1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_kern_tls.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_ratelimit.h" 42 #include "opt_route.h" 43 #include "opt_rss.h" 44 #include "opt_sctp.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/ktls.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/priv.h> 54 #include <sys/proc.h> 55 #include <sys/protosw.h> 56 #include <sys/rmlock.h> 57 #include <sys/sdt.h> 58 #include <sys/socket.h> 59 #include <sys/socketvar.h> 60 #include <sys/sysctl.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_vlan_var.h> 66 #include <net/if_llatbl.h> 67 #include <net/ethernet.h> 68 #include <net/netisr.h> 69 #include <net/pfil.h> 70 #include <net/route.h> 71 #include <net/route/nhop.h> 72 #include <net/rss_config.h> 73 #include <net/vnet.h> 74 75 #include <netinet/in.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_kdtrace.h> 78 #include <netinet/in_systm.h> 79 #include <netinet/ip.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_rss.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip_var.h> 85 #include <netinet/ip_options.h> 86 #include <netinet/ip_mroute.h> 87 88 #include <netinet/udp.h> 89 #include <netinet/udp_var.h> 90 91 #if defined(SCTP) || defined(SCTP_SUPPORT) 92 #include <netinet/sctp.h> 93 #include <netinet/sctp_crc32.h> 94 #endif 95 96 #include <netipsec/ipsec_support.h> 97 98 #include <machine/in_cksum.h> 99 100 #include <security/mac/mac_framework.h> 101 102 #ifdef MBUF_STRESS_TEST 103 static int mbuf_frag_size = 0; 104 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 105 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 106 #endif 107 108 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 109 110 extern int in_mcast_loop; 111 extern struct protosw inetsw[]; 112 113 static inline int 114 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 115 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 116 { 117 struct m_tag *fwd_tag = NULL; 118 struct mbuf *m; 119 struct in_addr odst; 120 struct ip *ip; 121 int pflags = PFIL_OUT; 122 123 if (flags & IP_FORWARDING) 124 pflags |= PFIL_FWD; 125 126 m = *mp; 127 ip = mtod(m, struct ip *); 128 129 /* Run through list of hooks for output packets. */ 130 odst.s_addr = ip->ip_dst.s_addr; 131 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { 132 case PFIL_DROPPED: 133 *error = EACCES; 134 /* FALLTHROUGH */ 135 case PFIL_CONSUMED: 136 return 1; /* Finished */ 137 case PFIL_PASS: 138 *error = 0; 139 } 140 m = *mp; 141 ip = mtod(m, struct ip *); 142 143 /* See if destination IP address was changed by packet filter. */ 144 if (odst.s_addr != ip->ip_dst.s_addr) { 145 m->m_flags |= M_SKIP_FIREWALL; 146 /* If destination is now ourself drop to ip_input(). */ 147 if (in_localip(ip->ip_dst)) { 148 m->m_flags |= M_FASTFWD_OURS; 149 if (m->m_pkthdr.rcvif == NULL) 150 m->m_pkthdr.rcvif = V_loif; 151 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 152 m->m_pkthdr.csum_flags |= 153 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 154 m->m_pkthdr.csum_data = 0xffff; 155 } 156 m->m_pkthdr.csum_flags |= 157 CSUM_IP_CHECKED | CSUM_IP_VALID; 158 #if defined(SCTP) || defined(SCTP_SUPPORT) 159 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 160 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 161 #endif 162 *error = netisr_queue(NETISR_IP, m); 163 return 1; /* Finished */ 164 } 165 166 bzero(dst, sizeof(*dst)); 167 dst->sin_family = AF_INET; 168 dst->sin_len = sizeof(*dst); 169 dst->sin_addr = ip->ip_dst; 170 171 return -1; /* Reloop */ 172 } 173 /* See if fib was changed by packet filter. */ 174 if ((*fibnum) != M_GETFIB(m)) { 175 m->m_flags |= M_SKIP_FIREWALL; 176 *fibnum = M_GETFIB(m); 177 return -1; /* Reloop for FIB change */ 178 } 179 180 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 181 if (m->m_flags & M_FASTFWD_OURS) { 182 if (m->m_pkthdr.rcvif == NULL) 183 m->m_pkthdr.rcvif = V_loif; 184 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 185 m->m_pkthdr.csum_flags |= 186 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 187 m->m_pkthdr.csum_data = 0xffff; 188 } 189 #if defined(SCTP) || defined(SCTP_SUPPORT) 190 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 191 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 192 #endif 193 m->m_pkthdr.csum_flags |= 194 CSUM_IP_CHECKED | CSUM_IP_VALID; 195 196 *error = netisr_queue(NETISR_IP, m); 197 return 1; /* Finished */ 198 } 199 /* Or forward to some other address? */ 200 if ((m->m_flags & M_IP_NEXTHOP) && 201 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 202 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 203 m->m_flags |= M_SKIP_FIREWALL; 204 m->m_flags &= ~M_IP_NEXTHOP; 205 m_tag_delete(m, fwd_tag); 206 207 return -1; /* Reloop for CHANGE of dst */ 208 } 209 210 return 0; 211 } 212 213 static int 214 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 215 const struct sockaddr_in *gw, struct route *ro, bool stamp_tag) 216 { 217 #ifdef KERN_TLS 218 struct ktls_session *tls = NULL; 219 #endif 220 struct m_snd_tag *mst; 221 int error; 222 223 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 224 mst = NULL; 225 226 #ifdef KERN_TLS 227 /* 228 * If this is an unencrypted TLS record, save a reference to 229 * the record. This local reference is used to call 230 * ktls_output_eagain after the mbuf has been freed (thus 231 * dropping the mbuf's reference) in if_output. 232 */ 233 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 234 tls = ktls_hold(m->m_next->m_epg_tls); 235 mst = tls->snd_tag; 236 237 /* 238 * If a TLS session doesn't have a valid tag, it must 239 * have had an earlier ifp mismatch, so drop this 240 * packet. 241 */ 242 if (mst == NULL) { 243 error = EAGAIN; 244 goto done; 245 } 246 /* 247 * Always stamp tags that include NIC ktls. 248 */ 249 stamp_tag = true; 250 } 251 #endif 252 #ifdef RATELIMIT 253 if (inp != NULL && mst == NULL) { 254 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 255 (inp->inp_snd_tag != NULL && 256 inp->inp_snd_tag->ifp != ifp)) 257 in_pcboutput_txrtlmt(inp, ifp, m); 258 259 if (inp->inp_snd_tag != NULL) 260 mst = inp->inp_snd_tag; 261 } 262 #endif 263 if (stamp_tag && mst != NULL) { 264 KASSERT(m->m_pkthdr.rcvif == NULL, 265 ("trying to add a send tag to a forwarded packet")); 266 if (mst->ifp != ifp) { 267 error = EAGAIN; 268 goto done; 269 } 270 271 /* stamp send tag on mbuf */ 272 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 273 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 274 } 275 276 error = (*ifp->if_output)(ifp, m, (const struct sockaddr *)gw, ro); 277 278 done: 279 /* Check for route change invalidating send tags. */ 280 #ifdef KERN_TLS 281 if (tls != NULL) { 282 if (error == EAGAIN) 283 error = ktls_output_eagain(inp, tls); 284 ktls_free(tls); 285 } 286 #endif 287 #ifdef RATELIMIT 288 if (error == EAGAIN) 289 in_pcboutput_eagain(inp); 290 #endif 291 return (error); 292 } 293 294 /* rte<>ro_flags translation */ 295 static inline void 296 rt_update_ro_flags(struct route *ro) 297 { 298 int nh_flags = ro->ro_nh->nh_flags; 299 300 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 301 302 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 303 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 304 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 305 } 306 307 /* 308 * IP output. The packet in mbuf chain m contains a skeletal IP 309 * header (with len, off, ttl, proto, tos, src, dst). 310 * The mbuf chain containing the packet will be freed. 311 * The mbuf opt, if present, will not be freed. 312 * If route ro is present and has ro_rt initialized, route lookup would be 313 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 314 * then result of route lookup is stored in ro->ro_rt. 315 * 316 * In the IP forwarding case, the packet will arrive with options already 317 * inserted, so must have a NULL opt pointer. 318 */ 319 int 320 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 321 struct ip_moptions *imo, struct inpcb *inp) 322 { 323 MROUTER_RLOCK_TRACKER; 324 struct rm_priotracker in_ifa_tracker; 325 struct ip *ip; 326 struct ifnet *ifp = NULL; /* keep compiler happy */ 327 struct mbuf *m0; 328 int hlen = sizeof (struct ip); 329 int mtu = 0; 330 int error = 0; 331 int vlan_pcp = -1; 332 struct sockaddr_in *dst, sin; 333 const struct sockaddr_in *gw; 334 struct in_ifaddr *ia = NULL; 335 struct in_addr src; 336 int isbroadcast; 337 uint16_t ip_len, ip_off; 338 uint32_t fibnum; 339 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 340 int no_route_but_check_spd = 0; 341 #endif 342 343 M_ASSERTPKTHDR(m); 344 NET_EPOCH_ASSERT(); 345 346 if (inp != NULL) { 347 INP_LOCK_ASSERT(inp); 348 M_SETFIB(m, inp->inp_inc.inc_fibnum); 349 if ((flags & IP_NODEFAULTFLOWID) == 0) { 350 m->m_pkthdr.flowid = inp->inp_flowid; 351 M_HASHTYPE_SET(m, inp->inp_flowtype); 352 } 353 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 354 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 355 INP_2PCP_SHIFT; 356 #ifdef NUMA 357 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 358 #endif 359 } 360 361 if (opt) { 362 int len = 0; 363 m = ip_insertoptions(m, opt, &len); 364 if (len != 0) 365 hlen = len; /* ip->ip_hl is updated above */ 366 } 367 ip = mtod(m, struct ip *); 368 ip_len = ntohs(ip->ip_len); 369 ip_off = ntohs(ip->ip_off); 370 371 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 372 ip->ip_v = IPVERSION; 373 ip->ip_hl = hlen >> 2; 374 ip_fillid(ip); 375 } else { 376 /* Header already set, fetch hlen from there */ 377 hlen = ip->ip_hl << 2; 378 } 379 if ((flags & IP_FORWARDING) == 0) 380 IPSTAT_INC(ips_localout); 381 382 /* 383 * dst/gw handling: 384 * 385 * gw is readonly but can point either to dst OR rt_gateway, 386 * therefore we need restore gw if we're redoing lookup. 387 */ 388 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 389 if (ro != NULL) 390 dst = (struct sockaddr_in *)&ro->ro_dst; 391 else 392 dst = &sin; 393 if (ro == NULL || ro->ro_nh == NULL) { 394 bzero(dst, sizeof(*dst)); 395 dst->sin_family = AF_INET; 396 dst->sin_len = sizeof(*dst); 397 dst->sin_addr = ip->ip_dst; 398 } 399 gw = dst; 400 again: 401 /* 402 * Validate route against routing table additions; 403 * a better/more specific route might have been added. 404 */ 405 if (inp != NULL && ro != NULL && ro->ro_nh != NULL) 406 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 407 /* 408 * If there is a cached route, 409 * check that it is to the same destination 410 * and is still up. If not, free it and try again. 411 * The address family should also be checked in case of sharing the 412 * cache with IPv6. 413 * Also check whether routing cache needs invalidation. 414 */ 415 if (ro != NULL && ro->ro_nh != NULL && 416 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 417 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 418 RO_INVALIDATE_CACHE(ro); 419 ia = NULL; 420 /* 421 * If routing to interface only, short circuit routing lookup. 422 * The use of an all-ones broadcast address implies this; an 423 * interface is specified by the broadcast address of an interface, 424 * or the destination address of a ptp interface. 425 */ 426 if (flags & IP_SENDONES) { 427 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 428 M_GETFIB(m)))) == NULL && 429 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 430 M_GETFIB(m)))) == NULL) { 431 IPSTAT_INC(ips_noroute); 432 error = ENETUNREACH; 433 goto bad; 434 } 435 ip->ip_dst.s_addr = INADDR_BROADCAST; 436 dst->sin_addr = ip->ip_dst; 437 ifp = ia->ia_ifp; 438 mtu = ifp->if_mtu; 439 ip->ip_ttl = 1; 440 isbroadcast = 1; 441 src = IA_SIN(ia)->sin_addr; 442 } else if (flags & IP_ROUTETOIF) { 443 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 444 M_GETFIB(m)))) == NULL && 445 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 446 M_GETFIB(m)))) == NULL) { 447 IPSTAT_INC(ips_noroute); 448 error = ENETUNREACH; 449 goto bad; 450 } 451 ifp = ia->ia_ifp; 452 mtu = ifp->if_mtu; 453 ip->ip_ttl = 1; 454 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 455 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 456 src = IA_SIN(ia)->sin_addr; 457 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 458 imo != NULL && imo->imo_multicast_ifp != NULL) { 459 /* 460 * Bypass the normal routing lookup for multicast 461 * packets if the interface is specified. 462 */ 463 ifp = imo->imo_multicast_ifp; 464 mtu = ifp->if_mtu; 465 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 466 isbroadcast = 0; /* fool gcc */ 467 /* Interface may have no addresses. */ 468 if (ia != NULL) 469 src = IA_SIN(ia)->sin_addr; 470 else 471 src.s_addr = INADDR_ANY; 472 } else if (ro != NULL) { 473 if (ro->ro_nh == NULL) { 474 /* 475 * We want to do any cloning requested by the link 476 * layer, as this is probably required in all cases 477 * for correct operation (as it is for ARP). 478 */ 479 uint32_t flowid; 480 flowid = m->m_pkthdr.flowid; 481 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 482 NHR_REF, flowid); 483 484 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 485 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 486 /* 487 * There is no route for this packet, but it is 488 * possible that a matching SPD entry exists. 489 */ 490 no_route_but_check_spd = 1; 491 goto sendit; 492 #endif 493 IPSTAT_INC(ips_noroute); 494 error = EHOSTUNREACH; 495 goto bad; 496 } 497 } 498 ia = ifatoia(ro->ro_nh->nh_ifa); 499 ifp = ro->ro_nh->nh_ifp; 500 counter_u64_add(ro->ro_nh->nh_pksent, 1); 501 rt_update_ro_flags(ro); 502 if (ro->ro_nh->nh_flags & NHF_GATEWAY) 503 gw = &ro->ro_nh->gw4_sa; 504 if (ro->ro_nh->nh_flags & NHF_HOST) 505 isbroadcast = (ro->ro_nh->nh_flags & NHF_BROADCAST); 506 else if (ifp->if_flags & IFF_BROADCAST) 507 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 508 else 509 isbroadcast = 0; 510 if (ro->ro_nh->nh_flags & NHF_HOST) 511 mtu = ro->ro_nh->nh_mtu; 512 else 513 mtu = ifp->if_mtu; 514 src = IA_SIN(ia)->sin_addr; 515 } else { 516 struct nhop_object *nh; 517 518 nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_NONE, 519 m->m_pkthdr.flowid); 520 if (nh == NULL) { 521 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 522 /* 523 * There is no route for this packet, but it is 524 * possible that a matching SPD entry exists. 525 */ 526 no_route_but_check_spd = 1; 527 goto sendit; 528 #endif 529 IPSTAT_INC(ips_noroute); 530 error = EHOSTUNREACH; 531 goto bad; 532 } 533 ifp = nh->nh_ifp; 534 mtu = nh->nh_mtu; 535 /* 536 * We are rewriting here dst to be gw actually, contradicting 537 * comment at the beginning of the function. However, in this 538 * case we are always dealing with on stack dst. 539 * In case if pfil(9) sends us back to beginning of the 540 * function, the dst would be rewritten by ip_output_pfil(). 541 */ 542 MPASS(dst == &sin); 543 if (nh->nh_flags & NHF_GATEWAY) 544 dst->sin_addr = nh->gw4_sa.sin_addr; 545 ia = ifatoia(nh->nh_ifa); 546 src = IA_SIN(ia)->sin_addr; 547 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 548 (NHF_HOST | NHF_BROADCAST)) || 549 ((ifp->if_flags & IFF_BROADCAST) && 550 in_ifaddr_broadcast(dst->sin_addr, ia))); 551 } 552 553 /* Catch a possible divide by zero later. */ 554 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 555 __func__, mtu, ro, 556 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 557 558 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 559 m->m_flags |= M_MCAST; 560 /* 561 * IP destination address is multicast. Make sure "gw" 562 * still points to the address in "ro". (It may have been 563 * changed to point to a gateway address, above.) 564 */ 565 gw = dst; 566 /* 567 * See if the caller provided any multicast options 568 */ 569 if (imo != NULL) { 570 ip->ip_ttl = imo->imo_multicast_ttl; 571 if (imo->imo_multicast_vif != -1) 572 ip->ip_src.s_addr = 573 ip_mcast_src ? 574 ip_mcast_src(imo->imo_multicast_vif) : 575 INADDR_ANY; 576 } else 577 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 578 /* 579 * Confirm that the outgoing interface supports multicast. 580 */ 581 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 582 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 583 IPSTAT_INC(ips_noroute); 584 error = ENETUNREACH; 585 goto bad; 586 } 587 } 588 /* 589 * If source address not specified yet, use address 590 * of outgoing interface. 591 */ 592 if (ip->ip_src.s_addr == INADDR_ANY) 593 ip->ip_src = src; 594 595 if ((imo == NULL && in_mcast_loop) || 596 (imo && imo->imo_multicast_loop)) { 597 /* 598 * Loop back multicast datagram if not expressly 599 * forbidden to do so, even if we are not a member 600 * of the group; ip_input() will filter it later, 601 * thus deferring a hash lookup and mutex acquisition 602 * at the expense of a cheap copy using m_copym(). 603 */ 604 ip_mloopback(ifp, m, hlen); 605 } else { 606 /* 607 * If we are acting as a multicast router, perform 608 * multicast forwarding as if the packet had just 609 * arrived on the interface to which we are about 610 * to send. The multicast forwarding function 611 * recursively calls this function, using the 612 * IP_FORWARDING flag to prevent infinite recursion. 613 * 614 * Multicasts that are looped back by ip_mloopback(), 615 * above, will be forwarded by the ip_input() routine, 616 * if necessary. 617 */ 618 MROUTER_RLOCK(); 619 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 620 /* 621 * If rsvp daemon is not running, do not 622 * set ip_moptions. This ensures that the packet 623 * is multicast and not just sent down one link 624 * as prescribed by rsvpd. 625 */ 626 if (!V_rsvp_on) 627 imo = NULL; 628 if (ip_mforward && 629 ip_mforward(ip, ifp, m, imo) != 0) { 630 MROUTER_RUNLOCK(); 631 m_freem(m); 632 goto done; 633 } 634 } 635 MROUTER_RUNLOCK(); 636 } 637 638 /* 639 * Multicasts with a time-to-live of zero may be looped- 640 * back, above, but must not be transmitted on a network. 641 * Also, multicasts addressed to the loopback interface 642 * are not sent -- the above call to ip_mloopback() will 643 * loop back a copy. ip_input() will drop the copy if 644 * this host does not belong to the destination group on 645 * the loopback interface. 646 */ 647 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 648 m_freem(m); 649 goto done; 650 } 651 652 goto sendit; 653 } 654 655 /* 656 * If the source address is not specified yet, use the address 657 * of the outoing interface. 658 */ 659 if (ip->ip_src.s_addr == INADDR_ANY) 660 ip->ip_src = src; 661 662 /* 663 * Look for broadcast address and 664 * verify user is allowed to send 665 * such a packet. 666 */ 667 if (isbroadcast) { 668 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 669 error = EADDRNOTAVAIL; 670 goto bad; 671 } 672 if ((flags & IP_ALLOWBROADCAST) == 0) { 673 error = EACCES; 674 goto bad; 675 } 676 /* don't allow broadcast messages to be fragmented */ 677 if (ip_len > mtu) { 678 error = EMSGSIZE; 679 goto bad; 680 } 681 m->m_flags |= M_BCAST; 682 } else { 683 m->m_flags &= ~M_BCAST; 684 } 685 686 sendit: 687 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 688 if (IPSEC_ENABLED(ipv4)) { 689 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 690 if (error == EINPROGRESS) 691 error = 0; 692 goto done; 693 } 694 } 695 /* 696 * Check if there was a route for this packet; return error if not. 697 */ 698 if (no_route_but_check_spd) { 699 IPSTAT_INC(ips_noroute); 700 error = EHOSTUNREACH; 701 goto bad; 702 } 703 /* Update variables that are affected by ipsec4_output(). */ 704 ip = mtod(m, struct ip *); 705 hlen = ip->ip_hl << 2; 706 #endif /* IPSEC */ 707 708 /* Jump over all PFIL processing if hooks are not active. */ 709 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 710 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 711 &error)) { 712 case 1: /* Finished */ 713 goto done; 714 715 case 0: /* Continue normally */ 716 ip = mtod(m, struct ip *); 717 break; 718 719 case -1: /* Need to try again */ 720 /* Reset everything for a new round */ 721 if (ro != NULL) { 722 RO_NHFREE(ro); 723 ro->ro_prepend = NULL; 724 } 725 gw = dst; 726 ip = mtod(m, struct ip *); 727 goto again; 728 } 729 } 730 731 if (vlan_pcp > -1) 732 EVL_APPLY_PRI(m, vlan_pcp); 733 734 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 735 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 736 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 737 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 738 IPSTAT_INC(ips_badaddr); 739 error = EADDRNOTAVAIL; 740 goto bad; 741 } 742 } 743 744 m->m_pkthdr.csum_flags |= CSUM_IP; 745 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 746 m = mb_unmapped_to_ext(m); 747 if (m == NULL) { 748 IPSTAT_INC(ips_odropped); 749 error = ENOBUFS; 750 goto bad; 751 } 752 in_delayed_cksum(m); 753 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 754 } else if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 755 m = mb_unmapped_to_ext(m); 756 if (m == NULL) { 757 IPSTAT_INC(ips_odropped); 758 error = ENOBUFS; 759 goto bad; 760 } 761 } 762 #if defined(SCTP) || defined(SCTP_SUPPORT) 763 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 764 m = mb_unmapped_to_ext(m); 765 if (m == NULL) { 766 IPSTAT_INC(ips_odropped); 767 error = ENOBUFS; 768 goto bad; 769 } 770 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 771 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 772 } 773 #endif 774 775 /* 776 * If small enough for interface, or the interface will take 777 * care of the fragmentation for us, we can just send directly. 778 * Note that if_vxlan could have requested TSO even though the outer 779 * frame is UDP. It is correct to not fragment such datagrams and 780 * instead just pass them on to the driver. 781 */ 782 if (ip_len <= mtu || 783 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 784 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 785 ip->ip_sum = 0; 786 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 787 ip->ip_sum = in_cksum(m, hlen); 788 m->m_pkthdr.csum_flags &= ~CSUM_IP; 789 } 790 791 /* 792 * Record statistics for this interface address. 793 * With CSUM_TSO the byte/packet count will be slightly 794 * incorrect because we count the IP+TCP headers only 795 * once instead of for every generated packet. 796 */ 797 if (!(flags & IP_FORWARDING) && ia) { 798 if (m->m_pkthdr.csum_flags & 799 (CSUM_TSO | CSUM_INNER_TSO)) 800 counter_u64_add(ia->ia_ifa.ifa_opackets, 801 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 802 else 803 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 804 805 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 806 } 807 #ifdef MBUF_STRESS_TEST 808 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 809 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 810 #endif 811 /* 812 * Reset layer specific mbuf flags 813 * to avoid confusing lower layers. 814 */ 815 m_clrprotoflags(m); 816 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 817 error = ip_output_send(inp, ifp, m, gw, ro, 818 (flags & IP_NO_SND_TAG_RL) ? false : true); 819 goto done; 820 } 821 822 /* Balk when DF bit is set or the interface didn't support TSO. */ 823 if ((ip_off & IP_DF) || 824 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 825 error = EMSGSIZE; 826 IPSTAT_INC(ips_cantfrag); 827 goto bad; 828 } 829 830 /* 831 * Too large for interface; fragment if possible. If successful, 832 * on return, m will point to a list of packets to be sent. 833 */ 834 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 835 if (error) 836 goto bad; 837 for (; m; m = m0) { 838 m0 = m->m_nextpkt; 839 m->m_nextpkt = 0; 840 if (error == 0) { 841 /* Record statistics for this interface address. */ 842 if (ia != NULL) { 843 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 844 counter_u64_add(ia->ia_ifa.ifa_obytes, 845 m->m_pkthdr.len); 846 } 847 /* 848 * Reset layer specific mbuf flags 849 * to avoid confusing upper layers. 850 */ 851 m_clrprotoflags(m); 852 853 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 854 mtod(m, struct ip *), NULL); 855 error = ip_output_send(inp, ifp, m, gw, ro, true); 856 } else 857 m_freem(m); 858 } 859 860 if (error == 0) 861 IPSTAT_INC(ips_fragmented); 862 863 done: 864 return (error); 865 bad: 866 m_freem(m); 867 goto done; 868 } 869 870 /* 871 * Create a chain of fragments which fit the given mtu. m_frag points to the 872 * mbuf to be fragmented; on return it points to the chain with the fragments. 873 * Return 0 if no error. If error, m_frag may contain a partially built 874 * chain of fragments that should be freed by the caller. 875 * 876 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 877 */ 878 int 879 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 880 u_long if_hwassist_flags) 881 { 882 int error = 0; 883 int hlen = ip->ip_hl << 2; 884 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 885 int off; 886 struct mbuf *m0 = *m_frag; /* the original packet */ 887 int firstlen; 888 struct mbuf **mnext; 889 int nfrags; 890 uint16_t ip_len, ip_off; 891 892 ip_len = ntohs(ip->ip_len); 893 ip_off = ntohs(ip->ip_off); 894 895 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 896 IPSTAT_INC(ips_cantfrag); 897 return EMSGSIZE; 898 } 899 900 /* 901 * Must be able to put at least 8 bytes per fragment. 902 */ 903 if (len < 8) 904 return EMSGSIZE; 905 906 /* 907 * If the interface will not calculate checksums on 908 * fragmented packets, then do it here. 909 */ 910 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 911 m0 = mb_unmapped_to_ext(m0); 912 if (m0 == NULL) { 913 error = ENOBUFS; 914 IPSTAT_INC(ips_odropped); 915 goto done; 916 } 917 in_delayed_cksum(m0); 918 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 919 } 920 #if defined(SCTP) || defined(SCTP_SUPPORT) 921 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 922 m0 = mb_unmapped_to_ext(m0); 923 if (m0 == NULL) { 924 error = ENOBUFS; 925 IPSTAT_INC(ips_odropped); 926 goto done; 927 } 928 sctp_delayed_cksum(m0, hlen); 929 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 930 } 931 #endif 932 if (len > PAGE_SIZE) { 933 /* 934 * Fragment large datagrams such that each segment 935 * contains a multiple of PAGE_SIZE amount of data, 936 * plus headers. This enables a receiver to perform 937 * page-flipping zero-copy optimizations. 938 * 939 * XXX When does this help given that sender and receiver 940 * could have different page sizes, and also mtu could 941 * be less than the receiver's page size ? 942 */ 943 int newlen; 944 945 off = MIN(mtu, m0->m_pkthdr.len); 946 947 /* 948 * firstlen (off - hlen) must be aligned on an 949 * 8-byte boundary 950 */ 951 if (off < hlen) 952 goto smart_frag_failure; 953 off = ((off - hlen) & ~7) + hlen; 954 newlen = (~PAGE_MASK) & mtu; 955 if ((newlen + sizeof (struct ip)) > mtu) { 956 /* we failed, go back the default */ 957 smart_frag_failure: 958 newlen = len; 959 off = hlen + len; 960 } 961 len = newlen; 962 963 } else { 964 off = hlen + len; 965 } 966 967 firstlen = off - hlen; 968 mnext = &m0->m_nextpkt; /* pointer to next packet */ 969 970 /* 971 * Loop through length of segment after first fragment, 972 * make new header and copy data of each part and link onto chain. 973 * Here, m0 is the original packet, m is the fragment being created. 974 * The fragments are linked off the m_nextpkt of the original 975 * packet, which after processing serves as the first fragment. 976 */ 977 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 978 struct ip *mhip; /* ip header on the fragment */ 979 struct mbuf *m; 980 int mhlen = sizeof (struct ip); 981 982 m = m_gethdr(M_NOWAIT, MT_DATA); 983 if (m == NULL) { 984 error = ENOBUFS; 985 IPSTAT_INC(ips_odropped); 986 goto done; 987 } 988 /* 989 * Make sure the complete packet header gets copied 990 * from the originating mbuf to the newly created 991 * mbuf. This also ensures that existing firewall 992 * classification(s), VLAN tags and so on get copied 993 * to the resulting fragmented packet(s): 994 */ 995 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 996 m_free(m); 997 error = ENOBUFS; 998 IPSTAT_INC(ips_odropped); 999 goto done; 1000 } 1001 /* 1002 * In the first mbuf, leave room for the link header, then 1003 * copy the original IP header including options. The payload 1004 * goes into an additional mbuf chain returned by m_copym(). 1005 */ 1006 m->m_data += max_linkhdr; 1007 mhip = mtod(m, struct ip *); 1008 *mhip = *ip; 1009 if (hlen > sizeof (struct ip)) { 1010 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 1011 mhip->ip_v = IPVERSION; 1012 mhip->ip_hl = mhlen >> 2; 1013 } 1014 m->m_len = mhlen; 1015 /* XXX do we need to add ip_off below ? */ 1016 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 1017 if (off + len >= ip_len) 1018 len = ip_len - off; 1019 else 1020 mhip->ip_off |= IP_MF; 1021 mhip->ip_len = htons((u_short)(len + mhlen)); 1022 m->m_next = m_copym(m0, off, len, M_NOWAIT); 1023 if (m->m_next == NULL) { /* copy failed */ 1024 m_free(m); 1025 error = ENOBUFS; /* ??? */ 1026 IPSTAT_INC(ips_odropped); 1027 goto done; 1028 } 1029 m->m_pkthdr.len = mhlen + len; 1030 #ifdef MAC 1031 mac_netinet_fragment(m0, m); 1032 #endif 1033 mhip->ip_off = htons(mhip->ip_off); 1034 mhip->ip_sum = 0; 1035 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1036 mhip->ip_sum = in_cksum(m, mhlen); 1037 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1038 } 1039 *mnext = m; 1040 mnext = &m->m_nextpkt; 1041 } 1042 IPSTAT_ADD(ips_ofragments, nfrags); 1043 1044 /* 1045 * Update first fragment by trimming what's been copied out 1046 * and updating header. 1047 */ 1048 m_adj(m0, hlen + firstlen - ip_len); 1049 m0->m_pkthdr.len = hlen + firstlen; 1050 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1051 ip->ip_off = htons(ip_off | IP_MF); 1052 ip->ip_sum = 0; 1053 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1054 ip->ip_sum = in_cksum(m0, hlen); 1055 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1056 } 1057 1058 done: 1059 *m_frag = m0; 1060 return error; 1061 } 1062 1063 void 1064 in_delayed_cksum(struct mbuf *m) 1065 { 1066 struct ip *ip; 1067 struct udphdr *uh; 1068 uint16_t cklen, csum, offset; 1069 1070 ip = mtod(m, struct ip *); 1071 offset = ip->ip_hl << 2 ; 1072 1073 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1074 /* if udp header is not in the first mbuf copy udplen */ 1075 if (offset + sizeof(struct udphdr) > m->m_len) { 1076 m_copydata(m, offset + offsetof(struct udphdr, 1077 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1078 cklen = ntohs(cklen); 1079 } else { 1080 uh = (struct udphdr *)mtodo(m, offset); 1081 cklen = ntohs(uh->uh_ulen); 1082 } 1083 csum = in_cksum_skip(m, cklen + offset, offset); 1084 if (csum == 0) 1085 csum = 0xffff; 1086 } else { 1087 cklen = ntohs(ip->ip_len); 1088 csum = in_cksum_skip(m, cklen, offset); 1089 } 1090 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1091 1092 if (offset + sizeof(csum) > m->m_len) 1093 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1094 else 1095 *(u_short *)mtodo(m, offset) = csum; 1096 } 1097 1098 /* 1099 * IP socket option processing. 1100 */ 1101 int 1102 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1103 { 1104 struct inpcb *inp = sotoinpcb(so); 1105 int error, optval; 1106 #ifdef RSS 1107 uint32_t rss_bucket; 1108 int retval; 1109 #endif 1110 1111 error = optval = 0; 1112 if (sopt->sopt_level != IPPROTO_IP) { 1113 error = EINVAL; 1114 1115 if (sopt->sopt_level == SOL_SOCKET && 1116 sopt->sopt_dir == SOPT_SET) { 1117 switch (sopt->sopt_name) { 1118 case SO_REUSEADDR: 1119 INP_WLOCK(inp); 1120 if ((so->so_options & SO_REUSEADDR) != 0) 1121 inp->inp_flags2 |= INP_REUSEADDR; 1122 else 1123 inp->inp_flags2 &= ~INP_REUSEADDR; 1124 INP_WUNLOCK(inp); 1125 error = 0; 1126 break; 1127 case SO_REUSEPORT: 1128 INP_WLOCK(inp); 1129 if ((so->so_options & SO_REUSEPORT) != 0) 1130 inp->inp_flags2 |= INP_REUSEPORT; 1131 else 1132 inp->inp_flags2 &= ~INP_REUSEPORT; 1133 INP_WUNLOCK(inp); 1134 error = 0; 1135 break; 1136 case SO_REUSEPORT_LB: 1137 INP_WLOCK(inp); 1138 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1139 inp->inp_flags2 |= INP_REUSEPORT_LB; 1140 else 1141 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1142 INP_WUNLOCK(inp); 1143 error = 0; 1144 break; 1145 case SO_SETFIB: 1146 INP_WLOCK(inp); 1147 inp->inp_inc.inc_fibnum = so->so_fibnum; 1148 INP_WUNLOCK(inp); 1149 error = 0; 1150 break; 1151 case SO_MAX_PACING_RATE: 1152 #ifdef RATELIMIT 1153 INP_WLOCK(inp); 1154 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1155 INP_WUNLOCK(inp); 1156 error = 0; 1157 #else 1158 error = EOPNOTSUPP; 1159 #endif 1160 break; 1161 default: 1162 break; 1163 } 1164 } 1165 return (error); 1166 } 1167 1168 switch (sopt->sopt_dir) { 1169 case SOPT_SET: 1170 switch (sopt->sopt_name) { 1171 case IP_OPTIONS: 1172 #ifdef notyet 1173 case IP_RETOPTS: 1174 #endif 1175 { 1176 struct mbuf *m; 1177 if (sopt->sopt_valsize > MLEN) { 1178 error = EMSGSIZE; 1179 break; 1180 } 1181 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1182 if (m == NULL) { 1183 error = ENOBUFS; 1184 break; 1185 } 1186 m->m_len = sopt->sopt_valsize; 1187 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1188 m->m_len); 1189 if (error) { 1190 m_free(m); 1191 break; 1192 } 1193 INP_WLOCK(inp); 1194 error = ip_pcbopts(inp, sopt->sopt_name, m); 1195 INP_WUNLOCK(inp); 1196 return (error); 1197 } 1198 1199 case IP_BINDANY: 1200 if (sopt->sopt_td != NULL) { 1201 error = priv_check(sopt->sopt_td, 1202 PRIV_NETINET_BINDANY); 1203 if (error) 1204 break; 1205 } 1206 /* FALLTHROUGH */ 1207 case IP_BINDMULTI: 1208 #ifdef RSS 1209 case IP_RSS_LISTEN_BUCKET: 1210 #endif 1211 case IP_TOS: 1212 case IP_TTL: 1213 case IP_MINTTL: 1214 case IP_RECVOPTS: 1215 case IP_RECVRETOPTS: 1216 case IP_ORIGDSTADDR: 1217 case IP_RECVDSTADDR: 1218 case IP_RECVTTL: 1219 case IP_RECVIF: 1220 case IP_ONESBCAST: 1221 case IP_DONTFRAG: 1222 case IP_RECVTOS: 1223 case IP_RECVFLOWID: 1224 #ifdef RSS 1225 case IP_RECVRSSBUCKETID: 1226 #endif 1227 case IP_VLAN_PCP: 1228 error = sooptcopyin(sopt, &optval, sizeof optval, 1229 sizeof optval); 1230 if (error) 1231 break; 1232 1233 switch (sopt->sopt_name) { 1234 case IP_TOS: 1235 inp->inp_ip_tos = optval; 1236 break; 1237 1238 case IP_TTL: 1239 inp->inp_ip_ttl = optval; 1240 break; 1241 1242 case IP_MINTTL: 1243 if (optval >= 0 && optval <= MAXTTL) 1244 inp->inp_ip_minttl = optval; 1245 else 1246 error = EINVAL; 1247 break; 1248 1249 #define OPTSET(bit) do { \ 1250 INP_WLOCK(inp); \ 1251 if (optval) \ 1252 inp->inp_flags |= bit; \ 1253 else \ 1254 inp->inp_flags &= ~bit; \ 1255 INP_WUNLOCK(inp); \ 1256 } while (0) 1257 1258 #define OPTSET2(bit, val) do { \ 1259 INP_WLOCK(inp); \ 1260 if (val) \ 1261 inp->inp_flags2 |= bit; \ 1262 else \ 1263 inp->inp_flags2 &= ~bit; \ 1264 INP_WUNLOCK(inp); \ 1265 } while (0) 1266 1267 case IP_RECVOPTS: 1268 OPTSET(INP_RECVOPTS); 1269 break; 1270 1271 case IP_RECVRETOPTS: 1272 OPTSET(INP_RECVRETOPTS); 1273 break; 1274 1275 case IP_RECVDSTADDR: 1276 OPTSET(INP_RECVDSTADDR); 1277 break; 1278 1279 case IP_ORIGDSTADDR: 1280 OPTSET2(INP_ORIGDSTADDR, optval); 1281 break; 1282 1283 case IP_RECVTTL: 1284 OPTSET(INP_RECVTTL); 1285 break; 1286 1287 case IP_RECVIF: 1288 OPTSET(INP_RECVIF); 1289 break; 1290 1291 case IP_ONESBCAST: 1292 OPTSET(INP_ONESBCAST); 1293 break; 1294 case IP_DONTFRAG: 1295 OPTSET(INP_DONTFRAG); 1296 break; 1297 case IP_BINDANY: 1298 OPTSET(INP_BINDANY); 1299 break; 1300 case IP_RECVTOS: 1301 OPTSET(INP_RECVTOS); 1302 break; 1303 case IP_BINDMULTI: 1304 OPTSET2(INP_BINDMULTI, optval); 1305 break; 1306 case IP_RECVFLOWID: 1307 OPTSET2(INP_RECVFLOWID, optval); 1308 break; 1309 #ifdef RSS 1310 case IP_RSS_LISTEN_BUCKET: 1311 if ((optval >= 0) && 1312 (optval < rss_getnumbuckets())) { 1313 inp->inp_rss_listen_bucket = optval; 1314 OPTSET2(INP_RSS_BUCKET_SET, 1); 1315 } else { 1316 error = EINVAL; 1317 } 1318 break; 1319 case IP_RECVRSSBUCKETID: 1320 OPTSET2(INP_RECVRSSBUCKETID, optval); 1321 break; 1322 #endif 1323 case IP_VLAN_PCP: 1324 if ((optval >= -1) && (optval <= 1325 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1326 if (optval == -1) { 1327 INP_WLOCK(inp); 1328 inp->inp_flags2 &= 1329 ~(INP_2PCP_SET | 1330 INP_2PCP_MASK); 1331 INP_WUNLOCK(inp); 1332 } else { 1333 INP_WLOCK(inp); 1334 inp->inp_flags2 |= 1335 INP_2PCP_SET; 1336 inp->inp_flags2 &= 1337 ~INP_2PCP_MASK; 1338 inp->inp_flags2 |= 1339 optval << INP_2PCP_SHIFT; 1340 INP_WUNLOCK(inp); 1341 } 1342 } else 1343 error = EINVAL; 1344 break; 1345 } 1346 break; 1347 #undef OPTSET 1348 #undef OPTSET2 1349 1350 /* 1351 * Multicast socket options are processed by the in_mcast 1352 * module. 1353 */ 1354 case IP_MULTICAST_IF: 1355 case IP_MULTICAST_VIF: 1356 case IP_MULTICAST_TTL: 1357 case IP_MULTICAST_LOOP: 1358 case IP_ADD_MEMBERSHIP: 1359 case IP_DROP_MEMBERSHIP: 1360 case IP_ADD_SOURCE_MEMBERSHIP: 1361 case IP_DROP_SOURCE_MEMBERSHIP: 1362 case IP_BLOCK_SOURCE: 1363 case IP_UNBLOCK_SOURCE: 1364 case IP_MSFILTER: 1365 case MCAST_JOIN_GROUP: 1366 case MCAST_LEAVE_GROUP: 1367 case MCAST_JOIN_SOURCE_GROUP: 1368 case MCAST_LEAVE_SOURCE_GROUP: 1369 case MCAST_BLOCK_SOURCE: 1370 case MCAST_UNBLOCK_SOURCE: 1371 error = inp_setmoptions(inp, sopt); 1372 break; 1373 1374 case IP_PORTRANGE: 1375 error = sooptcopyin(sopt, &optval, sizeof optval, 1376 sizeof optval); 1377 if (error) 1378 break; 1379 1380 INP_WLOCK(inp); 1381 switch (optval) { 1382 case IP_PORTRANGE_DEFAULT: 1383 inp->inp_flags &= ~(INP_LOWPORT); 1384 inp->inp_flags &= ~(INP_HIGHPORT); 1385 break; 1386 1387 case IP_PORTRANGE_HIGH: 1388 inp->inp_flags &= ~(INP_LOWPORT); 1389 inp->inp_flags |= INP_HIGHPORT; 1390 break; 1391 1392 case IP_PORTRANGE_LOW: 1393 inp->inp_flags &= ~(INP_HIGHPORT); 1394 inp->inp_flags |= INP_LOWPORT; 1395 break; 1396 1397 default: 1398 error = EINVAL; 1399 break; 1400 } 1401 INP_WUNLOCK(inp); 1402 break; 1403 1404 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1405 case IP_IPSEC_POLICY: 1406 if (IPSEC_ENABLED(ipv4)) { 1407 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1408 break; 1409 } 1410 /* FALLTHROUGH */ 1411 #endif /* IPSEC */ 1412 1413 default: 1414 error = ENOPROTOOPT; 1415 break; 1416 } 1417 break; 1418 1419 case SOPT_GET: 1420 switch (sopt->sopt_name) { 1421 case IP_OPTIONS: 1422 case IP_RETOPTS: 1423 INP_RLOCK(inp); 1424 if (inp->inp_options) { 1425 struct mbuf *options; 1426 1427 options = m_copym(inp->inp_options, 0, 1428 M_COPYALL, M_NOWAIT); 1429 INP_RUNLOCK(inp); 1430 if (options != NULL) { 1431 error = sooptcopyout(sopt, 1432 mtod(options, char *), 1433 options->m_len); 1434 m_freem(options); 1435 } else 1436 error = ENOMEM; 1437 } else { 1438 INP_RUNLOCK(inp); 1439 sopt->sopt_valsize = 0; 1440 } 1441 break; 1442 1443 case IP_TOS: 1444 case IP_TTL: 1445 case IP_MINTTL: 1446 case IP_RECVOPTS: 1447 case IP_RECVRETOPTS: 1448 case IP_ORIGDSTADDR: 1449 case IP_RECVDSTADDR: 1450 case IP_RECVTTL: 1451 case IP_RECVIF: 1452 case IP_PORTRANGE: 1453 case IP_ONESBCAST: 1454 case IP_DONTFRAG: 1455 case IP_BINDANY: 1456 case IP_RECVTOS: 1457 case IP_BINDMULTI: 1458 case IP_FLOWID: 1459 case IP_FLOWTYPE: 1460 case IP_RECVFLOWID: 1461 #ifdef RSS 1462 case IP_RSSBUCKETID: 1463 case IP_RECVRSSBUCKETID: 1464 #endif 1465 case IP_VLAN_PCP: 1466 switch (sopt->sopt_name) { 1467 case IP_TOS: 1468 optval = inp->inp_ip_tos; 1469 break; 1470 1471 case IP_TTL: 1472 optval = inp->inp_ip_ttl; 1473 break; 1474 1475 case IP_MINTTL: 1476 optval = inp->inp_ip_minttl; 1477 break; 1478 1479 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1480 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1481 1482 case IP_RECVOPTS: 1483 optval = OPTBIT(INP_RECVOPTS); 1484 break; 1485 1486 case IP_RECVRETOPTS: 1487 optval = OPTBIT(INP_RECVRETOPTS); 1488 break; 1489 1490 case IP_RECVDSTADDR: 1491 optval = OPTBIT(INP_RECVDSTADDR); 1492 break; 1493 1494 case IP_ORIGDSTADDR: 1495 optval = OPTBIT2(INP_ORIGDSTADDR); 1496 break; 1497 1498 case IP_RECVTTL: 1499 optval = OPTBIT(INP_RECVTTL); 1500 break; 1501 1502 case IP_RECVIF: 1503 optval = OPTBIT(INP_RECVIF); 1504 break; 1505 1506 case IP_PORTRANGE: 1507 if (inp->inp_flags & INP_HIGHPORT) 1508 optval = IP_PORTRANGE_HIGH; 1509 else if (inp->inp_flags & INP_LOWPORT) 1510 optval = IP_PORTRANGE_LOW; 1511 else 1512 optval = 0; 1513 break; 1514 1515 case IP_ONESBCAST: 1516 optval = OPTBIT(INP_ONESBCAST); 1517 break; 1518 case IP_DONTFRAG: 1519 optval = OPTBIT(INP_DONTFRAG); 1520 break; 1521 case IP_BINDANY: 1522 optval = OPTBIT(INP_BINDANY); 1523 break; 1524 case IP_RECVTOS: 1525 optval = OPTBIT(INP_RECVTOS); 1526 break; 1527 case IP_FLOWID: 1528 optval = inp->inp_flowid; 1529 break; 1530 case IP_FLOWTYPE: 1531 optval = inp->inp_flowtype; 1532 break; 1533 case IP_RECVFLOWID: 1534 optval = OPTBIT2(INP_RECVFLOWID); 1535 break; 1536 #ifdef RSS 1537 case IP_RSSBUCKETID: 1538 retval = rss_hash2bucket(inp->inp_flowid, 1539 inp->inp_flowtype, 1540 &rss_bucket); 1541 if (retval == 0) 1542 optval = rss_bucket; 1543 else 1544 error = EINVAL; 1545 break; 1546 case IP_RECVRSSBUCKETID: 1547 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1548 break; 1549 #endif 1550 case IP_BINDMULTI: 1551 optval = OPTBIT2(INP_BINDMULTI); 1552 break; 1553 case IP_VLAN_PCP: 1554 if (OPTBIT2(INP_2PCP_SET)) { 1555 optval = (inp->inp_flags2 & 1556 INP_2PCP_MASK) >> INP_2PCP_SHIFT; 1557 } else { 1558 optval = -1; 1559 } 1560 break; 1561 } 1562 error = sooptcopyout(sopt, &optval, sizeof optval); 1563 break; 1564 1565 /* 1566 * Multicast socket options are processed by the in_mcast 1567 * module. 1568 */ 1569 case IP_MULTICAST_IF: 1570 case IP_MULTICAST_VIF: 1571 case IP_MULTICAST_TTL: 1572 case IP_MULTICAST_LOOP: 1573 case IP_MSFILTER: 1574 error = inp_getmoptions(inp, sopt); 1575 break; 1576 1577 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1578 case IP_IPSEC_POLICY: 1579 if (IPSEC_ENABLED(ipv4)) { 1580 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1581 break; 1582 } 1583 /* FALLTHROUGH */ 1584 #endif /* IPSEC */ 1585 1586 default: 1587 error = ENOPROTOOPT; 1588 break; 1589 } 1590 break; 1591 } 1592 return (error); 1593 } 1594 1595 /* 1596 * Routine called from ip_output() to loop back a copy of an IP multicast 1597 * packet to the input queue of a specified interface. Note that this 1598 * calls the output routine of the loopback "driver", but with an interface 1599 * pointer that might NOT be a loopback interface -- evil, but easier than 1600 * replicating that code here. 1601 */ 1602 static void 1603 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1604 { 1605 struct ip *ip; 1606 struct mbuf *copym; 1607 1608 /* 1609 * Make a deep copy of the packet because we're going to 1610 * modify the pack in order to generate checksums. 1611 */ 1612 copym = m_dup(m, M_NOWAIT); 1613 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1614 copym = m_pullup(copym, hlen); 1615 if (copym != NULL) { 1616 /* If needed, compute the checksum and mark it as valid. */ 1617 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1618 in_delayed_cksum(copym); 1619 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1620 copym->m_pkthdr.csum_flags |= 1621 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1622 copym->m_pkthdr.csum_data = 0xffff; 1623 } 1624 /* 1625 * We don't bother to fragment if the IP length is greater 1626 * than the interface's MTU. Can this possibly matter? 1627 */ 1628 ip = mtod(copym, struct ip *); 1629 ip->ip_sum = 0; 1630 ip->ip_sum = in_cksum(copym, hlen); 1631 if_simloop(ifp, copym, AF_INET, 0); 1632 } 1633 } 1634