1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ratelimit.h" 39 #include "opt_ipsec.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_mpath.h" 42 #include "opt_route.h" 43 #include "opt_sctp.h" 44 #include "opt_rss.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/malloc.h> 51 #include <sys/mbuf.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/protosw.h> 55 #include <sys/rmlock.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sysctl.h> 60 #include <sys/ucred.h> 61 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_llatbl.h> 65 #include <net/netisr.h> 66 #include <net/pfil.h> 67 #include <net/route.h> 68 #ifdef RADIX_MPATH 69 #include <net/radix_mpath.h> 70 #endif 71 #include <net/rss_config.h> 72 #include <net/vnet.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_kdtrace.h> 76 #include <netinet/in_systm.h> 77 #include <netinet/ip.h> 78 #include <netinet/in_pcb.h> 79 #include <netinet/in_rss.h> 80 #include <netinet/in_var.h> 81 #include <netinet/ip_var.h> 82 #include <netinet/ip_options.h> 83 84 #include <netinet/udp.h> 85 #include <netinet/udp_var.h> 86 87 #ifdef SCTP 88 #include <netinet/sctp.h> 89 #include <netinet/sctp_crc32.h> 90 #endif 91 92 #include <netipsec/ipsec_support.h> 93 94 #include <machine/in_cksum.h> 95 96 #include <security/mac/mac_framework.h> 97 98 #ifdef MBUF_STRESS_TEST 99 static int mbuf_frag_size = 0; 100 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 101 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 102 #endif 103 104 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 105 106 107 extern int in_mcast_loop; 108 extern struct protosw inetsw[]; 109 110 static inline int 111 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp, 112 struct sockaddr_in *dst, int *fibnum, int *error) 113 { 114 struct m_tag *fwd_tag = NULL; 115 struct mbuf *m; 116 struct in_addr odst; 117 struct ip *ip; 118 119 m = *mp; 120 ip = mtod(m, struct ip *); 121 122 /* Run through list of hooks for output packets. */ 123 odst.s_addr = ip->ip_dst.s_addr; 124 *error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, PFIL_OUT, 0, inp); 125 m = *mp; 126 if ((*error) != 0 || m == NULL) 127 return 1; /* Finished */ 128 129 ip = mtod(m, struct ip *); 130 131 /* See if destination IP address was changed by packet filter. */ 132 if (odst.s_addr != ip->ip_dst.s_addr) { 133 m->m_flags |= M_SKIP_FIREWALL; 134 /* If destination is now ourself drop to ip_input(). */ 135 if (in_localip(ip->ip_dst)) { 136 m->m_flags |= M_FASTFWD_OURS; 137 if (m->m_pkthdr.rcvif == NULL) 138 m->m_pkthdr.rcvif = V_loif; 139 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 140 m->m_pkthdr.csum_flags |= 141 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 142 m->m_pkthdr.csum_data = 0xffff; 143 } 144 m->m_pkthdr.csum_flags |= 145 CSUM_IP_CHECKED | CSUM_IP_VALID; 146 #ifdef SCTP 147 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 148 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 149 #endif 150 *error = netisr_queue(NETISR_IP, m); 151 return 1; /* Finished */ 152 } 153 154 bzero(dst, sizeof(*dst)); 155 dst->sin_family = AF_INET; 156 dst->sin_len = sizeof(*dst); 157 dst->sin_addr = ip->ip_dst; 158 159 return -1; /* Reloop */ 160 } 161 /* See if fib was changed by packet filter. */ 162 if ((*fibnum) != M_GETFIB(m)) { 163 m->m_flags |= M_SKIP_FIREWALL; 164 *fibnum = M_GETFIB(m); 165 return -1; /* Reloop for FIB change */ 166 } 167 168 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 169 if (m->m_flags & M_FASTFWD_OURS) { 170 if (m->m_pkthdr.rcvif == NULL) 171 m->m_pkthdr.rcvif = V_loif; 172 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 173 m->m_pkthdr.csum_flags |= 174 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 175 m->m_pkthdr.csum_data = 0xffff; 176 } 177 #ifdef SCTP 178 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 179 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 180 #endif 181 m->m_pkthdr.csum_flags |= 182 CSUM_IP_CHECKED | CSUM_IP_VALID; 183 184 *error = netisr_queue(NETISR_IP, m); 185 return 1; /* Finished */ 186 } 187 /* Or forward to some other address? */ 188 if ((m->m_flags & M_IP_NEXTHOP) && 189 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 190 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 191 m->m_flags |= M_SKIP_FIREWALL; 192 m->m_flags &= ~M_IP_NEXTHOP; 193 m_tag_delete(m, fwd_tag); 194 195 return -1; /* Reloop for CHANGE of dst */ 196 } 197 198 return 0; 199 } 200 201 /* 202 * IP output. The packet in mbuf chain m contains a skeletal IP 203 * header (with len, off, ttl, proto, tos, src, dst). 204 * The mbuf chain containing the packet will be freed. 205 * The mbuf opt, if present, will not be freed. 206 * If route ro is present and has ro_rt initialized, route lookup would be 207 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 208 * then result of route lookup is stored in ro->ro_rt. 209 * 210 * In the IP forwarding case, the packet will arrive with options already 211 * inserted, so must have a NULL opt pointer. 212 */ 213 int 214 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 215 struct ip_moptions *imo, struct inpcb *inp) 216 { 217 struct rm_priotracker in_ifa_tracker; 218 struct ip *ip; 219 struct ifnet *ifp = NULL; /* keep compiler happy */ 220 struct mbuf *m0; 221 int hlen = sizeof (struct ip); 222 int mtu; 223 int error = 0; 224 struct sockaddr_in *dst; 225 const struct sockaddr_in *gw; 226 struct in_ifaddr *ia; 227 int isbroadcast; 228 uint16_t ip_len, ip_off; 229 struct route iproute; 230 struct rtentry *rte; /* cache for ro->ro_rt */ 231 uint32_t fibnum; 232 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 233 int no_route_but_check_spd = 0; 234 #endif 235 M_ASSERTPKTHDR(m); 236 237 if (inp != NULL) { 238 INP_LOCK_ASSERT(inp); 239 M_SETFIB(m, inp->inp_inc.inc_fibnum); 240 if ((flags & IP_NODEFAULTFLOWID) == 0) { 241 m->m_pkthdr.flowid = inp->inp_flowid; 242 M_HASHTYPE_SET(m, inp->inp_flowtype); 243 } 244 } 245 246 if (ro == NULL) { 247 ro = &iproute; 248 bzero(ro, sizeof (*ro)); 249 } 250 251 if (opt) { 252 int len = 0; 253 m = ip_insertoptions(m, opt, &len); 254 if (len != 0) 255 hlen = len; /* ip->ip_hl is updated above */ 256 } 257 ip = mtod(m, struct ip *); 258 ip_len = ntohs(ip->ip_len); 259 ip_off = ntohs(ip->ip_off); 260 261 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 262 ip->ip_v = IPVERSION; 263 ip->ip_hl = hlen >> 2; 264 ip_fillid(ip); 265 IPSTAT_INC(ips_localout); 266 } else { 267 /* Header already set, fetch hlen from there */ 268 hlen = ip->ip_hl << 2; 269 } 270 271 /* 272 * dst/gw handling: 273 * 274 * dst can be rewritten but always points to &ro->ro_dst. 275 * gw is readonly but can point either to dst OR rt_gateway, 276 * therefore we need restore gw if we're redoing lookup. 277 */ 278 gw = dst = (struct sockaddr_in *)&ro->ro_dst; 279 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 280 rte = ro->ro_rt; 281 if (rte == NULL) { 282 bzero(dst, sizeof(*dst)); 283 dst->sin_family = AF_INET; 284 dst->sin_len = sizeof(*dst); 285 dst->sin_addr = ip->ip_dst; 286 } 287 NET_EPOCH_ENTER(); 288 again: 289 /* 290 * Validate route against routing table additions; 291 * a better/more specific route might have been added. 292 */ 293 if (inp) 294 RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 295 /* 296 * If there is a cached route, 297 * check that it is to the same destination 298 * and is still up. If not, free it and try again. 299 * The address family should also be checked in case of sharing the 300 * cache with IPv6. 301 * Also check whether routing cache needs invalidation. 302 */ 303 rte = ro->ro_rt; 304 if (rte && ((rte->rt_flags & RTF_UP) == 0 || 305 rte->rt_ifp == NULL || 306 !RT_LINK_IS_UP(rte->rt_ifp) || 307 dst->sin_family != AF_INET || 308 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) { 309 RO_INVALIDATE_CACHE(ro); 310 rte = NULL; 311 } 312 ia = NULL; 313 /* 314 * If routing to interface only, short circuit routing lookup. 315 * The use of an all-ones broadcast address implies this; an 316 * interface is specified by the broadcast address of an interface, 317 * or the destination address of a ptp interface. 318 */ 319 if (flags & IP_SENDONES) { 320 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 321 M_GETFIB(m)))) == NULL && 322 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 323 M_GETFIB(m)))) == NULL) { 324 IPSTAT_INC(ips_noroute); 325 error = ENETUNREACH; 326 goto bad; 327 } 328 ip->ip_dst.s_addr = INADDR_BROADCAST; 329 dst->sin_addr = ip->ip_dst; 330 ifp = ia->ia_ifp; 331 ip->ip_ttl = 1; 332 isbroadcast = 1; 333 } else if (flags & IP_ROUTETOIF) { 334 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 335 M_GETFIB(m)))) == NULL && 336 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 337 M_GETFIB(m)))) == NULL) { 338 IPSTAT_INC(ips_noroute); 339 error = ENETUNREACH; 340 goto bad; 341 } 342 ifp = ia->ia_ifp; 343 ip->ip_ttl = 1; 344 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 345 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 346 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 347 imo != NULL && imo->imo_multicast_ifp != NULL) { 348 /* 349 * Bypass the normal routing lookup for multicast 350 * packets if the interface is specified. 351 */ 352 ifp = imo->imo_multicast_ifp; 353 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 354 isbroadcast = 0; /* fool gcc */ 355 } else { 356 /* 357 * We want to do any cloning requested by the link layer, 358 * as this is probably required in all cases for correct 359 * operation (as it is for ARP). 360 */ 361 if (rte == NULL) { 362 #ifdef RADIX_MPATH 363 rtalloc_mpath_fib(ro, 364 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 365 fibnum); 366 #else 367 in_rtalloc_ign(ro, 0, fibnum); 368 #endif 369 rte = ro->ro_rt; 370 } 371 if (rte == NULL || 372 (rte->rt_flags & RTF_UP) == 0 || 373 rte->rt_ifp == NULL || 374 !RT_LINK_IS_UP(rte->rt_ifp)) { 375 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 376 /* 377 * There is no route for this packet, but it is 378 * possible that a matching SPD entry exists. 379 */ 380 no_route_but_check_spd = 1; 381 mtu = 0; /* Silence GCC warning. */ 382 goto sendit; 383 #endif 384 IPSTAT_INC(ips_noroute); 385 error = EHOSTUNREACH; 386 goto bad; 387 } 388 ia = ifatoia(rte->rt_ifa); 389 ifp = rte->rt_ifp; 390 counter_u64_add(rte->rt_pksent, 1); 391 rt_update_ro_flags(ro); 392 if (rte->rt_flags & RTF_GATEWAY) 393 gw = (struct sockaddr_in *)rte->rt_gateway; 394 if (rte->rt_flags & RTF_HOST) 395 isbroadcast = (rte->rt_flags & RTF_BROADCAST); 396 else if (ifp->if_flags & IFF_BROADCAST) 397 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 398 else 399 isbroadcast = 0; 400 } 401 402 /* 403 * Calculate MTU. If we have a route that is up, use that, 404 * otherwise use the interface's MTU. 405 */ 406 if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) 407 mtu = rte->rt_mtu; 408 else 409 mtu = ifp->if_mtu; 410 /* Catch a possible divide by zero later. */ 411 KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p", 412 __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp)); 413 414 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 415 m->m_flags |= M_MCAST; 416 /* 417 * IP destination address is multicast. Make sure "gw" 418 * still points to the address in "ro". (It may have been 419 * changed to point to a gateway address, above.) 420 */ 421 gw = dst; 422 /* 423 * See if the caller provided any multicast options 424 */ 425 if (imo != NULL) { 426 ip->ip_ttl = imo->imo_multicast_ttl; 427 if (imo->imo_multicast_vif != -1) 428 ip->ip_src.s_addr = 429 ip_mcast_src ? 430 ip_mcast_src(imo->imo_multicast_vif) : 431 INADDR_ANY; 432 } else 433 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 434 /* 435 * Confirm that the outgoing interface supports multicast. 436 */ 437 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 438 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 439 IPSTAT_INC(ips_noroute); 440 error = ENETUNREACH; 441 goto bad; 442 } 443 } 444 /* 445 * If source address not specified yet, use address 446 * of outgoing interface. 447 */ 448 if (ip->ip_src.s_addr == INADDR_ANY) { 449 /* Interface may have no addresses. */ 450 if (ia != NULL) 451 ip->ip_src = IA_SIN(ia)->sin_addr; 452 } 453 454 if ((imo == NULL && in_mcast_loop) || 455 (imo && imo->imo_multicast_loop)) { 456 /* 457 * Loop back multicast datagram if not expressly 458 * forbidden to do so, even if we are not a member 459 * of the group; ip_input() will filter it later, 460 * thus deferring a hash lookup and mutex acquisition 461 * at the expense of a cheap copy using m_copym(). 462 */ 463 ip_mloopback(ifp, m, hlen); 464 } else { 465 /* 466 * If we are acting as a multicast router, perform 467 * multicast forwarding as if the packet had just 468 * arrived on the interface to which we are about 469 * to send. The multicast forwarding function 470 * recursively calls this function, using the 471 * IP_FORWARDING flag to prevent infinite recursion. 472 * 473 * Multicasts that are looped back by ip_mloopback(), 474 * above, will be forwarded by the ip_input() routine, 475 * if necessary. 476 */ 477 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 478 /* 479 * If rsvp daemon is not running, do not 480 * set ip_moptions. This ensures that the packet 481 * is multicast and not just sent down one link 482 * as prescribed by rsvpd. 483 */ 484 if (!V_rsvp_on) 485 imo = NULL; 486 if (ip_mforward && 487 ip_mforward(ip, ifp, m, imo) != 0) { 488 m_freem(m); 489 goto done; 490 } 491 } 492 } 493 494 /* 495 * Multicasts with a time-to-live of zero may be looped- 496 * back, above, but must not be transmitted on a network. 497 * Also, multicasts addressed to the loopback interface 498 * are not sent -- the above call to ip_mloopback() will 499 * loop back a copy. ip_input() will drop the copy if 500 * this host does not belong to the destination group on 501 * the loopback interface. 502 */ 503 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 504 m_freem(m); 505 goto done; 506 } 507 508 goto sendit; 509 } 510 511 /* 512 * If the source address is not specified yet, use the address 513 * of the outoing interface. 514 */ 515 if (ip->ip_src.s_addr == INADDR_ANY) { 516 /* Interface may have no addresses. */ 517 if (ia != NULL) { 518 ip->ip_src = IA_SIN(ia)->sin_addr; 519 } 520 } 521 522 /* 523 * Look for broadcast address and 524 * verify user is allowed to send 525 * such a packet. 526 */ 527 if (isbroadcast) { 528 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 529 error = EADDRNOTAVAIL; 530 goto bad; 531 } 532 if ((flags & IP_ALLOWBROADCAST) == 0) { 533 error = EACCES; 534 goto bad; 535 } 536 /* don't allow broadcast messages to be fragmented */ 537 if (ip_len > mtu) { 538 error = EMSGSIZE; 539 goto bad; 540 } 541 m->m_flags |= M_BCAST; 542 } else { 543 m->m_flags &= ~M_BCAST; 544 } 545 546 sendit: 547 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 548 if (IPSEC_ENABLED(ipv4)) { 549 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 550 if (error == EINPROGRESS) 551 error = 0; 552 goto done; 553 } 554 } 555 /* 556 * Check if there was a route for this packet; return error if not. 557 */ 558 if (no_route_but_check_spd) { 559 IPSTAT_INC(ips_noroute); 560 error = EHOSTUNREACH; 561 goto bad; 562 } 563 /* Update variables that are affected by ipsec4_output(). */ 564 ip = mtod(m, struct ip *); 565 hlen = ip->ip_hl << 2; 566 #endif /* IPSEC */ 567 568 /* Jump over all PFIL processing if hooks are not active. */ 569 if (PFIL_HOOKED(&V_inet_pfil_hook)) { 570 switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) { 571 case 1: /* Finished */ 572 goto done; 573 574 case 0: /* Continue normally */ 575 ip = mtod(m, struct ip *); 576 break; 577 578 case -1: /* Need to try again */ 579 /* Reset everything for a new round */ 580 RO_RTFREE(ro); 581 ro->ro_prepend = NULL; 582 rte = NULL; 583 gw = dst; 584 ip = mtod(m, struct ip *); 585 goto again; 586 587 } 588 } 589 590 /* 127/8 must not appear on wire - RFC1122. */ 591 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 592 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 593 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 594 IPSTAT_INC(ips_badaddr); 595 error = EADDRNOTAVAIL; 596 goto bad; 597 } 598 } 599 600 m->m_pkthdr.csum_flags |= CSUM_IP; 601 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 602 in_delayed_cksum(m); 603 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 604 } 605 #ifdef SCTP 606 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 607 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 608 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 609 } 610 #endif 611 612 /* 613 * If small enough for interface, or the interface will take 614 * care of the fragmentation for us, we can just send directly. 615 */ 616 if (ip_len <= mtu || 617 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 618 ip->ip_sum = 0; 619 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 620 ip->ip_sum = in_cksum(m, hlen); 621 m->m_pkthdr.csum_flags &= ~CSUM_IP; 622 } 623 624 /* 625 * Record statistics for this interface address. 626 * With CSUM_TSO the byte/packet count will be slightly 627 * incorrect because we count the IP+TCP headers only 628 * once instead of for every generated packet. 629 */ 630 if (!(flags & IP_FORWARDING) && ia) { 631 if (m->m_pkthdr.csum_flags & CSUM_TSO) 632 counter_u64_add(ia->ia_ifa.ifa_opackets, 633 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 634 else 635 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 636 637 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 638 } 639 #ifdef MBUF_STRESS_TEST 640 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 641 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 642 #endif 643 /* 644 * Reset layer specific mbuf flags 645 * to avoid confusing lower layers. 646 */ 647 m_clrprotoflags(m); 648 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 649 #ifdef RATELIMIT 650 if (inp != NULL) { 651 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 652 in_pcboutput_txrtlmt(inp, ifp, m); 653 /* stamp send tag on mbuf */ 654 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 655 } else { 656 m->m_pkthdr.snd_tag = NULL; 657 } 658 #endif 659 error = (*ifp->if_output)(ifp, m, 660 (const struct sockaddr *)gw, ro); 661 #ifdef RATELIMIT 662 /* check for route change */ 663 if (error == EAGAIN) 664 in_pcboutput_eagain(inp); 665 #endif 666 goto done; 667 } 668 669 /* Balk when DF bit is set or the interface didn't support TSO. */ 670 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 671 error = EMSGSIZE; 672 IPSTAT_INC(ips_cantfrag); 673 goto bad; 674 } 675 676 /* 677 * Too large for interface; fragment if possible. If successful, 678 * on return, m will point to a list of packets to be sent. 679 */ 680 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 681 if (error) 682 goto bad; 683 for (; m; m = m0) { 684 m0 = m->m_nextpkt; 685 m->m_nextpkt = 0; 686 if (error == 0) { 687 /* Record statistics for this interface address. */ 688 if (ia != NULL) { 689 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 690 counter_u64_add(ia->ia_ifa.ifa_obytes, 691 m->m_pkthdr.len); 692 } 693 /* 694 * Reset layer specific mbuf flags 695 * to avoid confusing upper layers. 696 */ 697 m_clrprotoflags(m); 698 699 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 700 mtod(m, struct ip *), NULL); 701 #ifdef RATELIMIT 702 if (inp != NULL) { 703 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 704 in_pcboutput_txrtlmt(inp, ifp, m); 705 /* stamp send tag on mbuf */ 706 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 707 } else { 708 m->m_pkthdr.snd_tag = NULL; 709 } 710 #endif 711 error = (*ifp->if_output)(ifp, m, 712 (const struct sockaddr *)gw, ro); 713 #ifdef RATELIMIT 714 /* check for route change */ 715 if (error == EAGAIN) 716 in_pcboutput_eagain(inp); 717 #endif 718 } else 719 m_freem(m); 720 } 721 722 if (error == 0) 723 IPSTAT_INC(ips_fragmented); 724 725 done: 726 if (ro == &iproute) 727 RO_RTFREE(ro); 728 else if (rte == NULL) 729 /* 730 * If the caller supplied a route but somehow the reference 731 * to it has been released need to prevent the caller 732 * calling RTFREE on it again. 733 */ 734 ro->ro_rt = NULL; 735 NET_EPOCH_EXIT(); 736 return (error); 737 bad: 738 m_freem(m); 739 goto done; 740 } 741 742 /* 743 * Create a chain of fragments which fit the given mtu. m_frag points to the 744 * mbuf to be fragmented; on return it points to the chain with the fragments. 745 * Return 0 if no error. If error, m_frag may contain a partially built 746 * chain of fragments that should be freed by the caller. 747 * 748 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 749 */ 750 int 751 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 752 u_long if_hwassist_flags) 753 { 754 int error = 0; 755 int hlen = ip->ip_hl << 2; 756 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 757 int off; 758 struct mbuf *m0 = *m_frag; /* the original packet */ 759 int firstlen; 760 struct mbuf **mnext; 761 int nfrags; 762 uint16_t ip_len, ip_off; 763 764 ip_len = ntohs(ip->ip_len); 765 ip_off = ntohs(ip->ip_off); 766 767 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 768 IPSTAT_INC(ips_cantfrag); 769 return EMSGSIZE; 770 } 771 772 /* 773 * Must be able to put at least 8 bytes per fragment. 774 */ 775 if (len < 8) 776 return EMSGSIZE; 777 778 /* 779 * If the interface will not calculate checksums on 780 * fragmented packets, then do it here. 781 */ 782 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 783 in_delayed_cksum(m0); 784 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 785 } 786 #ifdef SCTP 787 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 788 sctp_delayed_cksum(m0, hlen); 789 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 790 } 791 #endif 792 if (len > PAGE_SIZE) { 793 /* 794 * Fragment large datagrams such that each segment 795 * contains a multiple of PAGE_SIZE amount of data, 796 * plus headers. This enables a receiver to perform 797 * page-flipping zero-copy optimizations. 798 * 799 * XXX When does this help given that sender and receiver 800 * could have different page sizes, and also mtu could 801 * be less than the receiver's page size ? 802 */ 803 int newlen; 804 805 off = MIN(mtu, m0->m_pkthdr.len); 806 807 /* 808 * firstlen (off - hlen) must be aligned on an 809 * 8-byte boundary 810 */ 811 if (off < hlen) 812 goto smart_frag_failure; 813 off = ((off - hlen) & ~7) + hlen; 814 newlen = (~PAGE_MASK) & mtu; 815 if ((newlen + sizeof (struct ip)) > mtu) { 816 /* we failed, go back the default */ 817 smart_frag_failure: 818 newlen = len; 819 off = hlen + len; 820 } 821 len = newlen; 822 823 } else { 824 off = hlen + len; 825 } 826 827 firstlen = off - hlen; 828 mnext = &m0->m_nextpkt; /* pointer to next packet */ 829 830 /* 831 * Loop through length of segment after first fragment, 832 * make new header and copy data of each part and link onto chain. 833 * Here, m0 is the original packet, m is the fragment being created. 834 * The fragments are linked off the m_nextpkt of the original 835 * packet, which after processing serves as the first fragment. 836 */ 837 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 838 struct ip *mhip; /* ip header on the fragment */ 839 struct mbuf *m; 840 int mhlen = sizeof (struct ip); 841 842 m = m_gethdr(M_NOWAIT, MT_DATA); 843 if (m == NULL) { 844 error = ENOBUFS; 845 IPSTAT_INC(ips_odropped); 846 goto done; 847 } 848 /* 849 * Make sure the complete packet header gets copied 850 * from the originating mbuf to the newly created 851 * mbuf. This also ensures that existing firewall 852 * classification(s), VLAN tags and so on get copied 853 * to the resulting fragmented packet(s): 854 */ 855 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 856 m_free(m); 857 error = ENOBUFS; 858 IPSTAT_INC(ips_odropped); 859 goto done; 860 } 861 /* 862 * In the first mbuf, leave room for the link header, then 863 * copy the original IP header including options. The payload 864 * goes into an additional mbuf chain returned by m_copym(). 865 */ 866 m->m_data += max_linkhdr; 867 mhip = mtod(m, struct ip *); 868 *mhip = *ip; 869 if (hlen > sizeof (struct ip)) { 870 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 871 mhip->ip_v = IPVERSION; 872 mhip->ip_hl = mhlen >> 2; 873 } 874 m->m_len = mhlen; 875 /* XXX do we need to add ip_off below ? */ 876 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 877 if (off + len >= ip_len) 878 len = ip_len - off; 879 else 880 mhip->ip_off |= IP_MF; 881 mhip->ip_len = htons((u_short)(len + mhlen)); 882 m->m_next = m_copym(m0, off, len, M_NOWAIT); 883 if (m->m_next == NULL) { /* copy failed */ 884 m_free(m); 885 error = ENOBUFS; /* ??? */ 886 IPSTAT_INC(ips_odropped); 887 goto done; 888 } 889 m->m_pkthdr.len = mhlen + len; 890 #ifdef MAC 891 mac_netinet_fragment(m0, m); 892 #endif 893 mhip->ip_off = htons(mhip->ip_off); 894 mhip->ip_sum = 0; 895 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 896 mhip->ip_sum = in_cksum(m, mhlen); 897 m->m_pkthdr.csum_flags &= ~CSUM_IP; 898 } 899 *mnext = m; 900 mnext = &m->m_nextpkt; 901 } 902 IPSTAT_ADD(ips_ofragments, nfrags); 903 904 /* 905 * Update first fragment by trimming what's been copied out 906 * and updating header. 907 */ 908 m_adj(m0, hlen + firstlen - ip_len); 909 m0->m_pkthdr.len = hlen + firstlen; 910 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 911 ip->ip_off = htons(ip_off | IP_MF); 912 ip->ip_sum = 0; 913 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 914 ip->ip_sum = in_cksum(m0, hlen); 915 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 916 } 917 918 done: 919 *m_frag = m0; 920 return error; 921 } 922 923 void 924 in_delayed_cksum(struct mbuf *m) 925 { 926 struct ip *ip; 927 struct udphdr *uh; 928 uint16_t cklen, csum, offset; 929 930 ip = mtod(m, struct ip *); 931 offset = ip->ip_hl << 2 ; 932 933 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 934 /* if udp header is not in the first mbuf copy udplen */ 935 if (offset + sizeof(struct udphdr) > m->m_len) 936 m_copydata(m, offset + offsetof(struct udphdr, 937 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 938 else { 939 uh = (struct udphdr *)mtodo(m, offset); 940 cklen = ntohs(uh->uh_ulen); 941 } 942 csum = in_cksum_skip(m, cklen + offset, offset); 943 if (csum == 0) 944 csum = 0xffff; 945 } else { 946 cklen = ntohs(ip->ip_len); 947 csum = in_cksum_skip(m, cklen, offset); 948 } 949 offset += m->m_pkthdr.csum_data; /* checksum offset */ 950 951 if (offset + sizeof(csum) > m->m_len) 952 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 953 else 954 *(u_short *)mtodo(m, offset) = csum; 955 } 956 957 /* 958 * IP socket option processing. 959 */ 960 int 961 ip_ctloutput(struct socket *so, struct sockopt *sopt) 962 { 963 struct inpcb *inp = sotoinpcb(so); 964 int error, optval; 965 #ifdef RSS 966 uint32_t rss_bucket; 967 int retval; 968 #endif 969 970 error = optval = 0; 971 if (sopt->sopt_level != IPPROTO_IP) { 972 error = EINVAL; 973 974 if (sopt->sopt_level == SOL_SOCKET && 975 sopt->sopt_dir == SOPT_SET) { 976 switch (sopt->sopt_name) { 977 case SO_REUSEADDR: 978 INP_WLOCK(inp); 979 if ((so->so_options & SO_REUSEADDR) != 0) 980 inp->inp_flags2 |= INP_REUSEADDR; 981 else 982 inp->inp_flags2 &= ~INP_REUSEADDR; 983 INP_WUNLOCK(inp); 984 error = 0; 985 break; 986 case SO_REUSEPORT: 987 INP_WLOCK(inp); 988 if ((so->so_options & SO_REUSEPORT) != 0) 989 inp->inp_flags2 |= INP_REUSEPORT; 990 else 991 inp->inp_flags2 &= ~INP_REUSEPORT; 992 INP_WUNLOCK(inp); 993 error = 0; 994 break; 995 case SO_REUSEPORT_LB: 996 INP_WLOCK(inp); 997 if ((so->so_options & SO_REUSEPORT_LB) != 0) 998 inp->inp_flags2 |= INP_REUSEPORT_LB; 999 else 1000 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1001 INP_WUNLOCK(inp); 1002 error = 0; 1003 break; 1004 case SO_SETFIB: 1005 INP_WLOCK(inp); 1006 inp->inp_inc.inc_fibnum = so->so_fibnum; 1007 INP_WUNLOCK(inp); 1008 error = 0; 1009 break; 1010 case SO_MAX_PACING_RATE: 1011 #ifdef RATELIMIT 1012 INP_WLOCK(inp); 1013 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1014 INP_WUNLOCK(inp); 1015 error = 0; 1016 #else 1017 error = EOPNOTSUPP; 1018 #endif 1019 break; 1020 default: 1021 break; 1022 } 1023 } 1024 return (error); 1025 } 1026 1027 switch (sopt->sopt_dir) { 1028 case SOPT_SET: 1029 switch (sopt->sopt_name) { 1030 case IP_OPTIONS: 1031 #ifdef notyet 1032 case IP_RETOPTS: 1033 #endif 1034 { 1035 struct mbuf *m; 1036 if (sopt->sopt_valsize > MLEN) { 1037 error = EMSGSIZE; 1038 break; 1039 } 1040 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1041 if (m == NULL) { 1042 error = ENOBUFS; 1043 break; 1044 } 1045 m->m_len = sopt->sopt_valsize; 1046 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1047 m->m_len); 1048 if (error) { 1049 m_free(m); 1050 break; 1051 } 1052 INP_WLOCK(inp); 1053 error = ip_pcbopts(inp, sopt->sopt_name, m); 1054 INP_WUNLOCK(inp); 1055 return (error); 1056 } 1057 1058 case IP_BINDANY: 1059 if (sopt->sopt_td != NULL) { 1060 error = priv_check(sopt->sopt_td, 1061 PRIV_NETINET_BINDANY); 1062 if (error) 1063 break; 1064 } 1065 /* FALLTHROUGH */ 1066 case IP_BINDMULTI: 1067 #ifdef RSS 1068 case IP_RSS_LISTEN_BUCKET: 1069 #endif 1070 case IP_TOS: 1071 case IP_TTL: 1072 case IP_MINTTL: 1073 case IP_RECVOPTS: 1074 case IP_RECVRETOPTS: 1075 case IP_ORIGDSTADDR: 1076 case IP_RECVDSTADDR: 1077 case IP_RECVTTL: 1078 case IP_RECVIF: 1079 case IP_ONESBCAST: 1080 case IP_DONTFRAG: 1081 case IP_RECVTOS: 1082 case IP_RECVFLOWID: 1083 #ifdef RSS 1084 case IP_RECVRSSBUCKETID: 1085 #endif 1086 error = sooptcopyin(sopt, &optval, sizeof optval, 1087 sizeof optval); 1088 if (error) 1089 break; 1090 1091 switch (sopt->sopt_name) { 1092 case IP_TOS: 1093 inp->inp_ip_tos = optval; 1094 break; 1095 1096 case IP_TTL: 1097 inp->inp_ip_ttl = optval; 1098 break; 1099 1100 case IP_MINTTL: 1101 if (optval >= 0 && optval <= MAXTTL) 1102 inp->inp_ip_minttl = optval; 1103 else 1104 error = EINVAL; 1105 break; 1106 1107 #define OPTSET(bit) do { \ 1108 INP_WLOCK(inp); \ 1109 if (optval) \ 1110 inp->inp_flags |= bit; \ 1111 else \ 1112 inp->inp_flags &= ~bit; \ 1113 INP_WUNLOCK(inp); \ 1114 } while (0) 1115 1116 #define OPTSET2(bit, val) do { \ 1117 INP_WLOCK(inp); \ 1118 if (val) \ 1119 inp->inp_flags2 |= bit; \ 1120 else \ 1121 inp->inp_flags2 &= ~bit; \ 1122 INP_WUNLOCK(inp); \ 1123 } while (0) 1124 1125 case IP_RECVOPTS: 1126 OPTSET(INP_RECVOPTS); 1127 break; 1128 1129 case IP_RECVRETOPTS: 1130 OPTSET(INP_RECVRETOPTS); 1131 break; 1132 1133 case IP_RECVDSTADDR: 1134 OPTSET(INP_RECVDSTADDR); 1135 break; 1136 1137 case IP_ORIGDSTADDR: 1138 OPTSET2(INP_ORIGDSTADDR, optval); 1139 break; 1140 1141 case IP_RECVTTL: 1142 OPTSET(INP_RECVTTL); 1143 break; 1144 1145 case IP_RECVIF: 1146 OPTSET(INP_RECVIF); 1147 break; 1148 1149 case IP_ONESBCAST: 1150 OPTSET(INP_ONESBCAST); 1151 break; 1152 case IP_DONTFRAG: 1153 OPTSET(INP_DONTFRAG); 1154 break; 1155 case IP_BINDANY: 1156 OPTSET(INP_BINDANY); 1157 break; 1158 case IP_RECVTOS: 1159 OPTSET(INP_RECVTOS); 1160 break; 1161 case IP_BINDMULTI: 1162 OPTSET2(INP_BINDMULTI, optval); 1163 break; 1164 case IP_RECVFLOWID: 1165 OPTSET2(INP_RECVFLOWID, optval); 1166 break; 1167 #ifdef RSS 1168 case IP_RSS_LISTEN_BUCKET: 1169 if ((optval >= 0) && 1170 (optval < rss_getnumbuckets())) { 1171 inp->inp_rss_listen_bucket = optval; 1172 OPTSET2(INP_RSS_BUCKET_SET, 1); 1173 } else { 1174 error = EINVAL; 1175 } 1176 break; 1177 case IP_RECVRSSBUCKETID: 1178 OPTSET2(INP_RECVRSSBUCKETID, optval); 1179 break; 1180 #endif 1181 } 1182 break; 1183 #undef OPTSET 1184 #undef OPTSET2 1185 1186 /* 1187 * Multicast socket options are processed by the in_mcast 1188 * module. 1189 */ 1190 case IP_MULTICAST_IF: 1191 case IP_MULTICAST_VIF: 1192 case IP_MULTICAST_TTL: 1193 case IP_MULTICAST_LOOP: 1194 case IP_ADD_MEMBERSHIP: 1195 case IP_DROP_MEMBERSHIP: 1196 case IP_ADD_SOURCE_MEMBERSHIP: 1197 case IP_DROP_SOURCE_MEMBERSHIP: 1198 case IP_BLOCK_SOURCE: 1199 case IP_UNBLOCK_SOURCE: 1200 case IP_MSFILTER: 1201 case MCAST_JOIN_GROUP: 1202 case MCAST_LEAVE_GROUP: 1203 case MCAST_JOIN_SOURCE_GROUP: 1204 case MCAST_LEAVE_SOURCE_GROUP: 1205 case MCAST_BLOCK_SOURCE: 1206 case MCAST_UNBLOCK_SOURCE: 1207 error = inp_setmoptions(inp, sopt); 1208 break; 1209 1210 case IP_PORTRANGE: 1211 error = sooptcopyin(sopt, &optval, sizeof optval, 1212 sizeof optval); 1213 if (error) 1214 break; 1215 1216 INP_WLOCK(inp); 1217 switch (optval) { 1218 case IP_PORTRANGE_DEFAULT: 1219 inp->inp_flags &= ~(INP_LOWPORT); 1220 inp->inp_flags &= ~(INP_HIGHPORT); 1221 break; 1222 1223 case IP_PORTRANGE_HIGH: 1224 inp->inp_flags &= ~(INP_LOWPORT); 1225 inp->inp_flags |= INP_HIGHPORT; 1226 break; 1227 1228 case IP_PORTRANGE_LOW: 1229 inp->inp_flags &= ~(INP_HIGHPORT); 1230 inp->inp_flags |= INP_LOWPORT; 1231 break; 1232 1233 default: 1234 error = EINVAL; 1235 break; 1236 } 1237 INP_WUNLOCK(inp); 1238 break; 1239 1240 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1241 case IP_IPSEC_POLICY: 1242 if (IPSEC_ENABLED(ipv4)) { 1243 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1244 break; 1245 } 1246 /* FALLTHROUGH */ 1247 #endif /* IPSEC */ 1248 1249 default: 1250 error = ENOPROTOOPT; 1251 break; 1252 } 1253 break; 1254 1255 case SOPT_GET: 1256 switch (sopt->sopt_name) { 1257 case IP_OPTIONS: 1258 case IP_RETOPTS: 1259 INP_RLOCK(inp); 1260 if (inp->inp_options) { 1261 struct mbuf *options; 1262 1263 options = m_dup(inp->inp_options, M_NOWAIT); 1264 INP_RUNLOCK(inp); 1265 if (options != NULL) { 1266 error = sooptcopyout(sopt, 1267 mtod(options, char *), 1268 options->m_len); 1269 m_freem(options); 1270 } else 1271 error = ENOMEM; 1272 } else { 1273 INP_RUNLOCK(inp); 1274 sopt->sopt_valsize = 0; 1275 } 1276 break; 1277 1278 case IP_TOS: 1279 case IP_TTL: 1280 case IP_MINTTL: 1281 case IP_RECVOPTS: 1282 case IP_RECVRETOPTS: 1283 case IP_ORIGDSTADDR: 1284 case IP_RECVDSTADDR: 1285 case IP_RECVTTL: 1286 case IP_RECVIF: 1287 case IP_PORTRANGE: 1288 case IP_ONESBCAST: 1289 case IP_DONTFRAG: 1290 case IP_BINDANY: 1291 case IP_RECVTOS: 1292 case IP_BINDMULTI: 1293 case IP_FLOWID: 1294 case IP_FLOWTYPE: 1295 case IP_RECVFLOWID: 1296 #ifdef RSS 1297 case IP_RSSBUCKETID: 1298 case IP_RECVRSSBUCKETID: 1299 #endif 1300 switch (sopt->sopt_name) { 1301 1302 case IP_TOS: 1303 optval = inp->inp_ip_tos; 1304 break; 1305 1306 case IP_TTL: 1307 optval = inp->inp_ip_ttl; 1308 break; 1309 1310 case IP_MINTTL: 1311 optval = inp->inp_ip_minttl; 1312 break; 1313 1314 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1315 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1316 1317 case IP_RECVOPTS: 1318 optval = OPTBIT(INP_RECVOPTS); 1319 break; 1320 1321 case IP_RECVRETOPTS: 1322 optval = OPTBIT(INP_RECVRETOPTS); 1323 break; 1324 1325 case IP_RECVDSTADDR: 1326 optval = OPTBIT(INP_RECVDSTADDR); 1327 break; 1328 1329 case IP_ORIGDSTADDR: 1330 optval = OPTBIT2(INP_ORIGDSTADDR); 1331 break; 1332 1333 case IP_RECVTTL: 1334 optval = OPTBIT(INP_RECVTTL); 1335 break; 1336 1337 case IP_RECVIF: 1338 optval = OPTBIT(INP_RECVIF); 1339 break; 1340 1341 case IP_PORTRANGE: 1342 if (inp->inp_flags & INP_HIGHPORT) 1343 optval = IP_PORTRANGE_HIGH; 1344 else if (inp->inp_flags & INP_LOWPORT) 1345 optval = IP_PORTRANGE_LOW; 1346 else 1347 optval = 0; 1348 break; 1349 1350 case IP_ONESBCAST: 1351 optval = OPTBIT(INP_ONESBCAST); 1352 break; 1353 case IP_DONTFRAG: 1354 optval = OPTBIT(INP_DONTFRAG); 1355 break; 1356 case IP_BINDANY: 1357 optval = OPTBIT(INP_BINDANY); 1358 break; 1359 case IP_RECVTOS: 1360 optval = OPTBIT(INP_RECVTOS); 1361 break; 1362 case IP_FLOWID: 1363 optval = inp->inp_flowid; 1364 break; 1365 case IP_FLOWTYPE: 1366 optval = inp->inp_flowtype; 1367 break; 1368 case IP_RECVFLOWID: 1369 optval = OPTBIT2(INP_RECVFLOWID); 1370 break; 1371 #ifdef RSS 1372 case IP_RSSBUCKETID: 1373 retval = rss_hash2bucket(inp->inp_flowid, 1374 inp->inp_flowtype, 1375 &rss_bucket); 1376 if (retval == 0) 1377 optval = rss_bucket; 1378 else 1379 error = EINVAL; 1380 break; 1381 case IP_RECVRSSBUCKETID: 1382 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1383 break; 1384 #endif 1385 case IP_BINDMULTI: 1386 optval = OPTBIT2(INP_BINDMULTI); 1387 break; 1388 } 1389 error = sooptcopyout(sopt, &optval, sizeof optval); 1390 break; 1391 1392 /* 1393 * Multicast socket options are processed by the in_mcast 1394 * module. 1395 */ 1396 case IP_MULTICAST_IF: 1397 case IP_MULTICAST_VIF: 1398 case IP_MULTICAST_TTL: 1399 case IP_MULTICAST_LOOP: 1400 case IP_MSFILTER: 1401 error = inp_getmoptions(inp, sopt); 1402 break; 1403 1404 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1405 case IP_IPSEC_POLICY: 1406 if (IPSEC_ENABLED(ipv4)) { 1407 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1408 break; 1409 } 1410 /* FALLTHROUGH */ 1411 #endif /* IPSEC */ 1412 1413 default: 1414 error = ENOPROTOOPT; 1415 break; 1416 } 1417 break; 1418 } 1419 return (error); 1420 } 1421 1422 /* 1423 * Routine called from ip_output() to loop back a copy of an IP multicast 1424 * packet to the input queue of a specified interface. Note that this 1425 * calls the output routine of the loopback "driver", but with an interface 1426 * pointer that might NOT be a loopback interface -- evil, but easier than 1427 * replicating that code here. 1428 */ 1429 static void 1430 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1431 { 1432 struct ip *ip; 1433 struct mbuf *copym; 1434 1435 /* 1436 * Make a deep copy of the packet because we're going to 1437 * modify the pack in order to generate checksums. 1438 */ 1439 copym = m_dup(m, M_NOWAIT); 1440 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1441 copym = m_pullup(copym, hlen); 1442 if (copym != NULL) { 1443 /* If needed, compute the checksum and mark it as valid. */ 1444 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1445 in_delayed_cksum(copym); 1446 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1447 copym->m_pkthdr.csum_flags |= 1448 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1449 copym->m_pkthdr.csum_data = 0xffff; 1450 } 1451 /* 1452 * We don't bother to fragment if the IP length is greater 1453 * than the interface's MTU. Can this possibly matter? 1454 */ 1455 ip = mtod(copym, struct ip *); 1456 ip->ip_sum = 0; 1457 ip->ip_sum = in_cksum(copym, hlen); 1458 if_simloop(ifp, copym, AF_INET, 0); 1459 } 1460 } 1461