xref: /freebsd/sys/netinet/ip_output.c (revision e76f11f441aa03e85f97886b2fd6c2228dc119f4)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ipfw.h"
36 #include "opt_ipsec.h"
37 #include "opt_route.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mpath.h"
40 #include "opt_sctp.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/priv.h>
48 #include <sys/proc.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/ucred.h>
54 #include <sys/vimage.h>
55 
56 #include <net/if.h>
57 #include <net/netisr.h>
58 #include <net/pfil.h>
59 #include <net/route.h>
60 #include <net/flowtable.h>
61 #ifdef RADIX_MPATH
62 #include <net/radix_mpath.h>
63 #endif
64 #include <net/vnet.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_pcb.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip_var.h>
72 #include <netinet/ip_options.h>
73 #include <netinet/vinet.h>
74 #ifdef SCTP
75 #include <netinet/sctp.h>
76 #include <netinet/sctp_crc32.h>
77 #endif
78 
79 #ifdef IPSEC
80 #include <netinet/ip_ipsec.h>
81 #include <netipsec/ipsec.h>
82 #endif /* IPSEC*/
83 
84 #include <machine/in_cksum.h>
85 
86 #include <security/mac/mac_framework.h>
87 
88 #define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
89 				x, (ntohl(a.s_addr)>>24)&0xFF,\
90 				  (ntohl(a.s_addr)>>16)&0xFF,\
91 				  (ntohl(a.s_addr)>>8)&0xFF,\
92 				  (ntohl(a.s_addr))&0xFF, y);
93 
94 #ifdef VIMAGE_GLOBALS
95 u_short ip_id;
96 #endif
97 
98 #ifdef MBUF_STRESS_TEST
99 int mbuf_frag_size = 0;
100 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
101 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
102 #endif
103 
104 static void	ip_mloopback
105 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
106 
107 
108 extern int in_mcast_loop;
109 extern	struct protosw inetsw[];
110 
111 /*
112  * IP output.  The packet in mbuf chain m contains a skeletal IP
113  * header (with len, off, ttl, proto, tos, src, dst).
114  * The mbuf chain containing the packet will be freed.
115  * The mbuf opt, if present, will not be freed.
116  * In the IP forwarding case, the packet will arrive with options already
117  * inserted, so must have a NULL opt pointer.
118  */
119 int
120 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
121     struct ip_moptions *imo, struct inpcb *inp)
122 {
123 	INIT_VNET_NET(curvnet);
124 	INIT_VNET_INET(curvnet);
125 	struct ip *ip;
126 	struct ifnet *ifp = NULL;	/* keep compiler happy */
127 	struct mbuf *m0;
128 	int hlen = sizeof (struct ip);
129 	int mtu;
130 	int len, error = 0;
131 	int nortfree = 0;
132 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
133 	struct in_ifaddr *ia = NULL;
134 	int isbroadcast, sw_csum;
135 	struct route iproute;
136 	struct in_addr odst;
137 #ifdef IPFIREWALL_FORWARD
138 	struct m_tag *fwd_tag = NULL;
139 #endif
140 #ifdef IPSEC
141 	int no_route_but_check_spd = 0;
142 #endif
143 	M_ASSERTPKTHDR(m);
144 
145 	if (inp != NULL) {
146 		INP_LOCK_ASSERT(inp);
147 		M_SETFIB(m, inp->inp_inc.inc_fibnum);
148 		if (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
149 			m->m_pkthdr.flowid = inp->inp_flowid;
150 			m->m_flags |= M_FLOWID;
151 		}
152 	}
153 
154 	if (ro == NULL) {
155 		ro = &iproute;
156 		bzero(ro, sizeof (*ro));
157 
158 		/*
159 		 * The flow table returns route entries valid for up to 30
160 		 * seconds; we rely on the remainder of ip_output() taking no
161 		 * longer than that long for the stability of ro_rt.  The
162 		 * flow ID assignment must have happened before this point.
163 		 */
164 		if (flowtable_lookup(ip_ft, m, ro) == 0)
165 			nortfree = 1;
166 	}
167 
168 	if (opt) {
169 		len = 0;
170 		m = ip_insertoptions(m, opt, &len);
171 		if (len != 0)
172 			hlen = len;
173 	}
174 	ip = mtod(m, struct ip *);
175 
176 	/*
177 	 * Fill in IP header.  If we are not allowing fragmentation,
178 	 * then the ip_id field is meaningless, but we don't set it
179 	 * to zero.  Doing so causes various problems when devices along
180 	 * the path (routers, load balancers, firewalls, etc.) illegally
181 	 * disable DF on our packet.  Note that a 16-bit counter
182 	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
183 	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
184 	 * for Counting NATted Hosts", Proc. IMW'02, available at
185 	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
186 	 */
187 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
188 		ip->ip_v = IPVERSION;
189 		ip->ip_hl = hlen >> 2;
190 		ip->ip_id = ip_newid();
191 		IPSTAT_INC(ips_localout);
192 	} else {
193 		hlen = ip->ip_hl << 2;
194 	}
195 
196 	dst = (struct sockaddr_in *)&ro->ro_dst;
197 again:
198 	/*
199 	 * If there is a cached route,
200 	 * check that it is to the same destination
201 	 * and is still up.  If not, free it and try again.
202 	 * The address family should also be checked in case of sharing the
203 	 * cache with IPv6.
204 	 */
205 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
206 			  dst->sin_family != AF_INET ||
207 			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
208 		if (!nortfree)
209 			RTFREE(ro->ro_rt);
210 		ro->ro_rt = (struct rtentry *)NULL;
211 	}
212 #ifdef IPFIREWALL_FORWARD
213 	if (ro->ro_rt == NULL && fwd_tag == NULL) {
214 #else
215 	if (ro->ro_rt == NULL) {
216 #endif
217 		bzero(dst, sizeof(*dst));
218 		dst->sin_family = AF_INET;
219 		dst->sin_len = sizeof(*dst);
220 		dst->sin_addr = ip->ip_dst;
221 	}
222 	/*
223 	 * If routing to interface only, short circuit routing lookup.
224 	 * The use of an all-ones broadcast address implies this; an
225 	 * interface is specified by the broadcast address of an interface,
226 	 * or the destination address of a ptp interface.
227 	 */
228 	if (flags & IP_SENDONES) {
229 		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
230 		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
231 			IPSTAT_INC(ips_noroute);
232 			error = ENETUNREACH;
233 			goto bad;
234 		}
235 		ip->ip_dst.s_addr = INADDR_BROADCAST;
236 		dst->sin_addr = ip->ip_dst;
237 		ifp = ia->ia_ifp;
238 		ip->ip_ttl = 1;
239 		isbroadcast = 1;
240 	} else if (flags & IP_ROUTETOIF) {
241 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
242 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
243 			IPSTAT_INC(ips_noroute);
244 			error = ENETUNREACH;
245 			goto bad;
246 		}
247 		ifp = ia->ia_ifp;
248 		ip->ip_ttl = 1;
249 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
250 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
251 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
252 		/*
253 		 * Bypass the normal routing lookup for multicast
254 		 * packets if the interface is specified.
255 		 */
256 		ifp = imo->imo_multicast_ifp;
257 		IFP_TO_IA(ifp, ia);
258 		isbroadcast = 0;	/* fool gcc */
259 	} else {
260 		/*
261 		 * We want to do any cloning requested by the link layer,
262 		 * as this is probably required in all cases for correct
263 		 * operation (as it is for ARP).
264 		 */
265 		if (ro->ro_rt == NULL)
266 #ifdef RADIX_MPATH
267 			rtalloc_mpath_fib(ro,
268 			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
269 			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
270 #else
271 			in_rtalloc_ign(ro, 0,
272 			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
273 #endif
274 		if (ro->ro_rt == NULL) {
275 #ifdef IPSEC
276 			/*
277 			 * There is no route for this packet, but it is
278 			 * possible that a matching SPD entry exists.
279 			 */
280 			no_route_but_check_spd = 1;
281 			mtu = 0; /* Silence GCC warning. */
282 			goto sendit;
283 #endif
284 			IPSTAT_INC(ips_noroute);
285 			error = EHOSTUNREACH;
286 			goto bad;
287 		}
288 		ia = ifatoia(ro->ro_rt->rt_ifa);
289 		ifp = ro->ro_rt->rt_ifp;
290 		ro->ro_rt->rt_rmx.rmx_pksent++;
291 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
292 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
293 		if (ro->ro_rt->rt_flags & RTF_HOST)
294 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
295 		else
296 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
297 	}
298 	/*
299 	 * Calculate MTU.  If we have a route that is up, use that,
300 	 * otherwise use the interface's MTU.
301 	 */
302 	if (ro->ro_rt != NULL && (ro->ro_rt->rt_flags & (RTF_UP|RTF_HOST))) {
303 		/*
304 		 * This case can happen if the user changed the MTU
305 		 * of an interface after enabling IP on it.  Because
306 		 * most netifs don't keep track of routes pointing to
307 		 * them, there is no way for one to update all its
308 		 * routes when the MTU is changed.
309 		 */
310 		if (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)
311 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
312 		mtu = ro->ro_rt->rt_rmx.rmx_mtu;
313 	} else {
314 		mtu = ifp->if_mtu;
315 	}
316 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
317 		m->m_flags |= M_MCAST;
318 		/*
319 		 * IP destination address is multicast.  Make sure "dst"
320 		 * still points to the address in "ro".  (It may have been
321 		 * changed to point to a gateway address, above.)
322 		 */
323 		dst = (struct sockaddr_in *)&ro->ro_dst;
324 		/*
325 		 * See if the caller provided any multicast options
326 		 */
327 		if (imo != NULL) {
328 			ip->ip_ttl = imo->imo_multicast_ttl;
329 			if (imo->imo_multicast_vif != -1)
330 				ip->ip_src.s_addr =
331 				    ip_mcast_src ?
332 				    ip_mcast_src(imo->imo_multicast_vif) :
333 				    INADDR_ANY;
334 		} else
335 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
336 		/*
337 		 * Confirm that the outgoing interface supports multicast.
338 		 */
339 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
340 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
341 				IPSTAT_INC(ips_noroute);
342 				error = ENETUNREACH;
343 				goto bad;
344 			}
345 		}
346 		/*
347 		 * If source address not specified yet, use address
348 		 * of outgoing interface.
349 		 */
350 		if (ip->ip_src.s_addr == INADDR_ANY) {
351 			/* Interface may have no addresses. */
352 			if (ia != NULL)
353 				ip->ip_src = IA_SIN(ia)->sin_addr;
354 		}
355 
356 		if ((imo == NULL && in_mcast_loop) ||
357 		    (imo && imo->imo_multicast_loop)) {
358 			/*
359 			 * Loop back multicast datagram if not expressly
360 			 * forbidden to do so, even if we are not a member
361 			 * of the group; ip_input() will filter it later,
362 			 * thus deferring a hash lookup and mutex acquisition
363 			 * at the expense of a cheap copy using m_copym().
364 			 */
365 			ip_mloopback(ifp, m, dst, hlen);
366 		} else {
367 			/*
368 			 * If we are acting as a multicast router, perform
369 			 * multicast forwarding as if the packet had just
370 			 * arrived on the interface to which we are about
371 			 * to send.  The multicast forwarding function
372 			 * recursively calls this function, using the
373 			 * IP_FORWARDING flag to prevent infinite recursion.
374 			 *
375 			 * Multicasts that are looped back by ip_mloopback(),
376 			 * above, will be forwarded by the ip_input() routine,
377 			 * if necessary.
378 			 */
379 			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
380 				/*
381 				 * If rsvp daemon is not running, do not
382 				 * set ip_moptions. This ensures that the packet
383 				 * is multicast and not just sent down one link
384 				 * as prescribed by rsvpd.
385 				 */
386 				if (!V_rsvp_on)
387 					imo = NULL;
388 				if (ip_mforward &&
389 				    ip_mforward(ip, ifp, m, imo) != 0) {
390 					m_freem(m);
391 					goto done;
392 				}
393 			}
394 		}
395 
396 		/*
397 		 * Multicasts with a time-to-live of zero may be looped-
398 		 * back, above, but must not be transmitted on a network.
399 		 * Also, multicasts addressed to the loopback interface
400 		 * are not sent -- the above call to ip_mloopback() will
401 		 * loop back a copy. ip_input() will drop the copy if
402 		 * this host does not belong to the destination group on
403 		 * the loopback interface.
404 		 */
405 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
406 			m_freem(m);
407 			goto done;
408 		}
409 
410 		goto sendit;
411 	}
412 
413 	/*
414 	 * If the source address is not specified yet, use the address
415 	 * of the outoing interface.
416 	 */
417 	if (ip->ip_src.s_addr == INADDR_ANY) {
418 		/* Interface may have no addresses. */
419 		if (ia != NULL) {
420 			ip->ip_src = IA_SIN(ia)->sin_addr;
421 		}
422 	}
423 
424 	/*
425 	 * Verify that we have any chance at all of being able to queue the
426 	 * packet or packet fragments, unless ALTQ is enabled on the given
427 	 * interface in which case packetdrop should be done by queueing.
428 	 */
429 #ifdef ALTQ
430 	if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
431 	    ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
432 	    ifp->if_snd.ifq_maxlen))
433 #else
434 	if ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
435 	    ifp->if_snd.ifq_maxlen)
436 #endif /* ALTQ */
437 	{
438 		error = ENOBUFS;
439 		IPSTAT_INC(ips_odropped);
440 		ifp->if_snd.ifq_drops += (ip->ip_len / ifp->if_mtu + 1);
441 		goto bad;
442 	}
443 
444 	/*
445 	 * Look for broadcast address and
446 	 * verify user is allowed to send
447 	 * such a packet.
448 	 */
449 	if (isbroadcast) {
450 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
451 			error = EADDRNOTAVAIL;
452 			goto bad;
453 		}
454 		if ((flags & IP_ALLOWBROADCAST) == 0) {
455 			error = EACCES;
456 			goto bad;
457 		}
458 		/* don't allow broadcast messages to be fragmented */
459 		if (ip->ip_len > mtu) {
460 			error = EMSGSIZE;
461 			goto bad;
462 		}
463 		m->m_flags |= M_BCAST;
464 	} else {
465 		m->m_flags &= ~M_BCAST;
466 	}
467 
468 sendit:
469 #ifdef IPSEC
470 	switch(ip_ipsec_output(&m, inp, &flags, &error, &ifp)) {
471 	case 1:
472 		goto bad;
473 	case -1:
474 		goto done;
475 	case 0:
476 	default:
477 		break;	/* Continue with packet processing. */
478 	}
479 	/*
480 	 * Check if there was a route for this packet; return error if not.
481 	 */
482 	if (no_route_but_check_spd) {
483 		IPSTAT_INC(ips_noroute);
484 		error = EHOSTUNREACH;
485 		goto bad;
486 	}
487 	/* Update variables that are affected by ipsec4_output(). */
488 	ip = mtod(m, struct ip *);
489 	hlen = ip->ip_hl << 2;
490 #endif /* IPSEC */
491 
492 	/* Jump over all PFIL processing if hooks are not active. */
493 	if (!PFIL_HOOKED(&inet_pfil_hook))
494 		goto passout;
495 
496 	/* Run through list of hooks for output packets. */
497 	odst.s_addr = ip->ip_dst.s_addr;
498 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
499 	if (error != 0 || m == NULL)
500 		goto done;
501 
502 	ip = mtod(m, struct ip *);
503 
504 	/* See if destination IP address was changed by packet filter. */
505 	if (odst.s_addr != ip->ip_dst.s_addr) {
506 		m->m_flags |= M_SKIP_FIREWALL;
507 		/* If destination is now ourself drop to ip_input(). */
508 		if (in_localip(ip->ip_dst)) {
509 			m->m_flags |= M_FASTFWD_OURS;
510 			if (m->m_pkthdr.rcvif == NULL)
511 				m->m_pkthdr.rcvif = V_loif;
512 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
513 				m->m_pkthdr.csum_flags |=
514 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
515 				m->m_pkthdr.csum_data = 0xffff;
516 			}
517 			m->m_pkthdr.csum_flags |=
518 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
519 #ifdef SCTP
520 			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
521 				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
522 #endif
523 			error = netisr_queue(NETISR_IP, m);
524 			goto done;
525 		} else
526 			goto again;	/* Redo the routing table lookup. */
527 	}
528 
529 #ifdef IPFIREWALL_FORWARD
530 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
531 	if (m->m_flags & M_FASTFWD_OURS) {
532 		if (m->m_pkthdr.rcvif == NULL)
533 			m->m_pkthdr.rcvif = V_loif;
534 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
535 			m->m_pkthdr.csum_flags |=
536 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
537 			m->m_pkthdr.csum_data = 0xffff;
538 		}
539 #ifdef SCTP
540 		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
541 			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
542 #endif
543 		m->m_pkthdr.csum_flags |=
544 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
545 
546 		error = netisr_queue(NETISR_IP, m);
547 		goto done;
548 	}
549 	/* Or forward to some other address? */
550 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
551 	if (fwd_tag) {
552 		dst = (struct sockaddr_in *)&ro->ro_dst;
553 		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
554 		m->m_flags |= M_SKIP_FIREWALL;
555 		m_tag_delete(m, fwd_tag);
556 		goto again;
557 	}
558 #endif /* IPFIREWALL_FORWARD */
559 
560 passout:
561 	/* 127/8 must not appear on wire - RFC1122. */
562 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
563 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
564 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
565 			IPSTAT_INC(ips_badaddr);
566 			error = EADDRNOTAVAIL;
567 			goto bad;
568 		}
569 	}
570 
571 	m->m_pkthdr.csum_flags |= CSUM_IP;
572 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
573 	if (sw_csum & CSUM_DELAY_DATA) {
574 		in_delayed_cksum(m);
575 		sw_csum &= ~CSUM_DELAY_DATA;
576 	}
577 #ifdef SCTP
578 	if (sw_csum & CSUM_SCTP) {
579 		sctp_delayed_cksum(m);
580 		sw_csum &= ~CSUM_SCTP;
581 	}
582 #endif
583 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
584 
585 	/*
586 	 * If small enough for interface, or the interface will take
587 	 * care of the fragmentation for us, we can just send directly.
588 	 */
589 	if (ip->ip_len <= mtu ||
590 	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
591 	    ((ip->ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
592 		ip->ip_len = htons(ip->ip_len);
593 		ip->ip_off = htons(ip->ip_off);
594 		ip->ip_sum = 0;
595 		if (sw_csum & CSUM_DELAY_IP)
596 			ip->ip_sum = in_cksum(m, hlen);
597 
598 		/*
599 		 * Record statistics for this interface address.
600 		 * With CSUM_TSO the byte/packet count will be slightly
601 		 * incorrect because we count the IP+TCP headers only
602 		 * once instead of for every generated packet.
603 		 */
604 		if (!(flags & IP_FORWARDING) && ia) {
605 			if (m->m_pkthdr.csum_flags & CSUM_TSO)
606 				ia->ia_ifa.if_opackets +=
607 				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
608 			else
609 				ia->ia_ifa.if_opackets++;
610 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
611 		}
612 #ifdef MBUF_STRESS_TEST
613 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
614 			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
615 #endif
616 		/*
617 		 * Reset layer specific mbuf flags
618 		 * to avoid confusing lower layers.
619 		 */
620 		m->m_flags &= ~(M_PROTOFLAGS);
621 		error = (*ifp->if_output)(ifp, m,
622 		    		(struct sockaddr *)dst, ro);
623 		goto done;
624 	}
625 
626 	/* Balk when DF bit is set or the interface didn't support TSO. */
627 	if ((ip->ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
628 		error = EMSGSIZE;
629 		IPSTAT_INC(ips_cantfrag);
630 		goto bad;
631 	}
632 
633 	/*
634 	 * Too large for interface; fragment if possible. If successful,
635 	 * on return, m will point to a list of packets to be sent.
636 	 */
637 	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist, sw_csum);
638 	if (error)
639 		goto bad;
640 	for (; m; m = m0) {
641 		m0 = m->m_nextpkt;
642 		m->m_nextpkt = 0;
643 		if (error == 0) {
644 			/* Record statistics for this interface address. */
645 			if (ia != NULL) {
646 				ia->ia_ifa.if_opackets++;
647 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
648 			}
649 			/*
650 			 * Reset layer specific mbuf flags
651 			 * to avoid confusing upper layers.
652 			 */
653 			m->m_flags &= ~(M_PROTOFLAGS);
654 
655 			error = (*ifp->if_output)(ifp, m,
656 			    (struct sockaddr *)dst, ro);
657 		} else
658 			m_freem(m);
659 	}
660 
661 	if (error == 0)
662 		IPSTAT_INC(ips_fragmented);
663 
664 done:
665 	if (ro == &iproute && ro->ro_rt && !nortfree) {
666 		RTFREE(ro->ro_rt);
667 	}
668 	return (error);
669 bad:
670 	m_freem(m);
671 	goto done;
672 }
673 
674 /*
675  * Create a chain of fragments which fit the given mtu. m_frag points to the
676  * mbuf to be fragmented; on return it points to the chain with the fragments.
677  * Return 0 if no error. If error, m_frag may contain a partially built
678  * chain of fragments that should be freed by the caller.
679  *
680  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
681  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
682  */
683 int
684 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
685     u_long if_hwassist_flags, int sw_csum)
686 {
687 	INIT_VNET_INET(curvnet);
688 	int error = 0;
689 	int hlen = ip->ip_hl << 2;
690 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
691 	int off;
692 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
693 	int firstlen;
694 	struct mbuf **mnext;
695 	int nfrags;
696 
697 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
698 		IPSTAT_INC(ips_cantfrag);
699 		return EMSGSIZE;
700 	}
701 
702 	/*
703 	 * Must be able to put at least 8 bytes per fragment.
704 	 */
705 	if (len < 8)
706 		return EMSGSIZE;
707 
708 	/*
709 	 * If the interface will not calculate checksums on
710 	 * fragmented packets, then do it here.
711 	 */
712 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
713 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
714 		in_delayed_cksum(m0);
715 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
716 	}
717 #ifdef SCTP
718 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP &&
719 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
720 		sctp_delayed_cksum(m0);
721 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
722 	}
723 #endif
724 	if (len > PAGE_SIZE) {
725 		/*
726 		 * Fragment large datagrams such that each segment
727 		 * contains a multiple of PAGE_SIZE amount of data,
728 		 * plus headers. This enables a receiver to perform
729 		 * page-flipping zero-copy optimizations.
730 		 *
731 		 * XXX When does this help given that sender and receiver
732 		 * could have different page sizes, and also mtu could
733 		 * be less than the receiver's page size ?
734 		 */
735 		int newlen;
736 		struct mbuf *m;
737 
738 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
739 			off += m->m_len;
740 
741 		/*
742 		 * firstlen (off - hlen) must be aligned on an
743 		 * 8-byte boundary
744 		 */
745 		if (off < hlen)
746 			goto smart_frag_failure;
747 		off = ((off - hlen) & ~7) + hlen;
748 		newlen = (~PAGE_MASK) & mtu;
749 		if ((newlen + sizeof (struct ip)) > mtu) {
750 			/* we failed, go back the default */
751 smart_frag_failure:
752 			newlen = len;
753 			off = hlen + len;
754 		}
755 		len = newlen;
756 
757 	} else {
758 		off = hlen + len;
759 	}
760 
761 	firstlen = off - hlen;
762 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
763 
764 	/*
765 	 * Loop through length of segment after first fragment,
766 	 * make new header and copy data of each part and link onto chain.
767 	 * Here, m0 is the original packet, m is the fragment being created.
768 	 * The fragments are linked off the m_nextpkt of the original
769 	 * packet, which after processing serves as the first fragment.
770 	 */
771 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
772 		struct ip *mhip;	/* ip header on the fragment */
773 		struct mbuf *m;
774 		int mhlen = sizeof (struct ip);
775 
776 		MGETHDR(m, M_DONTWAIT, MT_DATA);
777 		if (m == NULL) {
778 			error = ENOBUFS;
779 			IPSTAT_INC(ips_odropped);
780 			goto done;
781 		}
782 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
783 		/*
784 		 * In the first mbuf, leave room for the link header, then
785 		 * copy the original IP header including options. The payload
786 		 * goes into an additional mbuf chain returned by m_copym().
787 		 */
788 		m->m_data += max_linkhdr;
789 		mhip = mtod(m, struct ip *);
790 		*mhip = *ip;
791 		if (hlen > sizeof (struct ip)) {
792 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
793 			mhip->ip_v = IPVERSION;
794 			mhip->ip_hl = mhlen >> 2;
795 		}
796 		m->m_len = mhlen;
797 		/* XXX do we need to add ip->ip_off below ? */
798 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
799 		if (off + len >= ip->ip_len) {	/* last fragment */
800 			len = ip->ip_len - off;
801 			m->m_flags |= M_LASTFRAG;
802 		} else
803 			mhip->ip_off |= IP_MF;
804 		mhip->ip_len = htons((u_short)(len + mhlen));
805 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
806 		if (m->m_next == NULL) {	/* copy failed */
807 			m_free(m);
808 			error = ENOBUFS;	/* ??? */
809 			IPSTAT_INC(ips_odropped);
810 			goto done;
811 		}
812 		m->m_pkthdr.len = mhlen + len;
813 		m->m_pkthdr.rcvif = NULL;
814 #ifdef MAC
815 		mac_netinet_fragment(m0, m);
816 #endif
817 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
818 		mhip->ip_off = htons(mhip->ip_off);
819 		mhip->ip_sum = 0;
820 		if (sw_csum & CSUM_DELAY_IP)
821 			mhip->ip_sum = in_cksum(m, mhlen);
822 		*mnext = m;
823 		mnext = &m->m_nextpkt;
824 	}
825 	IPSTAT_ADD(ips_ofragments, nfrags);
826 
827 	/* set first marker for fragment chain */
828 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
829 	m0->m_pkthdr.csum_data = nfrags;
830 
831 	/*
832 	 * Update first fragment by trimming what's been copied out
833 	 * and updating header.
834 	 */
835 	m_adj(m0, hlen + firstlen - ip->ip_len);
836 	m0->m_pkthdr.len = hlen + firstlen;
837 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
838 	ip->ip_off |= IP_MF;
839 	ip->ip_off = htons(ip->ip_off);
840 	ip->ip_sum = 0;
841 	if (sw_csum & CSUM_DELAY_IP)
842 		ip->ip_sum = in_cksum(m0, hlen);
843 
844 done:
845 	*m_frag = m0;
846 	return error;
847 }
848 
849 void
850 in_delayed_cksum(struct mbuf *m)
851 {
852 	struct ip *ip;
853 	u_short csum, offset;
854 
855 	ip = mtod(m, struct ip *);
856 	offset = ip->ip_hl << 2 ;
857 	csum = in_cksum_skip(m, ip->ip_len, offset);
858 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
859 		csum = 0xffff;
860 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
861 
862 	if (offset + sizeof(u_short) > m->m_len) {
863 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
864 		    m->m_len, offset, ip->ip_p);
865 		/*
866 		 * XXX
867 		 * this shouldn't happen, but if it does, the
868 		 * correct behavior may be to insert the checksum
869 		 * in the appropriate next mbuf in the chain.
870 		 */
871 		return;
872 	}
873 	*(u_short *)(m->m_data + offset) = csum;
874 }
875 
876 /*
877  * IP socket option processing.
878  */
879 int
880 ip_ctloutput(struct socket *so, struct sockopt *sopt)
881 {
882 	struct	inpcb *inp = sotoinpcb(so);
883 	int	error, optval;
884 
885 	error = optval = 0;
886 	if (sopt->sopt_level != IPPROTO_IP) {
887 		if ((sopt->sopt_level == SOL_SOCKET) &&
888 		    (sopt->sopt_name == SO_SETFIB)) {
889 			inp->inp_inc.inc_fibnum = so->so_fibnum;
890 			return (0);
891 		}
892 		return (EINVAL);
893 	}
894 
895 	switch (sopt->sopt_dir) {
896 	case SOPT_SET:
897 		switch (sopt->sopt_name) {
898 		case IP_OPTIONS:
899 #ifdef notyet
900 		case IP_RETOPTS:
901 #endif
902 		{
903 			struct mbuf *m;
904 			if (sopt->sopt_valsize > MLEN) {
905 				error = EMSGSIZE;
906 				break;
907 			}
908 			MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
909 			if (m == NULL) {
910 				error = ENOBUFS;
911 				break;
912 			}
913 			m->m_len = sopt->sopt_valsize;
914 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
915 					    m->m_len);
916 			if (error) {
917 				m_free(m);
918 				break;
919 			}
920 			INP_WLOCK(inp);
921 			error = ip_pcbopts(inp, sopt->sopt_name, m);
922 			INP_WUNLOCK(inp);
923 			return (error);
924 		}
925 
926 		case IP_BINDANY:
927 			if (sopt->sopt_td != NULL) {
928 				error = priv_check(sopt->sopt_td,
929 				    PRIV_NETINET_BINDANY);
930 				if (error)
931 					break;
932 			}
933 			/* FALLTHROUGH */
934 		case IP_TOS:
935 		case IP_TTL:
936 		case IP_MINTTL:
937 		case IP_RECVOPTS:
938 		case IP_RECVRETOPTS:
939 		case IP_RECVDSTADDR:
940 		case IP_RECVTTL:
941 		case IP_RECVIF:
942 		case IP_FAITH:
943 		case IP_ONESBCAST:
944 		case IP_DONTFRAG:
945 			error = sooptcopyin(sopt, &optval, sizeof optval,
946 					    sizeof optval);
947 			if (error)
948 				break;
949 
950 			switch (sopt->sopt_name) {
951 			case IP_TOS:
952 				inp->inp_ip_tos = optval;
953 				break;
954 
955 			case IP_TTL:
956 				inp->inp_ip_ttl = optval;
957 				break;
958 
959 			case IP_MINTTL:
960 				if (optval >= 0 && optval <= MAXTTL)
961 					inp->inp_ip_minttl = optval;
962 				else
963 					error = EINVAL;
964 				break;
965 
966 #define	OPTSET(bit) do {						\
967 	INP_WLOCK(inp);							\
968 	if (optval)							\
969 		inp->inp_flags |= bit;					\
970 	else								\
971 		inp->inp_flags &= ~bit;					\
972 	INP_WUNLOCK(inp);						\
973 } while (0)
974 
975 			case IP_RECVOPTS:
976 				OPTSET(INP_RECVOPTS);
977 				break;
978 
979 			case IP_RECVRETOPTS:
980 				OPTSET(INP_RECVRETOPTS);
981 				break;
982 
983 			case IP_RECVDSTADDR:
984 				OPTSET(INP_RECVDSTADDR);
985 				break;
986 
987 			case IP_RECVTTL:
988 				OPTSET(INP_RECVTTL);
989 				break;
990 
991 			case IP_RECVIF:
992 				OPTSET(INP_RECVIF);
993 				break;
994 
995 			case IP_FAITH:
996 				OPTSET(INP_FAITH);
997 				break;
998 
999 			case IP_ONESBCAST:
1000 				OPTSET(INP_ONESBCAST);
1001 				break;
1002 			case IP_DONTFRAG:
1003 				OPTSET(INP_DONTFRAG);
1004 				break;
1005 			case IP_BINDANY:
1006 				OPTSET(INP_BINDANY);
1007 				break;
1008 			}
1009 			break;
1010 #undef OPTSET
1011 
1012 		/*
1013 		 * Multicast socket options are processed by the in_mcast
1014 		 * module.
1015 		 */
1016 		case IP_MULTICAST_IF:
1017 		case IP_MULTICAST_VIF:
1018 		case IP_MULTICAST_TTL:
1019 		case IP_MULTICAST_LOOP:
1020 		case IP_ADD_MEMBERSHIP:
1021 		case IP_DROP_MEMBERSHIP:
1022 		case IP_ADD_SOURCE_MEMBERSHIP:
1023 		case IP_DROP_SOURCE_MEMBERSHIP:
1024 		case IP_BLOCK_SOURCE:
1025 		case IP_UNBLOCK_SOURCE:
1026 		case IP_MSFILTER:
1027 		case MCAST_JOIN_GROUP:
1028 		case MCAST_LEAVE_GROUP:
1029 		case MCAST_JOIN_SOURCE_GROUP:
1030 		case MCAST_LEAVE_SOURCE_GROUP:
1031 		case MCAST_BLOCK_SOURCE:
1032 		case MCAST_UNBLOCK_SOURCE:
1033 			error = inp_setmoptions(inp, sopt);
1034 			break;
1035 
1036 		case IP_PORTRANGE:
1037 			error = sooptcopyin(sopt, &optval, sizeof optval,
1038 					    sizeof optval);
1039 			if (error)
1040 				break;
1041 
1042 			INP_WLOCK(inp);
1043 			switch (optval) {
1044 			case IP_PORTRANGE_DEFAULT:
1045 				inp->inp_flags &= ~(INP_LOWPORT);
1046 				inp->inp_flags &= ~(INP_HIGHPORT);
1047 				break;
1048 
1049 			case IP_PORTRANGE_HIGH:
1050 				inp->inp_flags &= ~(INP_LOWPORT);
1051 				inp->inp_flags |= INP_HIGHPORT;
1052 				break;
1053 
1054 			case IP_PORTRANGE_LOW:
1055 				inp->inp_flags &= ~(INP_HIGHPORT);
1056 				inp->inp_flags |= INP_LOWPORT;
1057 				break;
1058 
1059 			default:
1060 				error = EINVAL;
1061 				break;
1062 			}
1063 			INP_WUNLOCK(inp);
1064 			break;
1065 
1066 #ifdef IPSEC
1067 		case IP_IPSEC_POLICY:
1068 		{
1069 			caddr_t req;
1070 			struct mbuf *m;
1071 
1072 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1073 				break;
1074 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1075 				break;
1076 			req = mtod(m, caddr_t);
1077 			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1078 			    m->m_len, (sopt->sopt_td != NULL) ?
1079 			    sopt->sopt_td->td_ucred : NULL);
1080 			m_freem(m);
1081 			break;
1082 		}
1083 #endif /* IPSEC */
1084 
1085 		default:
1086 			error = ENOPROTOOPT;
1087 			break;
1088 		}
1089 		break;
1090 
1091 	case SOPT_GET:
1092 		switch (sopt->sopt_name) {
1093 		case IP_OPTIONS:
1094 		case IP_RETOPTS:
1095 			if (inp->inp_options)
1096 				error = sooptcopyout(sopt,
1097 						     mtod(inp->inp_options,
1098 							  char *),
1099 						     inp->inp_options->m_len);
1100 			else
1101 				sopt->sopt_valsize = 0;
1102 			break;
1103 
1104 		case IP_TOS:
1105 		case IP_TTL:
1106 		case IP_MINTTL:
1107 		case IP_RECVOPTS:
1108 		case IP_RECVRETOPTS:
1109 		case IP_RECVDSTADDR:
1110 		case IP_RECVTTL:
1111 		case IP_RECVIF:
1112 		case IP_PORTRANGE:
1113 		case IP_FAITH:
1114 		case IP_ONESBCAST:
1115 		case IP_DONTFRAG:
1116 			switch (sopt->sopt_name) {
1117 
1118 			case IP_TOS:
1119 				optval = inp->inp_ip_tos;
1120 				break;
1121 
1122 			case IP_TTL:
1123 				optval = inp->inp_ip_ttl;
1124 				break;
1125 
1126 			case IP_MINTTL:
1127 				optval = inp->inp_ip_minttl;
1128 				break;
1129 
1130 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1131 
1132 			case IP_RECVOPTS:
1133 				optval = OPTBIT(INP_RECVOPTS);
1134 				break;
1135 
1136 			case IP_RECVRETOPTS:
1137 				optval = OPTBIT(INP_RECVRETOPTS);
1138 				break;
1139 
1140 			case IP_RECVDSTADDR:
1141 				optval = OPTBIT(INP_RECVDSTADDR);
1142 				break;
1143 
1144 			case IP_RECVTTL:
1145 				optval = OPTBIT(INP_RECVTTL);
1146 				break;
1147 
1148 			case IP_RECVIF:
1149 				optval = OPTBIT(INP_RECVIF);
1150 				break;
1151 
1152 			case IP_PORTRANGE:
1153 				if (inp->inp_flags & INP_HIGHPORT)
1154 					optval = IP_PORTRANGE_HIGH;
1155 				else if (inp->inp_flags & INP_LOWPORT)
1156 					optval = IP_PORTRANGE_LOW;
1157 				else
1158 					optval = 0;
1159 				break;
1160 
1161 			case IP_FAITH:
1162 				optval = OPTBIT(INP_FAITH);
1163 				break;
1164 
1165 			case IP_ONESBCAST:
1166 				optval = OPTBIT(INP_ONESBCAST);
1167 				break;
1168 			case IP_DONTFRAG:
1169 				optval = OPTBIT(INP_DONTFRAG);
1170 				break;
1171 			}
1172 			error = sooptcopyout(sopt, &optval, sizeof optval);
1173 			break;
1174 
1175 		/*
1176 		 * Multicast socket options are processed by the in_mcast
1177 		 * module.
1178 		 */
1179 		case IP_MULTICAST_IF:
1180 		case IP_MULTICAST_VIF:
1181 		case IP_MULTICAST_TTL:
1182 		case IP_MULTICAST_LOOP:
1183 		case IP_MSFILTER:
1184 			error = inp_getmoptions(inp, sopt);
1185 			break;
1186 
1187 #ifdef IPSEC
1188 		case IP_IPSEC_POLICY:
1189 		{
1190 			struct mbuf *m = NULL;
1191 			caddr_t req = NULL;
1192 			size_t len = 0;
1193 
1194 			if (m != 0) {
1195 				req = mtod(m, caddr_t);
1196 				len = m->m_len;
1197 			}
1198 			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1199 			if (error == 0)
1200 				error = soopt_mcopyout(sopt, m); /* XXX */
1201 			if (error == 0)
1202 				m_freem(m);
1203 			break;
1204 		}
1205 #endif /* IPSEC */
1206 
1207 		default:
1208 			error = ENOPROTOOPT;
1209 			break;
1210 		}
1211 		break;
1212 	}
1213 	return (error);
1214 }
1215 
1216 /*
1217  * Routine called from ip_output() to loop back a copy of an IP multicast
1218  * packet to the input queue of a specified interface.  Note that this
1219  * calls the output routine of the loopback "driver", but with an interface
1220  * pointer that might NOT be a loopback interface -- evil, but easier than
1221  * replicating that code here.
1222  */
1223 static void
1224 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1225     int hlen)
1226 {
1227 	register struct ip *ip;
1228 	struct mbuf *copym;
1229 
1230 	/*
1231 	 * Make a deep copy of the packet because we're going to
1232 	 * modify the pack in order to generate checksums.
1233 	 */
1234 	copym = m_dup(m, M_DONTWAIT);
1235 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1236 		copym = m_pullup(copym, hlen);
1237 	if (copym != NULL) {
1238 		/* If needed, compute the checksum and mark it as valid. */
1239 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1240 			in_delayed_cksum(copym);
1241 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1242 			copym->m_pkthdr.csum_flags |=
1243 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1244 			copym->m_pkthdr.csum_data = 0xffff;
1245 		}
1246 		/*
1247 		 * We don't bother to fragment if the IP length is greater
1248 		 * than the interface's MTU.  Can this possibly matter?
1249 		 */
1250 		ip = mtod(copym, struct ip *);
1251 		ip->ip_len = htons(ip->ip_len);
1252 		ip->ip_off = htons(ip->ip_off);
1253 		ip->ip_sum = 0;
1254 		ip->ip_sum = in_cksum(copym, hlen);
1255 #if 1 /* XXX */
1256 		if (dst->sin_family != AF_INET) {
1257 			printf("ip_mloopback: bad address family %d\n",
1258 						dst->sin_family);
1259 			dst->sin_family = AF_INET;
1260 		}
1261 #endif
1262 		if_simloop(ifp, copym, dst->sin_family, 0);
1263 	}
1264 }
1265