xref: /freebsd/sys/netinet/ip_output.c (revision e27abb6689c5733dd08ce240d5402a0de3a42254)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_inet.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipsec.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mpath.h"
40 #include "opt_route.h"
41 #include "opt_sctp.h"
42 #include "opt_rss.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/protosw.h>
53 #include <sys/rmlock.h>
54 #include <sys/sdt.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/ucred.h>
59 
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_llatbl.h>
63 #include <net/netisr.h>
64 #include <net/pfil.h>
65 #include <net/route.h>
66 #include <net/flowtable.h>
67 #ifdef RADIX_MPATH
68 #include <net/radix_mpath.h>
69 #endif
70 #include <net/rss_config.h>
71 #include <net/vnet.h>
72 
73 #include <netinet/in.h>
74 #include <netinet/in_kdtrace.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/ip.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/in_rss.h>
79 #include <netinet/in_var.h>
80 #include <netinet/ip_var.h>
81 #include <netinet/ip_options.h>
82 #ifdef SCTP
83 #include <netinet/sctp.h>
84 #include <netinet/sctp_crc32.h>
85 #endif
86 
87 #ifdef IPSEC
88 #include <netinet/ip_ipsec.h>
89 #include <netipsec/ipsec.h>
90 #endif /* IPSEC*/
91 
92 #include <machine/in_cksum.h>
93 
94 #include <security/mac/mac_framework.h>
95 
96 #ifdef MBUF_STRESS_TEST
97 static int mbuf_frag_size = 0;
98 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
99 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
100 #endif
101 
102 static void	ip_mloopback(struct ifnet *, const struct mbuf *, int);
103 
104 
105 extern int in_mcast_loop;
106 extern	struct protosw inetsw[];
107 
108 static inline int
109 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp,
110     struct sockaddr_in *dst, int *fibnum, int *error)
111 {
112 	struct m_tag *fwd_tag = NULL;
113 	struct mbuf *m;
114 	struct in_addr odst;
115 	struct ip *ip;
116 
117 	m = *mp;
118 	ip = mtod(m, struct ip *);
119 
120 	/* Run through list of hooks for output packets. */
121 	odst.s_addr = ip->ip_dst.s_addr;
122 	*error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, PFIL_OUT, inp);
123 	m = *mp;
124 	if ((*error) != 0 || m == NULL)
125 		return 1; /* Finished */
126 
127 	ip = mtod(m, struct ip *);
128 
129 	/* See if destination IP address was changed by packet filter. */
130 	if (odst.s_addr != ip->ip_dst.s_addr) {
131 		m->m_flags |= M_SKIP_FIREWALL;
132 		/* If destination is now ourself drop to ip_input(). */
133 		if (in_localip(ip->ip_dst)) {
134 			m->m_flags |= M_FASTFWD_OURS;
135 			if (m->m_pkthdr.rcvif == NULL)
136 				m->m_pkthdr.rcvif = V_loif;
137 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
138 				m->m_pkthdr.csum_flags |=
139 					CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
140 				m->m_pkthdr.csum_data = 0xffff;
141 			}
142 			m->m_pkthdr.csum_flags |=
143 				CSUM_IP_CHECKED | CSUM_IP_VALID;
144 #ifdef SCTP
145 			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
146 				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
147 #endif
148 			*error = netisr_queue(NETISR_IP, m);
149 			return 1; /* Finished */
150 		}
151 
152 		bzero(dst, sizeof(*dst));
153 		dst->sin_family = AF_INET;
154 		dst->sin_len = sizeof(*dst);
155 		dst->sin_addr = ip->ip_dst;
156 
157 		return -1; /* Reloop */
158 	}
159 	/* See if fib was changed by packet filter. */
160 	if ((*fibnum) != M_GETFIB(m)) {
161 		m->m_flags |= M_SKIP_FIREWALL;
162 		*fibnum = M_GETFIB(m);
163 		return -1; /* Reloop for FIB change */
164 	}
165 
166 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
167 	if (m->m_flags & M_FASTFWD_OURS) {
168 		if (m->m_pkthdr.rcvif == NULL)
169 			m->m_pkthdr.rcvif = V_loif;
170 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
171 			m->m_pkthdr.csum_flags |=
172 				CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
173 			m->m_pkthdr.csum_data = 0xffff;
174 		}
175 #ifdef SCTP
176 		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
177 			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
178 #endif
179 		m->m_pkthdr.csum_flags |=
180 			CSUM_IP_CHECKED | CSUM_IP_VALID;
181 
182 		*error = netisr_queue(NETISR_IP, m);
183 		return 1; /* Finished */
184 	}
185 	/* Or forward to some other address? */
186 	if ((m->m_flags & M_IP_NEXTHOP) &&
187 	    ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) {
188 		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
189 		m->m_flags |= M_SKIP_FIREWALL;
190 		m->m_flags &= ~M_IP_NEXTHOP;
191 		m_tag_delete(m, fwd_tag);
192 
193 		return -1; /* Reloop for CHANGE of dst */
194 	}
195 
196 	return 0;
197 }
198 
199 /*
200  * IP output.  The packet in mbuf chain m contains a skeletal IP
201  * header (with len, off, ttl, proto, tos, src, dst).
202  * The mbuf chain containing the packet will be freed.
203  * The mbuf opt, if present, will not be freed.
204  * If route ro is present and has ro_rt initialized, route lookup would be
205  * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
206  * then result of route lookup is stored in ro->ro_rt.
207  *
208  * In the IP forwarding case, the packet will arrive with options already
209  * inserted, so must have a NULL opt pointer.
210  */
211 int
212 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
213     struct ip_moptions *imo, struct inpcb *inp)
214 {
215 	struct rm_priotracker in_ifa_tracker;
216 	struct ip *ip;
217 	struct ifnet *ifp = NULL;	/* keep compiler happy */
218 	struct mbuf *m0;
219 	int hlen = sizeof (struct ip);
220 	int mtu;
221 	int error = 0;
222 	struct sockaddr_in *dst;
223 	const struct sockaddr_in *gw;
224 	struct in_ifaddr *ia;
225 	int isbroadcast;
226 	uint16_t ip_len, ip_off;
227 	struct route iproute;
228 	struct rtentry *rte;	/* cache for ro->ro_rt */
229 	uint32_t fibnum;
230 	int have_ia_ref;
231 #ifdef IPSEC
232 	int no_route_but_check_spd = 0;
233 #endif
234 	M_ASSERTPKTHDR(m);
235 
236 	if (inp != NULL) {
237 		INP_LOCK_ASSERT(inp);
238 		M_SETFIB(m, inp->inp_inc.inc_fibnum);
239 		if ((flags & IP_NODEFAULTFLOWID) == 0) {
240 			m->m_pkthdr.flowid = inp->inp_flowid;
241 			M_HASHTYPE_SET(m, inp->inp_flowtype);
242 		}
243 	}
244 
245 	if (ro == NULL) {
246 		ro = &iproute;
247 		bzero(ro, sizeof (*ro));
248 	} else
249 		ro->ro_flags |= RT_LLE_CACHE;
250 
251 #ifdef FLOWTABLE
252 	if (ro->ro_rt == NULL)
253 		(void )flowtable_lookup(AF_INET, m, ro);
254 #endif
255 
256 	if (opt) {
257 		int len = 0;
258 		m = ip_insertoptions(m, opt, &len);
259 		if (len != 0)
260 			hlen = len; /* ip->ip_hl is updated above */
261 	}
262 	ip = mtod(m, struct ip *);
263 	ip_len = ntohs(ip->ip_len);
264 	ip_off = ntohs(ip->ip_off);
265 
266 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
267 		ip->ip_v = IPVERSION;
268 		ip->ip_hl = hlen >> 2;
269 		ip_fillid(ip);
270 		IPSTAT_INC(ips_localout);
271 	} else {
272 		/* Header already set, fetch hlen from there */
273 		hlen = ip->ip_hl << 2;
274 	}
275 
276 	/*
277 	 * dst/gw handling:
278 	 *
279 	 * dst can be rewritten but always points to &ro->ro_dst.
280 	 * gw is readonly but can point either to dst OR rt_gateway,
281 	 * therefore we need restore gw if we're redoing lookup.
282 	 */
283 	gw = dst = (struct sockaddr_in *)&ro->ro_dst;
284 	fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
285 	rte = ro->ro_rt;
286 	if (rte == NULL) {
287 		bzero(dst, sizeof(*dst));
288 		dst->sin_family = AF_INET;
289 		dst->sin_len = sizeof(*dst);
290 		dst->sin_addr = ip->ip_dst;
291 	}
292 again:
293 	/*
294 	 * Validate route against routing table additions;
295 	 * a better/more specific route might have been added.
296 	 */
297 	if (inp)
298 		RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum);
299 	/*
300 	 * If there is a cached route,
301 	 * check that it is to the same destination
302 	 * and is still up.  If not, free it and try again.
303 	 * The address family should also be checked in case of sharing the
304 	 * cache with IPv6.
305 	 * Also check whether routing cache needs invalidation.
306 	 */
307 	rte = ro->ro_rt;
308 	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
309 		    rte->rt_ifp == NULL ||
310 		    !RT_LINK_IS_UP(rte->rt_ifp) ||
311 			  dst->sin_family != AF_INET ||
312 			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
313 		RTFREE(rte);
314 		rte = ro->ro_rt = (struct rtentry *)NULL;
315 		if (ro->ro_lle)
316 			LLE_FREE(ro->ro_lle);	/* zeros ro_lle */
317 		ro->ro_lle = (struct llentry *)NULL;
318 	}
319 	ia = NULL;
320 	have_ia_ref = 0;
321 	/*
322 	 * If routing to interface only, short circuit routing lookup.
323 	 * The use of an all-ones broadcast address implies this; an
324 	 * interface is specified by the broadcast address of an interface,
325 	 * or the destination address of a ptp interface.
326 	 */
327 	if (flags & IP_SENDONES) {
328 		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst),
329 						      M_GETFIB(m)))) == NULL &&
330 		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
331 						    M_GETFIB(m)))) == NULL) {
332 			IPSTAT_INC(ips_noroute);
333 			error = ENETUNREACH;
334 			goto bad;
335 		}
336 		have_ia_ref = 1;
337 		ip->ip_dst.s_addr = INADDR_BROADCAST;
338 		dst->sin_addr = ip->ip_dst;
339 		ifp = ia->ia_ifp;
340 		ip->ip_ttl = 1;
341 		isbroadcast = 1;
342 	} else if (flags & IP_ROUTETOIF) {
343 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
344 						    M_GETFIB(m)))) == NULL &&
345 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0,
346 						M_GETFIB(m)))) == NULL) {
347 			IPSTAT_INC(ips_noroute);
348 			error = ENETUNREACH;
349 			goto bad;
350 		}
351 		have_ia_ref = 1;
352 		ifp = ia->ia_ifp;
353 		ip->ip_ttl = 1;
354 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
355 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
356 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
357 		/*
358 		 * Bypass the normal routing lookup for multicast
359 		 * packets if the interface is specified.
360 		 */
361 		ifp = imo->imo_multicast_ifp;
362 		IFP_TO_IA(ifp, ia, &in_ifa_tracker);
363 		if (ia)
364 			have_ia_ref = 1;
365 		isbroadcast = 0;	/* fool gcc */
366 	} else {
367 		/*
368 		 * We want to do any cloning requested by the link layer,
369 		 * as this is probably required in all cases for correct
370 		 * operation (as it is for ARP).
371 		 */
372 		if (rte == NULL) {
373 #ifdef RADIX_MPATH
374 			rtalloc_mpath_fib(ro,
375 			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
376 			    fibnum);
377 #else
378 			in_rtalloc_ign(ro, 0, fibnum);
379 #endif
380 			rte = ro->ro_rt;
381 		}
382 		if (rte == NULL ||
383 		    (rte->rt_flags & RTF_UP) == 0 ||
384 		    rte->rt_ifp == NULL ||
385 		    !RT_LINK_IS_UP(rte->rt_ifp)) {
386 #ifdef IPSEC
387 			/*
388 			 * There is no route for this packet, but it is
389 			 * possible that a matching SPD entry exists.
390 			 */
391 			no_route_but_check_spd = 1;
392 			mtu = 0; /* Silence GCC warning. */
393 			goto sendit;
394 #endif
395 			IPSTAT_INC(ips_noroute);
396 			error = EHOSTUNREACH;
397 			goto bad;
398 		}
399 		ia = ifatoia(rte->rt_ifa);
400 		ifp = rte->rt_ifp;
401 		counter_u64_add(rte->rt_pksent, 1);
402 		rt_update_ro_flags(ro);
403 		if (rte->rt_flags & RTF_GATEWAY)
404 			gw = (struct sockaddr_in *)rte->rt_gateway;
405 		if (rte->rt_flags & RTF_HOST)
406 			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
407 		else
408 			isbroadcast = in_broadcast(gw->sin_addr, ifp);
409 	}
410 
411 	/*
412 	 * Calculate MTU.  If we have a route that is up, use that,
413 	 * otherwise use the interface's MTU.
414 	 */
415 	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST)))
416 		mtu = rte->rt_mtu;
417 	else
418 		mtu = ifp->if_mtu;
419 	/* Catch a possible divide by zero later. */
420 	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
421 	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
422 
423 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
424 		m->m_flags |= M_MCAST;
425 		/*
426 		 * IP destination address is multicast.  Make sure "gw"
427 		 * still points to the address in "ro".  (It may have been
428 		 * changed to point to a gateway address, above.)
429 		 */
430 		gw = dst;
431 		/*
432 		 * See if the caller provided any multicast options
433 		 */
434 		if (imo != NULL) {
435 			ip->ip_ttl = imo->imo_multicast_ttl;
436 			if (imo->imo_multicast_vif != -1)
437 				ip->ip_src.s_addr =
438 				    ip_mcast_src ?
439 				    ip_mcast_src(imo->imo_multicast_vif) :
440 				    INADDR_ANY;
441 		} else
442 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
443 		/*
444 		 * Confirm that the outgoing interface supports multicast.
445 		 */
446 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
447 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
448 				IPSTAT_INC(ips_noroute);
449 				error = ENETUNREACH;
450 				goto bad;
451 			}
452 		}
453 		/*
454 		 * If source address not specified yet, use address
455 		 * of outgoing interface.
456 		 */
457 		if (ip->ip_src.s_addr == INADDR_ANY) {
458 			/* Interface may have no addresses. */
459 			if (ia != NULL)
460 				ip->ip_src = IA_SIN(ia)->sin_addr;
461 		}
462 
463 		if ((imo == NULL && in_mcast_loop) ||
464 		    (imo && imo->imo_multicast_loop)) {
465 			/*
466 			 * Loop back multicast datagram if not expressly
467 			 * forbidden to do so, even if we are not a member
468 			 * of the group; ip_input() will filter it later,
469 			 * thus deferring a hash lookup and mutex acquisition
470 			 * at the expense of a cheap copy using m_copym().
471 			 */
472 			ip_mloopback(ifp, m, hlen);
473 		} else {
474 			/*
475 			 * If we are acting as a multicast router, perform
476 			 * multicast forwarding as if the packet had just
477 			 * arrived on the interface to which we are about
478 			 * to send.  The multicast forwarding function
479 			 * recursively calls this function, using the
480 			 * IP_FORWARDING flag to prevent infinite recursion.
481 			 *
482 			 * Multicasts that are looped back by ip_mloopback(),
483 			 * above, will be forwarded by the ip_input() routine,
484 			 * if necessary.
485 			 */
486 			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
487 				/*
488 				 * If rsvp daemon is not running, do not
489 				 * set ip_moptions. This ensures that the packet
490 				 * is multicast and not just sent down one link
491 				 * as prescribed by rsvpd.
492 				 */
493 				if (!V_rsvp_on)
494 					imo = NULL;
495 				if (ip_mforward &&
496 				    ip_mforward(ip, ifp, m, imo) != 0) {
497 					m_freem(m);
498 					goto done;
499 				}
500 			}
501 		}
502 
503 		/*
504 		 * Multicasts with a time-to-live of zero may be looped-
505 		 * back, above, but must not be transmitted on a network.
506 		 * Also, multicasts addressed to the loopback interface
507 		 * are not sent -- the above call to ip_mloopback() will
508 		 * loop back a copy. ip_input() will drop the copy if
509 		 * this host does not belong to the destination group on
510 		 * the loopback interface.
511 		 */
512 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
513 			m_freem(m);
514 			goto done;
515 		}
516 
517 		goto sendit;
518 	}
519 
520 	/*
521 	 * If the source address is not specified yet, use the address
522 	 * of the outoing interface.
523 	 */
524 	if (ip->ip_src.s_addr == INADDR_ANY) {
525 		/* Interface may have no addresses. */
526 		if (ia != NULL) {
527 			ip->ip_src = IA_SIN(ia)->sin_addr;
528 		}
529 	}
530 
531 	/*
532 	 * Look for broadcast address and
533 	 * verify user is allowed to send
534 	 * such a packet.
535 	 */
536 	if (isbroadcast) {
537 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
538 			error = EADDRNOTAVAIL;
539 			goto bad;
540 		}
541 		if ((flags & IP_ALLOWBROADCAST) == 0) {
542 			error = EACCES;
543 			goto bad;
544 		}
545 		/* don't allow broadcast messages to be fragmented */
546 		if (ip_len > mtu) {
547 			error = EMSGSIZE;
548 			goto bad;
549 		}
550 		m->m_flags |= M_BCAST;
551 	} else {
552 		m->m_flags &= ~M_BCAST;
553 	}
554 
555 sendit:
556 #ifdef IPSEC
557 	switch(ip_ipsec_output(&m, inp, &error)) {
558 	case 1:
559 		goto bad;
560 	case -1:
561 		goto done;
562 	case 0:
563 	default:
564 		break;	/* Continue with packet processing. */
565 	}
566 	/*
567 	 * Check if there was a route for this packet; return error if not.
568 	 */
569 	if (no_route_but_check_spd) {
570 		IPSTAT_INC(ips_noroute);
571 		error = EHOSTUNREACH;
572 		goto bad;
573 	}
574 	/* Update variables that are affected by ipsec4_output(). */
575 	ip = mtod(m, struct ip *);
576 	hlen = ip->ip_hl << 2;
577 #endif /* IPSEC */
578 
579 	/* Jump over all PFIL processing if hooks are not active. */
580 	if (PFIL_HOOKED(&V_inet_pfil_hook)) {
581 		switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) {
582 		case 1: /* Finished */
583 			goto done;
584 
585 		case 0: /* Continue normally */
586 			ip = mtod(m, struct ip *);
587 			break;
588 
589 		case -1: /* Need to try again */
590 			/* Reset everything for a new round */
591 			RO_RTFREE(ro);
592 			if (have_ia_ref)
593 				ifa_free(&ia->ia_ifa);
594 			ro->ro_prepend = NULL;
595 			rte = NULL;
596 			gw = dst;
597 			ip = mtod(m, struct ip *);
598 			goto again;
599 
600 		}
601 	}
602 
603 	/* 127/8 must not appear on wire - RFC1122. */
604 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
605 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
606 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
607 			IPSTAT_INC(ips_badaddr);
608 			error = EADDRNOTAVAIL;
609 			goto bad;
610 		}
611 	}
612 
613 	m->m_pkthdr.csum_flags |= CSUM_IP;
614 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
615 		in_delayed_cksum(m);
616 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
617 	}
618 #ifdef SCTP
619 	if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
620 		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
621 		m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
622 	}
623 #endif
624 
625 	/*
626 	 * If small enough for interface, or the interface will take
627 	 * care of the fragmentation for us, we can just send directly.
628 	 */
629 	if (ip_len <= mtu ||
630 	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
631 		ip->ip_sum = 0;
632 		if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
633 			ip->ip_sum = in_cksum(m, hlen);
634 			m->m_pkthdr.csum_flags &= ~CSUM_IP;
635 		}
636 
637 		/*
638 		 * Record statistics for this interface address.
639 		 * With CSUM_TSO the byte/packet count will be slightly
640 		 * incorrect because we count the IP+TCP headers only
641 		 * once instead of for every generated packet.
642 		 */
643 		if (!(flags & IP_FORWARDING) && ia) {
644 			if (m->m_pkthdr.csum_flags & CSUM_TSO)
645 				counter_u64_add(ia->ia_ifa.ifa_opackets,
646 				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz);
647 			else
648 				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
649 
650 			counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len);
651 		}
652 #ifdef MBUF_STRESS_TEST
653 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
654 			m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
655 #endif
656 		/*
657 		 * Reset layer specific mbuf flags
658 		 * to avoid confusing lower layers.
659 		 */
660 		m_clrprotoflags(m);
661 		IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
662 		error = (*ifp->if_output)(ifp, m,
663 		    (const struct sockaddr *)gw, ro);
664 		goto done;
665 	}
666 
667 	/* Balk when DF bit is set or the interface didn't support TSO. */
668 	if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
669 		error = EMSGSIZE;
670 		IPSTAT_INC(ips_cantfrag);
671 		goto bad;
672 	}
673 
674 	/*
675 	 * Too large for interface; fragment if possible. If successful,
676 	 * on return, m will point to a list of packets to be sent.
677 	 */
678 	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
679 	if (error)
680 		goto bad;
681 	for (; m; m = m0) {
682 		m0 = m->m_nextpkt;
683 		m->m_nextpkt = 0;
684 		if (error == 0) {
685 			/* Record statistics for this interface address. */
686 			if (ia != NULL) {
687 				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
688 				counter_u64_add(ia->ia_ifa.ifa_obytes,
689 				    m->m_pkthdr.len);
690 			}
691 			/*
692 			 * Reset layer specific mbuf flags
693 			 * to avoid confusing upper layers.
694 			 */
695 			m_clrprotoflags(m);
696 
697 			IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
698 			error = (*ifp->if_output)(ifp, m,
699 			    (const struct sockaddr *)gw, ro);
700 		} else
701 			m_freem(m);
702 	}
703 
704 	if (error == 0)
705 		IPSTAT_INC(ips_fragmented);
706 
707 done:
708 	/*
709 	 * Release the route if using our private route, or if
710 	 * (with flowtable) we don't have our own reference.
711 	 */
712 	if (ro == &iproute || ro->ro_flags & RT_NORTREF)
713 		RO_RTFREE(ro);
714 	else if (rte == NULL)
715 		/*
716 		 * If the caller supplied a route but somehow the reference
717 		 * to it has been released need to prevent the caller
718 		 * calling RTFREE on it again.
719 		 */
720 		ro->ro_rt = NULL;
721 	if (have_ia_ref)
722 		ifa_free(&ia->ia_ifa);
723 	return (error);
724 bad:
725 	m_freem(m);
726 	goto done;
727 }
728 
729 /*
730  * Create a chain of fragments which fit the given mtu. m_frag points to the
731  * mbuf to be fragmented; on return it points to the chain with the fragments.
732  * Return 0 if no error. If error, m_frag may contain a partially built
733  * chain of fragments that should be freed by the caller.
734  *
735  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
736  */
737 int
738 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
739     u_long if_hwassist_flags)
740 {
741 	int error = 0;
742 	int hlen = ip->ip_hl << 2;
743 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
744 	int off;
745 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
746 	int firstlen;
747 	struct mbuf **mnext;
748 	int nfrags;
749 	uint16_t ip_len, ip_off;
750 
751 	ip_len = ntohs(ip->ip_len);
752 	ip_off = ntohs(ip->ip_off);
753 
754 	if (ip_off & IP_DF) {	/* Fragmentation not allowed */
755 		IPSTAT_INC(ips_cantfrag);
756 		return EMSGSIZE;
757 	}
758 
759 	/*
760 	 * Must be able to put at least 8 bytes per fragment.
761 	 */
762 	if (len < 8)
763 		return EMSGSIZE;
764 
765 	/*
766 	 * If the interface will not calculate checksums on
767 	 * fragmented packets, then do it here.
768 	 */
769 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
770 		in_delayed_cksum(m0);
771 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
772 	}
773 #ifdef SCTP
774 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
775 		sctp_delayed_cksum(m0, hlen);
776 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
777 	}
778 #endif
779 	if (len > PAGE_SIZE) {
780 		/*
781 		 * Fragment large datagrams such that each segment
782 		 * contains a multiple of PAGE_SIZE amount of data,
783 		 * plus headers. This enables a receiver to perform
784 		 * page-flipping zero-copy optimizations.
785 		 *
786 		 * XXX When does this help given that sender and receiver
787 		 * could have different page sizes, and also mtu could
788 		 * be less than the receiver's page size ?
789 		 */
790 		int newlen;
791 
792 		off = MIN(mtu, m0->m_pkthdr.len);
793 
794 		/*
795 		 * firstlen (off - hlen) must be aligned on an
796 		 * 8-byte boundary
797 		 */
798 		if (off < hlen)
799 			goto smart_frag_failure;
800 		off = ((off - hlen) & ~7) + hlen;
801 		newlen = (~PAGE_MASK) & mtu;
802 		if ((newlen + sizeof (struct ip)) > mtu) {
803 			/* we failed, go back the default */
804 smart_frag_failure:
805 			newlen = len;
806 			off = hlen + len;
807 		}
808 		len = newlen;
809 
810 	} else {
811 		off = hlen + len;
812 	}
813 
814 	firstlen = off - hlen;
815 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
816 
817 	/*
818 	 * Loop through length of segment after first fragment,
819 	 * make new header and copy data of each part and link onto chain.
820 	 * Here, m0 is the original packet, m is the fragment being created.
821 	 * The fragments are linked off the m_nextpkt of the original
822 	 * packet, which after processing serves as the first fragment.
823 	 */
824 	for (nfrags = 1; off < ip_len; off += len, nfrags++) {
825 		struct ip *mhip;	/* ip header on the fragment */
826 		struct mbuf *m;
827 		int mhlen = sizeof (struct ip);
828 
829 		m = m_gethdr(M_NOWAIT, MT_DATA);
830 		if (m == NULL) {
831 			error = ENOBUFS;
832 			IPSTAT_INC(ips_odropped);
833 			goto done;
834 		}
835 		/*
836 		 * Make sure the complete packet header gets copied
837 		 * from the originating mbuf to the newly created
838 		 * mbuf. This also ensures that existing firewall
839 		 * classification(s), VLAN tags and so on get copied
840 		 * to the resulting fragmented packet(s):
841 		 */
842 		if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
843 			m_free(m);
844 			error = ENOBUFS;
845 			IPSTAT_INC(ips_odropped);
846 			goto done;
847 		}
848 		/*
849 		 * In the first mbuf, leave room for the link header, then
850 		 * copy the original IP header including options. The payload
851 		 * goes into an additional mbuf chain returned by m_copym().
852 		 */
853 		m->m_data += max_linkhdr;
854 		mhip = mtod(m, struct ip *);
855 		*mhip = *ip;
856 		if (hlen > sizeof (struct ip)) {
857 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
858 			mhip->ip_v = IPVERSION;
859 			mhip->ip_hl = mhlen >> 2;
860 		}
861 		m->m_len = mhlen;
862 		/* XXX do we need to add ip_off below ? */
863 		mhip->ip_off = ((off - hlen) >> 3) + ip_off;
864 		if (off + len >= ip_len)
865 			len = ip_len - off;
866 		else
867 			mhip->ip_off |= IP_MF;
868 		mhip->ip_len = htons((u_short)(len + mhlen));
869 		m->m_next = m_copym(m0, off, len, M_NOWAIT);
870 		if (m->m_next == NULL) {	/* copy failed */
871 			m_free(m);
872 			error = ENOBUFS;	/* ??? */
873 			IPSTAT_INC(ips_odropped);
874 			goto done;
875 		}
876 		m->m_pkthdr.len = mhlen + len;
877 #ifdef MAC
878 		mac_netinet_fragment(m0, m);
879 #endif
880 		mhip->ip_off = htons(mhip->ip_off);
881 		mhip->ip_sum = 0;
882 		if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
883 			mhip->ip_sum = in_cksum(m, mhlen);
884 			m->m_pkthdr.csum_flags &= ~CSUM_IP;
885 		}
886 		*mnext = m;
887 		mnext = &m->m_nextpkt;
888 	}
889 	IPSTAT_ADD(ips_ofragments, nfrags);
890 
891 	/*
892 	 * Update first fragment by trimming what's been copied out
893 	 * and updating header.
894 	 */
895 	m_adj(m0, hlen + firstlen - ip_len);
896 	m0->m_pkthdr.len = hlen + firstlen;
897 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
898 	ip->ip_off = htons(ip_off | IP_MF);
899 	ip->ip_sum = 0;
900 	if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
901 		ip->ip_sum = in_cksum(m0, hlen);
902 		m0->m_pkthdr.csum_flags &= ~CSUM_IP;
903 	}
904 
905 done:
906 	*m_frag = m0;
907 	return error;
908 }
909 
910 void
911 in_delayed_cksum(struct mbuf *m)
912 {
913 	struct ip *ip;
914 	uint16_t csum, offset, ip_len;
915 
916 	ip = mtod(m, struct ip *);
917 	offset = ip->ip_hl << 2 ;
918 	ip_len = ntohs(ip->ip_len);
919 	csum = in_cksum_skip(m, ip_len, offset);
920 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
921 		csum = 0xffff;
922 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
923 
924 	/* find the mbuf in the chain where the checksum starts*/
925 	while ((m != NULL) && (offset >= m->m_len)) {
926 		offset -= m->m_len;
927 		m = m->m_next;
928 	}
929 	KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain."));
930 	KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs."));
931 	*(u_short *)(m->m_data + offset) = csum;
932 }
933 
934 /*
935  * IP socket option processing.
936  */
937 int
938 ip_ctloutput(struct socket *so, struct sockopt *sopt)
939 {
940 	struct	inpcb *inp = sotoinpcb(so);
941 	int	error, optval;
942 #ifdef	RSS
943 	uint32_t rss_bucket;
944 	int retval;
945 #endif
946 
947 	error = optval = 0;
948 	if (sopt->sopt_level != IPPROTO_IP) {
949 		error = EINVAL;
950 
951 		if (sopt->sopt_level == SOL_SOCKET &&
952 		    sopt->sopt_dir == SOPT_SET) {
953 			switch (sopt->sopt_name) {
954 			case SO_REUSEADDR:
955 				INP_WLOCK(inp);
956 				if ((so->so_options & SO_REUSEADDR) != 0)
957 					inp->inp_flags2 |= INP_REUSEADDR;
958 				else
959 					inp->inp_flags2 &= ~INP_REUSEADDR;
960 				INP_WUNLOCK(inp);
961 				error = 0;
962 				break;
963 			case SO_REUSEPORT:
964 				INP_WLOCK(inp);
965 				if ((so->so_options & SO_REUSEPORT) != 0)
966 					inp->inp_flags2 |= INP_REUSEPORT;
967 				else
968 					inp->inp_flags2 &= ~INP_REUSEPORT;
969 				INP_WUNLOCK(inp);
970 				error = 0;
971 				break;
972 			case SO_SETFIB:
973 				INP_WLOCK(inp);
974 				inp->inp_inc.inc_fibnum = so->so_fibnum;
975 				INP_WUNLOCK(inp);
976 				error = 0;
977 				break;
978 			default:
979 				break;
980 			}
981 		}
982 		return (error);
983 	}
984 
985 	switch (sopt->sopt_dir) {
986 	case SOPT_SET:
987 		switch (sopt->sopt_name) {
988 		case IP_OPTIONS:
989 #ifdef notyet
990 		case IP_RETOPTS:
991 #endif
992 		{
993 			struct mbuf *m;
994 			if (sopt->sopt_valsize > MLEN) {
995 				error = EMSGSIZE;
996 				break;
997 			}
998 			m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
999 			if (m == NULL) {
1000 				error = ENOBUFS;
1001 				break;
1002 			}
1003 			m->m_len = sopt->sopt_valsize;
1004 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1005 					    m->m_len);
1006 			if (error) {
1007 				m_free(m);
1008 				break;
1009 			}
1010 			INP_WLOCK(inp);
1011 			error = ip_pcbopts(inp, sopt->sopt_name, m);
1012 			INP_WUNLOCK(inp);
1013 			return (error);
1014 		}
1015 
1016 		case IP_BINDANY:
1017 			if (sopt->sopt_td != NULL) {
1018 				error = priv_check(sopt->sopt_td,
1019 				    PRIV_NETINET_BINDANY);
1020 				if (error)
1021 					break;
1022 			}
1023 			/* FALLTHROUGH */
1024 		case IP_BINDMULTI:
1025 #ifdef	RSS
1026 		case IP_RSS_LISTEN_BUCKET:
1027 #endif
1028 		case IP_TOS:
1029 		case IP_TTL:
1030 		case IP_MINTTL:
1031 		case IP_RECVOPTS:
1032 		case IP_RECVRETOPTS:
1033 		case IP_RECVDSTADDR:
1034 		case IP_RECVTTL:
1035 		case IP_RECVIF:
1036 		case IP_ONESBCAST:
1037 		case IP_DONTFRAG:
1038 		case IP_RECVTOS:
1039 		case IP_RECVFLOWID:
1040 #ifdef	RSS
1041 		case IP_RECVRSSBUCKETID:
1042 #endif
1043 			error = sooptcopyin(sopt, &optval, sizeof optval,
1044 					    sizeof optval);
1045 			if (error)
1046 				break;
1047 
1048 			switch (sopt->sopt_name) {
1049 			case IP_TOS:
1050 				inp->inp_ip_tos = optval;
1051 				break;
1052 
1053 			case IP_TTL:
1054 				inp->inp_ip_ttl = optval;
1055 				break;
1056 
1057 			case IP_MINTTL:
1058 				if (optval >= 0 && optval <= MAXTTL)
1059 					inp->inp_ip_minttl = optval;
1060 				else
1061 					error = EINVAL;
1062 				break;
1063 
1064 #define	OPTSET(bit) do {						\
1065 	INP_WLOCK(inp);							\
1066 	if (optval)							\
1067 		inp->inp_flags |= bit;					\
1068 	else								\
1069 		inp->inp_flags &= ~bit;					\
1070 	INP_WUNLOCK(inp);						\
1071 } while (0)
1072 
1073 #define	OPTSET2(bit, val) do {						\
1074 	INP_WLOCK(inp);							\
1075 	if (val)							\
1076 		inp->inp_flags2 |= bit;					\
1077 	else								\
1078 		inp->inp_flags2 &= ~bit;				\
1079 	INP_WUNLOCK(inp);						\
1080 } while (0)
1081 
1082 			case IP_RECVOPTS:
1083 				OPTSET(INP_RECVOPTS);
1084 				break;
1085 
1086 			case IP_RECVRETOPTS:
1087 				OPTSET(INP_RECVRETOPTS);
1088 				break;
1089 
1090 			case IP_RECVDSTADDR:
1091 				OPTSET(INP_RECVDSTADDR);
1092 				break;
1093 
1094 			case IP_RECVTTL:
1095 				OPTSET(INP_RECVTTL);
1096 				break;
1097 
1098 			case IP_RECVIF:
1099 				OPTSET(INP_RECVIF);
1100 				break;
1101 
1102 			case IP_ONESBCAST:
1103 				OPTSET(INP_ONESBCAST);
1104 				break;
1105 			case IP_DONTFRAG:
1106 				OPTSET(INP_DONTFRAG);
1107 				break;
1108 			case IP_BINDANY:
1109 				OPTSET(INP_BINDANY);
1110 				break;
1111 			case IP_RECVTOS:
1112 				OPTSET(INP_RECVTOS);
1113 				break;
1114 			case IP_BINDMULTI:
1115 				OPTSET2(INP_BINDMULTI, optval);
1116 				break;
1117 			case IP_RECVFLOWID:
1118 				OPTSET2(INP_RECVFLOWID, optval);
1119 				break;
1120 #ifdef	RSS
1121 			case IP_RSS_LISTEN_BUCKET:
1122 				if ((optval >= 0) &&
1123 				    (optval < rss_getnumbuckets())) {
1124 					inp->inp_rss_listen_bucket = optval;
1125 					OPTSET2(INP_RSS_BUCKET_SET, 1);
1126 				} else {
1127 					error = EINVAL;
1128 				}
1129 				break;
1130 			case IP_RECVRSSBUCKETID:
1131 				OPTSET2(INP_RECVRSSBUCKETID, optval);
1132 				break;
1133 #endif
1134 			}
1135 			break;
1136 #undef OPTSET
1137 #undef OPTSET2
1138 
1139 		/*
1140 		 * Multicast socket options are processed by the in_mcast
1141 		 * module.
1142 		 */
1143 		case IP_MULTICAST_IF:
1144 		case IP_MULTICAST_VIF:
1145 		case IP_MULTICAST_TTL:
1146 		case IP_MULTICAST_LOOP:
1147 		case IP_ADD_MEMBERSHIP:
1148 		case IP_DROP_MEMBERSHIP:
1149 		case IP_ADD_SOURCE_MEMBERSHIP:
1150 		case IP_DROP_SOURCE_MEMBERSHIP:
1151 		case IP_BLOCK_SOURCE:
1152 		case IP_UNBLOCK_SOURCE:
1153 		case IP_MSFILTER:
1154 		case MCAST_JOIN_GROUP:
1155 		case MCAST_LEAVE_GROUP:
1156 		case MCAST_JOIN_SOURCE_GROUP:
1157 		case MCAST_LEAVE_SOURCE_GROUP:
1158 		case MCAST_BLOCK_SOURCE:
1159 		case MCAST_UNBLOCK_SOURCE:
1160 			error = inp_setmoptions(inp, sopt);
1161 			break;
1162 
1163 		case IP_PORTRANGE:
1164 			error = sooptcopyin(sopt, &optval, sizeof optval,
1165 					    sizeof optval);
1166 			if (error)
1167 				break;
1168 
1169 			INP_WLOCK(inp);
1170 			switch (optval) {
1171 			case IP_PORTRANGE_DEFAULT:
1172 				inp->inp_flags &= ~(INP_LOWPORT);
1173 				inp->inp_flags &= ~(INP_HIGHPORT);
1174 				break;
1175 
1176 			case IP_PORTRANGE_HIGH:
1177 				inp->inp_flags &= ~(INP_LOWPORT);
1178 				inp->inp_flags |= INP_HIGHPORT;
1179 				break;
1180 
1181 			case IP_PORTRANGE_LOW:
1182 				inp->inp_flags &= ~(INP_HIGHPORT);
1183 				inp->inp_flags |= INP_LOWPORT;
1184 				break;
1185 
1186 			default:
1187 				error = EINVAL;
1188 				break;
1189 			}
1190 			INP_WUNLOCK(inp);
1191 			break;
1192 
1193 #ifdef IPSEC
1194 		case IP_IPSEC_POLICY:
1195 		{
1196 			caddr_t req;
1197 			struct mbuf *m;
1198 
1199 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1200 				break;
1201 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1202 				break;
1203 			req = mtod(m, caddr_t);
1204 			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1205 			    m->m_len, (sopt->sopt_td != NULL) ?
1206 			    sopt->sopt_td->td_ucred : NULL);
1207 			m_freem(m);
1208 			break;
1209 		}
1210 #endif /* IPSEC */
1211 
1212 		default:
1213 			error = ENOPROTOOPT;
1214 			break;
1215 		}
1216 		break;
1217 
1218 	case SOPT_GET:
1219 		switch (sopt->sopt_name) {
1220 		case IP_OPTIONS:
1221 		case IP_RETOPTS:
1222 			if (inp->inp_options)
1223 				error = sooptcopyout(sopt,
1224 						     mtod(inp->inp_options,
1225 							  char *),
1226 						     inp->inp_options->m_len);
1227 			else
1228 				sopt->sopt_valsize = 0;
1229 			break;
1230 
1231 		case IP_TOS:
1232 		case IP_TTL:
1233 		case IP_MINTTL:
1234 		case IP_RECVOPTS:
1235 		case IP_RECVRETOPTS:
1236 		case IP_RECVDSTADDR:
1237 		case IP_RECVTTL:
1238 		case IP_RECVIF:
1239 		case IP_PORTRANGE:
1240 		case IP_ONESBCAST:
1241 		case IP_DONTFRAG:
1242 		case IP_BINDANY:
1243 		case IP_RECVTOS:
1244 		case IP_BINDMULTI:
1245 		case IP_FLOWID:
1246 		case IP_FLOWTYPE:
1247 		case IP_RECVFLOWID:
1248 #ifdef	RSS
1249 		case IP_RSSBUCKETID:
1250 		case IP_RECVRSSBUCKETID:
1251 #endif
1252 			switch (sopt->sopt_name) {
1253 
1254 			case IP_TOS:
1255 				optval = inp->inp_ip_tos;
1256 				break;
1257 
1258 			case IP_TTL:
1259 				optval = inp->inp_ip_ttl;
1260 				break;
1261 
1262 			case IP_MINTTL:
1263 				optval = inp->inp_ip_minttl;
1264 				break;
1265 
1266 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1267 #define	OPTBIT2(bit)	(inp->inp_flags2 & bit ? 1 : 0)
1268 
1269 			case IP_RECVOPTS:
1270 				optval = OPTBIT(INP_RECVOPTS);
1271 				break;
1272 
1273 			case IP_RECVRETOPTS:
1274 				optval = OPTBIT(INP_RECVRETOPTS);
1275 				break;
1276 
1277 			case IP_RECVDSTADDR:
1278 				optval = OPTBIT(INP_RECVDSTADDR);
1279 				break;
1280 
1281 			case IP_RECVTTL:
1282 				optval = OPTBIT(INP_RECVTTL);
1283 				break;
1284 
1285 			case IP_RECVIF:
1286 				optval = OPTBIT(INP_RECVIF);
1287 				break;
1288 
1289 			case IP_PORTRANGE:
1290 				if (inp->inp_flags & INP_HIGHPORT)
1291 					optval = IP_PORTRANGE_HIGH;
1292 				else if (inp->inp_flags & INP_LOWPORT)
1293 					optval = IP_PORTRANGE_LOW;
1294 				else
1295 					optval = 0;
1296 				break;
1297 
1298 			case IP_ONESBCAST:
1299 				optval = OPTBIT(INP_ONESBCAST);
1300 				break;
1301 			case IP_DONTFRAG:
1302 				optval = OPTBIT(INP_DONTFRAG);
1303 				break;
1304 			case IP_BINDANY:
1305 				optval = OPTBIT(INP_BINDANY);
1306 				break;
1307 			case IP_RECVTOS:
1308 				optval = OPTBIT(INP_RECVTOS);
1309 				break;
1310 			case IP_FLOWID:
1311 				optval = inp->inp_flowid;
1312 				break;
1313 			case IP_FLOWTYPE:
1314 				optval = inp->inp_flowtype;
1315 				break;
1316 			case IP_RECVFLOWID:
1317 				optval = OPTBIT2(INP_RECVFLOWID);
1318 				break;
1319 #ifdef	RSS
1320 			case IP_RSSBUCKETID:
1321 				retval = rss_hash2bucket(inp->inp_flowid,
1322 				    inp->inp_flowtype,
1323 				    &rss_bucket);
1324 				if (retval == 0)
1325 					optval = rss_bucket;
1326 				else
1327 					error = EINVAL;
1328 				break;
1329 			case IP_RECVRSSBUCKETID:
1330 				optval = OPTBIT2(INP_RECVRSSBUCKETID);
1331 				break;
1332 #endif
1333 			case IP_BINDMULTI:
1334 				optval = OPTBIT2(INP_BINDMULTI);
1335 				break;
1336 			}
1337 			error = sooptcopyout(sopt, &optval, sizeof optval);
1338 			break;
1339 
1340 		/*
1341 		 * Multicast socket options are processed by the in_mcast
1342 		 * module.
1343 		 */
1344 		case IP_MULTICAST_IF:
1345 		case IP_MULTICAST_VIF:
1346 		case IP_MULTICAST_TTL:
1347 		case IP_MULTICAST_LOOP:
1348 		case IP_MSFILTER:
1349 			error = inp_getmoptions(inp, sopt);
1350 			break;
1351 
1352 #ifdef IPSEC
1353 		case IP_IPSEC_POLICY:
1354 		{
1355 			struct mbuf *m = NULL;
1356 			caddr_t req = NULL;
1357 			size_t len = 0;
1358 
1359 			if (m != NULL) {
1360 				req = mtod(m, caddr_t);
1361 				len = m->m_len;
1362 			}
1363 			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1364 			if (error == 0)
1365 				error = soopt_mcopyout(sopt, m); /* XXX */
1366 			if (error == 0)
1367 				m_freem(m);
1368 			break;
1369 		}
1370 #endif /* IPSEC */
1371 
1372 		default:
1373 			error = ENOPROTOOPT;
1374 			break;
1375 		}
1376 		break;
1377 	}
1378 	return (error);
1379 }
1380 
1381 /*
1382  * Routine called from ip_output() to loop back a copy of an IP multicast
1383  * packet to the input queue of a specified interface.  Note that this
1384  * calls the output routine of the loopback "driver", but with an interface
1385  * pointer that might NOT be a loopback interface -- evil, but easier than
1386  * replicating that code here.
1387  */
1388 static void
1389 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen)
1390 {
1391 	struct ip *ip;
1392 	struct mbuf *copym;
1393 
1394 	/*
1395 	 * Make a deep copy of the packet because we're going to
1396 	 * modify the pack in order to generate checksums.
1397 	 */
1398 	copym = m_dup(m, M_NOWAIT);
1399 	if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen))
1400 		copym = m_pullup(copym, hlen);
1401 	if (copym != NULL) {
1402 		/* If needed, compute the checksum and mark it as valid. */
1403 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1404 			in_delayed_cksum(copym);
1405 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1406 			copym->m_pkthdr.csum_flags |=
1407 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1408 			copym->m_pkthdr.csum_data = 0xffff;
1409 		}
1410 		/*
1411 		 * We don't bother to fragment if the IP length is greater
1412 		 * than the interface's MTU.  Can this possibly matter?
1413 		 */
1414 		ip = mtod(copym, struct ip *);
1415 		ip->ip_sum = 0;
1416 		ip->ip_sum = in_cksum(copym, hlen);
1417 		if_simloop(ifp, copym, AF_INET, 0);
1418 	}
1419 }
1420