1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ratelimit.h" 39 #include "opt_ipsec.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_mpath.h" 42 #include "opt_route.h" 43 #include "opt_sctp.h" 44 #include "opt_rss.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/malloc.h> 51 #include <sys/mbuf.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/protosw.h> 55 #include <sys/rmlock.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sysctl.h> 60 #include <sys/ucred.h> 61 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_llatbl.h> 65 #include <net/netisr.h> 66 #include <net/pfil.h> 67 #include <net/route.h> 68 #ifdef RADIX_MPATH 69 #include <net/radix_mpath.h> 70 #endif 71 #include <net/rss_config.h> 72 #include <net/vnet.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_kdtrace.h> 76 #include <netinet/in_systm.h> 77 #include <netinet/ip.h> 78 #include <netinet/in_pcb.h> 79 #include <netinet/in_rss.h> 80 #include <netinet/in_var.h> 81 #include <netinet/ip_var.h> 82 #include <netinet/ip_options.h> 83 #ifdef SCTP 84 #include <netinet/sctp.h> 85 #include <netinet/sctp_crc32.h> 86 #endif 87 88 #include <netipsec/ipsec_support.h> 89 90 #include <machine/in_cksum.h> 91 92 #include <security/mac/mac_framework.h> 93 94 #ifdef MBUF_STRESS_TEST 95 static int mbuf_frag_size = 0; 96 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 97 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 98 #endif 99 100 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 101 102 103 extern int in_mcast_loop; 104 extern struct protosw inetsw[]; 105 106 static inline int 107 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp, 108 struct sockaddr_in *dst, int *fibnum, int *error) 109 { 110 struct m_tag *fwd_tag = NULL; 111 struct mbuf *m; 112 struct in_addr odst; 113 struct ip *ip; 114 115 m = *mp; 116 ip = mtod(m, struct ip *); 117 118 /* Run through list of hooks for output packets. */ 119 odst.s_addr = ip->ip_dst.s_addr; 120 *error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, PFIL_OUT, 0, inp); 121 m = *mp; 122 if ((*error) != 0 || m == NULL) 123 return 1; /* Finished */ 124 125 ip = mtod(m, struct ip *); 126 127 /* See if destination IP address was changed by packet filter. */ 128 if (odst.s_addr != ip->ip_dst.s_addr) { 129 m->m_flags |= M_SKIP_FIREWALL; 130 /* If destination is now ourself drop to ip_input(). */ 131 if (in_localip(ip->ip_dst)) { 132 m->m_flags |= M_FASTFWD_OURS; 133 if (m->m_pkthdr.rcvif == NULL) 134 m->m_pkthdr.rcvif = V_loif; 135 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 136 m->m_pkthdr.csum_flags |= 137 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 138 m->m_pkthdr.csum_data = 0xffff; 139 } 140 m->m_pkthdr.csum_flags |= 141 CSUM_IP_CHECKED | CSUM_IP_VALID; 142 #ifdef SCTP 143 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 144 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 145 #endif 146 *error = netisr_queue(NETISR_IP, m); 147 return 1; /* Finished */ 148 } 149 150 bzero(dst, sizeof(*dst)); 151 dst->sin_family = AF_INET; 152 dst->sin_len = sizeof(*dst); 153 dst->sin_addr = ip->ip_dst; 154 155 return -1; /* Reloop */ 156 } 157 /* See if fib was changed by packet filter. */ 158 if ((*fibnum) != M_GETFIB(m)) { 159 m->m_flags |= M_SKIP_FIREWALL; 160 *fibnum = M_GETFIB(m); 161 return -1; /* Reloop for FIB change */ 162 } 163 164 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 165 if (m->m_flags & M_FASTFWD_OURS) { 166 if (m->m_pkthdr.rcvif == NULL) 167 m->m_pkthdr.rcvif = V_loif; 168 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 169 m->m_pkthdr.csum_flags |= 170 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 171 m->m_pkthdr.csum_data = 0xffff; 172 } 173 #ifdef SCTP 174 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 175 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 176 #endif 177 m->m_pkthdr.csum_flags |= 178 CSUM_IP_CHECKED | CSUM_IP_VALID; 179 180 *error = netisr_queue(NETISR_IP, m); 181 return 1; /* Finished */ 182 } 183 /* Or forward to some other address? */ 184 if ((m->m_flags & M_IP_NEXTHOP) && 185 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 186 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 187 m->m_flags |= M_SKIP_FIREWALL; 188 m->m_flags &= ~M_IP_NEXTHOP; 189 m_tag_delete(m, fwd_tag); 190 191 return -1; /* Reloop for CHANGE of dst */ 192 } 193 194 return 0; 195 } 196 197 /* 198 * IP output. The packet in mbuf chain m contains a skeletal IP 199 * header (with len, off, ttl, proto, tos, src, dst). 200 * The mbuf chain containing the packet will be freed. 201 * The mbuf opt, if present, will not be freed. 202 * If route ro is present and has ro_rt initialized, route lookup would be 203 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 204 * then result of route lookup is stored in ro->ro_rt. 205 * 206 * In the IP forwarding case, the packet will arrive with options already 207 * inserted, so must have a NULL opt pointer. 208 */ 209 int 210 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 211 struct ip_moptions *imo, struct inpcb *inp) 212 { 213 struct rm_priotracker in_ifa_tracker; 214 struct ip *ip; 215 struct ifnet *ifp = NULL; /* keep compiler happy */ 216 struct mbuf *m0; 217 int hlen = sizeof (struct ip); 218 int mtu; 219 int error = 0; 220 struct sockaddr_in *dst; 221 const struct sockaddr_in *gw; 222 struct in_ifaddr *ia; 223 int isbroadcast; 224 uint16_t ip_len, ip_off; 225 struct route iproute; 226 struct rtentry *rte; /* cache for ro->ro_rt */ 227 uint32_t fibnum; 228 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 229 int no_route_but_check_spd = 0; 230 #endif 231 M_ASSERTPKTHDR(m); 232 233 if (inp != NULL) { 234 INP_LOCK_ASSERT(inp); 235 M_SETFIB(m, inp->inp_inc.inc_fibnum); 236 if ((flags & IP_NODEFAULTFLOWID) == 0) { 237 m->m_pkthdr.flowid = inp->inp_flowid; 238 M_HASHTYPE_SET(m, inp->inp_flowtype); 239 } 240 } 241 242 if (ro == NULL) { 243 ro = &iproute; 244 bzero(ro, sizeof (*ro)); 245 } 246 247 if (opt) { 248 int len = 0; 249 m = ip_insertoptions(m, opt, &len); 250 if (len != 0) 251 hlen = len; /* ip->ip_hl is updated above */ 252 } 253 ip = mtod(m, struct ip *); 254 ip_len = ntohs(ip->ip_len); 255 ip_off = ntohs(ip->ip_off); 256 257 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 258 ip->ip_v = IPVERSION; 259 ip->ip_hl = hlen >> 2; 260 ip_fillid(ip); 261 IPSTAT_INC(ips_localout); 262 } else { 263 /* Header already set, fetch hlen from there */ 264 hlen = ip->ip_hl << 2; 265 } 266 267 /* 268 * dst/gw handling: 269 * 270 * dst can be rewritten but always points to &ro->ro_dst. 271 * gw is readonly but can point either to dst OR rt_gateway, 272 * therefore we need restore gw if we're redoing lookup. 273 */ 274 gw = dst = (struct sockaddr_in *)&ro->ro_dst; 275 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 276 rte = ro->ro_rt; 277 if (rte == NULL) { 278 bzero(dst, sizeof(*dst)); 279 dst->sin_family = AF_INET; 280 dst->sin_len = sizeof(*dst); 281 dst->sin_addr = ip->ip_dst; 282 } 283 NET_EPOCH_ENTER(); 284 again: 285 /* 286 * Validate route against routing table additions; 287 * a better/more specific route might have been added. 288 */ 289 if (inp) 290 RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 291 /* 292 * If there is a cached route, 293 * check that it is to the same destination 294 * and is still up. If not, free it and try again. 295 * The address family should also be checked in case of sharing the 296 * cache with IPv6. 297 * Also check whether routing cache needs invalidation. 298 */ 299 rte = ro->ro_rt; 300 if (rte && ((rte->rt_flags & RTF_UP) == 0 || 301 rte->rt_ifp == NULL || 302 !RT_LINK_IS_UP(rte->rt_ifp) || 303 dst->sin_family != AF_INET || 304 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) { 305 RO_INVALIDATE_CACHE(ro); 306 rte = NULL; 307 } 308 ia = NULL; 309 /* 310 * If routing to interface only, short circuit routing lookup. 311 * The use of an all-ones broadcast address implies this; an 312 * interface is specified by the broadcast address of an interface, 313 * or the destination address of a ptp interface. 314 */ 315 if (flags & IP_SENDONES) { 316 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 317 M_GETFIB(m)))) == NULL && 318 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 319 M_GETFIB(m)))) == NULL) { 320 IPSTAT_INC(ips_noroute); 321 error = ENETUNREACH; 322 goto bad; 323 } 324 ip->ip_dst.s_addr = INADDR_BROADCAST; 325 dst->sin_addr = ip->ip_dst; 326 ifp = ia->ia_ifp; 327 ip->ip_ttl = 1; 328 isbroadcast = 1; 329 } else if (flags & IP_ROUTETOIF) { 330 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 331 M_GETFIB(m)))) == NULL && 332 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 333 M_GETFIB(m)))) == NULL) { 334 IPSTAT_INC(ips_noroute); 335 error = ENETUNREACH; 336 goto bad; 337 } 338 ifp = ia->ia_ifp; 339 ip->ip_ttl = 1; 340 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 341 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 342 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 343 imo != NULL && imo->imo_multicast_ifp != NULL) { 344 /* 345 * Bypass the normal routing lookup for multicast 346 * packets if the interface is specified. 347 */ 348 ifp = imo->imo_multicast_ifp; 349 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 350 isbroadcast = 0; /* fool gcc */ 351 } else { 352 /* 353 * We want to do any cloning requested by the link layer, 354 * as this is probably required in all cases for correct 355 * operation (as it is for ARP). 356 */ 357 if (rte == NULL) { 358 #ifdef RADIX_MPATH 359 rtalloc_mpath_fib(ro, 360 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 361 fibnum); 362 #else 363 in_rtalloc_ign(ro, 0, fibnum); 364 #endif 365 rte = ro->ro_rt; 366 } 367 if (rte == NULL || 368 (rte->rt_flags & RTF_UP) == 0 || 369 rte->rt_ifp == NULL || 370 !RT_LINK_IS_UP(rte->rt_ifp)) { 371 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 372 /* 373 * There is no route for this packet, but it is 374 * possible that a matching SPD entry exists. 375 */ 376 no_route_but_check_spd = 1; 377 mtu = 0; /* Silence GCC warning. */ 378 goto sendit; 379 #endif 380 IPSTAT_INC(ips_noroute); 381 error = EHOSTUNREACH; 382 goto bad; 383 } 384 ia = ifatoia(rte->rt_ifa); 385 ifp = rte->rt_ifp; 386 counter_u64_add(rte->rt_pksent, 1); 387 rt_update_ro_flags(ro); 388 if (rte->rt_flags & RTF_GATEWAY) 389 gw = (struct sockaddr_in *)rte->rt_gateway; 390 if (rte->rt_flags & RTF_HOST) 391 isbroadcast = (rte->rt_flags & RTF_BROADCAST); 392 else if (ifp->if_flags & IFF_BROADCAST) 393 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 394 else 395 isbroadcast = 0; 396 } 397 398 /* 399 * Calculate MTU. If we have a route that is up, use that, 400 * otherwise use the interface's MTU. 401 */ 402 if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) 403 mtu = rte->rt_mtu; 404 else 405 mtu = ifp->if_mtu; 406 /* Catch a possible divide by zero later. */ 407 KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p", 408 __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp)); 409 410 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 411 m->m_flags |= M_MCAST; 412 /* 413 * IP destination address is multicast. Make sure "gw" 414 * still points to the address in "ro". (It may have been 415 * changed to point to a gateway address, above.) 416 */ 417 gw = dst; 418 /* 419 * See if the caller provided any multicast options 420 */ 421 if (imo != NULL) { 422 ip->ip_ttl = imo->imo_multicast_ttl; 423 if (imo->imo_multicast_vif != -1) 424 ip->ip_src.s_addr = 425 ip_mcast_src ? 426 ip_mcast_src(imo->imo_multicast_vif) : 427 INADDR_ANY; 428 } else 429 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 430 /* 431 * Confirm that the outgoing interface supports multicast. 432 */ 433 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 434 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 435 IPSTAT_INC(ips_noroute); 436 error = ENETUNREACH; 437 goto bad; 438 } 439 } 440 /* 441 * If source address not specified yet, use address 442 * of outgoing interface. 443 */ 444 if (ip->ip_src.s_addr == INADDR_ANY) { 445 /* Interface may have no addresses. */ 446 if (ia != NULL) 447 ip->ip_src = IA_SIN(ia)->sin_addr; 448 } 449 450 if ((imo == NULL && in_mcast_loop) || 451 (imo && imo->imo_multicast_loop)) { 452 /* 453 * Loop back multicast datagram if not expressly 454 * forbidden to do so, even if we are not a member 455 * of the group; ip_input() will filter it later, 456 * thus deferring a hash lookup and mutex acquisition 457 * at the expense of a cheap copy using m_copym(). 458 */ 459 ip_mloopback(ifp, m, hlen); 460 } else { 461 /* 462 * If we are acting as a multicast router, perform 463 * multicast forwarding as if the packet had just 464 * arrived on the interface to which we are about 465 * to send. The multicast forwarding function 466 * recursively calls this function, using the 467 * IP_FORWARDING flag to prevent infinite recursion. 468 * 469 * Multicasts that are looped back by ip_mloopback(), 470 * above, will be forwarded by the ip_input() routine, 471 * if necessary. 472 */ 473 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 474 /* 475 * If rsvp daemon is not running, do not 476 * set ip_moptions. This ensures that the packet 477 * is multicast and not just sent down one link 478 * as prescribed by rsvpd. 479 */ 480 if (!V_rsvp_on) 481 imo = NULL; 482 if (ip_mforward && 483 ip_mforward(ip, ifp, m, imo) != 0) { 484 m_freem(m); 485 goto done; 486 } 487 } 488 } 489 490 /* 491 * Multicasts with a time-to-live of zero may be looped- 492 * back, above, but must not be transmitted on a network. 493 * Also, multicasts addressed to the loopback interface 494 * are not sent -- the above call to ip_mloopback() will 495 * loop back a copy. ip_input() will drop the copy if 496 * this host does not belong to the destination group on 497 * the loopback interface. 498 */ 499 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 500 m_freem(m); 501 goto done; 502 } 503 504 goto sendit; 505 } 506 507 /* 508 * If the source address is not specified yet, use the address 509 * of the outoing interface. 510 */ 511 if (ip->ip_src.s_addr == INADDR_ANY) { 512 /* Interface may have no addresses. */ 513 if (ia != NULL) { 514 ip->ip_src = IA_SIN(ia)->sin_addr; 515 } 516 } 517 518 /* 519 * Look for broadcast address and 520 * verify user is allowed to send 521 * such a packet. 522 */ 523 if (isbroadcast) { 524 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 525 error = EADDRNOTAVAIL; 526 goto bad; 527 } 528 if ((flags & IP_ALLOWBROADCAST) == 0) { 529 error = EACCES; 530 goto bad; 531 } 532 /* don't allow broadcast messages to be fragmented */ 533 if (ip_len > mtu) { 534 error = EMSGSIZE; 535 goto bad; 536 } 537 m->m_flags |= M_BCAST; 538 } else { 539 m->m_flags &= ~M_BCAST; 540 } 541 542 sendit: 543 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 544 if (IPSEC_ENABLED(ipv4)) { 545 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 546 if (error == EINPROGRESS) 547 error = 0; 548 goto done; 549 } 550 } 551 /* 552 * Check if there was a route for this packet; return error if not. 553 */ 554 if (no_route_but_check_spd) { 555 IPSTAT_INC(ips_noroute); 556 error = EHOSTUNREACH; 557 goto bad; 558 } 559 /* Update variables that are affected by ipsec4_output(). */ 560 ip = mtod(m, struct ip *); 561 hlen = ip->ip_hl << 2; 562 #endif /* IPSEC */ 563 564 /* Jump over all PFIL processing if hooks are not active. */ 565 if (PFIL_HOOKED(&V_inet_pfil_hook)) { 566 switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) { 567 case 1: /* Finished */ 568 goto done; 569 570 case 0: /* Continue normally */ 571 ip = mtod(m, struct ip *); 572 break; 573 574 case -1: /* Need to try again */ 575 /* Reset everything for a new round */ 576 RO_RTFREE(ro); 577 ro->ro_prepend = NULL; 578 rte = NULL; 579 gw = dst; 580 ip = mtod(m, struct ip *); 581 goto again; 582 583 } 584 } 585 586 /* 127/8 must not appear on wire - RFC1122. */ 587 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 588 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 589 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 590 IPSTAT_INC(ips_badaddr); 591 error = EADDRNOTAVAIL; 592 goto bad; 593 } 594 } 595 596 m->m_pkthdr.csum_flags |= CSUM_IP; 597 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 598 in_delayed_cksum(m); 599 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 600 } 601 #ifdef SCTP 602 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 603 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 604 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 605 } 606 #endif 607 608 /* 609 * If small enough for interface, or the interface will take 610 * care of the fragmentation for us, we can just send directly. 611 */ 612 if (ip_len <= mtu || 613 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 614 ip->ip_sum = 0; 615 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 616 ip->ip_sum = in_cksum(m, hlen); 617 m->m_pkthdr.csum_flags &= ~CSUM_IP; 618 } 619 620 /* 621 * Record statistics for this interface address. 622 * With CSUM_TSO the byte/packet count will be slightly 623 * incorrect because we count the IP+TCP headers only 624 * once instead of for every generated packet. 625 */ 626 if (!(flags & IP_FORWARDING) && ia) { 627 if (m->m_pkthdr.csum_flags & CSUM_TSO) 628 counter_u64_add(ia->ia_ifa.ifa_opackets, 629 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 630 else 631 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 632 633 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 634 } 635 #ifdef MBUF_STRESS_TEST 636 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 637 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 638 #endif 639 /* 640 * Reset layer specific mbuf flags 641 * to avoid confusing lower layers. 642 */ 643 m_clrprotoflags(m); 644 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 645 #ifdef RATELIMIT 646 if (inp != NULL) { 647 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 648 in_pcboutput_txrtlmt(inp, ifp, m); 649 /* stamp send tag on mbuf */ 650 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 651 } else { 652 m->m_pkthdr.snd_tag = NULL; 653 } 654 #endif 655 error = (*ifp->if_output)(ifp, m, 656 (const struct sockaddr *)gw, ro); 657 #ifdef RATELIMIT 658 /* check for route change */ 659 if (error == EAGAIN) 660 in_pcboutput_eagain(inp); 661 #endif 662 goto done; 663 } 664 665 /* Balk when DF bit is set or the interface didn't support TSO. */ 666 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 667 error = EMSGSIZE; 668 IPSTAT_INC(ips_cantfrag); 669 goto bad; 670 } 671 672 /* 673 * Too large for interface; fragment if possible. If successful, 674 * on return, m will point to a list of packets to be sent. 675 */ 676 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 677 if (error) 678 goto bad; 679 for (; m; m = m0) { 680 m0 = m->m_nextpkt; 681 m->m_nextpkt = 0; 682 if (error == 0) { 683 /* Record statistics for this interface address. */ 684 if (ia != NULL) { 685 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 686 counter_u64_add(ia->ia_ifa.ifa_obytes, 687 m->m_pkthdr.len); 688 } 689 /* 690 * Reset layer specific mbuf flags 691 * to avoid confusing upper layers. 692 */ 693 m_clrprotoflags(m); 694 695 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 696 mtod(m, struct ip *), NULL); 697 #ifdef RATELIMIT 698 if (inp != NULL) { 699 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 700 in_pcboutput_txrtlmt(inp, ifp, m); 701 /* stamp send tag on mbuf */ 702 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 703 } else { 704 m->m_pkthdr.snd_tag = NULL; 705 } 706 #endif 707 error = (*ifp->if_output)(ifp, m, 708 (const struct sockaddr *)gw, ro); 709 #ifdef RATELIMIT 710 /* check for route change */ 711 if (error == EAGAIN) 712 in_pcboutput_eagain(inp); 713 #endif 714 } else 715 m_freem(m); 716 } 717 718 if (error == 0) 719 IPSTAT_INC(ips_fragmented); 720 721 done: 722 if (ro == &iproute) 723 RO_RTFREE(ro); 724 else if (rte == NULL) 725 /* 726 * If the caller supplied a route but somehow the reference 727 * to it has been released need to prevent the caller 728 * calling RTFREE on it again. 729 */ 730 ro->ro_rt = NULL; 731 NET_EPOCH_EXIT(); 732 return (error); 733 bad: 734 m_freem(m); 735 goto done; 736 } 737 738 /* 739 * Create a chain of fragments which fit the given mtu. m_frag points to the 740 * mbuf to be fragmented; on return it points to the chain with the fragments. 741 * Return 0 if no error. If error, m_frag may contain a partially built 742 * chain of fragments that should be freed by the caller. 743 * 744 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 745 */ 746 int 747 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 748 u_long if_hwassist_flags) 749 { 750 int error = 0; 751 int hlen = ip->ip_hl << 2; 752 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 753 int off; 754 struct mbuf *m0 = *m_frag; /* the original packet */ 755 int firstlen; 756 struct mbuf **mnext; 757 int nfrags; 758 uint16_t ip_len, ip_off; 759 760 ip_len = ntohs(ip->ip_len); 761 ip_off = ntohs(ip->ip_off); 762 763 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 764 IPSTAT_INC(ips_cantfrag); 765 return EMSGSIZE; 766 } 767 768 /* 769 * Must be able to put at least 8 bytes per fragment. 770 */ 771 if (len < 8) 772 return EMSGSIZE; 773 774 /* 775 * If the interface will not calculate checksums on 776 * fragmented packets, then do it here. 777 */ 778 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 779 in_delayed_cksum(m0); 780 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 781 } 782 #ifdef SCTP 783 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 784 sctp_delayed_cksum(m0, hlen); 785 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 786 } 787 #endif 788 if (len > PAGE_SIZE) { 789 /* 790 * Fragment large datagrams such that each segment 791 * contains a multiple of PAGE_SIZE amount of data, 792 * plus headers. This enables a receiver to perform 793 * page-flipping zero-copy optimizations. 794 * 795 * XXX When does this help given that sender and receiver 796 * could have different page sizes, and also mtu could 797 * be less than the receiver's page size ? 798 */ 799 int newlen; 800 801 off = MIN(mtu, m0->m_pkthdr.len); 802 803 /* 804 * firstlen (off - hlen) must be aligned on an 805 * 8-byte boundary 806 */ 807 if (off < hlen) 808 goto smart_frag_failure; 809 off = ((off - hlen) & ~7) + hlen; 810 newlen = (~PAGE_MASK) & mtu; 811 if ((newlen + sizeof (struct ip)) > mtu) { 812 /* we failed, go back the default */ 813 smart_frag_failure: 814 newlen = len; 815 off = hlen + len; 816 } 817 len = newlen; 818 819 } else { 820 off = hlen + len; 821 } 822 823 firstlen = off - hlen; 824 mnext = &m0->m_nextpkt; /* pointer to next packet */ 825 826 /* 827 * Loop through length of segment after first fragment, 828 * make new header and copy data of each part and link onto chain. 829 * Here, m0 is the original packet, m is the fragment being created. 830 * The fragments are linked off the m_nextpkt of the original 831 * packet, which after processing serves as the first fragment. 832 */ 833 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 834 struct ip *mhip; /* ip header on the fragment */ 835 struct mbuf *m; 836 int mhlen = sizeof (struct ip); 837 838 m = m_gethdr(M_NOWAIT, MT_DATA); 839 if (m == NULL) { 840 error = ENOBUFS; 841 IPSTAT_INC(ips_odropped); 842 goto done; 843 } 844 /* 845 * Make sure the complete packet header gets copied 846 * from the originating mbuf to the newly created 847 * mbuf. This also ensures that existing firewall 848 * classification(s), VLAN tags and so on get copied 849 * to the resulting fragmented packet(s): 850 */ 851 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 852 m_free(m); 853 error = ENOBUFS; 854 IPSTAT_INC(ips_odropped); 855 goto done; 856 } 857 /* 858 * In the first mbuf, leave room for the link header, then 859 * copy the original IP header including options. The payload 860 * goes into an additional mbuf chain returned by m_copym(). 861 */ 862 m->m_data += max_linkhdr; 863 mhip = mtod(m, struct ip *); 864 *mhip = *ip; 865 if (hlen > sizeof (struct ip)) { 866 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 867 mhip->ip_v = IPVERSION; 868 mhip->ip_hl = mhlen >> 2; 869 } 870 m->m_len = mhlen; 871 /* XXX do we need to add ip_off below ? */ 872 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 873 if (off + len >= ip_len) 874 len = ip_len - off; 875 else 876 mhip->ip_off |= IP_MF; 877 mhip->ip_len = htons((u_short)(len + mhlen)); 878 m->m_next = m_copym(m0, off, len, M_NOWAIT); 879 if (m->m_next == NULL) { /* copy failed */ 880 m_free(m); 881 error = ENOBUFS; /* ??? */ 882 IPSTAT_INC(ips_odropped); 883 goto done; 884 } 885 m->m_pkthdr.len = mhlen + len; 886 #ifdef MAC 887 mac_netinet_fragment(m0, m); 888 #endif 889 mhip->ip_off = htons(mhip->ip_off); 890 mhip->ip_sum = 0; 891 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 892 mhip->ip_sum = in_cksum(m, mhlen); 893 m->m_pkthdr.csum_flags &= ~CSUM_IP; 894 } 895 *mnext = m; 896 mnext = &m->m_nextpkt; 897 } 898 IPSTAT_ADD(ips_ofragments, nfrags); 899 900 /* 901 * Update first fragment by trimming what's been copied out 902 * and updating header. 903 */ 904 m_adj(m0, hlen + firstlen - ip_len); 905 m0->m_pkthdr.len = hlen + firstlen; 906 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 907 ip->ip_off = htons(ip_off | IP_MF); 908 ip->ip_sum = 0; 909 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 910 ip->ip_sum = in_cksum(m0, hlen); 911 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 912 } 913 914 done: 915 *m_frag = m0; 916 return error; 917 } 918 919 void 920 in_delayed_cksum(struct mbuf *m) 921 { 922 struct ip *ip; 923 uint16_t csum, offset, ip_len; 924 925 ip = mtod(m, struct ip *); 926 offset = ip->ip_hl << 2 ; 927 ip_len = ntohs(ip->ip_len); 928 csum = in_cksum_skip(m, ip_len, offset); 929 if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0) 930 csum = 0xffff; 931 offset += m->m_pkthdr.csum_data; /* checksum offset */ 932 933 /* find the mbuf in the chain where the checksum starts*/ 934 while ((m != NULL) && (offset >= m->m_len)) { 935 offset -= m->m_len; 936 m = m->m_next; 937 } 938 KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain.")); 939 KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs.")); 940 *(u_short *)(m->m_data + offset) = csum; 941 } 942 943 /* 944 * IP socket option processing. 945 */ 946 int 947 ip_ctloutput(struct socket *so, struct sockopt *sopt) 948 { 949 struct inpcb *inp = sotoinpcb(so); 950 int error, optval; 951 #ifdef RSS 952 uint32_t rss_bucket; 953 int retval; 954 #endif 955 956 error = optval = 0; 957 if (sopt->sopt_level != IPPROTO_IP) { 958 error = EINVAL; 959 960 if (sopt->sopt_level == SOL_SOCKET && 961 sopt->sopt_dir == SOPT_SET) { 962 switch (sopt->sopt_name) { 963 case SO_REUSEADDR: 964 INP_WLOCK(inp); 965 if ((so->so_options & SO_REUSEADDR) != 0) 966 inp->inp_flags2 |= INP_REUSEADDR; 967 else 968 inp->inp_flags2 &= ~INP_REUSEADDR; 969 INP_WUNLOCK(inp); 970 error = 0; 971 break; 972 case SO_REUSEPORT: 973 INP_WLOCK(inp); 974 if ((so->so_options & SO_REUSEPORT) != 0) 975 inp->inp_flags2 |= INP_REUSEPORT; 976 else 977 inp->inp_flags2 &= ~INP_REUSEPORT; 978 INP_WUNLOCK(inp); 979 error = 0; 980 break; 981 case SO_SETFIB: 982 INP_WLOCK(inp); 983 inp->inp_inc.inc_fibnum = so->so_fibnum; 984 INP_WUNLOCK(inp); 985 error = 0; 986 break; 987 case SO_MAX_PACING_RATE: 988 #ifdef RATELIMIT 989 INP_WLOCK(inp); 990 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 991 INP_WUNLOCK(inp); 992 error = 0; 993 #else 994 error = EOPNOTSUPP; 995 #endif 996 break; 997 default: 998 break; 999 } 1000 } 1001 return (error); 1002 } 1003 1004 switch (sopt->sopt_dir) { 1005 case SOPT_SET: 1006 switch (sopt->sopt_name) { 1007 case IP_OPTIONS: 1008 #ifdef notyet 1009 case IP_RETOPTS: 1010 #endif 1011 { 1012 struct mbuf *m; 1013 if (sopt->sopt_valsize > MLEN) { 1014 error = EMSGSIZE; 1015 break; 1016 } 1017 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1018 if (m == NULL) { 1019 error = ENOBUFS; 1020 break; 1021 } 1022 m->m_len = sopt->sopt_valsize; 1023 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1024 m->m_len); 1025 if (error) { 1026 m_free(m); 1027 break; 1028 } 1029 INP_WLOCK(inp); 1030 error = ip_pcbopts(inp, sopt->sopt_name, m); 1031 INP_WUNLOCK(inp); 1032 return (error); 1033 } 1034 1035 case IP_BINDANY: 1036 if (sopt->sopt_td != NULL) { 1037 error = priv_check(sopt->sopt_td, 1038 PRIV_NETINET_BINDANY); 1039 if (error) 1040 break; 1041 } 1042 /* FALLTHROUGH */ 1043 case IP_BINDMULTI: 1044 #ifdef RSS 1045 case IP_RSS_LISTEN_BUCKET: 1046 #endif 1047 case IP_TOS: 1048 case IP_TTL: 1049 case IP_MINTTL: 1050 case IP_RECVOPTS: 1051 case IP_RECVRETOPTS: 1052 case IP_ORIGDSTADDR: 1053 case IP_RECVDSTADDR: 1054 case IP_RECVTTL: 1055 case IP_RECVIF: 1056 case IP_ONESBCAST: 1057 case IP_DONTFRAG: 1058 case IP_RECVTOS: 1059 case IP_RECVFLOWID: 1060 #ifdef RSS 1061 case IP_RECVRSSBUCKETID: 1062 #endif 1063 error = sooptcopyin(sopt, &optval, sizeof optval, 1064 sizeof optval); 1065 if (error) 1066 break; 1067 1068 switch (sopt->sopt_name) { 1069 case IP_TOS: 1070 inp->inp_ip_tos = optval; 1071 break; 1072 1073 case IP_TTL: 1074 inp->inp_ip_ttl = optval; 1075 break; 1076 1077 case IP_MINTTL: 1078 if (optval >= 0 && optval <= MAXTTL) 1079 inp->inp_ip_minttl = optval; 1080 else 1081 error = EINVAL; 1082 break; 1083 1084 #define OPTSET(bit) do { \ 1085 INP_WLOCK(inp); \ 1086 if (optval) \ 1087 inp->inp_flags |= bit; \ 1088 else \ 1089 inp->inp_flags &= ~bit; \ 1090 INP_WUNLOCK(inp); \ 1091 } while (0) 1092 1093 #define OPTSET2(bit, val) do { \ 1094 INP_WLOCK(inp); \ 1095 if (val) \ 1096 inp->inp_flags2 |= bit; \ 1097 else \ 1098 inp->inp_flags2 &= ~bit; \ 1099 INP_WUNLOCK(inp); \ 1100 } while (0) 1101 1102 case IP_RECVOPTS: 1103 OPTSET(INP_RECVOPTS); 1104 break; 1105 1106 case IP_RECVRETOPTS: 1107 OPTSET(INP_RECVRETOPTS); 1108 break; 1109 1110 case IP_RECVDSTADDR: 1111 OPTSET(INP_RECVDSTADDR); 1112 break; 1113 1114 case IP_ORIGDSTADDR: 1115 OPTSET2(INP_ORIGDSTADDR, optval); 1116 break; 1117 1118 case IP_RECVTTL: 1119 OPTSET(INP_RECVTTL); 1120 break; 1121 1122 case IP_RECVIF: 1123 OPTSET(INP_RECVIF); 1124 break; 1125 1126 case IP_ONESBCAST: 1127 OPTSET(INP_ONESBCAST); 1128 break; 1129 case IP_DONTFRAG: 1130 OPTSET(INP_DONTFRAG); 1131 break; 1132 case IP_BINDANY: 1133 OPTSET(INP_BINDANY); 1134 break; 1135 case IP_RECVTOS: 1136 OPTSET(INP_RECVTOS); 1137 break; 1138 case IP_BINDMULTI: 1139 OPTSET2(INP_BINDMULTI, optval); 1140 break; 1141 case IP_RECVFLOWID: 1142 OPTSET2(INP_RECVFLOWID, optval); 1143 break; 1144 #ifdef RSS 1145 case IP_RSS_LISTEN_BUCKET: 1146 if ((optval >= 0) && 1147 (optval < rss_getnumbuckets())) { 1148 inp->inp_rss_listen_bucket = optval; 1149 OPTSET2(INP_RSS_BUCKET_SET, 1); 1150 } else { 1151 error = EINVAL; 1152 } 1153 break; 1154 case IP_RECVRSSBUCKETID: 1155 OPTSET2(INP_RECVRSSBUCKETID, optval); 1156 break; 1157 #endif 1158 } 1159 break; 1160 #undef OPTSET 1161 #undef OPTSET2 1162 1163 /* 1164 * Multicast socket options are processed by the in_mcast 1165 * module. 1166 */ 1167 case IP_MULTICAST_IF: 1168 case IP_MULTICAST_VIF: 1169 case IP_MULTICAST_TTL: 1170 case IP_MULTICAST_LOOP: 1171 case IP_ADD_MEMBERSHIP: 1172 case IP_DROP_MEMBERSHIP: 1173 case IP_ADD_SOURCE_MEMBERSHIP: 1174 case IP_DROP_SOURCE_MEMBERSHIP: 1175 case IP_BLOCK_SOURCE: 1176 case IP_UNBLOCK_SOURCE: 1177 case IP_MSFILTER: 1178 case MCAST_JOIN_GROUP: 1179 case MCAST_LEAVE_GROUP: 1180 case MCAST_JOIN_SOURCE_GROUP: 1181 case MCAST_LEAVE_SOURCE_GROUP: 1182 case MCAST_BLOCK_SOURCE: 1183 case MCAST_UNBLOCK_SOURCE: 1184 error = inp_setmoptions(inp, sopt); 1185 break; 1186 1187 case IP_PORTRANGE: 1188 error = sooptcopyin(sopt, &optval, sizeof optval, 1189 sizeof optval); 1190 if (error) 1191 break; 1192 1193 INP_WLOCK(inp); 1194 switch (optval) { 1195 case IP_PORTRANGE_DEFAULT: 1196 inp->inp_flags &= ~(INP_LOWPORT); 1197 inp->inp_flags &= ~(INP_HIGHPORT); 1198 break; 1199 1200 case IP_PORTRANGE_HIGH: 1201 inp->inp_flags &= ~(INP_LOWPORT); 1202 inp->inp_flags |= INP_HIGHPORT; 1203 break; 1204 1205 case IP_PORTRANGE_LOW: 1206 inp->inp_flags &= ~(INP_HIGHPORT); 1207 inp->inp_flags |= INP_LOWPORT; 1208 break; 1209 1210 default: 1211 error = EINVAL; 1212 break; 1213 } 1214 INP_WUNLOCK(inp); 1215 break; 1216 1217 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1218 case IP_IPSEC_POLICY: 1219 if (IPSEC_ENABLED(ipv4)) { 1220 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1221 break; 1222 } 1223 /* FALLTHROUGH */ 1224 #endif /* IPSEC */ 1225 1226 default: 1227 error = ENOPROTOOPT; 1228 break; 1229 } 1230 break; 1231 1232 case SOPT_GET: 1233 switch (sopt->sopt_name) { 1234 case IP_OPTIONS: 1235 case IP_RETOPTS: 1236 if (inp->inp_options) 1237 error = sooptcopyout(sopt, 1238 mtod(inp->inp_options, 1239 char *), 1240 inp->inp_options->m_len); 1241 else 1242 sopt->sopt_valsize = 0; 1243 break; 1244 1245 case IP_TOS: 1246 case IP_TTL: 1247 case IP_MINTTL: 1248 case IP_RECVOPTS: 1249 case IP_RECVRETOPTS: 1250 case IP_ORIGDSTADDR: 1251 case IP_RECVDSTADDR: 1252 case IP_RECVTTL: 1253 case IP_RECVIF: 1254 case IP_PORTRANGE: 1255 case IP_ONESBCAST: 1256 case IP_DONTFRAG: 1257 case IP_BINDANY: 1258 case IP_RECVTOS: 1259 case IP_BINDMULTI: 1260 case IP_FLOWID: 1261 case IP_FLOWTYPE: 1262 case IP_RECVFLOWID: 1263 #ifdef RSS 1264 case IP_RSSBUCKETID: 1265 case IP_RECVRSSBUCKETID: 1266 #endif 1267 switch (sopt->sopt_name) { 1268 1269 case IP_TOS: 1270 optval = inp->inp_ip_tos; 1271 break; 1272 1273 case IP_TTL: 1274 optval = inp->inp_ip_ttl; 1275 break; 1276 1277 case IP_MINTTL: 1278 optval = inp->inp_ip_minttl; 1279 break; 1280 1281 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1282 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1283 1284 case IP_RECVOPTS: 1285 optval = OPTBIT(INP_RECVOPTS); 1286 break; 1287 1288 case IP_RECVRETOPTS: 1289 optval = OPTBIT(INP_RECVRETOPTS); 1290 break; 1291 1292 case IP_RECVDSTADDR: 1293 optval = OPTBIT(INP_RECVDSTADDR); 1294 break; 1295 1296 case IP_ORIGDSTADDR: 1297 optval = OPTBIT2(INP_ORIGDSTADDR); 1298 break; 1299 1300 case IP_RECVTTL: 1301 optval = OPTBIT(INP_RECVTTL); 1302 break; 1303 1304 case IP_RECVIF: 1305 optval = OPTBIT(INP_RECVIF); 1306 break; 1307 1308 case IP_PORTRANGE: 1309 if (inp->inp_flags & INP_HIGHPORT) 1310 optval = IP_PORTRANGE_HIGH; 1311 else if (inp->inp_flags & INP_LOWPORT) 1312 optval = IP_PORTRANGE_LOW; 1313 else 1314 optval = 0; 1315 break; 1316 1317 case IP_ONESBCAST: 1318 optval = OPTBIT(INP_ONESBCAST); 1319 break; 1320 case IP_DONTFRAG: 1321 optval = OPTBIT(INP_DONTFRAG); 1322 break; 1323 case IP_BINDANY: 1324 optval = OPTBIT(INP_BINDANY); 1325 break; 1326 case IP_RECVTOS: 1327 optval = OPTBIT(INP_RECVTOS); 1328 break; 1329 case IP_FLOWID: 1330 optval = inp->inp_flowid; 1331 break; 1332 case IP_FLOWTYPE: 1333 optval = inp->inp_flowtype; 1334 break; 1335 case IP_RECVFLOWID: 1336 optval = OPTBIT2(INP_RECVFLOWID); 1337 break; 1338 #ifdef RSS 1339 case IP_RSSBUCKETID: 1340 retval = rss_hash2bucket(inp->inp_flowid, 1341 inp->inp_flowtype, 1342 &rss_bucket); 1343 if (retval == 0) 1344 optval = rss_bucket; 1345 else 1346 error = EINVAL; 1347 break; 1348 case IP_RECVRSSBUCKETID: 1349 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1350 break; 1351 #endif 1352 case IP_BINDMULTI: 1353 optval = OPTBIT2(INP_BINDMULTI); 1354 break; 1355 } 1356 error = sooptcopyout(sopt, &optval, sizeof optval); 1357 break; 1358 1359 /* 1360 * Multicast socket options are processed by the in_mcast 1361 * module. 1362 */ 1363 case IP_MULTICAST_IF: 1364 case IP_MULTICAST_VIF: 1365 case IP_MULTICAST_TTL: 1366 case IP_MULTICAST_LOOP: 1367 case IP_MSFILTER: 1368 error = inp_getmoptions(inp, sopt); 1369 break; 1370 1371 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1372 case IP_IPSEC_POLICY: 1373 if (IPSEC_ENABLED(ipv4)) { 1374 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1375 break; 1376 } 1377 /* FALLTHROUGH */ 1378 #endif /* IPSEC */ 1379 1380 default: 1381 error = ENOPROTOOPT; 1382 break; 1383 } 1384 break; 1385 } 1386 return (error); 1387 } 1388 1389 /* 1390 * Routine called from ip_output() to loop back a copy of an IP multicast 1391 * packet to the input queue of a specified interface. Note that this 1392 * calls the output routine of the loopback "driver", but with an interface 1393 * pointer that might NOT be a loopback interface -- evil, but easier than 1394 * replicating that code here. 1395 */ 1396 static void 1397 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1398 { 1399 struct ip *ip; 1400 struct mbuf *copym; 1401 1402 /* 1403 * Make a deep copy of the packet because we're going to 1404 * modify the pack in order to generate checksums. 1405 */ 1406 copym = m_dup(m, M_NOWAIT); 1407 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1408 copym = m_pullup(copym, hlen); 1409 if (copym != NULL) { 1410 /* If needed, compute the checksum and mark it as valid. */ 1411 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1412 in_delayed_cksum(copym); 1413 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1414 copym->m_pkthdr.csum_flags |= 1415 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1416 copym->m_pkthdr.csum_data = 0xffff; 1417 } 1418 /* 1419 * We don't bother to fragment if the IP length is greater 1420 * than the interface's MTU. Can this possibly matter? 1421 */ 1422 ip = mtod(copym, struct ip *); 1423 ip->ip_sum = 0; 1424 ip->ip_sum = in_cksum(copym, hlen); 1425 if_simloop(ifp, copym, AF_INET, 0); 1426 } 1427 } 1428