1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_ipfw.h" 37 #include "opt_ipsec.h" 38 #include "opt_mbuf_stress_test.h" 39 #include "opt_mpath.h" 40 #include "opt_route.h" 41 #include "opt_sctp.h" 42 #include "opt_rss.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mbuf.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/protosw.h> 53 #include <sys/rmlock.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/ucred.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_llatbl.h> 63 #include <net/netisr.h> 64 #include <net/pfil.h> 65 #include <net/route.h> 66 #include <net/flowtable.h> 67 #ifdef RADIX_MPATH 68 #include <net/radix_mpath.h> 69 #endif 70 #include <net/rss_config.h> 71 #include <net/vnet.h> 72 73 #include <netinet/in.h> 74 #include <netinet/in_kdtrace.h> 75 #include <netinet/in_systm.h> 76 #include <netinet/ip.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_rss.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/ip_options.h> 82 #ifdef SCTP 83 #include <netinet/sctp.h> 84 #include <netinet/sctp_crc32.h> 85 #endif 86 87 #ifdef IPSEC 88 #include <netinet/ip_ipsec.h> 89 #include <netipsec/ipsec.h> 90 #endif /* IPSEC*/ 91 92 #include <machine/in_cksum.h> 93 94 #include <security/mac/mac_framework.h> 95 96 #ifdef MBUF_STRESS_TEST 97 static int mbuf_frag_size = 0; 98 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 99 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 100 #endif 101 102 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 103 104 105 extern int in_mcast_loop; 106 extern struct protosw inetsw[]; 107 108 static inline int 109 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp, 110 struct sockaddr_in *dst, int *fibnum, int *error) 111 { 112 struct m_tag *fwd_tag = NULL; 113 struct mbuf *m; 114 struct in_addr odst; 115 struct ip *ip; 116 117 m = *mp; 118 ip = mtod(m, struct ip *); 119 120 /* Run through list of hooks for output packets. */ 121 odst.s_addr = ip->ip_dst.s_addr; 122 *error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, PFIL_OUT, inp); 123 m = *mp; 124 if ((*error) != 0 || m == NULL) 125 return 1; /* Finished */ 126 127 ip = mtod(m, struct ip *); 128 129 /* See if destination IP address was changed by packet filter. */ 130 if (odst.s_addr != ip->ip_dst.s_addr) { 131 m->m_flags |= M_SKIP_FIREWALL; 132 /* If destination is now ourself drop to ip_input(). */ 133 if (in_localip(ip->ip_dst)) { 134 m->m_flags |= M_FASTFWD_OURS; 135 if (m->m_pkthdr.rcvif == NULL) 136 m->m_pkthdr.rcvif = V_loif; 137 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 138 m->m_pkthdr.csum_flags |= 139 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 140 m->m_pkthdr.csum_data = 0xffff; 141 } 142 m->m_pkthdr.csum_flags |= 143 CSUM_IP_CHECKED | CSUM_IP_VALID; 144 #ifdef SCTP 145 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 146 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 147 #endif 148 *error = netisr_queue(NETISR_IP, m); 149 return 1; /* Finished */ 150 } 151 152 bzero(dst, sizeof(*dst)); 153 dst->sin_family = AF_INET; 154 dst->sin_len = sizeof(*dst); 155 dst->sin_addr = ip->ip_dst; 156 157 return -1; /* Reloop */ 158 } 159 /* See if fib was changed by packet filter. */ 160 if ((*fibnum) != M_GETFIB(m)) { 161 m->m_flags |= M_SKIP_FIREWALL; 162 *fibnum = M_GETFIB(m); 163 return -1; /* Reloop for FIB change */ 164 } 165 166 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 167 if (m->m_flags & M_FASTFWD_OURS) { 168 if (m->m_pkthdr.rcvif == NULL) 169 m->m_pkthdr.rcvif = V_loif; 170 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 171 m->m_pkthdr.csum_flags |= 172 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 173 m->m_pkthdr.csum_data = 0xffff; 174 } 175 #ifdef SCTP 176 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 177 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 178 #endif 179 m->m_pkthdr.csum_flags |= 180 CSUM_IP_CHECKED | CSUM_IP_VALID; 181 182 *error = netisr_queue(NETISR_IP, m); 183 return 1; /* Finished */ 184 } 185 /* Or forward to some other address? */ 186 if ((m->m_flags & M_IP_NEXTHOP) && 187 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 188 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 189 m->m_flags |= M_SKIP_FIREWALL; 190 m->m_flags &= ~M_IP_NEXTHOP; 191 m_tag_delete(m, fwd_tag); 192 193 return -1; /* Reloop for CHANGE of dst */ 194 } 195 196 return 0; 197 } 198 199 /* 200 * IP output. The packet in mbuf chain m contains a skeletal IP 201 * header (with len, off, ttl, proto, tos, src, dst). 202 * The mbuf chain containing the packet will be freed. 203 * The mbuf opt, if present, will not be freed. 204 * If route ro is present and has ro_rt initialized, route lookup would be 205 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 206 * then result of route lookup is stored in ro->ro_rt. 207 * 208 * In the IP forwarding case, the packet will arrive with options already 209 * inserted, so must have a NULL opt pointer. 210 */ 211 int 212 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 213 struct ip_moptions *imo, struct inpcb *inp) 214 { 215 struct rm_priotracker in_ifa_tracker; 216 struct ip *ip; 217 struct ifnet *ifp = NULL; /* keep compiler happy */ 218 struct mbuf *m0; 219 int hlen = sizeof (struct ip); 220 int mtu; 221 int error = 0; 222 struct sockaddr_in *dst; 223 const struct sockaddr_in *gw; 224 struct in_ifaddr *ia; 225 int isbroadcast; 226 uint16_t ip_len, ip_off; 227 struct route iproute; 228 struct rtentry *rte; /* cache for ro->ro_rt */ 229 uint32_t fibnum; 230 int have_ia_ref; 231 #ifdef IPSEC 232 int no_route_but_check_spd = 0; 233 #endif 234 M_ASSERTPKTHDR(m); 235 236 if (inp != NULL) { 237 INP_LOCK_ASSERT(inp); 238 M_SETFIB(m, inp->inp_inc.inc_fibnum); 239 if ((flags & IP_NODEFAULTFLOWID) == 0) { 240 m->m_pkthdr.flowid = inp->inp_flowid; 241 M_HASHTYPE_SET(m, inp->inp_flowtype); 242 } 243 } 244 245 if (ro == NULL) { 246 ro = &iproute; 247 bzero(ro, sizeof (*ro)); 248 } 249 250 #ifdef FLOWTABLE 251 if (ro->ro_rt == NULL) 252 (void )flowtable_lookup(AF_INET, m, ro); 253 #endif 254 255 if (opt) { 256 int len = 0; 257 m = ip_insertoptions(m, opt, &len); 258 if (len != 0) 259 hlen = len; /* ip->ip_hl is updated above */ 260 } 261 ip = mtod(m, struct ip *); 262 ip_len = ntohs(ip->ip_len); 263 ip_off = ntohs(ip->ip_off); 264 265 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 266 ip->ip_v = IPVERSION; 267 ip->ip_hl = hlen >> 2; 268 ip_fillid(ip); 269 IPSTAT_INC(ips_localout); 270 } else { 271 /* Header already set, fetch hlen from there */ 272 hlen = ip->ip_hl << 2; 273 } 274 275 /* 276 * dst/gw handling: 277 * 278 * dst can be rewritten but always points to &ro->ro_dst. 279 * gw is readonly but can point either to dst OR rt_gateway, 280 * therefore we need restore gw if we're redoing lookup. 281 */ 282 gw = dst = (struct sockaddr_in *)&ro->ro_dst; 283 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 284 rte = ro->ro_rt; 285 if (rte == NULL) { 286 bzero(dst, sizeof(*dst)); 287 dst->sin_family = AF_INET; 288 dst->sin_len = sizeof(*dst); 289 dst->sin_addr = ip->ip_dst; 290 } 291 again: 292 /* 293 * Validate route against routing table additions; 294 * a better/more specific route might have been added. 295 */ 296 if (inp) 297 RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 298 /* 299 * If there is a cached route, 300 * check that it is to the same destination 301 * and is still up. If not, free it and try again. 302 * The address family should also be checked in case of sharing the 303 * cache with IPv6. 304 * Also check whether routing cache needs invalidation. 305 */ 306 rte = ro->ro_rt; 307 if (rte && ((rte->rt_flags & RTF_UP) == 0 || 308 rte->rt_ifp == NULL || 309 !RT_LINK_IS_UP(rte->rt_ifp) || 310 dst->sin_family != AF_INET || 311 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) { 312 RTFREE(rte); 313 rte = ro->ro_rt = (struct rtentry *)NULL; 314 } 315 ia = NULL; 316 have_ia_ref = 0; 317 /* 318 * If routing to interface only, short circuit routing lookup. 319 * The use of an all-ones broadcast address implies this; an 320 * interface is specified by the broadcast address of an interface, 321 * or the destination address of a ptp interface. 322 */ 323 if (flags & IP_SENDONES) { 324 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 325 M_GETFIB(m)))) == NULL && 326 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 327 M_GETFIB(m)))) == NULL) { 328 IPSTAT_INC(ips_noroute); 329 error = ENETUNREACH; 330 goto bad; 331 } 332 have_ia_ref = 1; 333 ip->ip_dst.s_addr = INADDR_BROADCAST; 334 dst->sin_addr = ip->ip_dst; 335 ifp = ia->ia_ifp; 336 ip->ip_ttl = 1; 337 isbroadcast = 1; 338 } else if (flags & IP_ROUTETOIF) { 339 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 340 M_GETFIB(m)))) == NULL && 341 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 342 M_GETFIB(m)))) == NULL) { 343 IPSTAT_INC(ips_noroute); 344 error = ENETUNREACH; 345 goto bad; 346 } 347 have_ia_ref = 1; 348 ifp = ia->ia_ifp; 349 ip->ip_ttl = 1; 350 isbroadcast = in_broadcast(dst->sin_addr, ifp); 351 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 352 imo != NULL && imo->imo_multicast_ifp != NULL) { 353 /* 354 * Bypass the normal routing lookup for multicast 355 * packets if the interface is specified. 356 */ 357 ifp = imo->imo_multicast_ifp; 358 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 359 if (ia) 360 have_ia_ref = 1; 361 isbroadcast = 0; /* fool gcc */ 362 } else { 363 /* 364 * We want to do any cloning requested by the link layer, 365 * as this is probably required in all cases for correct 366 * operation (as it is for ARP). 367 */ 368 if (rte == NULL) { 369 #ifdef RADIX_MPATH 370 rtalloc_mpath_fib(ro, 371 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 372 fibnum); 373 #else 374 in_rtalloc_ign(ro, 0, fibnum); 375 #endif 376 rte = ro->ro_rt; 377 } 378 if (rte == NULL || 379 (rte->rt_flags & RTF_UP) == 0 || 380 rte->rt_ifp == NULL || 381 !RT_LINK_IS_UP(rte->rt_ifp)) { 382 #ifdef IPSEC 383 /* 384 * There is no route for this packet, but it is 385 * possible that a matching SPD entry exists. 386 */ 387 no_route_but_check_spd = 1; 388 mtu = 0; /* Silence GCC warning. */ 389 goto sendit; 390 #endif 391 IPSTAT_INC(ips_noroute); 392 error = EHOSTUNREACH; 393 goto bad; 394 } 395 ia = ifatoia(rte->rt_ifa); 396 ifp = rte->rt_ifp; 397 counter_u64_add(rte->rt_pksent, 1); 398 rt_update_ro_flags(ro); 399 if (rte->rt_flags & RTF_GATEWAY) 400 gw = (struct sockaddr_in *)rte->rt_gateway; 401 if (rte->rt_flags & RTF_HOST) 402 isbroadcast = (rte->rt_flags & RTF_BROADCAST); 403 else 404 isbroadcast = in_broadcast(gw->sin_addr, ifp); 405 } 406 407 /* 408 * Calculate MTU. If we have a route that is up, use that, 409 * otherwise use the interface's MTU. 410 */ 411 if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) 412 mtu = rte->rt_mtu; 413 else 414 mtu = ifp->if_mtu; 415 /* Catch a possible divide by zero later. */ 416 KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p", 417 __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp)); 418 419 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 420 m->m_flags |= M_MCAST; 421 /* 422 * IP destination address is multicast. Make sure "gw" 423 * still points to the address in "ro". (It may have been 424 * changed to point to a gateway address, above.) 425 */ 426 gw = dst; 427 /* 428 * See if the caller provided any multicast options 429 */ 430 if (imo != NULL) { 431 ip->ip_ttl = imo->imo_multicast_ttl; 432 if (imo->imo_multicast_vif != -1) 433 ip->ip_src.s_addr = 434 ip_mcast_src ? 435 ip_mcast_src(imo->imo_multicast_vif) : 436 INADDR_ANY; 437 } else 438 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 439 /* 440 * Confirm that the outgoing interface supports multicast. 441 */ 442 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 443 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 444 IPSTAT_INC(ips_noroute); 445 error = ENETUNREACH; 446 goto bad; 447 } 448 } 449 /* 450 * If source address not specified yet, use address 451 * of outgoing interface. 452 */ 453 if (ip->ip_src.s_addr == INADDR_ANY) { 454 /* Interface may have no addresses. */ 455 if (ia != NULL) 456 ip->ip_src = IA_SIN(ia)->sin_addr; 457 } 458 459 if ((imo == NULL && in_mcast_loop) || 460 (imo && imo->imo_multicast_loop)) { 461 /* 462 * Loop back multicast datagram if not expressly 463 * forbidden to do so, even if we are not a member 464 * of the group; ip_input() will filter it later, 465 * thus deferring a hash lookup and mutex acquisition 466 * at the expense of a cheap copy using m_copym(). 467 */ 468 ip_mloopback(ifp, m, hlen); 469 } else { 470 /* 471 * If we are acting as a multicast router, perform 472 * multicast forwarding as if the packet had just 473 * arrived on the interface to which we are about 474 * to send. The multicast forwarding function 475 * recursively calls this function, using the 476 * IP_FORWARDING flag to prevent infinite recursion. 477 * 478 * Multicasts that are looped back by ip_mloopback(), 479 * above, will be forwarded by the ip_input() routine, 480 * if necessary. 481 */ 482 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 483 /* 484 * If rsvp daemon is not running, do not 485 * set ip_moptions. This ensures that the packet 486 * is multicast and not just sent down one link 487 * as prescribed by rsvpd. 488 */ 489 if (!V_rsvp_on) 490 imo = NULL; 491 if (ip_mforward && 492 ip_mforward(ip, ifp, m, imo) != 0) { 493 m_freem(m); 494 goto done; 495 } 496 } 497 } 498 499 /* 500 * Multicasts with a time-to-live of zero may be looped- 501 * back, above, but must not be transmitted on a network. 502 * Also, multicasts addressed to the loopback interface 503 * are not sent -- the above call to ip_mloopback() will 504 * loop back a copy. ip_input() will drop the copy if 505 * this host does not belong to the destination group on 506 * the loopback interface. 507 */ 508 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 509 m_freem(m); 510 goto done; 511 } 512 513 goto sendit; 514 } 515 516 /* 517 * If the source address is not specified yet, use the address 518 * of the outoing interface. 519 */ 520 if (ip->ip_src.s_addr == INADDR_ANY) { 521 /* Interface may have no addresses. */ 522 if (ia != NULL) { 523 ip->ip_src = IA_SIN(ia)->sin_addr; 524 } 525 } 526 527 /* 528 * Look for broadcast address and 529 * verify user is allowed to send 530 * such a packet. 531 */ 532 if (isbroadcast) { 533 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 534 error = EADDRNOTAVAIL; 535 goto bad; 536 } 537 if ((flags & IP_ALLOWBROADCAST) == 0) { 538 error = EACCES; 539 goto bad; 540 } 541 /* don't allow broadcast messages to be fragmented */ 542 if (ip_len > mtu) { 543 error = EMSGSIZE; 544 goto bad; 545 } 546 m->m_flags |= M_BCAST; 547 } else { 548 m->m_flags &= ~M_BCAST; 549 } 550 551 sendit: 552 #ifdef IPSEC 553 switch(ip_ipsec_output(&m, inp, &error)) { 554 case 1: 555 goto bad; 556 case -1: 557 goto done; 558 case 0: 559 default: 560 break; /* Continue with packet processing. */ 561 } 562 /* 563 * Check if there was a route for this packet; return error if not. 564 */ 565 if (no_route_but_check_spd) { 566 IPSTAT_INC(ips_noroute); 567 error = EHOSTUNREACH; 568 goto bad; 569 } 570 /* Update variables that are affected by ipsec4_output(). */ 571 ip = mtod(m, struct ip *); 572 hlen = ip->ip_hl << 2; 573 #endif /* IPSEC */ 574 575 /* Jump over all PFIL processing if hooks are not active. */ 576 if (PFIL_HOOKED(&V_inet_pfil_hook)) { 577 switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) { 578 case 1: /* Finished */ 579 goto done; 580 581 case 0: /* Continue normally */ 582 ip = mtod(m, struct ip *); 583 break; 584 585 case -1: /* Need to try again */ 586 /* Reset everything for a new round */ 587 RO_RTFREE(ro); 588 if (have_ia_ref) 589 ifa_free(&ia->ia_ifa); 590 ro->ro_prepend = NULL; 591 rte = NULL; 592 gw = dst; 593 ip = mtod(m, struct ip *); 594 goto again; 595 596 } 597 } 598 599 /* 127/8 must not appear on wire - RFC1122. */ 600 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 601 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 602 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 603 IPSTAT_INC(ips_badaddr); 604 error = EADDRNOTAVAIL; 605 goto bad; 606 } 607 } 608 609 m->m_pkthdr.csum_flags |= CSUM_IP; 610 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 611 in_delayed_cksum(m); 612 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 613 } 614 #ifdef SCTP 615 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 616 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 617 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 618 } 619 #endif 620 621 /* 622 * If small enough for interface, or the interface will take 623 * care of the fragmentation for us, we can just send directly. 624 */ 625 if (ip_len <= mtu || 626 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 627 ip->ip_sum = 0; 628 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 629 ip->ip_sum = in_cksum(m, hlen); 630 m->m_pkthdr.csum_flags &= ~CSUM_IP; 631 } 632 633 /* 634 * Record statistics for this interface address. 635 * With CSUM_TSO the byte/packet count will be slightly 636 * incorrect because we count the IP+TCP headers only 637 * once instead of for every generated packet. 638 */ 639 if (!(flags & IP_FORWARDING) && ia) { 640 if (m->m_pkthdr.csum_flags & CSUM_TSO) 641 counter_u64_add(ia->ia_ifa.ifa_opackets, 642 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 643 else 644 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 645 646 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 647 } 648 #ifdef MBUF_STRESS_TEST 649 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 650 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 651 #endif 652 /* 653 * Reset layer specific mbuf flags 654 * to avoid confusing lower layers. 655 */ 656 m_clrprotoflags(m); 657 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 658 error = (*ifp->if_output)(ifp, m, 659 (const struct sockaddr *)gw, ro); 660 goto done; 661 } 662 663 /* Balk when DF bit is set or the interface didn't support TSO. */ 664 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 665 error = EMSGSIZE; 666 IPSTAT_INC(ips_cantfrag); 667 goto bad; 668 } 669 670 /* 671 * Too large for interface; fragment if possible. If successful, 672 * on return, m will point to a list of packets to be sent. 673 */ 674 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 675 if (error) 676 goto bad; 677 for (; m; m = m0) { 678 m0 = m->m_nextpkt; 679 m->m_nextpkt = 0; 680 if (error == 0) { 681 /* Record statistics for this interface address. */ 682 if (ia != NULL) { 683 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 684 counter_u64_add(ia->ia_ifa.ifa_obytes, 685 m->m_pkthdr.len); 686 } 687 /* 688 * Reset layer specific mbuf flags 689 * to avoid confusing upper layers. 690 */ 691 m_clrprotoflags(m); 692 693 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 694 error = (*ifp->if_output)(ifp, m, 695 (const struct sockaddr *)gw, ro); 696 } else 697 m_freem(m); 698 } 699 700 if (error == 0) 701 IPSTAT_INC(ips_fragmented); 702 703 done: 704 /* 705 * Release the route if using our private route, or if 706 * (with flowtable) we don't have our own reference. 707 */ 708 if (ro == &iproute || ro->ro_flags & RT_NORTREF) 709 RO_RTFREE(ro); 710 else if (rte == NULL) 711 /* 712 * If the caller supplied a route but somehow the reference 713 * to it has been released need to prevent the caller 714 * calling RTFREE on it again. 715 */ 716 ro->ro_rt = NULL; 717 if (have_ia_ref) 718 ifa_free(&ia->ia_ifa); 719 return (error); 720 bad: 721 m_freem(m); 722 goto done; 723 } 724 725 /* 726 * Create a chain of fragments which fit the given mtu. m_frag points to the 727 * mbuf to be fragmented; on return it points to the chain with the fragments. 728 * Return 0 if no error. If error, m_frag may contain a partially built 729 * chain of fragments that should be freed by the caller. 730 * 731 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 732 */ 733 int 734 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 735 u_long if_hwassist_flags) 736 { 737 int error = 0; 738 int hlen = ip->ip_hl << 2; 739 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 740 int off; 741 struct mbuf *m0 = *m_frag; /* the original packet */ 742 int firstlen; 743 struct mbuf **mnext; 744 int nfrags; 745 uint16_t ip_len, ip_off; 746 747 ip_len = ntohs(ip->ip_len); 748 ip_off = ntohs(ip->ip_off); 749 750 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 751 IPSTAT_INC(ips_cantfrag); 752 return EMSGSIZE; 753 } 754 755 /* 756 * Must be able to put at least 8 bytes per fragment. 757 */ 758 if (len < 8) 759 return EMSGSIZE; 760 761 /* 762 * If the interface will not calculate checksums on 763 * fragmented packets, then do it here. 764 */ 765 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 766 in_delayed_cksum(m0); 767 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 768 } 769 #ifdef SCTP 770 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 771 sctp_delayed_cksum(m0, hlen); 772 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 773 } 774 #endif 775 if (len > PAGE_SIZE) { 776 /* 777 * Fragment large datagrams such that each segment 778 * contains a multiple of PAGE_SIZE amount of data, 779 * plus headers. This enables a receiver to perform 780 * page-flipping zero-copy optimizations. 781 * 782 * XXX When does this help given that sender and receiver 783 * could have different page sizes, and also mtu could 784 * be less than the receiver's page size ? 785 */ 786 int newlen; 787 788 off = MIN(mtu, m0->m_pkthdr.len); 789 790 /* 791 * firstlen (off - hlen) must be aligned on an 792 * 8-byte boundary 793 */ 794 if (off < hlen) 795 goto smart_frag_failure; 796 off = ((off - hlen) & ~7) + hlen; 797 newlen = (~PAGE_MASK) & mtu; 798 if ((newlen + sizeof (struct ip)) > mtu) { 799 /* we failed, go back the default */ 800 smart_frag_failure: 801 newlen = len; 802 off = hlen + len; 803 } 804 len = newlen; 805 806 } else { 807 off = hlen + len; 808 } 809 810 firstlen = off - hlen; 811 mnext = &m0->m_nextpkt; /* pointer to next packet */ 812 813 /* 814 * Loop through length of segment after first fragment, 815 * make new header and copy data of each part and link onto chain. 816 * Here, m0 is the original packet, m is the fragment being created. 817 * The fragments are linked off the m_nextpkt of the original 818 * packet, which after processing serves as the first fragment. 819 */ 820 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 821 struct ip *mhip; /* ip header on the fragment */ 822 struct mbuf *m; 823 int mhlen = sizeof (struct ip); 824 825 m = m_gethdr(M_NOWAIT, MT_DATA); 826 if (m == NULL) { 827 error = ENOBUFS; 828 IPSTAT_INC(ips_odropped); 829 goto done; 830 } 831 /* 832 * Make sure the complete packet header gets copied 833 * from the originating mbuf to the newly created 834 * mbuf. This also ensures that existing firewall 835 * classification(s), VLAN tags and so on get copied 836 * to the resulting fragmented packet(s): 837 */ 838 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 839 m_free(m); 840 error = ENOBUFS; 841 IPSTAT_INC(ips_odropped); 842 goto done; 843 } 844 /* 845 * In the first mbuf, leave room for the link header, then 846 * copy the original IP header including options. The payload 847 * goes into an additional mbuf chain returned by m_copym(). 848 */ 849 m->m_data += max_linkhdr; 850 mhip = mtod(m, struct ip *); 851 *mhip = *ip; 852 if (hlen > sizeof (struct ip)) { 853 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 854 mhip->ip_v = IPVERSION; 855 mhip->ip_hl = mhlen >> 2; 856 } 857 m->m_len = mhlen; 858 /* XXX do we need to add ip_off below ? */ 859 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 860 if (off + len >= ip_len) 861 len = ip_len - off; 862 else 863 mhip->ip_off |= IP_MF; 864 mhip->ip_len = htons((u_short)(len + mhlen)); 865 m->m_next = m_copym(m0, off, len, M_NOWAIT); 866 if (m->m_next == NULL) { /* copy failed */ 867 m_free(m); 868 error = ENOBUFS; /* ??? */ 869 IPSTAT_INC(ips_odropped); 870 goto done; 871 } 872 m->m_pkthdr.len = mhlen + len; 873 #ifdef MAC 874 mac_netinet_fragment(m0, m); 875 #endif 876 mhip->ip_off = htons(mhip->ip_off); 877 mhip->ip_sum = 0; 878 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 879 mhip->ip_sum = in_cksum(m, mhlen); 880 m->m_pkthdr.csum_flags &= ~CSUM_IP; 881 } 882 *mnext = m; 883 mnext = &m->m_nextpkt; 884 } 885 IPSTAT_ADD(ips_ofragments, nfrags); 886 887 /* 888 * Update first fragment by trimming what's been copied out 889 * and updating header. 890 */ 891 m_adj(m0, hlen + firstlen - ip_len); 892 m0->m_pkthdr.len = hlen + firstlen; 893 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 894 ip->ip_off = htons(ip_off | IP_MF); 895 ip->ip_sum = 0; 896 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 897 ip->ip_sum = in_cksum(m0, hlen); 898 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 899 } 900 901 done: 902 *m_frag = m0; 903 return error; 904 } 905 906 void 907 in_delayed_cksum(struct mbuf *m) 908 { 909 struct ip *ip; 910 uint16_t csum, offset, ip_len; 911 912 ip = mtod(m, struct ip *); 913 offset = ip->ip_hl << 2 ; 914 ip_len = ntohs(ip->ip_len); 915 csum = in_cksum_skip(m, ip_len, offset); 916 if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0) 917 csum = 0xffff; 918 offset += m->m_pkthdr.csum_data; /* checksum offset */ 919 920 /* find the mbuf in the chain where the checksum starts*/ 921 while ((m != NULL) && (offset >= m->m_len)) { 922 offset -= m->m_len; 923 m = m->m_next; 924 } 925 KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain.")); 926 KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs.")); 927 *(u_short *)(m->m_data + offset) = csum; 928 } 929 930 /* 931 * IP socket option processing. 932 */ 933 int 934 ip_ctloutput(struct socket *so, struct sockopt *sopt) 935 { 936 struct inpcb *inp = sotoinpcb(so); 937 int error, optval; 938 #ifdef RSS 939 uint32_t rss_bucket; 940 int retval; 941 #endif 942 943 error = optval = 0; 944 if (sopt->sopt_level != IPPROTO_IP) { 945 error = EINVAL; 946 947 if (sopt->sopt_level == SOL_SOCKET && 948 sopt->sopt_dir == SOPT_SET) { 949 switch (sopt->sopt_name) { 950 case SO_REUSEADDR: 951 INP_WLOCK(inp); 952 if ((so->so_options & SO_REUSEADDR) != 0) 953 inp->inp_flags2 |= INP_REUSEADDR; 954 else 955 inp->inp_flags2 &= ~INP_REUSEADDR; 956 INP_WUNLOCK(inp); 957 error = 0; 958 break; 959 case SO_REUSEPORT: 960 INP_WLOCK(inp); 961 if ((so->so_options & SO_REUSEPORT) != 0) 962 inp->inp_flags2 |= INP_REUSEPORT; 963 else 964 inp->inp_flags2 &= ~INP_REUSEPORT; 965 INP_WUNLOCK(inp); 966 error = 0; 967 break; 968 case SO_SETFIB: 969 INP_WLOCK(inp); 970 inp->inp_inc.inc_fibnum = so->so_fibnum; 971 INP_WUNLOCK(inp); 972 error = 0; 973 break; 974 default: 975 break; 976 } 977 } 978 return (error); 979 } 980 981 switch (sopt->sopt_dir) { 982 case SOPT_SET: 983 switch (sopt->sopt_name) { 984 case IP_OPTIONS: 985 #ifdef notyet 986 case IP_RETOPTS: 987 #endif 988 { 989 struct mbuf *m; 990 if (sopt->sopt_valsize > MLEN) { 991 error = EMSGSIZE; 992 break; 993 } 994 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 995 if (m == NULL) { 996 error = ENOBUFS; 997 break; 998 } 999 m->m_len = sopt->sopt_valsize; 1000 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1001 m->m_len); 1002 if (error) { 1003 m_free(m); 1004 break; 1005 } 1006 INP_WLOCK(inp); 1007 error = ip_pcbopts(inp, sopt->sopt_name, m); 1008 INP_WUNLOCK(inp); 1009 return (error); 1010 } 1011 1012 case IP_BINDANY: 1013 if (sopt->sopt_td != NULL) { 1014 error = priv_check(sopt->sopt_td, 1015 PRIV_NETINET_BINDANY); 1016 if (error) 1017 break; 1018 } 1019 /* FALLTHROUGH */ 1020 case IP_BINDMULTI: 1021 #ifdef RSS 1022 case IP_RSS_LISTEN_BUCKET: 1023 #endif 1024 case IP_TOS: 1025 case IP_TTL: 1026 case IP_MINTTL: 1027 case IP_RECVOPTS: 1028 case IP_RECVRETOPTS: 1029 case IP_RECVDSTADDR: 1030 case IP_RECVTTL: 1031 case IP_RECVIF: 1032 case IP_ONESBCAST: 1033 case IP_DONTFRAG: 1034 case IP_RECVTOS: 1035 case IP_RECVFLOWID: 1036 #ifdef RSS 1037 case IP_RECVRSSBUCKETID: 1038 #endif 1039 error = sooptcopyin(sopt, &optval, sizeof optval, 1040 sizeof optval); 1041 if (error) 1042 break; 1043 1044 switch (sopt->sopt_name) { 1045 case IP_TOS: 1046 inp->inp_ip_tos = optval; 1047 break; 1048 1049 case IP_TTL: 1050 inp->inp_ip_ttl = optval; 1051 break; 1052 1053 case IP_MINTTL: 1054 if (optval >= 0 && optval <= MAXTTL) 1055 inp->inp_ip_minttl = optval; 1056 else 1057 error = EINVAL; 1058 break; 1059 1060 #define OPTSET(bit) do { \ 1061 INP_WLOCK(inp); \ 1062 if (optval) \ 1063 inp->inp_flags |= bit; \ 1064 else \ 1065 inp->inp_flags &= ~bit; \ 1066 INP_WUNLOCK(inp); \ 1067 } while (0) 1068 1069 #define OPTSET2(bit, val) do { \ 1070 INP_WLOCK(inp); \ 1071 if (val) \ 1072 inp->inp_flags2 |= bit; \ 1073 else \ 1074 inp->inp_flags2 &= ~bit; \ 1075 INP_WUNLOCK(inp); \ 1076 } while (0) 1077 1078 case IP_RECVOPTS: 1079 OPTSET(INP_RECVOPTS); 1080 break; 1081 1082 case IP_RECVRETOPTS: 1083 OPTSET(INP_RECVRETOPTS); 1084 break; 1085 1086 case IP_RECVDSTADDR: 1087 OPTSET(INP_RECVDSTADDR); 1088 break; 1089 1090 case IP_RECVTTL: 1091 OPTSET(INP_RECVTTL); 1092 break; 1093 1094 case IP_RECVIF: 1095 OPTSET(INP_RECVIF); 1096 break; 1097 1098 case IP_ONESBCAST: 1099 OPTSET(INP_ONESBCAST); 1100 break; 1101 case IP_DONTFRAG: 1102 OPTSET(INP_DONTFRAG); 1103 break; 1104 case IP_BINDANY: 1105 OPTSET(INP_BINDANY); 1106 break; 1107 case IP_RECVTOS: 1108 OPTSET(INP_RECVTOS); 1109 break; 1110 case IP_BINDMULTI: 1111 OPTSET2(INP_BINDMULTI, optval); 1112 break; 1113 case IP_RECVFLOWID: 1114 OPTSET2(INP_RECVFLOWID, optval); 1115 break; 1116 #ifdef RSS 1117 case IP_RSS_LISTEN_BUCKET: 1118 if ((optval >= 0) && 1119 (optval < rss_getnumbuckets())) { 1120 inp->inp_rss_listen_bucket = optval; 1121 OPTSET2(INP_RSS_BUCKET_SET, 1); 1122 } else { 1123 error = EINVAL; 1124 } 1125 break; 1126 case IP_RECVRSSBUCKETID: 1127 OPTSET2(INP_RECVRSSBUCKETID, optval); 1128 break; 1129 #endif 1130 } 1131 break; 1132 #undef OPTSET 1133 #undef OPTSET2 1134 1135 /* 1136 * Multicast socket options are processed by the in_mcast 1137 * module. 1138 */ 1139 case IP_MULTICAST_IF: 1140 case IP_MULTICAST_VIF: 1141 case IP_MULTICAST_TTL: 1142 case IP_MULTICAST_LOOP: 1143 case IP_ADD_MEMBERSHIP: 1144 case IP_DROP_MEMBERSHIP: 1145 case IP_ADD_SOURCE_MEMBERSHIP: 1146 case IP_DROP_SOURCE_MEMBERSHIP: 1147 case IP_BLOCK_SOURCE: 1148 case IP_UNBLOCK_SOURCE: 1149 case IP_MSFILTER: 1150 case MCAST_JOIN_GROUP: 1151 case MCAST_LEAVE_GROUP: 1152 case MCAST_JOIN_SOURCE_GROUP: 1153 case MCAST_LEAVE_SOURCE_GROUP: 1154 case MCAST_BLOCK_SOURCE: 1155 case MCAST_UNBLOCK_SOURCE: 1156 error = inp_setmoptions(inp, sopt); 1157 break; 1158 1159 case IP_PORTRANGE: 1160 error = sooptcopyin(sopt, &optval, sizeof optval, 1161 sizeof optval); 1162 if (error) 1163 break; 1164 1165 INP_WLOCK(inp); 1166 switch (optval) { 1167 case IP_PORTRANGE_DEFAULT: 1168 inp->inp_flags &= ~(INP_LOWPORT); 1169 inp->inp_flags &= ~(INP_HIGHPORT); 1170 break; 1171 1172 case IP_PORTRANGE_HIGH: 1173 inp->inp_flags &= ~(INP_LOWPORT); 1174 inp->inp_flags |= INP_HIGHPORT; 1175 break; 1176 1177 case IP_PORTRANGE_LOW: 1178 inp->inp_flags &= ~(INP_HIGHPORT); 1179 inp->inp_flags |= INP_LOWPORT; 1180 break; 1181 1182 default: 1183 error = EINVAL; 1184 break; 1185 } 1186 INP_WUNLOCK(inp); 1187 break; 1188 1189 #ifdef IPSEC 1190 case IP_IPSEC_POLICY: 1191 { 1192 caddr_t req; 1193 struct mbuf *m; 1194 1195 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1196 break; 1197 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1198 break; 1199 req = mtod(m, caddr_t); 1200 error = ipsec_set_policy(inp, sopt->sopt_name, req, 1201 m->m_len, (sopt->sopt_td != NULL) ? 1202 sopt->sopt_td->td_ucred : NULL); 1203 m_freem(m); 1204 break; 1205 } 1206 #endif /* IPSEC */ 1207 1208 default: 1209 error = ENOPROTOOPT; 1210 break; 1211 } 1212 break; 1213 1214 case SOPT_GET: 1215 switch (sopt->sopt_name) { 1216 case IP_OPTIONS: 1217 case IP_RETOPTS: 1218 if (inp->inp_options) 1219 error = sooptcopyout(sopt, 1220 mtod(inp->inp_options, 1221 char *), 1222 inp->inp_options->m_len); 1223 else 1224 sopt->sopt_valsize = 0; 1225 break; 1226 1227 case IP_TOS: 1228 case IP_TTL: 1229 case IP_MINTTL: 1230 case IP_RECVOPTS: 1231 case IP_RECVRETOPTS: 1232 case IP_RECVDSTADDR: 1233 case IP_RECVTTL: 1234 case IP_RECVIF: 1235 case IP_PORTRANGE: 1236 case IP_ONESBCAST: 1237 case IP_DONTFRAG: 1238 case IP_BINDANY: 1239 case IP_RECVTOS: 1240 case IP_BINDMULTI: 1241 case IP_FLOWID: 1242 case IP_FLOWTYPE: 1243 case IP_RECVFLOWID: 1244 #ifdef RSS 1245 case IP_RSSBUCKETID: 1246 case IP_RECVRSSBUCKETID: 1247 #endif 1248 switch (sopt->sopt_name) { 1249 1250 case IP_TOS: 1251 optval = inp->inp_ip_tos; 1252 break; 1253 1254 case IP_TTL: 1255 optval = inp->inp_ip_ttl; 1256 break; 1257 1258 case IP_MINTTL: 1259 optval = inp->inp_ip_minttl; 1260 break; 1261 1262 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1263 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1264 1265 case IP_RECVOPTS: 1266 optval = OPTBIT(INP_RECVOPTS); 1267 break; 1268 1269 case IP_RECVRETOPTS: 1270 optval = OPTBIT(INP_RECVRETOPTS); 1271 break; 1272 1273 case IP_RECVDSTADDR: 1274 optval = OPTBIT(INP_RECVDSTADDR); 1275 break; 1276 1277 case IP_RECVTTL: 1278 optval = OPTBIT(INP_RECVTTL); 1279 break; 1280 1281 case IP_RECVIF: 1282 optval = OPTBIT(INP_RECVIF); 1283 break; 1284 1285 case IP_PORTRANGE: 1286 if (inp->inp_flags & INP_HIGHPORT) 1287 optval = IP_PORTRANGE_HIGH; 1288 else if (inp->inp_flags & INP_LOWPORT) 1289 optval = IP_PORTRANGE_LOW; 1290 else 1291 optval = 0; 1292 break; 1293 1294 case IP_ONESBCAST: 1295 optval = OPTBIT(INP_ONESBCAST); 1296 break; 1297 case IP_DONTFRAG: 1298 optval = OPTBIT(INP_DONTFRAG); 1299 break; 1300 case IP_BINDANY: 1301 optval = OPTBIT(INP_BINDANY); 1302 break; 1303 case IP_RECVTOS: 1304 optval = OPTBIT(INP_RECVTOS); 1305 break; 1306 case IP_FLOWID: 1307 optval = inp->inp_flowid; 1308 break; 1309 case IP_FLOWTYPE: 1310 optval = inp->inp_flowtype; 1311 break; 1312 case IP_RECVFLOWID: 1313 optval = OPTBIT2(INP_RECVFLOWID); 1314 break; 1315 #ifdef RSS 1316 case IP_RSSBUCKETID: 1317 retval = rss_hash2bucket(inp->inp_flowid, 1318 inp->inp_flowtype, 1319 &rss_bucket); 1320 if (retval == 0) 1321 optval = rss_bucket; 1322 else 1323 error = EINVAL; 1324 break; 1325 case IP_RECVRSSBUCKETID: 1326 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1327 break; 1328 #endif 1329 case IP_BINDMULTI: 1330 optval = OPTBIT2(INP_BINDMULTI); 1331 break; 1332 } 1333 error = sooptcopyout(sopt, &optval, sizeof optval); 1334 break; 1335 1336 /* 1337 * Multicast socket options are processed by the in_mcast 1338 * module. 1339 */ 1340 case IP_MULTICAST_IF: 1341 case IP_MULTICAST_VIF: 1342 case IP_MULTICAST_TTL: 1343 case IP_MULTICAST_LOOP: 1344 case IP_MSFILTER: 1345 error = inp_getmoptions(inp, sopt); 1346 break; 1347 1348 #ifdef IPSEC 1349 case IP_IPSEC_POLICY: 1350 { 1351 struct mbuf *m = NULL; 1352 caddr_t req = NULL; 1353 size_t len = 0; 1354 1355 if (m != NULL) { 1356 req = mtod(m, caddr_t); 1357 len = m->m_len; 1358 } 1359 error = ipsec_get_policy(sotoinpcb(so), req, len, &m); 1360 if (error == 0) 1361 error = soopt_mcopyout(sopt, m); /* XXX */ 1362 if (error == 0) 1363 m_freem(m); 1364 break; 1365 } 1366 #endif /* IPSEC */ 1367 1368 default: 1369 error = ENOPROTOOPT; 1370 break; 1371 } 1372 break; 1373 } 1374 return (error); 1375 } 1376 1377 /* 1378 * Routine called from ip_output() to loop back a copy of an IP multicast 1379 * packet to the input queue of a specified interface. Note that this 1380 * calls the output routine of the loopback "driver", but with an interface 1381 * pointer that might NOT be a loopback interface -- evil, but easier than 1382 * replicating that code here. 1383 */ 1384 static void 1385 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1386 { 1387 struct ip *ip; 1388 struct mbuf *copym; 1389 1390 /* 1391 * Make a deep copy of the packet because we're going to 1392 * modify the pack in order to generate checksums. 1393 */ 1394 copym = m_dup(m, M_NOWAIT); 1395 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1396 copym = m_pullup(copym, hlen); 1397 if (copym != NULL) { 1398 /* If needed, compute the checksum and mark it as valid. */ 1399 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1400 in_delayed_cksum(copym); 1401 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1402 copym->m_pkthdr.csum_flags |= 1403 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1404 copym->m_pkthdr.csum_data = 0xffff; 1405 } 1406 /* 1407 * We don't bother to fragment if the IP length is greater 1408 * than the interface's MTU. Can this possibly matter? 1409 */ 1410 ip = mtod(copym, struct ip *); 1411 ip->ip_sum = 0; 1412 ip->ip_sum = in_cksum(copym, hlen); 1413 if_simloop(ifp, copym, AF_INET, 0); 1414 } 1415 } 1416