link header, then 794 * copy the original IP header including options. The payload 795 * goes into an additional mbuf chain returned by m_copym(). 796 */ 797 m->m_data += max_linkhdr; 798 mhip = mtod(m, struct ip *); 799 *mhip = *ip; 800 if (hlen > sizeof (struct ip)) { 801 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 802 mhip->ip_v = IPVERSION; 803 mhip->ip_hl = mhlen >> 2; 804 } 805 m->m_len = mhlen; 806 /* XXX do we need to add ip_off below ? */ 807 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 808 if (off + len >= ip_len) 809 len = ip_len - off; 810 else 811 mhip->ip_off |= IP_MF; 812 mhip->ip_len = htons((u_short)(len + mhlen)); 813 m->m_next = m_copym(m0, off, len, M_NOWAIT); 814 if (m->m_next == NULL) { /* copy failed */ 815 m_free(m); 816 error = ENOBUFS; /* ??? */ 817 IPSTAT_INC(ips_odropped); 818 goto done; 819 } 820 m->m_pkthdr.len = mhlen + len; 821 m->m_pkthdr.rcvif = NULL; 822 #ifdef MAC 823 mac_netinet_fragment(m0, m); 824 #endif 825 m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags; 826 mhip->ip_off = htons(mhip->ip_off); 827 mhip->ip_sum = 0; 828 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 829 mhip->ip_sum = in_cksum(m, mhlen); 830 m->m_pkthdr.csum_flags &= ~CSUM_IP; 831 } 832 *mnext = m; 833 mnext = &m->m_nextpkt; 834 } 835 IPSTAT_ADD(ips_ofragments, nfrags); 836 837 /* 838 * Update first fragment by trimming what's been copied out 839 * and updating header. 840 */ 841 m_adj(m0, hlen + firstlen - ip_len); 842 m0->m_pkthdr.len = hlen + firstlen; 843 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 844 ip->ip_off = htons(ip_off | IP_MF); 845 ip->ip_sum = 0; 846 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 847 ip->ip_sum = in_cksum(m0, hlen); 848 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 849 } 850 851 done: 852 *m_frag = m0; 853 return error; 854 } 855 856 void 857 in_delayed_cksum(struct mbuf *m) 858 { 859 struct ip *ip; 860 uint16_t csum, offset, ip_len; 861 862 ip = mtod(m, struct ip *); 863 offset = ip->ip_hl << 2 ; 864 ip_len = ntohs(ip->ip_len); 865 csum = in_cksum_skip(m, ip_len, offset); 866 if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0) 867 csum = 0xffff; 868 offset += m->m_pkthdr.csum_data; /* checksum offset */ 869 870 /* find the mbuf in the chain where the checksum starts*/ 871 while ((m != NULL) && (offset >= m->m_len)) { 872 offset -= m->m_len; 873 m = m->m_next; 874 } 875 KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain.")); 876 KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs.")); 877 *(u_short *)(m->m_data + offset) = csum; 878 } 879 880 /* 881 * IP socket option processing. 882 */ 883 int 884 ip_ctloutput(struct socket *so, struct sockopt *sopt) 885 { 886 struct inpcb *inp = sotoinpcb(so); 887 int error, optval; 888 #ifdef RSS 889 uint32_t rss_bucket; 890 int retval; 891 #endif 892 893 error = optval = 0; 894 if (sopt->sopt_level != IPPROTO_IP) { 895 error = EINVAL; 896 897 if (sopt->sopt_level == SOL_SOCKET && 898 sopt->sopt_dir == SOPT_SET) { 899 switch (sopt->sopt_name) { 900 case SO_REUSEADDR: 901 INP_WLOCK(inp); 902 if ((so->so_options & SO_REUSEADDR) != 0) 903 inp->inp_flags2 |= INP_REUSEADDR; 904 else 905 inp->inp_flags2 &= ~INP_REUSEADDR; 906 INP_WUNLOCK(inp); 907 error = 0; 908 break; 909 case SO_REUSEPORT: 910 INP_WLOCK(inp); 911 if ((so->so_options & SO_REUSEPORT) != 0) 912 inp->inp_flags2 |= INP_REUSEPORT; 913 else 914 inp->inp_flags2 &= ~INP_REUSEPORT; 915 INP_WUNLOCK(inp); 916 error = 0; 917 break; 918 case SO_SETFIB: 919 INP_WLOCK(inp); 920 inp->inp_inc.inc_fibnum = so->so_fibnum; 921 INP_WUNLOCK(inp); 922 error = 0; 923 break; 924 default: 925 break; 926 } 927 } 928 return (error); 929 } 930 931 switch (sopt->sopt_dir) { 932 case SOPT_SET: 933 switch (sopt->sopt_name) { 934 case IP_OPTIONS: 935 #ifdef notyet 936 case IP_RETOPTS: 937 #endif 938 { 939 struct mbuf *m; 940 if (sopt->sopt_valsize > MLEN) { 941 error = EMSGSIZE; 942 break; 943 } 944 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 945 if (m == NULL) { 946 error = ENOBUFS; 947 break; 948 } 949 m->m_len = sopt->sopt_valsize; 950 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 951 m->m_len); 952 if (error) { 953 m_free(m); 954 break; 955 } 956 INP_WLOCK(inp); 957 error = ip_pcbopts(inp, sopt->sopt_name, m); 958 INP_WUNLOCK(inp); 959 return (error); 960 } 961 962 case IP_BINDANY: 963 if (sopt->sopt_td != NULL) { 964 error = priv_check(sopt->sopt_td, 965 PRIV_NETINET_BINDANY); 966 if (error) 967 break; 968 } 969 /* FALLTHROUGH */ 970 case IP_BINDMULTI: 971 #ifdef RSS 972 case IP_RSS_LISTEN_BUCKET: 973 #endif 974 case IP_TOS: 975 case IP_TTL: 976 case IP_MINTTL: 977 case IP_RECVOPTS: 978 case IP_RECVRETOPTS: 979 case IP_RECVDSTADDR: 980 case IP_RECVTTL: 981 case IP_RECVIF: 982 case IP_FAITH: 983 case IP_ONESBCAST: 984 case IP_DONTFRAG: 985 case IP_RECVTOS: 986 case IP_RECVFLOWID: 987 #ifdef RSS 988 case IP_RECVRSSBUCKETID: 989 #endif 990 error = sooptcopyin(sopt, &optval, sizeof optval, 991 sizeof optval); 992 if (error) 993 break; 994 995 switch (sopt->sopt_name) { 996 case IP_TOS: 997 inp->inp_ip_tos = optval; 998 break; 999 1000 case IP_TTL: 1001 inp->inp_ip_ttl = optval; 1002 break; 1003 1004 case IP_MINTTL: 1005 if (optval >= 0 && optval <= MAXTTL) 1006 inp->inp_ip_minttl = optval; 1007 else 1008 error = EINVAL; 1009 break; 1010 1011 #define OPTSET(bit) do { \ 1012 INP_WLOCK(inp); \ 1013 if (optval) \ 1014 inp->inp_flags |= bit; \ 1015 else \ 1016 inp->inp_flags &= ~bit; \ 1017 INP_WUNLOCK(inp); \ 1018 } while (0) 1019 1020 #define OPTSET2(bit, val) do { \ 1021 INP_WLOCK(inp); \ 1022 if (val) \ 1023 inp->inp_flags2 |= bit; \ 1024 else \ 1025 inp->inp_flags2 &= ~bit; \ 1026 INP_WUNLOCK(inp); \ 1027 } while (0) 1028 1029 case IP_RECVOPTS: 1030 OPTSET(INP_RECVOPTS); 1031 break; 1032 1033 case IP_RECVRETOPTS: 1034 OPTSET(INP_RECVRETOPTS); 1035 break; 1036 1037 case IP_RECVDSTADDR: 1038 OPTSET(INP_RECVDSTADDR); 1039 break; 1040 1041 case IP_RECVTTL: 1042 OPTSET(INP_RECVTTL); 1043 break; 1044 1045 case IP_RECVIF: 1046 OPTSET(INP_RECVIF); 1047 break; 1048 1049 case IP_FAITH: 1050 OPTSET(INP_FAITH); 1051 break; 1052 1053 case IP_ONESBCAST: 1054 OPTSET(INP_ONESBCAST); 1055 break; 1056 case IP_DONTFRAG: 1057 OPTSET(INP_DONTFRAG); 1058 break; 1059 case IP_BINDANY: 1060 OPTSET(INP_BINDANY); 1061 break; 1062 case IP_RECVTOS: 1063 OPTSET(INP_RECVTOS); 1064 break; 1065 case IP_BINDMULTI: 1066 OPTSET2(INP_BINDMULTI, optval); 1067 break; 1068 case IP_RECVFLOWID: 1069 OPTSET2(INP_RECVFLOWID, optval); 1070 break; 1071 #ifdef RSS 1072 case IP_RSS_LISTEN_BUCKET: 1073 if ((optval >= 0) && 1074 (optval < rss_getnumbuckets())) { 1075 inp->inp_rss_listen_bucket = optval; 1076 OPTSET2(INP_RSS_BUCKET_SET, 1); 1077 } else { 1078 error = EINVAL; 1079 } 1080 break; 1081 case IP_RECVRSSBUCKETID: 1082 OPTSET2(INP_RECVRSSBUCKETID, optval); 1083 break; 1084 #endif 1085 } 1086 break; 1087 #undef OPTSET 1088 #undef OPTSET2 1089 1090 /* 1091 * Multicast socket options are processed by the in_mcast 1092 * module. 1093 */ 1094 case IP_MULTICAST_IF: 1095 case IP_MULTICAST_VIF: 1096 case IP_MULTICAST_TTL: 1097 case IP_MULTICAST_LOOP: 1098 case IP_ADD_MEMBERSHIP: 1099 case IP_DROP_MEMBERSHIP: 1100 case IP_ADD_SOURCE_MEMBERSHIP: 1101 case IP_DROP_SOURCE_MEMBERSHIP: 1102 case IP_BLOCK_SOURCE: 1103 case IP_UNBLOCK_SOURCE: 1104 case IP_MSFILTER: 1105 case MCAST_JOIN_GROUP: 1106 case MCAST_LEAVE_GROUP: 1107 case MCAST_JOIN_SOURCE_GROUP: 1108 case MCAST_LEAVE_SOURCE_GROUP: 1109 case MCAST_BLOCK_SOURCE: 1110 case MCAST_UNBLOCK_SOURCE: 1111 error = inp_setmoptions(inp, sopt); 1112 break; 1113 1114 case IP_PORTRANGE: 1115 error = sooptcopyin(sopt, &optval, sizeof optval, 1116 sizeof optval); 1117 if (error) 1118 break; 1119 1120 INP_WLOCK(inp); 1121 switch (optval) { 1122 case IP_PORTRANGE_DEFAULT: 1123 inp->inp_flags &= ~(INP_LOWPORT); 1124 inp->inp_flags &= ~(INP_HIGHPORT); 1125 break; 1126 1127 case IP_PORTRANGE_HIGH: 1128 inp->inp_flags &= ~(INP_LOWPORT); 1129 inp->inp_flags |= INP_HIGHPORT; 1130 break; 1131 1132 case IP_PORTRANGE_LOW: 1133 inp->inp_flags &= ~(INP_HIGHPORT); 1134 inp->inp_flags |= INP_LOWPORT; 1135 break; 1136 1137 default: 1138 error = EINVAL; 1139 break; 1140 } 1141 INP_WUNLOCK(inp); 1142 break; 1143 1144 #ifdef IPSEC 1145 case IP_IPSEC_POLICY: 1146 { 1147 caddr_t req; 1148 struct mbuf *m; 1149 1150 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1151 break; 1152 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1153 break; 1154 req = mtod(m, caddr_t); 1155 error = ipsec_set_policy(inp, sopt->sopt_name, req, 1156 m->m_len, (sopt->sopt_td != NULL) ? 1157 sopt->sopt_td->td_ucred : NULL); 1158 m_freem(m); 1159 break; 1160 } 1161 #endif /* IPSEC */ 1162 1163 default: 1164 error = ENOPROTOOPT; 1165 break; 1166 } 1167 break; 1168 1169 case SOPT_GET: 1170 switch (sopt->sopt_name) { 1171 case IP_OPTIONS: 1172 case IP_RETOPTS: 1173 if (inp->inp_options) 1174 error = sooptcopyout(sopt, 1175 mtod(inp->inp_options, 1176 char *), 1177 inp->inp_options->m_len); 1178 else 1179 sopt->sopt_valsize = 0; 1180 break; 1181 1182 case IP_TOS: 1183 case IP_TTL: 1184 case IP_MINTTL: 1185 case IP_RECVOPTS: 1186 case IP_RECVRETOPTS: 1187 case IP_RECVDSTADDR: 1188 case IP_RECVTTL: 1189 case IP_RECVIF: 1190 case IP_PORTRANGE: 1191 case IP_FAITH: 1192 case IP_ONESBCAST: 1193 case IP_DONTFRAG: 1194 case IP_BINDANY: 1195 case IP_RECVTOS: 1196 case IP_BINDMULTI: 1197 case IP_FLOWID: 1198 case IP_FLOWTYPE: 1199 case IP_RECVFLOWID: 1200 #ifdef RSS 1201 case IP_RSSBUCKETID: 1202 case IP_RECVRSSBUCKETID: 1203 #endif 1204 switch (sopt->sopt_name) { 1205 1206 case IP_TOS: 1207 optval = inp->inp_ip_tos; 1208 break; 1209 1210 case IP_TTL: 1211 optval = inp->inp_ip_ttl; 1212 break; 1213 1214 case IP_MINTTL: 1215 optval = inp->inp_ip_minttl; 1216 break; 1217 1218 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1219 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1220 1221 case IP_RECVOPTS: 1222 optval = OPTBIT(INP_RECVOPTS); 1223 break; 1224 1225 case IP_RECVRETOPTS: 1226 optval = OPTBIT(INP_RECVRETOPTS); 1227 break; 1228 1229 case IP_RECVDSTADDR: 1230 optval = OPTBIT(INP_RECVDSTADDR); 1231 break; 1232 1233 case IP_RECVTTL: 1234 optval = OPTBIT(INP_RECVTTL); 1235 break; 1236 1237 case IP_RECVIF: 1238 optval = OPTBIT(INP_RECVIF); 1239 break; 1240 1241 case IP_PORTRANGE: 1242 if (inp->inp_flags & INP_HIGHPORT) 1243 optval = IP_PORTRANGE_HIGH; 1244 else if (inp->inp_flags & INP_LOWPORT) 1245 optval = IP_PORTRANGE_LOW; 1246 else 1247 optval = 0; 1248 break; 1249 1250 case IP_FAITH: 1251 optval = OPTBIT(INP_FAITH); 1252 break; 1253 1254 case IP_ONESBCAST: 1255 optval = OPTBIT(INP_ONESBCAST); 1256 break; 1257 case IP_DONTFRAG: 1258 optval = OPTBIT(INP_DONTFRAG); 1259 break; 1260 case IP_BINDANY: 1261 optval = OPTBIT(INP_BINDANY); 1262 break; 1263 case IP_RECVTOS: 1264 optval = OPTBIT(INP_RECVTOS); 1265 break; 1266 case IP_FLOWID: 1267 optval = inp->inp_flowid; 1268 break; 1269 case IP_FLOWTYPE: 1270 optval = inp->inp_flowtype; 1271 break; 1272 case IP_RECVFLOWID: 1273 optval = OPTBIT2(INP_RECVFLOWID); 1274 break; 1275 #ifdef RSS 1276 case IP_RSSBUCKETID: 1277 retval = rss_hash2bucket(inp->inp_flowid, 1278 inp->inp_flowtype, 1279 &rss_bucket); 1280 if (retval == 0) 1281 optval = rss_bucket; 1282 else 1283 error = EINVAL; 1284 break; 1285 case IP_RECVRSSBUCKETID: 1286 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1287 break; 1288 #endif 1289 case IP_BINDMULTI: 1290 optval = OPTBIT2(INP_BINDMULTI); 1291 break; 1292 } 1293 error = sooptcopyout(sopt, &optval, sizeof optval); 1294 break; 1295 1296 /* 1297 * Multicast socket options are processed by the in_mcast 1298 * module. 1299 */ 1300 case IP_MULTICAST_IF: 1301 case IP_MULTICAST_VIF: 1302 case IP_MULTICAST_TTL: 1303 case IP_MULTICAST_LOOP: 1304 case IP_MSFILTER: 1305 error = inp_getmoptions(inp, sopt); 1306 break; 1307 1308 #ifdef IPSEC 1309 case IP_IPSEC_POLICY: 1310 { 1311 struct mbuf *m = NULL; 1312 caddr_t req = NULL; 1313 size_t len = 0; 1314 1315 if (m != 0) { 1316 req = mtod(m, caddr_t); 1317 len = m->m_len; 1318 } 1319 error = ipsec_get_policy(sotoinpcb(so), req, len, &m); 1320 if (error == 0) 1321 error = soopt_mcopyout(sopt, m); /* XXX */ 1322 if (error == 0) 1323 m_freem(m); 1324 break; 1325 } 1326 #endif /* IPSEC */ 1327 1328 default: 1329 error = ENOPROTOOPT; 1330 break; 1331 } 1332 break; 1333 } 1334 return (error); 1335 } 1336 1337 /* 1338 * Routine called from ip_output() to loop back a copy of an IP multicast 1339 * packet to the input queue of a specified interface. Note that this 1340 * calls the output routine of the loopback "driver", but with an interface 1341 * pointer that might NOT be a loopback interface -- evil, but easier than 1342 * replicating that code here. 1343 */ 1344 static void 1345 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst, 1346 int hlen) 1347 { 1348 register struct ip *ip; 1349 struct mbuf *copym; 1350 1351 /* 1352 * Make a deep copy of the packet because we're going to 1353 * modify the pack in order to generate checksums. 1354 */ 1355 copym = m_dup(m, M_NOWAIT); 1356 if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen)) 1357 copym = m_pullup(copym, hlen); 1358 if (copym != NULL) { 1359 /* If needed, compute the checksum and mark it as valid. */ 1360 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1361 in_delayed_cksum(copym); 1362 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1363 copym->m_pkthdr.csum_flags |= 1364 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1365 copym->m_pkthdr.csum_data = 0xffff; 1366 } 1367 /* 1368 * We don't bother to fragment if the IP length is greater 1369 * than the interface's MTU. Can this possibly matter? 1370 */ 1371 ip = mtod(copym, struct ip *); 1372 ip->ip_sum = 0; 1373 ip->ip_sum = in_cksum(copym, hlen); 1374 #if 1 /* XXX */ 1375 if (dst->sin_family != AF_INET) { 1376 printf("ip_mloopback: bad address family %d\n", 1377 dst->sin_family); 1378 dst->sin_family = AF_INET; 1379 } 1380 #endif 1381 if_simloop(ifp, copym, dst->sin_family, 0); 1382 } 1383 } 1384