xref: /freebsd/sys/netinet/ip_output.c (revision d2387d42b8da231a5b95cbc313825fb2aadf26f6)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34  * $FreeBSD$
35  */
36 
37 #include "opt_ipfw.h"
38 #include "opt_ipdn.h"
39 #include "opt_ipdivert.h"
40 #include "opt_ipfilter.h"
41 #include "opt_ipsec.h"
42 #include "opt_mac.h"
43 #include "opt_pfil_hooks.h"
44 #include "opt_random_ip_id.h"
45 #include "opt_mbuf_stress_test.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/mac.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/sysctl.h>
57 
58 #include <net/if.h>
59 #include <net/route.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/ip.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip_var.h>
67 
68 #ifdef PFIL_HOOKS
69 #include <net/pfil.h>
70 #endif
71 
72 #include <machine/in_cksum.h>
73 
74 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
75 
76 #ifdef IPSEC
77 #include <netinet6/ipsec.h>
78 #include <netkey/key.h>
79 #ifdef IPSEC_DEBUG
80 #include <netkey/key_debug.h>
81 #else
82 #define	KEYDEBUG(lev,arg)
83 #endif
84 #endif /*IPSEC*/
85 
86 #ifdef FAST_IPSEC
87 #include <netipsec/ipsec.h>
88 #include <netipsec/xform.h>
89 #include <netipsec/key.h>
90 #endif /*FAST_IPSEC*/
91 
92 #include <netinet/ip_fw.h>
93 #include <netinet/ip_divert.h>
94 #include <netinet/ip_dummynet.h>
95 
96 #define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
97 				x, (ntohl(a.s_addr)>>24)&0xFF,\
98 				  (ntohl(a.s_addr)>>16)&0xFF,\
99 				  (ntohl(a.s_addr)>>8)&0xFF,\
100 				  (ntohl(a.s_addr))&0xFF, y);
101 
102 u_short ip_id;
103 
104 #ifdef MBUF_STRESS_TEST
105 int mbuf_frag_size = 0;
106 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
107 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
108 #endif
109 
110 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
111 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
112 static void	ip_mloopback
113 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
114 static int	ip_getmoptions
115 	(struct sockopt *, struct ip_moptions *);
116 static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
117 static int	ip_setmoptions
118 	(struct sockopt *, struct ip_moptions **);
119 
120 int	ip_optcopy(struct ip *, struct ip *);
121 
122 
123 extern	struct protosw inetsw[];
124 
125 /*
126  * IP output.  The packet in mbuf chain m contains a skeletal IP
127  * header (with len, off, ttl, proto, tos, src, dst).
128  * The mbuf chain containing the packet will be freed.
129  * The mbuf opt, if present, will not be freed.
130  * In the IP forwarding case, the packet will arrive with options already
131  * inserted, so must have a NULL opt pointer.
132  */
133 int
134 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro,
135 	int flags, struct ip_moptions *imo, struct inpcb *inp)
136 {
137 	struct ip *ip;
138 	struct ifnet *ifp = NULL;	/* keep compiler happy */
139 	struct mbuf *m0;
140 	int hlen = sizeof (struct ip);
141 	int len, off, error = 0;
142 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
143 	struct in_ifaddr *ia = NULL;
144 	int isbroadcast, sw_csum;
145 	struct in_addr pkt_dst;
146 	struct route iproute;
147 	struct m_tag *mtag, *dummytag;
148 #ifdef IPSEC
149 	struct secpolicy *sp = NULL;
150 #endif
151 #ifdef FAST_IPSEC
152 	struct secpolicy *sp = NULL;
153 	struct tdb_ident *tdbi;
154 	int s;
155 #endif /* FAST_IPSEC */
156 	struct ip_fw_args args;
157 	int src_was_INADDR_ANY = 0;	/* as the name says... */
158 
159 	args.eh = NULL;
160 	args.rule = NULL;
161 
162 	M_ASSERTPKTHDR(m);
163 
164 	args.next_hop = ip_claim_next_hop(m);
165 	dummytag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
166 	if (dummytag != NULL) {
167 		struct dn_pkt_tag *dt = (struct dn_pkt_tag *)(dummytag+1);
168 		/*
169 		 * Prevent lower layers from finding the tag
170 		 * Cleanup and free is done below
171 		 */
172 		m_tag_unlink(m, dummytag);
173 		/*
174 		 * the packet was already tagged, so part of the
175 		 * processing was already done, and we need to go down.
176 		 * Get parameters from the header.
177 		 */
178 		args.rule = dt->rule;
179 		ro = &(dt->ro);
180 		dst = dt->dn_dst;
181 		ifp = dt->ifp;
182 	}
183 
184 	if (ro == NULL) {
185 		ro = &iproute;
186 		bzero(ro, sizeof (*ro));
187 	}
188 
189 	if (inp != NULL)
190 		INP_LOCK_ASSERT(inp);
191 
192 	if (args.rule != NULL) {	/* dummynet already saw us */
193 		ip = mtod(m, struct ip *);
194 		hlen = ip->ip_hl << 2 ;
195 		if (ro->ro_rt)
196 			ia = ifatoia(ro->ro_rt->rt_ifa);
197 		goto sendit;
198 	}
199 
200 	if (opt) {
201 		len = 0;
202 		m = ip_insertoptions(m, opt, &len);
203 		if (len != 0)
204 			hlen = len;
205 	}
206 	ip = mtod(m, struct ip *);
207 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
208 
209 	/*
210 	 * Fill in IP header.  If we are not allowing fragmentation,
211 	 * then the ip_id field is meaningless, but we don't set it
212 	 * to zero.  Doing so causes various problems when devices along
213 	 * the path (routers, load balancers, firewalls, etc.) illegally
214 	 * disable DF on our packet.  Note that a 16-bit counter
215 	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
216 	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
217 	 * for Counting NATted Hosts", Proc. IMW'02, available at
218 	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
219 	 */
220 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
221 		ip->ip_v = IPVERSION;
222 		ip->ip_hl = hlen >> 2;
223 #ifdef RANDOM_IP_ID
224 		ip->ip_id = ip_randomid();
225 #else
226 		ip->ip_id = htons(ip_id++);
227 #endif
228 		ipstat.ips_localout++;
229 	} else {
230 		hlen = ip->ip_hl << 2;
231 	}
232 
233 	dst = (struct sockaddr_in *)&ro->ro_dst;
234 	/*
235 	 * If there is a cached route,
236 	 * check that it is to the same destination
237 	 * and is still up.  If not, free it and try again.
238 	 * The address family should also be checked in case of sharing the
239 	 * cache with IPv6.
240 	 */
241 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
242 			  dst->sin_family != AF_INET ||
243 			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
244 		RTFREE(ro->ro_rt);
245 		ro->ro_rt = (struct rtentry *)0;
246 	}
247 	if (ro->ro_rt == 0) {
248 		bzero(dst, sizeof(*dst));
249 		dst->sin_family = AF_INET;
250 		dst->sin_len = sizeof(*dst);
251 		dst->sin_addr = pkt_dst;
252 	}
253 	/*
254 	 * If routing to interface only,
255 	 * short circuit routing lookup.
256 	 */
257 	if (flags & IP_ROUTETOIF) {
258 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
259 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
260 			ipstat.ips_noroute++;
261 			error = ENETUNREACH;
262 			goto bad;
263 		}
264 		ifp = ia->ia_ifp;
265 		ip->ip_ttl = 1;
266 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
267 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
268 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
269 		/*
270 		 * Bypass the normal routing lookup for multicast
271 		 * packets if the interface is specified.
272 		 */
273 		ifp = imo->imo_multicast_ifp;
274 		IFP_TO_IA(ifp, ia);
275 		isbroadcast = 0;	/* fool gcc */
276 	} else {
277 		/*
278 		 * We want to do any cloning requested by the link layer,
279 		 * as this is probably required in all cases for correct
280 		 * operation (as it is for ARP).
281 		 */
282 		if (ro->ro_rt == 0)
283 			rtalloc(ro);
284 		if (ro->ro_rt == 0) {
285 			ipstat.ips_noroute++;
286 			error = EHOSTUNREACH;
287 			goto bad;
288 		}
289 		ia = ifatoia(ro->ro_rt->rt_ifa);
290 		ifp = ro->ro_rt->rt_ifp;
291 		ro->ro_rt->rt_rmx.rmx_pksent++;
292 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
293 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
294 		if (ro->ro_rt->rt_flags & RTF_HOST)
295 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
296 		else
297 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
298 	}
299 	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
300 		struct in_multi *inm;
301 
302 		m->m_flags |= M_MCAST;
303 		/*
304 		 * IP destination address is multicast.  Make sure "dst"
305 		 * still points to the address in "ro".  (It may have been
306 		 * changed to point to a gateway address, above.)
307 		 */
308 		dst = (struct sockaddr_in *)&ro->ro_dst;
309 		/*
310 		 * See if the caller provided any multicast options
311 		 */
312 		if (imo != NULL) {
313 			ip->ip_ttl = imo->imo_multicast_ttl;
314 			if (imo->imo_multicast_vif != -1)
315 				ip->ip_src.s_addr =
316 				    ip_mcast_src ?
317 				    ip_mcast_src(imo->imo_multicast_vif) :
318 				    INADDR_ANY;
319 		} else
320 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
321 		/*
322 		 * Confirm that the outgoing interface supports multicast.
323 		 */
324 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
325 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
326 				ipstat.ips_noroute++;
327 				error = ENETUNREACH;
328 				goto bad;
329 			}
330 		}
331 		/*
332 		 * If source address not specified yet, use address
333 		 * of outgoing interface.
334 		 */
335 		if (ip->ip_src.s_addr == INADDR_ANY) {
336 			/* Interface may have no addresses. */
337 			if (ia != NULL)
338 				ip->ip_src = IA_SIN(ia)->sin_addr;
339 		}
340 
341 		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
342 		if (inm != NULL &&
343 		   (imo == NULL || imo->imo_multicast_loop)) {
344 			/*
345 			 * If we belong to the destination multicast group
346 			 * on the outgoing interface, and the caller did not
347 			 * forbid loopback, loop back a copy.
348 			 */
349 			ip_mloopback(ifp, m, dst, hlen);
350 		}
351 		else {
352 			/*
353 			 * If we are acting as a multicast router, perform
354 			 * multicast forwarding as if the packet had just
355 			 * arrived on the interface to which we are about
356 			 * to send.  The multicast forwarding function
357 			 * recursively calls this function, using the
358 			 * IP_FORWARDING flag to prevent infinite recursion.
359 			 *
360 			 * Multicasts that are looped back by ip_mloopback(),
361 			 * above, will be forwarded by the ip_input() routine,
362 			 * if necessary.
363 			 */
364 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
365 				/*
366 				 * If rsvp daemon is not running, do not
367 				 * set ip_moptions. This ensures that the packet
368 				 * is multicast and not just sent down one link
369 				 * as prescribed by rsvpd.
370 				 */
371 				if (!rsvp_on)
372 					imo = NULL;
373 				if (ip_mforward &&
374 				    ip_mforward(ip, ifp, m, imo) != 0) {
375 					m_freem(m);
376 					goto done;
377 				}
378 			}
379 		}
380 
381 		/*
382 		 * Multicasts with a time-to-live of zero may be looped-
383 		 * back, above, but must not be transmitted on a network.
384 		 * Also, multicasts addressed to the loopback interface
385 		 * are not sent -- the above call to ip_mloopback() will
386 		 * loop back a copy if this host actually belongs to the
387 		 * destination group on the loopback interface.
388 		 */
389 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
390 			m_freem(m);
391 			goto done;
392 		}
393 
394 		goto sendit;
395 	}
396 #ifndef notdef
397 	/*
398 	 * If the source address is not specified yet, use the address
399 	 * of the outoing interface. In case, keep note we did that, so
400 	 * if the the firewall changes the next-hop causing the output
401 	 * interface to change, we can fix that.
402 	 */
403 	if (ip->ip_src.s_addr == INADDR_ANY) {
404 		/* Interface may have no addresses. */
405 		if (ia != NULL) {
406 			ip->ip_src = IA_SIN(ia)->sin_addr;
407 			src_was_INADDR_ANY = 1;
408 		}
409 	}
410 #endif /* notdef */
411 	/*
412 	 * Verify that we have any chance at all of being able to queue
413 	 *      the packet or packet fragments
414 	 */
415 	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
416 		ifp->if_snd.ifq_maxlen) {
417 			error = ENOBUFS;
418 			ipstat.ips_odropped++;
419 			goto bad;
420 	}
421 
422 	/*
423 	 * Look for broadcast address and
424 	 * verify user is allowed to send
425 	 * such a packet.
426 	 */
427 	if (isbroadcast) {
428 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
429 			error = EADDRNOTAVAIL;
430 			goto bad;
431 		}
432 		if ((flags & IP_ALLOWBROADCAST) == 0) {
433 			error = EACCES;
434 			goto bad;
435 		}
436 		/* don't allow broadcast messages to be fragmented */
437 		if (ip->ip_len > ifp->if_mtu) {
438 			error = EMSGSIZE;
439 			goto bad;
440 		}
441 		if (flags & IP_SENDONES)
442 			ip->ip_dst.s_addr = INADDR_BROADCAST;
443 		m->m_flags |= M_BCAST;
444 	} else {
445 		m->m_flags &= ~M_BCAST;
446 	}
447 
448 sendit:
449 #ifdef IPSEC
450 	/* get SP for this packet */
451 	if (inp == NULL)
452 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
453 		    flags, &error);
454 	else
455 		sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
456 
457 	if (sp == NULL) {
458 		ipsecstat.out_inval++;
459 		goto bad;
460 	}
461 
462 	error = 0;
463 
464 	/* check policy */
465 	switch (sp->policy) {
466 	case IPSEC_POLICY_DISCARD:
467 		/*
468 		 * This packet is just discarded.
469 		 */
470 		ipsecstat.out_polvio++;
471 		goto bad;
472 
473 	case IPSEC_POLICY_BYPASS:
474 	case IPSEC_POLICY_NONE:
475 	case IPSEC_POLICY_TCP:
476 		/* no need to do IPsec. */
477 		goto skip_ipsec;
478 
479 	case IPSEC_POLICY_IPSEC:
480 		if (sp->req == NULL) {
481 			/* acquire a policy */
482 			error = key_spdacquire(sp);
483 			goto bad;
484 		}
485 		break;
486 
487 	case IPSEC_POLICY_ENTRUST:
488 	default:
489 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
490 	}
491     {
492 	struct ipsec_output_state state;
493 	bzero(&state, sizeof(state));
494 	state.m = m;
495 	if (flags & IP_ROUTETOIF) {
496 		state.ro = &iproute;
497 		bzero(&iproute, sizeof(iproute));
498 	} else
499 		state.ro = ro;
500 	state.dst = (struct sockaddr *)dst;
501 
502 	ip->ip_sum = 0;
503 
504 	/*
505 	 * XXX
506 	 * delayed checksums are not currently compatible with IPsec
507 	 */
508 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
509 		in_delayed_cksum(m);
510 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
511 	}
512 
513 	ip->ip_len = htons(ip->ip_len);
514 	ip->ip_off = htons(ip->ip_off);
515 
516 	error = ipsec4_output(&state, sp, flags);
517 
518 	m = state.m;
519 	if (flags & IP_ROUTETOIF) {
520 		/*
521 		 * if we have tunnel mode SA, we may need to ignore
522 		 * IP_ROUTETOIF.
523 		 */
524 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
525 			flags &= ~IP_ROUTETOIF;
526 			ro = state.ro;
527 		}
528 	} else
529 		ro = state.ro;
530 	dst = (struct sockaddr_in *)state.dst;
531 	if (error) {
532 		/* mbuf is already reclaimed in ipsec4_output. */
533 		m = NULL;
534 		switch (error) {
535 		case EHOSTUNREACH:
536 		case ENETUNREACH:
537 		case EMSGSIZE:
538 		case ENOBUFS:
539 		case ENOMEM:
540 			break;
541 		default:
542 			printf("ip4_output (ipsec): error code %d\n", error);
543 			/*fall through*/
544 		case ENOENT:
545 			/* don't show these error codes to the user */
546 			error = 0;
547 			break;
548 		}
549 		goto bad;
550 	}
551 
552 	/* be sure to update variables that are affected by ipsec4_output() */
553 	ip = mtod(m, struct ip *);
554 	hlen = ip->ip_hl << 2;
555 	if (ro->ro_rt == NULL) {
556 		if ((flags & IP_ROUTETOIF) == 0) {
557 			printf("ip_output: "
558 				"can't update route after IPsec processing\n");
559 			error = EHOSTUNREACH;	/*XXX*/
560 			goto bad;
561 		}
562 	} else {
563 		if (state.encap) {
564 			ia = ifatoia(ro->ro_rt->rt_ifa);
565 			ifp = ro->ro_rt->rt_ifp;
566 		}
567 	}
568     }
569 
570 	/* make it flipped, again. */
571 	ip->ip_len = ntohs(ip->ip_len);
572 	ip->ip_off = ntohs(ip->ip_off);
573 skip_ipsec:
574 #endif /*IPSEC*/
575 #ifdef FAST_IPSEC
576 	/*
577 	 * Check the security policy (SP) for the packet and, if
578 	 * required, do IPsec-related processing.  There are two
579 	 * cases here; the first time a packet is sent through
580 	 * it will be untagged and handled by ipsec4_checkpolicy.
581 	 * If the packet is resubmitted to ip_output (e.g. after
582 	 * AH, ESP, etc. processing), there will be a tag to bypass
583 	 * the lookup and related policy checking.
584 	 */
585 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
586 	s = splnet();
587 	if (mtag != NULL) {
588 		tdbi = (struct tdb_ident *)(mtag + 1);
589 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
590 		if (sp == NULL)
591 			error = -EINVAL;	/* force silent drop */
592 		m_tag_delete(m, mtag);
593 	} else {
594 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
595 					&error, inp);
596 	}
597 	/*
598 	 * There are four return cases:
599 	 *    sp != NULL	 	    apply IPsec policy
600 	 *    sp == NULL, error == 0	    no IPsec handling needed
601 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
602 	 *    sp == NULL, error != 0	    discard packet, report error
603 	 */
604 	if (sp != NULL) {
605 		/* Loop detection, check if ipsec processing already done */
606 		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
607 		for (mtag = m_tag_first(m); mtag != NULL;
608 		     mtag = m_tag_next(m, mtag)) {
609 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
610 				continue;
611 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
612 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
613 				continue;
614 			/*
615 			 * Check if policy has an SA associated with it.
616 			 * This can happen when an SP has yet to acquire
617 			 * an SA; e.g. on first reference.  If it occurs,
618 			 * then we let ipsec4_process_packet do its thing.
619 			 */
620 			if (sp->req->sav == NULL)
621 				break;
622 			tdbi = (struct tdb_ident *)(mtag + 1);
623 			if (tdbi->spi == sp->req->sav->spi &&
624 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
625 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
626 				 sizeof (union sockaddr_union)) == 0) {
627 				/*
628 				 * No IPsec processing is needed, free
629 				 * reference to SP.
630 				 *
631 				 * NB: null pointer to avoid free at
632 				 *     done: below.
633 				 */
634 				KEY_FREESP(&sp), sp = NULL;
635 				splx(s);
636 				goto spd_done;
637 			}
638 		}
639 
640 		/*
641 		 * Do delayed checksums now because we send before
642 		 * this is done in the normal processing path.
643 		 */
644 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
645 			in_delayed_cksum(m);
646 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
647 		}
648 
649 		ip->ip_len = htons(ip->ip_len);
650 		ip->ip_off = htons(ip->ip_off);
651 
652 		/* NB: callee frees mbuf */
653 		error = ipsec4_process_packet(m, sp->req, flags, 0);
654 		/*
655 		 * Preserve KAME behaviour: ENOENT can be returned
656 		 * when an SA acquire is in progress.  Don't propagate
657 		 * this to user-level; it confuses applications.
658 		 *
659 		 * XXX this will go away when the SADB is redone.
660 		 */
661 		if (error == ENOENT)
662 			error = 0;
663 		splx(s);
664 		goto done;
665 	} else {
666 		splx(s);
667 
668 		if (error != 0) {
669 			/*
670 			 * Hack: -EINVAL is used to signal that a packet
671 			 * should be silently discarded.  This is typically
672 			 * because we asked key management for an SA and
673 			 * it was delayed (e.g. kicked up to IKE).
674 			 */
675 			if (error == -EINVAL)
676 				error = 0;
677 			goto bad;
678 		} else {
679 			/* No IPsec processing for this packet. */
680 		}
681 #ifdef notyet
682 		/*
683 		 * If deferred crypto processing is needed, check that
684 		 * the interface supports it.
685 		 */
686 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
687 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
688 			/* notify IPsec to do its own crypto */
689 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
690 			error = EHOSTUNREACH;
691 			goto bad;
692 		}
693 #endif
694 	}
695 spd_done:
696 #endif /* FAST_IPSEC */
697 
698 	/*
699 	 * IpHack's section.
700 	 * - Xlate: translate packet's addr/port (NAT).
701 	 * - Firewall: deny/allow/etc.
702 	 * - Wrap: fake packet's addr/port <unimpl.>
703 	 * - Encapsulate: put it in another IP and send out. <unimp.>
704 	 */
705 #ifdef PFIL_HOOKS
706 	/*
707 	 * Run through list of hooks for output packets.
708 	 */
709 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
710 	if (error != 0 || m == NULL)
711 		goto done;
712 	ip = mtod(m, struct ip *);
713 #endif /* PFIL_HOOKS */
714 
715 	/*
716 	 * Check with the firewall...
717 	 * but not if we are already being fwd'd from a firewall.
718 	 */
719 	if (fw_enable && IPFW_LOADED && !args.next_hop) {
720 		struct sockaddr_in *old = dst;
721 
722 		args.m = m;
723 		args.next_hop = dst;
724 		args.oif = ifp;
725 		off = ip_fw_chk_ptr(&args);
726 		m = args.m;
727 		dst = args.next_hop;
728 
729                 /*
730 		 * On return we must do the following:
731 		 * m == NULL	-> drop the pkt (old interface, deprecated)
732 		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
733 		 * 1<=off<= 0xffff		-> DIVERT
734 		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
735 		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
736 		 * dst != old			-> IPFIREWALL_FORWARD
737 		 * off==0, dst==old		-> accept
738 		 * If some of the above modules are not compiled in, then
739 		 * we should't have to check the corresponding condition
740 		 * (because the ipfw control socket should not accept
741 		 * unsupported rules), but better play safe and drop
742 		 * packets in case of doubt.
743 		 */
744 		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
745 			if (m)
746 				m_freem(m);
747 			error = EACCES;
748 			goto done;
749 		}
750 		ip = mtod(m, struct ip *);
751 		if (off == 0 && dst == old)		/* common case */
752 			goto pass;
753                 if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
754 			/*
755 			 * pass the pkt to dummynet. Need to include
756 			 * pipe number, m, ifp, ro, dst because these are
757 			 * not recomputed in the next pass.
758 			 * All other parameters have been already used and
759 			 * so they are not needed anymore.
760 			 * XXX note: if the ifp or ro entry are deleted
761 			 * while a pkt is in dummynet, we are in trouble!
762 			 */
763 			args.ro = ro;
764 			args.dst = dst;
765 			args.flags = flags;
766 
767 			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
768 				&args);
769 			goto done;
770 		}
771 #ifdef IPDIVERT
772 		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
773 			struct mbuf *clone;
774 
775 			/* Clone packet if we're doing a 'tee' */
776 			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
777 				clone = divert_clone(m);
778 			else
779 				clone = NULL;
780 
781 			/*
782 			 * XXX
783 			 * delayed checksums are not currently compatible
784 			 * with divert sockets.
785 			 */
786 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
787 				in_delayed_cksum(m);
788 				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
789 			}
790 
791 			/* Restore packet header fields to original values */
792 			ip->ip_len = htons(ip->ip_len);
793 			ip->ip_off = htons(ip->ip_off);
794 
795 			/* Deliver packet to divert input routine */
796 			divert_packet(m, 0);
797 
798 			/* If 'tee', continue with original packet */
799 			if (clone != NULL) {
800 				m = clone;
801 				ip = mtod(m, struct ip *);
802 				goto pass;
803 			}
804 			goto done;
805 		}
806 #endif
807 
808 		/* IPFIREWALL_FORWARD */
809 		/*
810 		 * Check dst to make sure it is directly reachable on the
811 		 * interface we previously thought it was.
812 		 * If it isn't (which may be likely in some situations) we have
813 		 * to re-route it (ie, find a route for the next-hop and the
814 		 * associated interface) and set them here. This is nested
815 		 * forwarding which in most cases is undesirable, except where
816 		 * such control is nigh impossible. So we do it here.
817 		 * And I'm babbling.
818 		 */
819 		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
820 #if 0
821 			/*
822 			 * XXX To improve readability, this block should be
823 			 * changed into a function call as below:
824 			 */
825 			error = ip_ipforward(&m, &dst, &ifp);
826 			if (error)
827 				goto bad;
828 			if (m == NULL) /* ip_input consumed the mbuf */
829 				goto done;
830 #else
831 			struct in_ifaddr *ia;
832 
833 			/*
834 			 * XXX sro_fwd below is static, and a pointer
835 			 * to it gets passed to routines downstream.
836 			 * This could have surprisingly bad results in
837 			 * practice, because its content is overwritten
838 			 * by subsequent packets.
839 			 */
840 			/* There must be a better way to do this next line... */
841 			static struct route sro_fwd;
842 			struct route *ro_fwd = &sro_fwd;
843 
844 #if 0
845 			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
846 			    dst->sin_addr, "\n");
847 #endif
848 
849 			/*
850 			 * We need to figure out if we have been forwarded
851 			 * to a local socket. If so, then we should somehow
852 			 * "loop back" to ip_input, and get directed to the
853 			 * PCB as if we had received this packet. This is
854 			 * because it may be dificult to identify the packets
855 			 * you want to forward until they are being output
856 			 * and have selected an interface. (e.g. locally
857 			 * initiated packets) If we used the loopback inteface,
858 			 * we would not be able to control what happens
859 			 * as the packet runs through ip_input() as
860 			 * it is done through an ISR.
861 			 */
862 			LIST_FOREACH(ia,
863 			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
864 				/*
865 				 * If the addr to forward to is one
866 				 * of ours, we pretend to
867 				 * be the destination for this packet.
868 				 */
869 				if (IA_SIN(ia)->sin_addr.s_addr ==
870 						 dst->sin_addr.s_addr)
871 					break;
872 			}
873 			if (ia) {	/* tell ip_input "dont filter" */
874 				mtag = m_tag_get(
875 				    PACKET_TAG_IPFORWARD,
876 				    sizeof(struct sockaddr_in *), M_NOWAIT);
877 				if (mtag == NULL) {
878 					error = ENOBUFS;
879 					goto bad;
880 				}
881 				*(struct sockaddr_in **)(mtag+1) =
882 				    args.next_hop;
883 				m_tag_prepend(m, mtag);
884 
885 				if (m->m_pkthdr.rcvif == NULL)
886 					m->m_pkthdr.rcvif = ifunit("lo0");
887 				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
888 					m->m_pkthdr.csum_flags |=
889 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
890 					m->m_pkthdr.csum_data = 0xffff;
891 				}
892 				m->m_pkthdr.csum_flags |=
893 				    CSUM_IP_CHECKED | CSUM_IP_VALID;
894 				ip->ip_len = htons(ip->ip_len);
895 				ip->ip_off = htons(ip->ip_off);
896 				ip_input(m);
897 				goto done;
898 			}
899 			/*
900 			 * Some of the logic for this was
901 			 * nicked from above.
902 			 */
903 			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
904 
905 			ro_fwd->ro_rt = 0;
906 			rtalloc_ign(ro_fwd, RTF_CLONING);
907 
908 			if (ro_fwd->ro_rt == 0) {
909 				ipstat.ips_noroute++;
910 				error = EHOSTUNREACH;
911 				goto bad;
912 			}
913 
914 			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
915 			ifp = ro_fwd->ro_rt->rt_ifp;
916 			ro_fwd->ro_rt->rt_rmx.rmx_pksent++;
917 			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
918 				dst = (struct sockaddr_in *)
919 					ro_fwd->ro_rt->rt_gateway;
920 			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
921 				isbroadcast =
922 				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
923 			else
924 				isbroadcast = in_broadcast(dst->sin_addr, ifp);
925 			if (ro->ro_rt)
926 				RTFREE(ro->ro_rt);
927 			ro->ro_rt = ro_fwd->ro_rt;
928 			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
929 
930 #endif	/* ... block to be put into a function */
931 			/*
932 			 * If we added a default src ip earlier,
933 			 * which would have been gotten from the-then
934 			 * interface, do it again, from the new one.
935 			 */
936 			if (src_was_INADDR_ANY)
937 				ip->ip_src = IA_SIN(ia)->sin_addr;
938 			goto pass ;
939 		}
940 
941                 /*
942                  * if we get here, none of the above matches, and
943                  * we have to drop the pkt
944                  */
945 		m_freem(m);
946                 error = EACCES; /* not sure this is the right error msg */
947                 goto done;
948 	}
949 
950 pass:
951 	/* 127/8 must not appear on wire - RFC1122. */
952 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
953 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
954 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
955 			ipstat.ips_badaddr++;
956 			error = EADDRNOTAVAIL;
957 			goto bad;
958 		}
959 	}
960 
961 	m->m_pkthdr.csum_flags |= CSUM_IP;
962 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
963 	if (sw_csum & CSUM_DELAY_DATA) {
964 		in_delayed_cksum(m);
965 		sw_csum &= ~CSUM_DELAY_DATA;
966 	}
967 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
968 
969 	/*
970 	 * If small enough for interface, or the interface will take
971 	 * care of the fragmentation for us, can just send directly.
972 	 */
973 	if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
974 	    ((ip->ip_off & IP_DF) == 0))) {
975 		ip->ip_len = htons(ip->ip_len);
976 		ip->ip_off = htons(ip->ip_off);
977 		ip->ip_sum = 0;
978 		if (sw_csum & CSUM_DELAY_IP)
979 			ip->ip_sum = in_cksum(m, hlen);
980 
981 		/* Record statistics for this interface address. */
982 		if (!(flags & IP_FORWARDING) && ia) {
983 			ia->ia_ifa.if_opackets++;
984 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
985 		}
986 
987 #ifdef IPSEC
988 		/* clean ipsec history once it goes out of the node */
989 		ipsec_delaux(m);
990 #endif
991 
992 #ifdef MBUF_STRESS_TEST
993 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
994 			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
995 #endif
996 		error = (*ifp->if_output)(ifp, m,
997 				(struct sockaddr *)dst, ro->ro_rt);
998 		goto done;
999 	}
1000 
1001 	if (ip->ip_off & IP_DF) {
1002 		error = EMSGSIZE;
1003 		/*
1004 		 * This case can happen if the user changed the MTU
1005 		 * of an interface after enabling IP on it.  Because
1006 		 * most netifs don't keep track of routes pointing to
1007 		 * them, there is no way for one to update all its
1008 		 * routes when the MTU is changed.
1009 		 */
1010 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1011 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1012 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1013 		}
1014 		ipstat.ips_cantfrag++;
1015 		goto bad;
1016 	}
1017 
1018 	/*
1019 	 * Too large for interface; fragment if possible. If successful,
1020 	 * on return, m will point to a list of packets to be sent.
1021 	 */
1022 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1023 	if (error)
1024 		goto bad;
1025 	for (; m; m = m0) {
1026 		m0 = m->m_nextpkt;
1027 		m->m_nextpkt = 0;
1028 #ifdef IPSEC
1029 		/* clean ipsec history once it goes out of the node */
1030 		ipsec_delaux(m);
1031 #endif
1032 		if (error == 0) {
1033 			/* Record statistics for this interface address. */
1034 			if (ia != NULL) {
1035 				ia->ia_ifa.if_opackets++;
1036 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1037 			}
1038 
1039 			error = (*ifp->if_output)(ifp, m,
1040 			    (struct sockaddr *)dst, ro->ro_rt);
1041 		} else
1042 			m_freem(m);
1043 	}
1044 
1045 	if (error == 0)
1046 		ipstat.ips_fragmented++;
1047 
1048 done:
1049 	if (ro == &iproute && ro->ro_rt) {
1050 		RTFREE(ro->ro_rt);
1051 		ro->ro_rt = NULL;
1052 	}
1053 	if (dummytag) {
1054 		struct dn_pkt_tag *dt = (struct dn_pkt_tag *)(dummytag+1);
1055 		if (dt->ro.ro_rt)
1056 			RTFREE(dt->ro.ro_rt);
1057 		m_tag_free(dummytag);
1058 	}
1059 #ifdef IPSEC
1060 	if (sp != NULL) {
1061 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1062 			printf("DP ip_output call free SP:%p\n", sp));
1063 		key_freesp(sp);
1064 	}
1065 #endif
1066 #ifdef FAST_IPSEC
1067 	if (sp != NULL)
1068 		KEY_FREESP(&sp);
1069 #endif
1070 	return (error);
1071 bad:
1072 	m_freem(m);
1073 	goto done;
1074 }
1075 
1076 /*
1077  * Create a chain of fragments which fit the given mtu. m_frag points to the
1078  * mbuf to be fragmented; on return it points to the chain with the fragments.
1079  * Return 0 if no error. If error, m_frag may contain a partially built
1080  * chain of fragments that should be freed by the caller.
1081  *
1082  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1083  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1084  */
1085 int
1086 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1087 	    u_long if_hwassist_flags, int sw_csum)
1088 {
1089 	int error = 0;
1090 	int hlen = ip->ip_hl << 2;
1091 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1092 	int off;
1093 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1094 	int firstlen;
1095 	struct mbuf **mnext;
1096 	int nfrags;
1097 
1098 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1099 		ipstat.ips_cantfrag++;
1100 		return EMSGSIZE;
1101 	}
1102 
1103 	/*
1104 	 * Must be able to put at least 8 bytes per fragment.
1105 	 */
1106 	if (len < 8)
1107 		return EMSGSIZE;
1108 
1109 	/*
1110 	 * If the interface will not calculate checksums on
1111 	 * fragmented packets, then do it here.
1112 	 */
1113 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1114 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
1115 		in_delayed_cksum(m0);
1116 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1117 	}
1118 
1119 	if (len > PAGE_SIZE) {
1120 		/*
1121 		 * Fragment large datagrams such that each segment
1122 		 * contains a multiple of PAGE_SIZE amount of data,
1123 		 * plus headers. This enables a receiver to perform
1124 		 * page-flipping zero-copy optimizations.
1125 		 *
1126 		 * XXX When does this help given that sender and receiver
1127 		 * could have different page sizes, and also mtu could
1128 		 * be less than the receiver's page size ?
1129 		 */
1130 		int newlen;
1131 		struct mbuf *m;
1132 
1133 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1134 			off += m->m_len;
1135 
1136 		/*
1137 		 * firstlen (off - hlen) must be aligned on an
1138 		 * 8-byte boundary
1139 		 */
1140 		if (off < hlen)
1141 			goto smart_frag_failure;
1142 		off = ((off - hlen) & ~7) + hlen;
1143 		newlen = (~PAGE_MASK) & mtu;
1144 		if ((newlen + sizeof (struct ip)) > mtu) {
1145 			/* we failed, go back the default */
1146 smart_frag_failure:
1147 			newlen = len;
1148 			off = hlen + len;
1149 		}
1150 		len = newlen;
1151 
1152 	} else {
1153 		off = hlen + len;
1154 	}
1155 
1156 	firstlen = off - hlen;
1157 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1158 
1159 	/*
1160 	 * Loop through length of segment after first fragment,
1161 	 * make new header and copy data of each part and link onto chain.
1162 	 * Here, m0 is the original packet, m is the fragment being created.
1163 	 * The fragments are linked off the m_nextpkt of the original
1164 	 * packet, which after processing serves as the first fragment.
1165 	 */
1166 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1167 		struct ip *mhip;	/* ip header on the fragment */
1168 		struct mbuf *m;
1169 		int mhlen = sizeof (struct ip);
1170 
1171 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1172 		if (m == 0) {
1173 			error = ENOBUFS;
1174 			ipstat.ips_odropped++;
1175 			goto done;
1176 		}
1177 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1178 		/*
1179 		 * In the first mbuf, leave room for the link header, then
1180 		 * copy the original IP header including options. The payload
1181 		 * goes into an additional mbuf chain returned by m_copy().
1182 		 */
1183 		m->m_data += max_linkhdr;
1184 		mhip = mtod(m, struct ip *);
1185 		*mhip = *ip;
1186 		if (hlen > sizeof (struct ip)) {
1187 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1188 			mhip->ip_v = IPVERSION;
1189 			mhip->ip_hl = mhlen >> 2;
1190 		}
1191 		m->m_len = mhlen;
1192 		/* XXX do we need to add ip->ip_off below ? */
1193 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1194 		if (off + len >= ip->ip_len) {	/* last fragment */
1195 			len = ip->ip_len - off;
1196 			m->m_flags |= M_LASTFRAG;
1197 		} else
1198 			mhip->ip_off |= IP_MF;
1199 		mhip->ip_len = htons((u_short)(len + mhlen));
1200 		m->m_next = m_copy(m0, off, len);
1201 		if (m->m_next == 0) {		/* copy failed */
1202 			m_free(m);
1203 			error = ENOBUFS;	/* ??? */
1204 			ipstat.ips_odropped++;
1205 			goto done;
1206 		}
1207 		m->m_pkthdr.len = mhlen + len;
1208 		m->m_pkthdr.rcvif = (struct ifnet *)0;
1209 #ifdef MAC
1210 		mac_create_fragment(m0, m);
1211 #endif
1212 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1213 		mhip->ip_off = htons(mhip->ip_off);
1214 		mhip->ip_sum = 0;
1215 		if (sw_csum & CSUM_DELAY_IP)
1216 			mhip->ip_sum = in_cksum(m, mhlen);
1217 		*mnext = m;
1218 		mnext = &m->m_nextpkt;
1219 	}
1220 	ipstat.ips_ofragments += nfrags;
1221 
1222 	/* set first marker for fragment chain */
1223 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1224 	m0->m_pkthdr.csum_data = nfrags;
1225 
1226 	/*
1227 	 * Update first fragment by trimming what's been copied out
1228 	 * and updating header.
1229 	 */
1230 	m_adj(m0, hlen + firstlen - ip->ip_len);
1231 	m0->m_pkthdr.len = hlen + firstlen;
1232 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1233 	ip->ip_off |= IP_MF;
1234 	ip->ip_off = htons(ip->ip_off);
1235 	ip->ip_sum = 0;
1236 	if (sw_csum & CSUM_DELAY_IP)
1237 		ip->ip_sum = in_cksum(m0, hlen);
1238 
1239 done:
1240 	*m_frag = m0;
1241 	return error;
1242 }
1243 
1244 void
1245 in_delayed_cksum(struct mbuf *m)
1246 {
1247 	struct ip *ip;
1248 	u_short csum, offset;
1249 
1250 	ip = mtod(m, struct ip *);
1251 	offset = ip->ip_hl << 2 ;
1252 	csum = in_cksum_skip(m, ip->ip_len, offset);
1253 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1254 		csum = 0xffff;
1255 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1256 
1257 	if (offset + sizeof(u_short) > m->m_len) {
1258 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1259 		    m->m_len, offset, ip->ip_p);
1260 		/*
1261 		 * XXX
1262 		 * this shouldn't happen, but if it does, the
1263 		 * correct behavior may be to insert the checksum
1264 		 * in the existing chain instead of rearranging it.
1265 		 */
1266 		m = m_pullup(m, offset + sizeof(u_short));
1267 	}
1268 	*(u_short *)(m->m_data + offset) = csum;
1269 }
1270 
1271 /*
1272  * Insert IP options into preformed packet.
1273  * Adjust IP destination as required for IP source routing,
1274  * as indicated by a non-zero in_addr at the start of the options.
1275  *
1276  * XXX This routine assumes that the packet has no options in place.
1277  */
1278 static struct mbuf *
1279 ip_insertoptions(m, opt, phlen)
1280 	register struct mbuf *m;
1281 	struct mbuf *opt;
1282 	int *phlen;
1283 {
1284 	register struct ipoption *p = mtod(opt, struct ipoption *);
1285 	struct mbuf *n;
1286 	register struct ip *ip = mtod(m, struct ip *);
1287 	unsigned optlen;
1288 
1289 	optlen = opt->m_len - sizeof(p->ipopt_dst);
1290 	if (optlen + ip->ip_len > IP_MAXPACKET) {
1291 		*phlen = 0;
1292 		return (m);		/* XXX should fail */
1293 	}
1294 	if (p->ipopt_dst.s_addr)
1295 		ip->ip_dst = p->ipopt_dst;
1296 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1297 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1298 		if (n == 0) {
1299 			*phlen = 0;
1300 			return (m);
1301 		}
1302 		n->m_pkthdr.rcvif = (struct ifnet *)0;
1303 #ifdef MAC
1304 		mac_create_mbuf_from_mbuf(m, n);
1305 #endif
1306 		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1307 		m->m_len -= sizeof(struct ip);
1308 		m->m_data += sizeof(struct ip);
1309 		n->m_next = m;
1310 		m = n;
1311 		m->m_len = optlen + sizeof(struct ip);
1312 		m->m_data += max_linkhdr;
1313 		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1314 	} else {
1315 		m->m_data -= optlen;
1316 		m->m_len += optlen;
1317 		m->m_pkthdr.len += optlen;
1318 		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1319 	}
1320 	ip = mtod(m, struct ip *);
1321 	bcopy(p->ipopt_list, ip + 1, optlen);
1322 	*phlen = sizeof(struct ip) + optlen;
1323 	ip->ip_v = IPVERSION;
1324 	ip->ip_hl = *phlen >> 2;
1325 	ip->ip_len += optlen;
1326 	return (m);
1327 }
1328 
1329 /*
1330  * Copy options from ip to jp,
1331  * omitting those not copied during fragmentation.
1332  */
1333 int
1334 ip_optcopy(ip, jp)
1335 	struct ip *ip, *jp;
1336 {
1337 	register u_char *cp, *dp;
1338 	int opt, optlen, cnt;
1339 
1340 	cp = (u_char *)(ip + 1);
1341 	dp = (u_char *)(jp + 1);
1342 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1343 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1344 		opt = cp[0];
1345 		if (opt == IPOPT_EOL)
1346 			break;
1347 		if (opt == IPOPT_NOP) {
1348 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1349 			*dp++ = IPOPT_NOP;
1350 			optlen = 1;
1351 			continue;
1352 		}
1353 
1354 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1355 		    ("ip_optcopy: malformed ipv4 option"));
1356 		optlen = cp[IPOPT_OLEN];
1357 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1358 		    ("ip_optcopy: malformed ipv4 option"));
1359 
1360 		/* bogus lengths should have been caught by ip_dooptions */
1361 		if (optlen > cnt)
1362 			optlen = cnt;
1363 		if (IPOPT_COPIED(opt)) {
1364 			bcopy(cp, dp, optlen);
1365 			dp += optlen;
1366 		}
1367 	}
1368 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1369 		*dp++ = IPOPT_EOL;
1370 	return (optlen);
1371 }
1372 
1373 /*
1374  * IP socket option processing.
1375  */
1376 int
1377 ip_ctloutput(so, sopt)
1378 	struct socket *so;
1379 	struct sockopt *sopt;
1380 {
1381 	struct	inpcb *inp = sotoinpcb(so);
1382 	int	error, optval;
1383 
1384 	error = optval = 0;
1385 	if (sopt->sopt_level != IPPROTO_IP) {
1386 		return (EINVAL);
1387 	}
1388 
1389 	switch (sopt->sopt_dir) {
1390 	case SOPT_SET:
1391 		switch (sopt->sopt_name) {
1392 		case IP_OPTIONS:
1393 #ifdef notyet
1394 		case IP_RETOPTS:
1395 #endif
1396 		{
1397 			struct mbuf *m;
1398 			if (sopt->sopt_valsize > MLEN) {
1399 				error = EMSGSIZE;
1400 				break;
1401 			}
1402 			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1403 			if (m == 0) {
1404 				error = ENOBUFS;
1405 				break;
1406 			}
1407 			m->m_len = sopt->sopt_valsize;
1408 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1409 					    m->m_len);
1410 
1411 			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1412 					   m));
1413 		}
1414 
1415 		case IP_TOS:
1416 		case IP_TTL:
1417 		case IP_RECVOPTS:
1418 		case IP_RECVRETOPTS:
1419 		case IP_RECVDSTADDR:
1420 		case IP_RECVTTL:
1421 		case IP_RECVIF:
1422 		case IP_FAITH:
1423 		case IP_ONESBCAST:
1424 			error = sooptcopyin(sopt, &optval, sizeof optval,
1425 					    sizeof optval);
1426 			if (error)
1427 				break;
1428 
1429 			switch (sopt->sopt_name) {
1430 			case IP_TOS:
1431 				inp->inp_ip_tos = optval;
1432 				break;
1433 
1434 			case IP_TTL:
1435 				inp->inp_ip_ttl = optval;
1436 				break;
1437 #define	OPTSET(bit) \
1438 	if (optval) \
1439 		inp->inp_flags |= bit; \
1440 	else \
1441 		inp->inp_flags &= ~bit;
1442 
1443 			case IP_RECVOPTS:
1444 				OPTSET(INP_RECVOPTS);
1445 				break;
1446 
1447 			case IP_RECVRETOPTS:
1448 				OPTSET(INP_RECVRETOPTS);
1449 				break;
1450 
1451 			case IP_RECVDSTADDR:
1452 				OPTSET(INP_RECVDSTADDR);
1453 				break;
1454 
1455 			case IP_RECVTTL:
1456 				OPTSET(INP_RECVTTL);
1457 				break;
1458 
1459 			case IP_RECVIF:
1460 				OPTSET(INP_RECVIF);
1461 				break;
1462 
1463 			case IP_FAITH:
1464 				OPTSET(INP_FAITH);
1465 				break;
1466 
1467 			case IP_ONESBCAST:
1468 				OPTSET(INP_ONESBCAST);
1469 				break;
1470 			}
1471 			break;
1472 #undef OPTSET
1473 
1474 		case IP_MULTICAST_IF:
1475 		case IP_MULTICAST_VIF:
1476 		case IP_MULTICAST_TTL:
1477 		case IP_MULTICAST_LOOP:
1478 		case IP_ADD_MEMBERSHIP:
1479 		case IP_DROP_MEMBERSHIP:
1480 			error = ip_setmoptions(sopt, &inp->inp_moptions);
1481 			break;
1482 
1483 		case IP_PORTRANGE:
1484 			error = sooptcopyin(sopt, &optval, sizeof optval,
1485 					    sizeof optval);
1486 			if (error)
1487 				break;
1488 
1489 			switch (optval) {
1490 			case IP_PORTRANGE_DEFAULT:
1491 				inp->inp_flags &= ~(INP_LOWPORT);
1492 				inp->inp_flags &= ~(INP_HIGHPORT);
1493 				break;
1494 
1495 			case IP_PORTRANGE_HIGH:
1496 				inp->inp_flags &= ~(INP_LOWPORT);
1497 				inp->inp_flags |= INP_HIGHPORT;
1498 				break;
1499 
1500 			case IP_PORTRANGE_LOW:
1501 				inp->inp_flags &= ~(INP_HIGHPORT);
1502 				inp->inp_flags |= INP_LOWPORT;
1503 				break;
1504 
1505 			default:
1506 				error = EINVAL;
1507 				break;
1508 			}
1509 			break;
1510 
1511 #if defined(IPSEC) || defined(FAST_IPSEC)
1512 		case IP_IPSEC_POLICY:
1513 		{
1514 			caddr_t req;
1515 			size_t len = 0;
1516 			int priv;
1517 			struct mbuf *m;
1518 			int optname;
1519 
1520 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1521 				break;
1522 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1523 				break;
1524 			priv = (sopt->sopt_td != NULL &&
1525 				suser(sopt->sopt_td) != 0) ? 0 : 1;
1526 			req = mtod(m, caddr_t);
1527 			len = m->m_len;
1528 			optname = sopt->sopt_name;
1529 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1530 			m_freem(m);
1531 			break;
1532 		}
1533 #endif /*IPSEC*/
1534 
1535 		default:
1536 			error = ENOPROTOOPT;
1537 			break;
1538 		}
1539 		break;
1540 
1541 	case SOPT_GET:
1542 		switch (sopt->sopt_name) {
1543 		case IP_OPTIONS:
1544 		case IP_RETOPTS:
1545 			if (inp->inp_options)
1546 				error = sooptcopyout(sopt,
1547 						     mtod(inp->inp_options,
1548 							  char *),
1549 						     inp->inp_options->m_len);
1550 			else
1551 				sopt->sopt_valsize = 0;
1552 			break;
1553 
1554 		case IP_TOS:
1555 		case IP_TTL:
1556 		case IP_RECVOPTS:
1557 		case IP_RECVRETOPTS:
1558 		case IP_RECVDSTADDR:
1559 		case IP_RECVTTL:
1560 		case IP_RECVIF:
1561 		case IP_PORTRANGE:
1562 		case IP_FAITH:
1563 		case IP_ONESBCAST:
1564 			switch (sopt->sopt_name) {
1565 
1566 			case IP_TOS:
1567 				optval = inp->inp_ip_tos;
1568 				break;
1569 
1570 			case IP_TTL:
1571 				optval = inp->inp_ip_ttl;
1572 				break;
1573 
1574 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1575 
1576 			case IP_RECVOPTS:
1577 				optval = OPTBIT(INP_RECVOPTS);
1578 				break;
1579 
1580 			case IP_RECVRETOPTS:
1581 				optval = OPTBIT(INP_RECVRETOPTS);
1582 				break;
1583 
1584 			case IP_RECVDSTADDR:
1585 				optval = OPTBIT(INP_RECVDSTADDR);
1586 				break;
1587 
1588 			case IP_RECVTTL:
1589 				optval = OPTBIT(INP_RECVTTL);
1590 				break;
1591 
1592 			case IP_RECVIF:
1593 				optval = OPTBIT(INP_RECVIF);
1594 				break;
1595 
1596 			case IP_PORTRANGE:
1597 				if (inp->inp_flags & INP_HIGHPORT)
1598 					optval = IP_PORTRANGE_HIGH;
1599 				else if (inp->inp_flags & INP_LOWPORT)
1600 					optval = IP_PORTRANGE_LOW;
1601 				else
1602 					optval = 0;
1603 				break;
1604 
1605 			case IP_FAITH:
1606 				optval = OPTBIT(INP_FAITH);
1607 				break;
1608 
1609 			case IP_ONESBCAST:
1610 				optval = OPTBIT(INP_ONESBCAST);
1611 				break;
1612 			}
1613 			error = sooptcopyout(sopt, &optval, sizeof optval);
1614 			break;
1615 
1616 		case IP_MULTICAST_IF:
1617 		case IP_MULTICAST_VIF:
1618 		case IP_MULTICAST_TTL:
1619 		case IP_MULTICAST_LOOP:
1620 		case IP_ADD_MEMBERSHIP:
1621 		case IP_DROP_MEMBERSHIP:
1622 			error = ip_getmoptions(sopt, inp->inp_moptions);
1623 			break;
1624 
1625 #if defined(IPSEC) || defined(FAST_IPSEC)
1626 		case IP_IPSEC_POLICY:
1627 		{
1628 			struct mbuf *m = NULL;
1629 			caddr_t req = NULL;
1630 			size_t len = 0;
1631 
1632 			if (m != 0) {
1633 				req = mtod(m, caddr_t);
1634 				len = m->m_len;
1635 			}
1636 			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1637 			if (error == 0)
1638 				error = soopt_mcopyout(sopt, m); /* XXX */
1639 			if (error == 0)
1640 				m_freem(m);
1641 			break;
1642 		}
1643 #endif /*IPSEC*/
1644 
1645 		default:
1646 			error = ENOPROTOOPT;
1647 			break;
1648 		}
1649 		break;
1650 	}
1651 	return (error);
1652 }
1653 
1654 /*
1655  * Set up IP options in pcb for insertion in output packets.
1656  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1657  * with destination address if source routed.
1658  */
1659 static int
1660 ip_pcbopts(optname, pcbopt, m)
1661 	int optname;
1662 	struct mbuf **pcbopt;
1663 	register struct mbuf *m;
1664 {
1665 	register int cnt, optlen;
1666 	register u_char *cp;
1667 	u_char opt;
1668 
1669 	/* turn off any old options */
1670 	if (*pcbopt)
1671 		(void)m_free(*pcbopt);
1672 	*pcbopt = 0;
1673 	if (m == (struct mbuf *)0 || m->m_len == 0) {
1674 		/*
1675 		 * Only turning off any previous options.
1676 		 */
1677 		if (m)
1678 			(void)m_free(m);
1679 		return (0);
1680 	}
1681 
1682 	if (m->m_len % sizeof(int32_t))
1683 		goto bad;
1684 	/*
1685 	 * IP first-hop destination address will be stored before
1686 	 * actual options; move other options back
1687 	 * and clear it when none present.
1688 	 */
1689 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1690 		goto bad;
1691 	cnt = m->m_len;
1692 	m->m_len += sizeof(struct in_addr);
1693 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1694 	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1695 	bzero(mtod(m, void *), sizeof(struct in_addr));
1696 
1697 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1698 		opt = cp[IPOPT_OPTVAL];
1699 		if (opt == IPOPT_EOL)
1700 			break;
1701 		if (opt == IPOPT_NOP)
1702 			optlen = 1;
1703 		else {
1704 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1705 				goto bad;
1706 			optlen = cp[IPOPT_OLEN];
1707 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1708 				goto bad;
1709 		}
1710 		switch (opt) {
1711 
1712 		default:
1713 			break;
1714 
1715 		case IPOPT_LSRR:
1716 		case IPOPT_SSRR:
1717 			/*
1718 			 * user process specifies route as:
1719 			 *	->A->B->C->D
1720 			 * D must be our final destination (but we can't
1721 			 * check that since we may not have connected yet).
1722 			 * A is first hop destination, which doesn't appear in
1723 			 * actual IP option, but is stored before the options.
1724 			 */
1725 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1726 				goto bad;
1727 			m->m_len -= sizeof(struct in_addr);
1728 			cnt -= sizeof(struct in_addr);
1729 			optlen -= sizeof(struct in_addr);
1730 			cp[IPOPT_OLEN] = optlen;
1731 			/*
1732 			 * Move first hop before start of options.
1733 			 */
1734 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1735 			    sizeof(struct in_addr));
1736 			/*
1737 			 * Then copy rest of options back
1738 			 * to close up the deleted entry.
1739 			 */
1740 			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1741 			    &cp[IPOPT_OFFSET+1],
1742 			    (unsigned)cnt + sizeof(struct in_addr));
1743 			break;
1744 		}
1745 	}
1746 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1747 		goto bad;
1748 	*pcbopt = m;
1749 	return (0);
1750 
1751 bad:
1752 	(void)m_free(m);
1753 	return (EINVAL);
1754 }
1755 
1756 /*
1757  * XXX
1758  * The whole multicast option thing needs to be re-thought.
1759  * Several of these options are equally applicable to non-multicast
1760  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1761  * standard option (IP_TTL).
1762  */
1763 
1764 /*
1765  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1766  */
1767 static struct ifnet *
1768 ip_multicast_if(a, ifindexp)
1769 	struct in_addr *a;
1770 	int *ifindexp;
1771 {
1772 	int ifindex;
1773 	struct ifnet *ifp;
1774 
1775 	if (ifindexp)
1776 		*ifindexp = 0;
1777 	if (ntohl(a->s_addr) >> 24 == 0) {
1778 		ifindex = ntohl(a->s_addr) & 0xffffff;
1779 		if (ifindex < 0 || if_index < ifindex)
1780 			return NULL;
1781 		ifp = ifnet_byindex(ifindex);
1782 		if (ifindexp)
1783 			*ifindexp = ifindex;
1784 	} else {
1785 		INADDR_TO_IFP(*a, ifp);
1786 	}
1787 	return ifp;
1788 }
1789 
1790 /*
1791  * Set the IP multicast options in response to user setsockopt().
1792  */
1793 static int
1794 ip_setmoptions(sopt, imop)
1795 	struct sockopt *sopt;
1796 	struct ip_moptions **imop;
1797 {
1798 	int error = 0;
1799 	int i;
1800 	struct in_addr addr;
1801 	struct ip_mreq mreq;
1802 	struct ifnet *ifp;
1803 	struct ip_moptions *imo = *imop;
1804 	struct route ro;
1805 	struct sockaddr_in *dst;
1806 	int ifindex;
1807 	int s;
1808 
1809 	if (imo == NULL) {
1810 		/*
1811 		 * No multicast option buffer attached to the pcb;
1812 		 * allocate one and initialize to default values.
1813 		 */
1814 		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1815 		    M_WAITOK);
1816 
1817 		if (imo == NULL)
1818 			return (ENOBUFS);
1819 		*imop = imo;
1820 		imo->imo_multicast_ifp = NULL;
1821 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1822 		imo->imo_multicast_vif = -1;
1823 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1824 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1825 		imo->imo_num_memberships = 0;
1826 	}
1827 
1828 	switch (sopt->sopt_name) {
1829 	/* store an index number for the vif you wanna use in the send */
1830 	case IP_MULTICAST_VIF:
1831 		if (legal_vif_num == 0) {
1832 			error = EOPNOTSUPP;
1833 			break;
1834 		}
1835 		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1836 		if (error)
1837 			break;
1838 		if (!legal_vif_num(i) && (i != -1)) {
1839 			error = EINVAL;
1840 			break;
1841 		}
1842 		imo->imo_multicast_vif = i;
1843 		break;
1844 
1845 	case IP_MULTICAST_IF:
1846 		/*
1847 		 * Select the interface for outgoing multicast packets.
1848 		 */
1849 		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1850 		if (error)
1851 			break;
1852 		/*
1853 		 * INADDR_ANY is used to remove a previous selection.
1854 		 * When no interface is selected, a default one is
1855 		 * chosen every time a multicast packet is sent.
1856 		 */
1857 		if (addr.s_addr == INADDR_ANY) {
1858 			imo->imo_multicast_ifp = NULL;
1859 			break;
1860 		}
1861 		/*
1862 		 * The selected interface is identified by its local
1863 		 * IP address.  Find the interface and confirm that
1864 		 * it supports multicasting.
1865 		 */
1866 		s = splimp();
1867 		ifp = ip_multicast_if(&addr, &ifindex);
1868 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1869 			splx(s);
1870 			error = EADDRNOTAVAIL;
1871 			break;
1872 		}
1873 		imo->imo_multicast_ifp = ifp;
1874 		if (ifindex)
1875 			imo->imo_multicast_addr = addr;
1876 		else
1877 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1878 		splx(s);
1879 		break;
1880 
1881 	case IP_MULTICAST_TTL:
1882 		/*
1883 		 * Set the IP time-to-live for outgoing multicast packets.
1884 		 * The original multicast API required a char argument,
1885 		 * which is inconsistent with the rest of the socket API.
1886 		 * We allow either a char or an int.
1887 		 */
1888 		if (sopt->sopt_valsize == 1) {
1889 			u_char ttl;
1890 			error = sooptcopyin(sopt, &ttl, 1, 1);
1891 			if (error)
1892 				break;
1893 			imo->imo_multicast_ttl = ttl;
1894 		} else {
1895 			u_int ttl;
1896 			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1897 					    sizeof ttl);
1898 			if (error)
1899 				break;
1900 			if (ttl > 255)
1901 				error = EINVAL;
1902 			else
1903 				imo->imo_multicast_ttl = ttl;
1904 		}
1905 		break;
1906 
1907 	case IP_MULTICAST_LOOP:
1908 		/*
1909 		 * Set the loopback flag for outgoing multicast packets.
1910 		 * Must be zero or one.  The original multicast API required a
1911 		 * char argument, which is inconsistent with the rest
1912 		 * of the socket API.  We allow either a char or an int.
1913 		 */
1914 		if (sopt->sopt_valsize == 1) {
1915 			u_char loop;
1916 			error = sooptcopyin(sopt, &loop, 1, 1);
1917 			if (error)
1918 				break;
1919 			imo->imo_multicast_loop = !!loop;
1920 		} else {
1921 			u_int loop;
1922 			error = sooptcopyin(sopt, &loop, sizeof loop,
1923 					    sizeof loop);
1924 			if (error)
1925 				break;
1926 			imo->imo_multicast_loop = !!loop;
1927 		}
1928 		break;
1929 
1930 	case IP_ADD_MEMBERSHIP:
1931 		/*
1932 		 * Add a multicast group membership.
1933 		 * Group must be a valid IP multicast address.
1934 		 */
1935 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1936 		if (error)
1937 			break;
1938 
1939 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1940 			error = EINVAL;
1941 			break;
1942 		}
1943 		s = splimp();
1944 		/*
1945 		 * If no interface address was provided, use the interface of
1946 		 * the route to the given multicast address.
1947 		 */
1948 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1949 			bzero((caddr_t)&ro, sizeof(ro));
1950 			dst = (struct sockaddr_in *)&ro.ro_dst;
1951 			dst->sin_len = sizeof(*dst);
1952 			dst->sin_family = AF_INET;
1953 			dst->sin_addr = mreq.imr_multiaddr;
1954 			rtalloc_ign(&ro, RTF_CLONING);
1955 			if (ro.ro_rt == NULL) {
1956 				error = EADDRNOTAVAIL;
1957 				splx(s);
1958 				break;
1959 			}
1960 			ifp = ro.ro_rt->rt_ifp;
1961 			RTFREE(ro.ro_rt);
1962 		}
1963 		else {
1964 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1965 		}
1966 
1967 		/*
1968 		 * See if we found an interface, and confirm that it
1969 		 * supports multicast.
1970 		 */
1971 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1972 			error = EADDRNOTAVAIL;
1973 			splx(s);
1974 			break;
1975 		}
1976 		/*
1977 		 * See if the membership already exists or if all the
1978 		 * membership slots are full.
1979 		 */
1980 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1981 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1982 			    imo->imo_membership[i]->inm_addr.s_addr
1983 						== mreq.imr_multiaddr.s_addr)
1984 				break;
1985 		}
1986 		if (i < imo->imo_num_memberships) {
1987 			error = EADDRINUSE;
1988 			splx(s);
1989 			break;
1990 		}
1991 		if (i == IP_MAX_MEMBERSHIPS) {
1992 			error = ETOOMANYREFS;
1993 			splx(s);
1994 			break;
1995 		}
1996 		/*
1997 		 * Everything looks good; add a new record to the multicast
1998 		 * address list for the given interface.
1999 		 */
2000 		if ((imo->imo_membership[i] =
2001 		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2002 			error = ENOBUFS;
2003 			splx(s);
2004 			break;
2005 		}
2006 		++imo->imo_num_memberships;
2007 		splx(s);
2008 		break;
2009 
2010 	case IP_DROP_MEMBERSHIP:
2011 		/*
2012 		 * Drop a multicast group membership.
2013 		 * Group must be a valid IP multicast address.
2014 		 */
2015 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
2016 		if (error)
2017 			break;
2018 
2019 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2020 			error = EINVAL;
2021 			break;
2022 		}
2023 
2024 		s = splimp();
2025 		/*
2026 		 * If an interface address was specified, get a pointer
2027 		 * to its ifnet structure.
2028 		 */
2029 		if (mreq.imr_interface.s_addr == INADDR_ANY)
2030 			ifp = NULL;
2031 		else {
2032 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2033 			if (ifp == NULL) {
2034 				error = EADDRNOTAVAIL;
2035 				splx(s);
2036 				break;
2037 			}
2038 		}
2039 		/*
2040 		 * Find the membership in the membership array.
2041 		 */
2042 		for (i = 0; i < imo->imo_num_memberships; ++i) {
2043 			if ((ifp == NULL ||
2044 			     imo->imo_membership[i]->inm_ifp == ifp) &&
2045 			     imo->imo_membership[i]->inm_addr.s_addr ==
2046 			     mreq.imr_multiaddr.s_addr)
2047 				break;
2048 		}
2049 		if (i == imo->imo_num_memberships) {
2050 			error = EADDRNOTAVAIL;
2051 			splx(s);
2052 			break;
2053 		}
2054 		/*
2055 		 * Give up the multicast address record to which the
2056 		 * membership points.
2057 		 */
2058 		in_delmulti(imo->imo_membership[i]);
2059 		/*
2060 		 * Remove the gap in the membership array.
2061 		 */
2062 		for (++i; i < imo->imo_num_memberships; ++i)
2063 			imo->imo_membership[i-1] = imo->imo_membership[i];
2064 		--imo->imo_num_memberships;
2065 		splx(s);
2066 		break;
2067 
2068 	default:
2069 		error = EOPNOTSUPP;
2070 		break;
2071 	}
2072 
2073 	/*
2074 	 * If all options have default values, no need to keep the mbuf.
2075 	 */
2076 	if (imo->imo_multicast_ifp == NULL &&
2077 	    imo->imo_multicast_vif == -1 &&
2078 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2079 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2080 	    imo->imo_num_memberships == 0) {
2081 		free(*imop, M_IPMOPTS);
2082 		*imop = NULL;
2083 	}
2084 
2085 	return (error);
2086 }
2087 
2088 /*
2089  * Return the IP multicast options in response to user getsockopt().
2090  */
2091 static int
2092 ip_getmoptions(sopt, imo)
2093 	struct sockopt *sopt;
2094 	register struct ip_moptions *imo;
2095 {
2096 	struct in_addr addr;
2097 	struct in_ifaddr *ia;
2098 	int error, optval;
2099 	u_char coptval;
2100 
2101 	error = 0;
2102 	switch (sopt->sopt_name) {
2103 	case IP_MULTICAST_VIF:
2104 		if (imo != NULL)
2105 			optval = imo->imo_multicast_vif;
2106 		else
2107 			optval = -1;
2108 		error = sooptcopyout(sopt, &optval, sizeof optval);
2109 		break;
2110 
2111 	case IP_MULTICAST_IF:
2112 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2113 			addr.s_addr = INADDR_ANY;
2114 		else if (imo->imo_multicast_addr.s_addr) {
2115 			/* return the value user has set */
2116 			addr = imo->imo_multicast_addr;
2117 		} else {
2118 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2119 			addr.s_addr = (ia == NULL) ? INADDR_ANY
2120 				: IA_SIN(ia)->sin_addr.s_addr;
2121 		}
2122 		error = sooptcopyout(sopt, &addr, sizeof addr);
2123 		break;
2124 
2125 	case IP_MULTICAST_TTL:
2126 		if (imo == 0)
2127 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2128 		else
2129 			optval = coptval = imo->imo_multicast_ttl;
2130 		if (sopt->sopt_valsize == 1)
2131 			error = sooptcopyout(sopt, &coptval, 1);
2132 		else
2133 			error = sooptcopyout(sopt, &optval, sizeof optval);
2134 		break;
2135 
2136 	case IP_MULTICAST_LOOP:
2137 		if (imo == 0)
2138 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2139 		else
2140 			optval = coptval = imo->imo_multicast_loop;
2141 		if (sopt->sopt_valsize == 1)
2142 			error = sooptcopyout(sopt, &coptval, 1);
2143 		else
2144 			error = sooptcopyout(sopt, &optval, sizeof optval);
2145 		break;
2146 
2147 	default:
2148 		error = ENOPROTOOPT;
2149 		break;
2150 	}
2151 	return (error);
2152 }
2153 
2154 /*
2155  * Discard the IP multicast options.
2156  */
2157 void
2158 ip_freemoptions(imo)
2159 	register struct ip_moptions *imo;
2160 {
2161 	register int i;
2162 
2163 	if (imo != NULL) {
2164 		for (i = 0; i < imo->imo_num_memberships; ++i)
2165 			in_delmulti(imo->imo_membership[i]);
2166 		free(imo, M_IPMOPTS);
2167 	}
2168 }
2169 
2170 /*
2171  * Routine called from ip_output() to loop back a copy of an IP multicast
2172  * packet to the input queue of a specified interface.  Note that this
2173  * calls the output routine of the loopback "driver", but with an interface
2174  * pointer that might NOT be a loopback interface -- evil, but easier than
2175  * replicating that code here.
2176  */
2177 static void
2178 ip_mloopback(ifp, m, dst, hlen)
2179 	struct ifnet *ifp;
2180 	register struct mbuf *m;
2181 	register struct sockaddr_in *dst;
2182 	int hlen;
2183 {
2184 	register struct ip *ip;
2185 	struct mbuf *copym;
2186 
2187 	copym = m_copy(m, 0, M_COPYALL);
2188 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2189 		copym = m_pullup(copym, hlen);
2190 	if (copym != NULL) {
2191 		/*
2192 		 * We don't bother to fragment if the IP length is greater
2193 		 * than the interface's MTU.  Can this possibly matter?
2194 		 */
2195 		ip = mtod(copym, struct ip *);
2196 		ip->ip_len = htons(ip->ip_len);
2197 		ip->ip_off = htons(ip->ip_off);
2198 		ip->ip_sum = 0;
2199 		ip->ip_sum = in_cksum(copym, hlen);
2200 		/*
2201 		 * NB:
2202 		 * It's not clear whether there are any lingering
2203 		 * reentrancy problems in other areas which might
2204 		 * be exposed by using ip_input directly (in
2205 		 * particular, everything which modifies the packet
2206 		 * in-place).  Yet another option is using the
2207 		 * protosw directly to deliver the looped back
2208 		 * packet.  For the moment, we'll err on the side
2209 		 * of safety by using if_simloop().
2210 		 */
2211 #if 1 /* XXX */
2212 		if (dst->sin_family != AF_INET) {
2213 			printf("ip_mloopback: bad address family %d\n",
2214 						dst->sin_family);
2215 			dst->sin_family = AF_INET;
2216 		}
2217 #endif
2218 
2219 #ifdef notdef
2220 		copym->m_pkthdr.rcvif = ifp;
2221 		ip_input(copym);
2222 #else
2223 		/* If needed, compute the checksum and mark it as valid. */
2224 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2225 			in_delayed_cksum(copym);
2226 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2227 			copym->m_pkthdr.csum_flags |=
2228 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2229 			copym->m_pkthdr.csum_data = 0xffff;
2230 		}
2231 		if_simloop(ifp, copym, dst->sin_family, 0);
2232 #endif
2233 	}
2234 }
2235