1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_ipfw.h" 37 #include "opt_ipsec.h" 38 #include "opt_mbuf_stress_test.h" 39 #include "opt_mpath.h" 40 #include "opt_route.h" 41 #include "opt_sctp.h" 42 #include "opt_rss.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mbuf.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/protosw.h> 53 #include <sys/rmlock.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/ucred.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_llatbl.h> 63 #include <net/netisr.h> 64 #include <net/pfil.h> 65 #include <net/route.h> 66 #include <net/flowtable.h> 67 #ifdef RADIX_MPATH 68 #include <net/radix_mpath.h> 69 #endif 70 #include <net/rss_config.h> 71 #include <net/vnet.h> 72 73 #include <netinet/in.h> 74 #include <netinet/in_kdtrace.h> 75 #include <netinet/in_systm.h> 76 #include <netinet/ip.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_rss.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/ip_options.h> 82 #ifdef SCTP 83 #include <netinet/sctp.h> 84 #include <netinet/sctp_crc32.h> 85 #endif 86 87 #ifdef IPSEC 88 #include <netinet/ip_ipsec.h> 89 #include <netipsec/ipsec.h> 90 #endif /* IPSEC*/ 91 92 #include <machine/in_cksum.h> 93 94 #include <security/mac/mac_framework.h> 95 96 #ifdef MBUF_STRESS_TEST 97 static int mbuf_frag_size = 0; 98 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 99 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 100 #endif 101 102 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 103 104 105 extern int in_mcast_loop; 106 extern struct protosw inetsw[]; 107 108 static inline int 109 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp, 110 struct sockaddr_in *dst, int *fibnum, int *error) 111 { 112 struct m_tag *fwd_tag = NULL; 113 struct mbuf *m; 114 struct in_addr odst; 115 struct ip *ip; 116 117 m = *mp; 118 ip = mtod(m, struct ip *); 119 120 /* Run through list of hooks for output packets. */ 121 odst.s_addr = ip->ip_dst.s_addr; 122 *error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, PFIL_OUT, inp); 123 m = *mp; 124 if ((*error) != 0 || m == NULL) 125 return 1; /* Finished */ 126 127 ip = mtod(m, struct ip *); 128 129 /* See if destination IP address was changed by packet filter. */ 130 if (odst.s_addr != ip->ip_dst.s_addr) { 131 m->m_flags |= M_SKIP_FIREWALL; 132 /* If destination is now ourself drop to ip_input(). */ 133 if (in_localip(ip->ip_dst)) { 134 m->m_flags |= M_FASTFWD_OURS; 135 if (m->m_pkthdr.rcvif == NULL) 136 m->m_pkthdr.rcvif = V_loif; 137 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 138 m->m_pkthdr.csum_flags |= 139 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 140 m->m_pkthdr.csum_data = 0xffff; 141 } 142 m->m_pkthdr.csum_flags |= 143 CSUM_IP_CHECKED | CSUM_IP_VALID; 144 #ifdef SCTP 145 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 146 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 147 #endif 148 *error = netisr_queue(NETISR_IP, m); 149 return 1; /* Finished */ 150 } 151 152 bzero(dst, sizeof(*dst)); 153 dst->sin_family = AF_INET; 154 dst->sin_len = sizeof(*dst); 155 dst->sin_addr = ip->ip_dst; 156 157 return -1; /* Reloop */ 158 } 159 /* See if fib was changed by packet filter. */ 160 if ((*fibnum) != M_GETFIB(m)) { 161 m->m_flags |= M_SKIP_FIREWALL; 162 *fibnum = M_GETFIB(m); 163 return -1; /* Reloop for FIB change */ 164 } 165 166 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 167 if (m->m_flags & M_FASTFWD_OURS) { 168 if (m->m_pkthdr.rcvif == NULL) 169 m->m_pkthdr.rcvif = V_loif; 170 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 171 m->m_pkthdr.csum_flags |= 172 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 173 m->m_pkthdr.csum_data = 0xffff; 174 } 175 #ifdef SCTP 176 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 177 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 178 #endif 179 m->m_pkthdr.csum_flags |= 180 CSUM_IP_CHECKED | CSUM_IP_VALID; 181 182 *error = netisr_queue(NETISR_IP, m); 183 return 1; /* Finished */ 184 } 185 /* Or forward to some other address? */ 186 if ((m->m_flags & M_IP_NEXTHOP) && 187 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 188 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 189 m->m_flags |= M_SKIP_FIREWALL; 190 m->m_flags &= ~M_IP_NEXTHOP; 191 m_tag_delete(m, fwd_tag); 192 193 return -1; /* Reloop for CHANGE of dst */ 194 } 195 196 return 0; 197 } 198 199 /* 200 * IP output. The packet in mbuf chain m contains a skeletal IP 201 * header (with len, off, ttl, proto, tos, src, dst). 202 * The mbuf chain containing the packet will be freed. 203 * The mbuf opt, if present, will not be freed. 204 * If route ro is present and has ro_rt initialized, route lookup would be 205 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 206 * then result of route lookup is stored in ro->ro_rt. 207 * 208 * In the IP forwarding case, the packet will arrive with options already 209 * inserted, so must have a NULL opt pointer. 210 */ 211 int 212 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 213 struct ip_moptions *imo, struct inpcb *inp) 214 { 215 struct rm_priotracker in_ifa_tracker; 216 struct ip *ip; 217 struct ifnet *ifp = NULL; /* keep compiler happy */ 218 struct mbuf *m0; 219 int hlen = sizeof (struct ip); 220 int mtu; 221 int error = 0; 222 struct sockaddr_in *dst; 223 const struct sockaddr_in *gw; 224 struct in_ifaddr *ia; 225 int isbroadcast; 226 uint16_t ip_len, ip_off; 227 struct route iproute; 228 struct rtentry *rte; /* cache for ro->ro_rt */ 229 uint32_t fibnum; 230 int have_ia_ref; 231 #ifdef IPSEC 232 int no_route_but_check_spd = 0; 233 #endif 234 M_ASSERTPKTHDR(m); 235 236 if (inp != NULL) { 237 INP_LOCK_ASSERT(inp); 238 M_SETFIB(m, inp->inp_inc.inc_fibnum); 239 if ((flags & IP_NODEFAULTFLOWID) == 0) { 240 m->m_pkthdr.flowid = inp->inp_flowid; 241 M_HASHTYPE_SET(m, inp->inp_flowtype); 242 } 243 } 244 245 if (ro == NULL) { 246 ro = &iproute; 247 bzero(ro, sizeof (*ro)); 248 } else 249 ro->ro_flags |= RT_LLE_CACHE; 250 251 #ifdef FLOWTABLE 252 if (ro->ro_rt == NULL) 253 (void )flowtable_lookup(AF_INET, m, ro); 254 #endif 255 256 if (opt) { 257 int len = 0; 258 m = ip_insertoptions(m, opt, &len); 259 if (len != 0) 260 hlen = len; /* ip->ip_hl is updated above */ 261 } 262 ip = mtod(m, struct ip *); 263 ip_len = ntohs(ip->ip_len); 264 ip_off = ntohs(ip->ip_off); 265 266 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 267 ip->ip_v = IPVERSION; 268 ip->ip_hl = hlen >> 2; 269 ip_fillid(ip); 270 IPSTAT_INC(ips_localout); 271 } else { 272 /* Header already set, fetch hlen from there */ 273 hlen = ip->ip_hl << 2; 274 } 275 276 /* 277 * dst/gw handling: 278 * 279 * dst can be rewritten but always points to &ro->ro_dst. 280 * gw is readonly but can point either to dst OR rt_gateway, 281 * therefore we need restore gw if we're redoing lookup. 282 */ 283 gw = dst = (struct sockaddr_in *)&ro->ro_dst; 284 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 285 rte = ro->ro_rt; 286 if (rte == NULL) { 287 bzero(dst, sizeof(*dst)); 288 dst->sin_family = AF_INET; 289 dst->sin_len = sizeof(*dst); 290 dst->sin_addr = ip->ip_dst; 291 } 292 again: 293 /* 294 * Validate route against routing table additions; 295 * a better/more specific route might have been added. 296 */ 297 if (inp) 298 RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 299 /* 300 * If there is a cached route, 301 * check that it is to the same destination 302 * and is still up. If not, free it and try again. 303 * The address family should also be checked in case of sharing the 304 * cache with IPv6. 305 * Also check whether routing cache needs invalidation. 306 */ 307 rte = ro->ro_rt; 308 if (rte && ((rte->rt_flags & RTF_UP) == 0 || 309 rte->rt_ifp == NULL || 310 !RT_LINK_IS_UP(rte->rt_ifp) || 311 dst->sin_family != AF_INET || 312 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) { 313 RTFREE(rte); 314 rte = ro->ro_rt = (struct rtentry *)NULL; 315 if (ro->ro_lle) 316 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 317 ro->ro_lle = (struct llentry *)NULL; 318 } 319 ia = NULL; 320 have_ia_ref = 0; 321 /* 322 * If routing to interface only, short circuit routing lookup. 323 * The use of an all-ones broadcast address implies this; an 324 * interface is specified by the broadcast address of an interface, 325 * or the destination address of a ptp interface. 326 */ 327 if (flags & IP_SENDONES) { 328 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 329 M_GETFIB(m)))) == NULL && 330 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 331 M_GETFIB(m)))) == NULL) { 332 IPSTAT_INC(ips_noroute); 333 error = ENETUNREACH; 334 goto bad; 335 } 336 have_ia_ref = 1; 337 ip->ip_dst.s_addr = INADDR_BROADCAST; 338 dst->sin_addr = ip->ip_dst; 339 ifp = ia->ia_ifp; 340 ip->ip_ttl = 1; 341 isbroadcast = 1; 342 } else if (flags & IP_ROUTETOIF) { 343 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 344 M_GETFIB(m)))) == NULL && 345 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 346 M_GETFIB(m)))) == NULL) { 347 IPSTAT_INC(ips_noroute); 348 error = ENETUNREACH; 349 goto bad; 350 } 351 have_ia_ref = 1; 352 ifp = ia->ia_ifp; 353 ip->ip_ttl = 1; 354 isbroadcast = in_broadcast(dst->sin_addr, ifp); 355 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 356 imo != NULL && imo->imo_multicast_ifp != NULL) { 357 /* 358 * Bypass the normal routing lookup for multicast 359 * packets if the interface is specified. 360 */ 361 ifp = imo->imo_multicast_ifp; 362 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 363 if (ia) 364 have_ia_ref = 1; 365 isbroadcast = 0; /* fool gcc */ 366 } else { 367 /* 368 * We want to do any cloning requested by the link layer, 369 * as this is probably required in all cases for correct 370 * operation (as it is for ARP). 371 */ 372 if (rte == NULL) { 373 #ifdef RADIX_MPATH 374 rtalloc_mpath_fib(ro, 375 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 376 fibnum); 377 #else 378 in_rtalloc_ign(ro, 0, fibnum); 379 #endif 380 rte = ro->ro_rt; 381 } 382 if (rte == NULL || 383 (rte->rt_flags & RTF_UP) == 0 || 384 rte->rt_ifp == NULL || 385 !RT_LINK_IS_UP(rte->rt_ifp)) { 386 #ifdef IPSEC 387 /* 388 * There is no route for this packet, but it is 389 * possible that a matching SPD entry exists. 390 */ 391 no_route_but_check_spd = 1; 392 mtu = 0; /* Silence GCC warning. */ 393 goto sendit; 394 #endif 395 IPSTAT_INC(ips_noroute); 396 error = EHOSTUNREACH; 397 goto bad; 398 } 399 ia = ifatoia(rte->rt_ifa); 400 ifp = rte->rt_ifp; 401 counter_u64_add(rte->rt_pksent, 1); 402 rt_update_ro_flags(ro); 403 if (rte->rt_flags & RTF_GATEWAY) 404 gw = (struct sockaddr_in *)rte->rt_gateway; 405 if (rte->rt_flags & RTF_HOST) 406 isbroadcast = (rte->rt_flags & RTF_BROADCAST); 407 else 408 isbroadcast = in_broadcast(gw->sin_addr, ifp); 409 } 410 411 /* 412 * Calculate MTU. If we have a route that is up, use that, 413 * otherwise use the interface's MTU. 414 */ 415 if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) 416 mtu = rte->rt_mtu; 417 else 418 mtu = ifp->if_mtu; 419 /* Catch a possible divide by zero later. */ 420 KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p", 421 __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp)); 422 423 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 424 m->m_flags |= M_MCAST; 425 /* 426 * IP destination address is multicast. Make sure "gw" 427 * still points to the address in "ro". (It may have been 428 * changed to point to a gateway address, above.) 429 */ 430 gw = dst; 431 /* 432 * See if the caller provided any multicast options 433 */ 434 if (imo != NULL) { 435 ip->ip_ttl = imo->imo_multicast_ttl; 436 if (imo->imo_multicast_vif != -1) 437 ip->ip_src.s_addr = 438 ip_mcast_src ? 439 ip_mcast_src(imo->imo_multicast_vif) : 440 INADDR_ANY; 441 } else 442 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 443 /* 444 * Confirm that the outgoing interface supports multicast. 445 */ 446 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 447 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 448 IPSTAT_INC(ips_noroute); 449 error = ENETUNREACH; 450 goto bad; 451 } 452 } 453 /* 454 * If source address not specified yet, use address 455 * of outgoing interface. 456 */ 457 if (ip->ip_src.s_addr == INADDR_ANY) { 458 /* Interface may have no addresses. */ 459 if (ia != NULL) 460 ip->ip_src = IA_SIN(ia)->sin_addr; 461 } 462 463 if ((imo == NULL && in_mcast_loop) || 464 (imo && imo->imo_multicast_loop)) { 465 /* 466 * Loop back multicast datagram if not expressly 467 * forbidden to do so, even if we are not a member 468 * of the group; ip_input() will filter it later, 469 * thus deferring a hash lookup and mutex acquisition 470 * at the expense of a cheap copy using m_copym(). 471 */ 472 ip_mloopback(ifp, m, hlen); 473 } else { 474 /* 475 * If we are acting as a multicast router, perform 476 * multicast forwarding as if the packet had just 477 * arrived on the interface to which we are about 478 * to send. The multicast forwarding function 479 * recursively calls this function, using the 480 * IP_FORWARDING flag to prevent infinite recursion. 481 * 482 * Multicasts that are looped back by ip_mloopback(), 483 * above, will be forwarded by the ip_input() routine, 484 * if necessary. 485 */ 486 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 487 /* 488 * If rsvp daemon is not running, do not 489 * set ip_moptions. This ensures that the packet 490 * is multicast and not just sent down one link 491 * as prescribed by rsvpd. 492 */ 493 if (!V_rsvp_on) 494 imo = NULL; 495 if (ip_mforward && 496 ip_mforward(ip, ifp, m, imo) != 0) { 497 m_freem(m); 498 goto done; 499 } 500 } 501 } 502 503 /* 504 * Multicasts with a time-to-live of zero may be looped- 505 * back, above, but must not be transmitted on a network. 506 * Also, multicasts addressed to the loopback interface 507 * are not sent -- the above call to ip_mloopback() will 508 * loop back a copy. ip_input() will drop the copy if 509 * this host does not belong to the destination group on 510 * the loopback interface. 511 */ 512 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 513 m_freem(m); 514 goto done; 515 } 516 517 goto sendit; 518 } 519 520 /* 521 * If the source address is not specified yet, use the address 522 * of the outoing interface. 523 */ 524 if (ip->ip_src.s_addr == INADDR_ANY) { 525 /* Interface may have no addresses. */ 526 if (ia != NULL) { 527 ip->ip_src = IA_SIN(ia)->sin_addr; 528 } 529 } 530 531 /* 532 * Look for broadcast address and 533 * verify user is allowed to send 534 * such a packet. 535 */ 536 if (isbroadcast) { 537 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 538 error = EADDRNOTAVAIL; 539 goto bad; 540 } 541 if ((flags & IP_ALLOWBROADCAST) == 0) { 542 error = EACCES; 543 goto bad; 544 } 545 /* don't allow broadcast messages to be fragmented */ 546 if (ip_len > mtu) { 547 error = EMSGSIZE; 548 goto bad; 549 } 550 m->m_flags |= M_BCAST; 551 } else { 552 m->m_flags &= ~M_BCAST; 553 } 554 555 sendit: 556 #ifdef IPSEC 557 switch(ip_ipsec_output(&m, inp, &error)) { 558 case 1: 559 goto bad; 560 case -1: 561 goto done; 562 case 0: 563 default: 564 break; /* Continue with packet processing. */ 565 } 566 /* 567 * Check if there was a route for this packet; return error if not. 568 */ 569 if (no_route_but_check_spd) { 570 IPSTAT_INC(ips_noroute); 571 error = EHOSTUNREACH; 572 goto bad; 573 } 574 /* Update variables that are affected by ipsec4_output(). */ 575 ip = mtod(m, struct ip *); 576 hlen = ip->ip_hl << 2; 577 #endif /* IPSEC */ 578 579 /* Jump over all PFIL processing if hooks are not active. */ 580 if (PFIL_HOOKED(&V_inet_pfil_hook)) { 581 switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) { 582 case 1: /* Finished */ 583 goto done; 584 585 case 0: /* Continue normally */ 586 ip = mtod(m, struct ip *); 587 break; 588 589 case -1: /* Need to try again */ 590 /* Reset everything for a new round */ 591 RO_RTFREE(ro); 592 if (have_ia_ref) 593 ifa_free(&ia->ia_ifa); 594 ro->ro_prepend = NULL; 595 rte = NULL; 596 gw = dst; 597 ip = mtod(m, struct ip *); 598 goto again; 599 600 } 601 } 602 603 /* 127/8 must not appear on wire - RFC1122. */ 604 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 605 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 606 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 607 IPSTAT_INC(ips_badaddr); 608 error = EADDRNOTAVAIL; 609 goto bad; 610 } 611 } 612 613 m->m_pkthdr.csum_flags |= CSUM_IP; 614 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 615 in_delayed_cksum(m); 616 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 617 } 618 #ifdef SCTP 619 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 620 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 621 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 622 } 623 #endif 624 625 /* 626 * If small enough for interface, or the interface will take 627 * care of the fragmentation for us, we can just send directly. 628 */ 629 if (ip_len <= mtu || 630 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 631 ip->ip_sum = 0; 632 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 633 ip->ip_sum = in_cksum(m, hlen); 634 m->m_pkthdr.csum_flags &= ~CSUM_IP; 635 } 636 637 /* 638 * Record statistics for this interface address. 639 * With CSUM_TSO the byte/packet count will be slightly 640 * incorrect because we count the IP+TCP headers only 641 * once instead of for every generated packet. 642 */ 643 if (!(flags & IP_FORWARDING) && ia) { 644 if (m->m_pkthdr.csum_flags & CSUM_TSO) 645 counter_u64_add(ia->ia_ifa.ifa_opackets, 646 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 647 else 648 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 649 650 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 651 } 652 #ifdef MBUF_STRESS_TEST 653 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 654 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 655 #endif 656 /* 657 * Reset layer specific mbuf flags 658 * to avoid confusing lower layers. 659 */ 660 m_clrprotoflags(m); 661 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 662 error = (*ifp->if_output)(ifp, m, 663 (const struct sockaddr *)gw, ro); 664 goto done; 665 } 666 667 /* Balk when DF bit is set or the interface didn't support TSO. */ 668 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 669 error = EMSGSIZE; 670 IPSTAT_INC(ips_cantfrag); 671 goto bad; 672 } 673 674 /* 675 * Too large for interface; fragment if possible. If successful, 676 * on return, m will point to a list of packets to be sent. 677 */ 678 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 679 if (error) 680 goto bad; 681 for (; m; m = m0) { 682 m0 = m->m_nextpkt; 683 m->m_nextpkt = 0; 684 if (error == 0) { 685 /* Record statistics for this interface address. */ 686 if (ia != NULL) { 687 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 688 counter_u64_add(ia->ia_ifa.ifa_obytes, 689 m->m_pkthdr.len); 690 } 691 /* 692 * Reset layer specific mbuf flags 693 * to avoid confusing upper layers. 694 */ 695 m_clrprotoflags(m); 696 697 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 698 error = (*ifp->if_output)(ifp, m, 699 (const struct sockaddr *)gw, ro); 700 } else 701 m_freem(m); 702 } 703 704 if (error == 0) 705 IPSTAT_INC(ips_fragmented); 706 707 done: 708 /* 709 * Release the route if using our private route, or if 710 * (with flowtable) we don't have our own reference. 711 */ 712 if (ro == &iproute || ro->ro_flags & RT_NORTREF) 713 RO_RTFREE(ro); 714 else if (rte == NULL) 715 /* 716 * If the caller supplied a route but somehow the reference 717 * to it has been released need to prevent the caller 718 * calling RTFREE on it again. 719 */ 720 ro->ro_rt = NULL; 721 if (have_ia_ref) 722 ifa_free(&ia->ia_ifa); 723 return (error); 724 bad: 725 m_freem(m); 726 goto done; 727 } 728 729 /* 730 * Create a chain of fragments which fit the given mtu. m_frag points to the 731 * mbuf to be fragmented; on return it points to the chain with the fragments. 732 * Return 0 if no error. If error, m_frag may contain a partially built 733 * chain of fragments that should be freed by the caller. 734 * 735 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 736 */ 737 int 738 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 739 u_long if_hwassist_flags) 740 { 741 int error = 0; 742 int hlen = ip->ip_hl << 2; 743 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 744 int off; 745 struct mbuf *m0 = *m_frag; /* the original packet */ 746 int firstlen; 747 struct mbuf **mnext; 748 int nfrags; 749 uint16_t ip_len, ip_off; 750 751 ip_len = ntohs(ip->ip_len); 752 ip_off = ntohs(ip->ip_off); 753 754 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 755 IPSTAT_INC(ips_cantfrag); 756 return EMSGSIZE; 757 } 758 759 /* 760 * Must be able to put at least 8 bytes per fragment. 761 */ 762 if (len < 8) 763 return EMSGSIZE; 764 765 /* 766 * If the interface will not calculate checksums on 767 * fragmented packets, then do it here. 768 */ 769 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 770 in_delayed_cksum(m0); 771 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 772 } 773 #ifdef SCTP 774 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 775 sctp_delayed_cksum(m0, hlen); 776 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 777 } 778 #endif 779 if (len > PAGE_SIZE) { 780 /* 781 * Fragment large datagrams such that each segment 782 * contains a multiple of PAGE_SIZE amount of data, 783 * plus headers. This enables a receiver to perform 784 * page-flipping zero-copy optimizations. 785 * 786 * XXX When does this help given that sender and receiver 787 * could have different page sizes, and also mtu could 788 * be less than the receiver's page size ? 789 */ 790 int newlen; 791 792 off = MIN(mtu, m0->m_pkthdr.len); 793 794 /* 795 * firstlen (off - hlen) must be aligned on an 796 * 8-byte boundary 797 */ 798 if (off < hlen) 799 goto smart_frag_failure; 800 off = ((off - hlen) & ~7) + hlen; 801 newlen = (~PAGE_MASK) & mtu; 802 if ((newlen + sizeof (struct ip)) > mtu) { 803 /* we failed, go back the default */ 804 smart_frag_failure: 805 newlen = len; 806 off = hlen + len; 807 } 808 len = newlen; 809 810 } else { 811 off = hlen + len; 812 } 813 814 firstlen = off - hlen; 815 mnext = &m0->m_nextpkt; /* pointer to next packet */ 816 817 /* 818 * Loop through length of segment after first fragment, 819 * make new header and copy data of each part and link onto chain. 820 * Here, m0 is the original packet, m is the fragment being created. 821 * The fragments are linked off the m_nextpkt of the original 822 * packet, which after processing serves as the first fragment. 823 */ 824 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 825 struct ip *mhip; /* ip header on the fragment */ 826 struct mbuf *m; 827 int mhlen = sizeof (struct ip); 828 829 m = m_gethdr(M_NOWAIT, MT_DATA); 830 if (m == NULL) { 831 error = ENOBUFS; 832 IPSTAT_INC(ips_odropped); 833 goto done; 834 } 835 /* 836 * Make sure the complete packet header gets copied 837 * from the originating mbuf to the newly created 838 * mbuf. This also ensures that existing firewall 839 * classification(s), VLAN tags and so on get copied 840 * to the resulting fragmented packet(s): 841 */ 842 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 843 m_free(m); 844 error = ENOBUFS; 845 IPSTAT_INC(ips_odropped); 846 goto done; 847 } 848 /* 849 * In the first mbuf, leave room for the link header, then 850 * copy the original IP header including options. The payload 851 * goes into an additional mbuf chain returned by m_copym(). 852 */ 853 m->m_data += max_linkhdr; 854 mhip = mtod(m, struct ip *); 855 *mhip = *ip; 856 if (hlen > sizeof (struct ip)) { 857 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 858 mhip->ip_v = IPVERSION; 859 mhip->ip_hl = mhlen >> 2; 860 } 861 m->m_len = mhlen; 862 /* XXX do we need to add ip_off below ? */ 863 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 864 if (off + len >= ip_len) 865 len = ip_len - off; 866 else 867 mhip->ip_off |= IP_MF; 868 mhip->ip_len = htons((u_short)(len + mhlen)); 869 m->m_next = m_copym(m0, off, len, M_NOWAIT); 870 if (m->m_next == NULL) { /* copy failed */ 871 m_free(m); 872 error = ENOBUFS; /* ??? */ 873 IPSTAT_INC(ips_odropped); 874 goto done; 875 } 876 m->m_pkthdr.len = mhlen + len; 877 #ifdef MAC 878 mac_netinet_fragment(m0, m); 879 #endif 880 mhip->ip_off = htons(mhip->ip_off); 881 mhip->ip_sum = 0; 882 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 883 mhip->ip_sum = in_cksum(m, mhlen); 884 m->m_pkthdr.csum_flags &= ~CSUM_IP; 885 } 886 *mnext = m; 887 mnext = &m->m_nextpkt; 888 } 889 IPSTAT_ADD(ips_ofragments, nfrags); 890 891 /* 892 * Update first fragment by trimming what's been copied out 893 * and updating header. 894 */ 895 m_adj(m0, hlen + firstlen - ip_len); 896 m0->m_pkthdr.len = hlen + firstlen; 897 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 898 ip->ip_off = htons(ip_off | IP_MF); 899 ip->ip_sum = 0; 900 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 901 ip->ip_sum = in_cksum(m0, hlen); 902 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 903 } 904 905 done: 906 *m_frag = m0; 907 return error; 908 } 909 910 void 911 in_delayed_cksum(struct mbuf *m) 912 { 913 struct ip *ip; 914 uint16_t csum, offset, ip_len; 915 916 ip = mtod(m, struct ip *); 917 offset = ip->ip_hl << 2 ; 918 ip_len = ntohs(ip->ip_len); 919 csum = in_cksum_skip(m, ip_len, offset); 920 if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0) 921 csum = 0xffff; 922 offset += m->m_pkthdr.csum_data; /* checksum offset */ 923 924 /* find the mbuf in the chain where the checksum starts*/ 925 while ((m != NULL) && (offset >= m->m_len)) { 926 offset -= m->m_len; 927 m = m->m_next; 928 } 929 KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain.")); 930 KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs.")); 931 *(u_short *)(m->m_data + offset) = csum; 932 } 933 934 /* 935 * IP socket option processing. 936 */ 937 int 938 ip_ctloutput(struct socket *so, struct sockopt *sopt) 939 { 940 struct inpcb *inp = sotoinpcb(so); 941 int error, optval; 942 #ifdef RSS 943 uint32_t rss_bucket; 944 int retval; 945 #endif 946 947 error = optval = 0; 948 if (sopt->sopt_level != IPPROTO_IP) { 949 error = EINVAL; 950 951 if (sopt->sopt_level == SOL_SOCKET && 952 sopt->sopt_dir == SOPT_SET) { 953 switch (sopt->sopt_name) { 954 case SO_REUSEADDR: 955 INP_WLOCK(inp); 956 if ((so->so_options & SO_REUSEADDR) != 0) 957 inp->inp_flags2 |= INP_REUSEADDR; 958 else 959 inp->inp_flags2 &= ~INP_REUSEADDR; 960 INP_WUNLOCK(inp); 961 error = 0; 962 break; 963 case SO_REUSEPORT: 964 INP_WLOCK(inp); 965 if ((so->so_options & SO_REUSEPORT) != 0) 966 inp->inp_flags2 |= INP_REUSEPORT; 967 else 968 inp->inp_flags2 &= ~INP_REUSEPORT; 969 INP_WUNLOCK(inp); 970 error = 0; 971 break; 972 case SO_SETFIB: 973 INP_WLOCK(inp); 974 inp->inp_inc.inc_fibnum = so->so_fibnum; 975 INP_WUNLOCK(inp); 976 error = 0; 977 break; 978 default: 979 break; 980 } 981 } 982 return (error); 983 } 984 985 switch (sopt->sopt_dir) { 986 case SOPT_SET: 987 switch (sopt->sopt_name) { 988 case IP_OPTIONS: 989 #ifdef notyet 990 case IP_RETOPTS: 991 #endif 992 { 993 struct mbuf *m; 994 if (sopt->sopt_valsize > MLEN) { 995 error = EMSGSIZE; 996 break; 997 } 998 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 999 if (m == NULL) { 1000 error = ENOBUFS; 1001 break; 1002 } 1003 m->m_len = sopt->sopt_valsize; 1004 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1005 m->m_len); 1006 if (error) { 1007 m_free(m); 1008 break; 1009 } 1010 INP_WLOCK(inp); 1011 error = ip_pcbopts(inp, sopt->sopt_name, m); 1012 INP_WUNLOCK(inp); 1013 return (error); 1014 } 1015 1016 case IP_BINDANY: 1017 if (sopt->sopt_td != NULL) { 1018 error = priv_check(sopt->sopt_td, 1019 PRIV_NETINET_BINDANY); 1020 if (error) 1021 break; 1022 } 1023 /* FALLTHROUGH */ 1024 case IP_BINDMULTI: 1025 #ifdef RSS 1026 case IP_RSS_LISTEN_BUCKET: 1027 #endif 1028 case IP_TOS: 1029 case IP_TTL: 1030 case IP_MINTTL: 1031 case IP_RECVOPTS: 1032 case IP_RECVRETOPTS: 1033 case IP_RECVDSTADDR: 1034 case IP_RECVTTL: 1035 case IP_RECVIF: 1036 case IP_ONESBCAST: 1037 case IP_DONTFRAG: 1038 case IP_RECVTOS: 1039 case IP_RECVFLOWID: 1040 #ifdef RSS 1041 case IP_RECVRSSBUCKETID: 1042 #endif 1043 error = sooptcopyin(sopt, &optval, sizeof optval, 1044 sizeof optval); 1045 if (error) 1046 break; 1047 1048 switch (sopt->sopt_name) { 1049 case IP_TOS: 1050 inp->inp_ip_tos = optval; 1051 break; 1052 1053 case IP_TTL: 1054 inp->inp_ip_ttl = optval; 1055 break; 1056 1057 case IP_MINTTL: 1058 if (optval >= 0 && optval <= MAXTTL) 1059 inp->inp_ip_minttl = optval; 1060 else 1061 error = EINVAL; 1062 break; 1063 1064 #define OPTSET(bit) do { \ 1065 INP_WLOCK(inp); \ 1066 if (optval) \ 1067 inp->inp_flags |= bit; \ 1068 else \ 1069 inp->inp_flags &= ~bit; \ 1070 INP_WUNLOCK(inp); \ 1071 } while (0) 1072 1073 #define OPTSET2(bit, val) do { \ 1074 INP_WLOCK(inp); \ 1075 if (val) \ 1076 inp->inp_flags2 |= bit; \ 1077 else \ 1078 inp->inp_flags2 &= ~bit; \ 1079 INP_WUNLOCK(inp); \ 1080 } while (0) 1081 1082 case IP_RECVOPTS: 1083 OPTSET(INP_RECVOPTS); 1084 break; 1085 1086 case IP_RECVRETOPTS: 1087 OPTSET(INP_RECVRETOPTS); 1088 break; 1089 1090 case IP_RECVDSTADDR: 1091 OPTSET(INP_RECVDSTADDR); 1092 break; 1093 1094 case IP_RECVTTL: 1095 OPTSET(INP_RECVTTL); 1096 break; 1097 1098 case IP_RECVIF: 1099 OPTSET(INP_RECVIF); 1100 break; 1101 1102 case IP_ONESBCAST: 1103 OPTSET(INP_ONESBCAST); 1104 break; 1105 case IP_DONTFRAG: 1106 OPTSET(INP_DONTFRAG); 1107 break; 1108 case IP_BINDANY: 1109 OPTSET(INP_BINDANY); 1110 break; 1111 case IP_RECVTOS: 1112 OPTSET(INP_RECVTOS); 1113 break; 1114 case IP_BINDMULTI: 1115 OPTSET2(INP_BINDMULTI, optval); 1116 break; 1117 case IP_RECVFLOWID: 1118 OPTSET2(INP_RECVFLOWID, optval); 1119 break; 1120 #ifdef RSS 1121 case IP_RSS_LISTEN_BUCKET: 1122 if ((optval >= 0) && 1123 (optval < rss_getnumbuckets())) { 1124 inp->inp_rss_listen_bucket = optval; 1125 OPTSET2(INP_RSS_BUCKET_SET, 1); 1126 } else { 1127 error = EINVAL; 1128 } 1129 break; 1130 case IP_RECVRSSBUCKETID: 1131 OPTSET2(INP_RECVRSSBUCKETID, optval); 1132 break; 1133 #endif 1134 } 1135 break; 1136 #undef OPTSET 1137 #undef OPTSET2 1138 1139 /* 1140 * Multicast socket options are processed by the in_mcast 1141 * module. 1142 */ 1143 case IP_MULTICAST_IF: 1144 case IP_MULTICAST_VIF: 1145 case IP_MULTICAST_TTL: 1146 case IP_MULTICAST_LOOP: 1147 case IP_ADD_MEMBERSHIP: 1148 case IP_DROP_MEMBERSHIP: 1149 case IP_ADD_SOURCE_MEMBERSHIP: 1150 case IP_DROP_SOURCE_MEMBERSHIP: 1151 case IP_BLOCK_SOURCE: 1152 case IP_UNBLOCK_SOURCE: 1153 case IP_MSFILTER: 1154 case MCAST_JOIN_GROUP: 1155 case MCAST_LEAVE_GROUP: 1156 case MCAST_JOIN_SOURCE_GROUP: 1157 case MCAST_LEAVE_SOURCE_GROUP: 1158 case MCAST_BLOCK_SOURCE: 1159 case MCAST_UNBLOCK_SOURCE: 1160 error = inp_setmoptions(inp, sopt); 1161 break; 1162 1163 case IP_PORTRANGE: 1164 error = sooptcopyin(sopt, &optval, sizeof optval, 1165 sizeof optval); 1166 if (error) 1167 break; 1168 1169 INP_WLOCK(inp); 1170 switch (optval) { 1171 case IP_PORTRANGE_DEFAULT: 1172 inp->inp_flags &= ~(INP_LOWPORT); 1173 inp->inp_flags &= ~(INP_HIGHPORT); 1174 break; 1175 1176 case IP_PORTRANGE_HIGH: 1177 inp->inp_flags &= ~(INP_LOWPORT); 1178 inp->inp_flags |= INP_HIGHPORT; 1179 break; 1180 1181 case IP_PORTRANGE_LOW: 1182 inp->inp_flags &= ~(INP_HIGHPORT); 1183 inp->inp_flags |= INP_LOWPORT; 1184 break; 1185 1186 default: 1187 error = EINVAL; 1188 break; 1189 } 1190 INP_WUNLOCK(inp); 1191 break; 1192 1193 #ifdef IPSEC 1194 case IP_IPSEC_POLICY: 1195 { 1196 caddr_t req; 1197 struct mbuf *m; 1198 1199 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1200 break; 1201 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1202 break; 1203 req = mtod(m, caddr_t); 1204 error = ipsec_set_policy(inp, sopt->sopt_name, req, 1205 m->m_len, (sopt->sopt_td != NULL) ? 1206 sopt->sopt_td->td_ucred : NULL); 1207 m_freem(m); 1208 break; 1209 } 1210 #endif /* IPSEC */ 1211 1212 default: 1213 error = ENOPROTOOPT; 1214 break; 1215 } 1216 break; 1217 1218 case SOPT_GET: 1219 switch (sopt->sopt_name) { 1220 case IP_OPTIONS: 1221 case IP_RETOPTS: 1222 if (inp->inp_options) 1223 error = sooptcopyout(sopt, 1224 mtod(inp->inp_options, 1225 char *), 1226 inp->inp_options->m_len); 1227 else 1228 sopt->sopt_valsize = 0; 1229 break; 1230 1231 case IP_TOS: 1232 case IP_TTL: 1233 case IP_MINTTL: 1234 case IP_RECVOPTS: 1235 case IP_RECVRETOPTS: 1236 case IP_RECVDSTADDR: 1237 case IP_RECVTTL: 1238 case IP_RECVIF: 1239 case IP_PORTRANGE: 1240 case IP_ONESBCAST: 1241 case IP_DONTFRAG: 1242 case IP_BINDANY: 1243 case IP_RECVTOS: 1244 case IP_BINDMULTI: 1245 case IP_FLOWID: 1246 case IP_FLOWTYPE: 1247 case IP_RECVFLOWID: 1248 #ifdef RSS 1249 case IP_RSSBUCKETID: 1250 case IP_RECVRSSBUCKETID: 1251 #endif 1252 switch (sopt->sopt_name) { 1253 1254 case IP_TOS: 1255 optval = inp->inp_ip_tos; 1256 break; 1257 1258 case IP_TTL: 1259 optval = inp->inp_ip_ttl; 1260 break; 1261 1262 case IP_MINTTL: 1263 optval = inp->inp_ip_minttl; 1264 break; 1265 1266 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1267 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1268 1269 case IP_RECVOPTS: 1270 optval = OPTBIT(INP_RECVOPTS); 1271 break; 1272 1273 case IP_RECVRETOPTS: 1274 optval = OPTBIT(INP_RECVRETOPTS); 1275 break; 1276 1277 case IP_RECVDSTADDR: 1278 optval = OPTBIT(INP_RECVDSTADDR); 1279 break; 1280 1281 case IP_RECVTTL: 1282 optval = OPTBIT(INP_RECVTTL); 1283 break; 1284 1285 case IP_RECVIF: 1286 optval = OPTBIT(INP_RECVIF); 1287 break; 1288 1289 case IP_PORTRANGE: 1290 if (inp->inp_flags & INP_HIGHPORT) 1291 optval = IP_PORTRANGE_HIGH; 1292 else if (inp->inp_flags & INP_LOWPORT) 1293 optval = IP_PORTRANGE_LOW; 1294 else 1295 optval = 0; 1296 break; 1297 1298 case IP_ONESBCAST: 1299 optval = OPTBIT(INP_ONESBCAST); 1300 break; 1301 case IP_DONTFRAG: 1302 optval = OPTBIT(INP_DONTFRAG); 1303 break; 1304 case IP_BINDANY: 1305 optval = OPTBIT(INP_BINDANY); 1306 break; 1307 case IP_RECVTOS: 1308 optval = OPTBIT(INP_RECVTOS); 1309 break; 1310 case IP_FLOWID: 1311 optval = inp->inp_flowid; 1312 break; 1313 case IP_FLOWTYPE: 1314 optval = inp->inp_flowtype; 1315 break; 1316 case IP_RECVFLOWID: 1317 optval = OPTBIT2(INP_RECVFLOWID); 1318 break; 1319 #ifdef RSS 1320 case IP_RSSBUCKETID: 1321 retval = rss_hash2bucket(inp->inp_flowid, 1322 inp->inp_flowtype, 1323 &rss_bucket); 1324 if (retval == 0) 1325 optval = rss_bucket; 1326 else 1327 error = EINVAL; 1328 break; 1329 case IP_RECVRSSBUCKETID: 1330 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1331 break; 1332 #endif 1333 case IP_BINDMULTI: 1334 optval = OPTBIT2(INP_BINDMULTI); 1335 break; 1336 } 1337 error = sooptcopyout(sopt, &optval, sizeof optval); 1338 break; 1339 1340 /* 1341 * Multicast socket options are processed by the in_mcast 1342 * module. 1343 */ 1344 case IP_MULTICAST_IF: 1345 case IP_MULTICAST_VIF: 1346 case IP_MULTICAST_TTL: 1347 case IP_MULTICAST_LOOP: 1348 case IP_MSFILTER: 1349 error = inp_getmoptions(inp, sopt); 1350 break; 1351 1352 #ifdef IPSEC 1353 case IP_IPSEC_POLICY: 1354 { 1355 struct mbuf *m = NULL; 1356 caddr_t req = NULL; 1357 size_t len = 0; 1358 1359 if (m != NULL) { 1360 req = mtod(m, caddr_t); 1361 len = m->m_len; 1362 } 1363 error = ipsec_get_policy(sotoinpcb(so), req, len, &m); 1364 if (error == 0) 1365 error = soopt_mcopyout(sopt, m); /* XXX */ 1366 if (error == 0) 1367 m_freem(m); 1368 break; 1369 } 1370 #endif /* IPSEC */ 1371 1372 default: 1373 error = ENOPROTOOPT; 1374 break; 1375 } 1376 break; 1377 } 1378 return (error); 1379 } 1380 1381 /* 1382 * Routine called from ip_output() to loop back a copy of an IP multicast 1383 * packet to the input queue of a specified interface. Note that this 1384 * calls the output routine of the loopback "driver", but with an interface 1385 * pointer that might NOT be a loopback interface -- evil, but easier than 1386 * replicating that code here. 1387 */ 1388 static void 1389 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1390 { 1391 struct ip *ip; 1392 struct mbuf *copym; 1393 1394 /* 1395 * Make a deep copy of the packet because we're going to 1396 * modify the pack in order to generate checksums. 1397 */ 1398 copym = m_dup(m, M_NOWAIT); 1399 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1400 copym = m_pullup(copym, hlen); 1401 if (copym != NULL) { 1402 /* If needed, compute the checksum and mark it as valid. */ 1403 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1404 in_delayed_cksum(copym); 1405 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1406 copym->m_pkthdr.csum_flags |= 1407 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1408 copym->m_pkthdr.csum_data = 0xffff; 1409 } 1410 /* 1411 * We don't bother to fragment if the IP length is greater 1412 * than the interface's MTU. Can this possibly matter? 1413 */ 1414 ip = mtod(copym, struct ip *); 1415 ip->ip_sum = 0; 1416 ip->ip_sum = in_cksum(copym, hlen); 1417 if_simloop(ifp, copym, AF_INET, 0); 1418 } 1419 } 1420