1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 30 * $FreeBSD$ 31 */ 32 33 #include "opt_ipfw.h" 34 #include "opt_ipsec.h" 35 #include "opt_mac.h" 36 #include "opt_mbuf_stress_test.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/mac.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/protosw.h> 45 #include <sys/socket.h> 46 #include <sys/socketvar.h> 47 #include <sys/sysctl.h> 48 49 #include <net/if.h> 50 #include <net/netisr.h> 51 #include <net/pfil.h> 52 #include <net/route.h> 53 54 #include <netinet/in.h> 55 #include <netinet/in_systm.h> 56 #include <netinet/ip.h> 57 #include <netinet/in_pcb.h> 58 #include <netinet/in_var.h> 59 #include <netinet/ip_var.h> 60 #include <netinet/ip_options.h> 61 62 #if defined(IPSEC) || defined(FAST_IPSEC) 63 #include <netinet/ip_ipsec.h> 64 #ifdef IPSEC 65 #include <netinet6/ipsec.h> 66 #endif 67 #ifdef FAST_IPSEC 68 #include <netipsec/ipsec.h> 69 #endif 70 #endif /*IPSEC*/ 71 72 #include <machine/in_cksum.h> 73 74 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options"); 75 76 #define print_ip(x, a, y) printf("%s %d.%d.%d.%d%s",\ 77 x, (ntohl(a.s_addr)>>24)&0xFF,\ 78 (ntohl(a.s_addr)>>16)&0xFF,\ 79 (ntohl(a.s_addr)>>8)&0xFF,\ 80 (ntohl(a.s_addr))&0xFF, y); 81 82 u_short ip_id; 83 84 #ifdef MBUF_STRESS_TEST 85 int mbuf_frag_size = 0; 86 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 87 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 88 #endif 89 90 static struct ifnet *ip_multicast_if(struct in_addr *, int *); 91 static void ip_mloopback 92 (struct ifnet *, struct mbuf *, struct sockaddr_in *, int); 93 static int ip_getmoptions(struct inpcb *, struct sockopt *); 94 static int ip_setmoptions(struct inpcb *, struct sockopt *); 95 96 97 extern struct protosw inetsw[]; 98 99 /* 100 * IP output. The packet in mbuf chain m contains a skeletal IP 101 * header (with len, off, ttl, proto, tos, src, dst). 102 * The mbuf chain containing the packet will be freed. 103 * The mbuf opt, if present, will not be freed. 104 * In the IP forwarding case, the packet will arrive with options already 105 * inserted, so must have a NULL opt pointer. 106 */ 107 int 108 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, 109 int flags, struct ip_moptions *imo, struct inpcb *inp) 110 { 111 struct ip *ip; 112 struct ifnet *ifp = NULL; /* keep compiler happy */ 113 struct mbuf *m0; 114 int hlen = sizeof (struct ip); 115 int len, error = 0; 116 struct sockaddr_in *dst = NULL; /* keep compiler happy */ 117 struct in_ifaddr *ia = NULL; 118 int isbroadcast, sw_csum; 119 struct route iproute; 120 struct in_addr odst; 121 #ifdef IPFIREWALL_FORWARD 122 struct m_tag *fwd_tag = NULL; 123 #endif 124 M_ASSERTPKTHDR(m); 125 126 if (ro == NULL) { 127 ro = &iproute; 128 bzero(ro, sizeof (*ro)); 129 } 130 131 if (inp != NULL) 132 INP_LOCK_ASSERT(inp); 133 134 if (opt) { 135 len = 0; 136 m = ip_insertoptions(m, opt, &len); 137 if (len != 0) 138 hlen = len; 139 } 140 ip = mtod(m, struct ip *); 141 142 /* 143 * Fill in IP header. If we are not allowing fragmentation, 144 * then the ip_id field is meaningless, but we don't set it 145 * to zero. Doing so causes various problems when devices along 146 * the path (routers, load balancers, firewalls, etc.) illegally 147 * disable DF on our packet. Note that a 16-bit counter 148 * will wrap around in less than 10 seconds at 100 Mbit/s on a 149 * medium with MTU 1500. See Steven M. Bellovin, "A Technique 150 * for Counting NATted Hosts", Proc. IMW'02, available at 151 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>. 152 */ 153 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 154 ip->ip_v = IPVERSION; 155 ip->ip_hl = hlen >> 2; 156 ip->ip_id = ip_newid(); 157 ipstat.ips_localout++; 158 } else { 159 hlen = ip->ip_hl << 2; 160 } 161 162 dst = (struct sockaddr_in *)&ro->ro_dst; 163 again: 164 /* 165 * If there is a cached route, 166 * check that it is to the same destination 167 * and is still up. If not, free it and try again. 168 * The address family should also be checked in case of sharing the 169 * cache with IPv6. 170 */ 171 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 172 dst->sin_family != AF_INET || 173 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) { 174 RTFREE(ro->ro_rt); 175 ro->ro_rt = (struct rtentry *)0; 176 } 177 #ifdef IPFIREWALL_FORWARD 178 if (ro->ro_rt == NULL && fwd_tag == NULL) { 179 #else 180 if (ro->ro_rt == NULL) { 181 #endif 182 bzero(dst, sizeof(*dst)); 183 dst->sin_family = AF_INET; 184 dst->sin_len = sizeof(*dst); 185 dst->sin_addr = ip->ip_dst; 186 } 187 /* 188 * If routing to interface only, 189 * short circuit routing lookup. 190 */ 191 if (flags & IP_ROUTETOIF) { 192 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL && 193 (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) { 194 ipstat.ips_noroute++; 195 error = ENETUNREACH; 196 goto bad; 197 } 198 ifp = ia->ia_ifp; 199 ip->ip_ttl = 1; 200 isbroadcast = in_broadcast(dst->sin_addr, ifp); 201 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 202 imo != NULL && imo->imo_multicast_ifp != NULL) { 203 /* 204 * Bypass the normal routing lookup for multicast 205 * packets if the interface is specified. 206 */ 207 ifp = imo->imo_multicast_ifp; 208 IFP_TO_IA(ifp, ia); 209 isbroadcast = 0; /* fool gcc */ 210 } else { 211 /* 212 * We want to do any cloning requested by the link layer, 213 * as this is probably required in all cases for correct 214 * operation (as it is for ARP). 215 */ 216 if (ro->ro_rt == NULL) 217 rtalloc_ign(ro, 0); 218 if (ro->ro_rt == NULL) { 219 ipstat.ips_noroute++; 220 error = EHOSTUNREACH; 221 goto bad; 222 } 223 ia = ifatoia(ro->ro_rt->rt_ifa); 224 ifp = ro->ro_rt->rt_ifp; 225 ro->ro_rt->rt_rmx.rmx_pksent++; 226 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 227 dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway; 228 if (ro->ro_rt->rt_flags & RTF_HOST) 229 isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST); 230 else 231 isbroadcast = in_broadcast(dst->sin_addr, ifp); 232 } 233 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 234 struct in_multi *inm; 235 236 m->m_flags |= M_MCAST; 237 /* 238 * IP destination address is multicast. Make sure "dst" 239 * still points to the address in "ro". (It may have been 240 * changed to point to a gateway address, above.) 241 */ 242 dst = (struct sockaddr_in *)&ro->ro_dst; 243 /* 244 * See if the caller provided any multicast options 245 */ 246 if (imo != NULL) { 247 ip->ip_ttl = imo->imo_multicast_ttl; 248 if (imo->imo_multicast_vif != -1) 249 ip->ip_src.s_addr = 250 ip_mcast_src ? 251 ip_mcast_src(imo->imo_multicast_vif) : 252 INADDR_ANY; 253 } else 254 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 255 /* 256 * Confirm that the outgoing interface supports multicast. 257 */ 258 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 259 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 260 ipstat.ips_noroute++; 261 error = ENETUNREACH; 262 goto bad; 263 } 264 } 265 /* 266 * If source address not specified yet, use address 267 * of outgoing interface. 268 */ 269 if (ip->ip_src.s_addr == INADDR_ANY) { 270 /* Interface may have no addresses. */ 271 if (ia != NULL) 272 ip->ip_src = IA_SIN(ia)->sin_addr; 273 } 274 275 IN_MULTI_LOCK(); 276 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm); 277 if (inm != NULL && 278 (imo == NULL || imo->imo_multicast_loop)) { 279 IN_MULTI_UNLOCK(); 280 /* 281 * If we belong to the destination multicast group 282 * on the outgoing interface, and the caller did not 283 * forbid loopback, loop back a copy. 284 */ 285 ip_mloopback(ifp, m, dst, hlen); 286 } 287 else { 288 IN_MULTI_UNLOCK(); 289 /* 290 * If we are acting as a multicast router, perform 291 * multicast forwarding as if the packet had just 292 * arrived on the interface to which we are about 293 * to send. The multicast forwarding function 294 * recursively calls this function, using the 295 * IP_FORWARDING flag to prevent infinite recursion. 296 * 297 * Multicasts that are looped back by ip_mloopback(), 298 * above, will be forwarded by the ip_input() routine, 299 * if necessary. 300 */ 301 if (ip_mrouter && (flags & IP_FORWARDING) == 0) { 302 /* 303 * If rsvp daemon is not running, do not 304 * set ip_moptions. This ensures that the packet 305 * is multicast and not just sent down one link 306 * as prescribed by rsvpd. 307 */ 308 if (!rsvp_on) 309 imo = NULL; 310 if (ip_mforward && 311 ip_mforward(ip, ifp, m, imo) != 0) { 312 m_freem(m); 313 goto done; 314 } 315 } 316 } 317 318 /* 319 * Multicasts with a time-to-live of zero may be looped- 320 * back, above, but must not be transmitted on a network. 321 * Also, multicasts addressed to the loopback interface 322 * are not sent -- the above call to ip_mloopback() will 323 * loop back a copy if this host actually belongs to the 324 * destination group on the loopback interface. 325 */ 326 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 327 m_freem(m); 328 goto done; 329 } 330 331 goto sendit; 332 } 333 #ifndef notdef 334 /* 335 * If the source address is not specified yet, use the address 336 * of the outoing interface. 337 */ 338 if (ip->ip_src.s_addr == INADDR_ANY) { 339 /* Interface may have no addresses. */ 340 if (ia != NULL) { 341 ip->ip_src = IA_SIN(ia)->sin_addr; 342 } 343 } 344 #endif /* notdef */ 345 /* 346 * Verify that we have any chance at all of being able to queue the 347 * packet or packet fragments, unless ALTQ is enabled on the given 348 * interface in which case packetdrop should be done by queueing. 349 */ 350 #ifdef ALTQ 351 if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) && 352 ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >= 353 ifp->if_snd.ifq_maxlen)) 354 #else 355 if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >= 356 ifp->if_snd.ifq_maxlen) 357 #endif /* ALTQ */ 358 { 359 error = ENOBUFS; 360 ipstat.ips_odropped++; 361 ifp->if_snd.ifq_drops += (ip->ip_len / ifp->if_mtu + 1); 362 goto bad; 363 } 364 365 /* 366 * Look for broadcast address and 367 * verify user is allowed to send 368 * such a packet. 369 */ 370 if (isbroadcast) { 371 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 372 error = EADDRNOTAVAIL; 373 goto bad; 374 } 375 if ((flags & IP_ALLOWBROADCAST) == 0) { 376 error = EACCES; 377 goto bad; 378 } 379 /* don't allow broadcast messages to be fragmented */ 380 if (ip->ip_len > ifp->if_mtu) { 381 error = EMSGSIZE; 382 goto bad; 383 } 384 if (flags & IP_SENDONES) 385 ip->ip_dst.s_addr = INADDR_BROADCAST; 386 m->m_flags |= M_BCAST; 387 } else { 388 m->m_flags &= ~M_BCAST; 389 } 390 391 sendit: 392 #if defined(IPSEC) || defined(FAST_IPSEC) 393 switch(ip_ipsec_output(&m, inp, &flags, &error, &ro, &iproute, &dst, &ia, &ifp)) { 394 case 1: 395 goto bad; 396 case -1: 397 goto done; 398 case 0: 399 default: 400 break; /* Continue with packet processing. */ 401 } 402 /* Update variables that are affected by ipsec4_output(). */ 403 ip = mtod(m, struct ip *); 404 hlen = ip->ip_hl << 2; 405 #endif /* IPSEC */ 406 407 /* Jump over all PFIL processing if hooks are not active. */ 408 if (!PFIL_HOOKED(&inet_pfil_hook)) 409 goto passout; 410 411 /* Run through list of hooks for output packets. */ 412 odst.s_addr = ip->ip_dst.s_addr; 413 error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp); 414 if (error != 0 || m == NULL) 415 goto done; 416 417 ip = mtod(m, struct ip *); 418 419 /* See if destination IP address was changed by packet filter. */ 420 if (odst.s_addr != ip->ip_dst.s_addr) { 421 m->m_flags |= M_SKIP_FIREWALL; 422 /* If destination is now ourself drop to ip_input(). */ 423 if (in_localip(ip->ip_dst)) { 424 m->m_flags |= M_FASTFWD_OURS; 425 if (m->m_pkthdr.rcvif == NULL) 426 m->m_pkthdr.rcvif = loif; 427 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 428 m->m_pkthdr.csum_flags |= 429 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 430 m->m_pkthdr.csum_data = 0xffff; 431 } 432 m->m_pkthdr.csum_flags |= 433 CSUM_IP_CHECKED | CSUM_IP_VALID; 434 435 error = netisr_queue(NETISR_IP, m); 436 goto done; 437 } else 438 goto again; /* Redo the routing table lookup. */ 439 } 440 441 #ifdef IPFIREWALL_FORWARD 442 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 443 if (m->m_flags & M_FASTFWD_OURS) { 444 if (m->m_pkthdr.rcvif == NULL) 445 m->m_pkthdr.rcvif = loif; 446 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 447 m->m_pkthdr.csum_flags |= 448 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 449 m->m_pkthdr.csum_data = 0xffff; 450 } 451 m->m_pkthdr.csum_flags |= 452 CSUM_IP_CHECKED | CSUM_IP_VALID; 453 454 error = netisr_queue(NETISR_IP, m); 455 goto done; 456 } 457 /* Or forward to some other address? */ 458 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL); 459 if (fwd_tag) { 460 #ifndef IPFIREWALL_FORWARD_EXTENDED 461 if (!in_localip(ip->ip_src) && !in_localaddr(ip->ip_dst)) { 462 #endif 463 dst = (struct sockaddr_in *)&ro->ro_dst; 464 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 465 m->m_flags |= M_SKIP_FIREWALL; 466 m_tag_delete(m, fwd_tag); 467 goto again; 468 #ifndef IPFIREWALL_FORWARD_EXTENDED 469 } else { 470 m_tag_delete(m, fwd_tag); 471 /* Continue. */ 472 } 473 #endif 474 } 475 #endif /* IPFIREWALL_FORWARD */ 476 477 passout: 478 /* 127/8 must not appear on wire - RFC1122. */ 479 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 480 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 481 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 482 ipstat.ips_badaddr++; 483 error = EADDRNOTAVAIL; 484 goto bad; 485 } 486 } 487 488 m->m_pkthdr.csum_flags |= CSUM_IP; 489 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist; 490 if (sw_csum & CSUM_DELAY_DATA) { 491 in_delayed_cksum(m); 492 sw_csum &= ~CSUM_DELAY_DATA; 493 } 494 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 495 496 /* 497 * If small enough for interface, or the interface will take 498 * care of the fragmentation for us, can just send directly. 499 */ 500 if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT && 501 ((ip->ip_off & IP_DF) == 0))) { 502 ip->ip_len = htons(ip->ip_len); 503 ip->ip_off = htons(ip->ip_off); 504 ip->ip_sum = 0; 505 if (sw_csum & CSUM_DELAY_IP) 506 ip->ip_sum = in_cksum(m, hlen); 507 508 /* Record statistics for this interface address. */ 509 if (!(flags & IP_FORWARDING) && ia) { 510 ia->ia_ifa.if_opackets++; 511 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 512 } 513 #ifdef IPSEC 514 /* clean ipsec history once it goes out of the node */ 515 ipsec_delaux(m); 516 #endif 517 #ifdef MBUF_STRESS_TEST 518 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 519 m = m_fragment(m, M_DONTWAIT, mbuf_frag_size); 520 #endif 521 /* 522 * Reset layer specific mbuf flags 523 * to avoid confusing lower layers. 524 */ 525 m->m_flags &= ~(M_PROTOFLAGS); 526 527 error = (*ifp->if_output)(ifp, m, 528 (struct sockaddr *)dst, ro->ro_rt); 529 goto done; 530 } 531 532 if (ip->ip_off & IP_DF) { 533 error = EMSGSIZE; 534 /* 535 * This case can happen if the user changed the MTU 536 * of an interface after enabling IP on it. Because 537 * most netifs don't keep track of routes pointing to 538 * them, there is no way for one to update all its 539 * routes when the MTU is changed. 540 */ 541 if (ro != NULL && 542 (ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) && 543 (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) { 544 ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu; 545 } 546 ipstat.ips_cantfrag++; 547 goto bad; 548 } 549 550 /* 551 * Too large for interface; fragment if possible. If successful, 552 * on return, m will point to a list of packets to be sent. 553 */ 554 error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum); 555 if (error) 556 goto bad; 557 for (; m; m = m0) { 558 m0 = m->m_nextpkt; 559 m->m_nextpkt = 0; 560 #ifdef IPSEC 561 /* clean ipsec history once it goes out of the node */ 562 ipsec_delaux(m); 563 #endif 564 if (error == 0) { 565 /* Record statistics for this interface address. */ 566 if (ia != NULL) { 567 ia->ia_ifa.if_opackets++; 568 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 569 } 570 /* 571 * Reset layer specific mbuf flags 572 * to avoid confusing upper layers. 573 */ 574 m->m_flags &= ~(M_PROTOFLAGS); 575 576 error = (*ifp->if_output)(ifp, m, 577 (struct sockaddr *)dst, ro->ro_rt); 578 } else 579 m_freem(m); 580 } 581 582 if (error == 0) 583 ipstat.ips_fragmented++; 584 585 done: 586 if (ro == &iproute && ro->ro_rt) { 587 RTFREE(ro->ro_rt); 588 } 589 return (error); 590 bad: 591 m_freem(m); 592 goto done; 593 } 594 595 /* 596 * Create a chain of fragments which fit the given mtu. m_frag points to the 597 * mbuf to be fragmented; on return it points to the chain with the fragments. 598 * Return 0 if no error. If error, m_frag may contain a partially built 599 * chain of fragments that should be freed by the caller. 600 * 601 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 602 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP). 603 */ 604 int 605 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 606 u_long if_hwassist_flags, int sw_csum) 607 { 608 int error = 0; 609 int hlen = ip->ip_hl << 2; 610 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 611 int off; 612 struct mbuf *m0 = *m_frag; /* the original packet */ 613 int firstlen; 614 struct mbuf **mnext; 615 int nfrags; 616 617 if (ip->ip_off & IP_DF) { /* Fragmentation not allowed */ 618 ipstat.ips_cantfrag++; 619 return EMSGSIZE; 620 } 621 622 /* 623 * Must be able to put at least 8 bytes per fragment. 624 */ 625 if (len < 8) 626 return EMSGSIZE; 627 628 /* 629 * If the interface will not calculate checksums on 630 * fragmented packets, then do it here. 631 */ 632 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA && 633 (if_hwassist_flags & CSUM_IP_FRAGS) == 0) { 634 in_delayed_cksum(m0); 635 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 636 } 637 638 if (len > PAGE_SIZE) { 639 /* 640 * Fragment large datagrams such that each segment 641 * contains a multiple of PAGE_SIZE amount of data, 642 * plus headers. This enables a receiver to perform 643 * page-flipping zero-copy optimizations. 644 * 645 * XXX When does this help given that sender and receiver 646 * could have different page sizes, and also mtu could 647 * be less than the receiver's page size ? 648 */ 649 int newlen; 650 struct mbuf *m; 651 652 for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next) 653 off += m->m_len; 654 655 /* 656 * firstlen (off - hlen) must be aligned on an 657 * 8-byte boundary 658 */ 659 if (off < hlen) 660 goto smart_frag_failure; 661 off = ((off - hlen) & ~7) + hlen; 662 newlen = (~PAGE_MASK) & mtu; 663 if ((newlen + sizeof (struct ip)) > mtu) { 664 /* we failed, go back the default */ 665 smart_frag_failure: 666 newlen = len; 667 off = hlen + len; 668 } 669 len = newlen; 670 671 } else { 672 off = hlen + len; 673 } 674 675 firstlen = off - hlen; 676 mnext = &m0->m_nextpkt; /* pointer to next packet */ 677 678 /* 679 * Loop through length of segment after first fragment, 680 * make new header and copy data of each part and link onto chain. 681 * Here, m0 is the original packet, m is the fragment being created. 682 * The fragments are linked off the m_nextpkt of the original 683 * packet, which after processing serves as the first fragment. 684 */ 685 for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) { 686 struct ip *mhip; /* ip header on the fragment */ 687 struct mbuf *m; 688 int mhlen = sizeof (struct ip); 689 690 MGETHDR(m, M_DONTWAIT, MT_DATA); 691 if (m == NULL) { 692 error = ENOBUFS; 693 ipstat.ips_odropped++; 694 goto done; 695 } 696 m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG; 697 /* 698 * In the first mbuf, leave room for the link header, then 699 * copy the original IP header including options. The payload 700 * goes into an additional mbuf chain returned by m_copy(). 701 */ 702 m->m_data += max_linkhdr; 703 mhip = mtod(m, struct ip *); 704 *mhip = *ip; 705 if (hlen > sizeof (struct ip)) { 706 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 707 mhip->ip_v = IPVERSION; 708 mhip->ip_hl = mhlen >> 2; 709 } 710 m->m_len = mhlen; 711 /* XXX do we need to add ip->ip_off below ? */ 712 mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off; 713 if (off + len >= ip->ip_len) { /* last fragment */ 714 len = ip->ip_len - off; 715 m->m_flags |= M_LASTFRAG; 716 } else 717 mhip->ip_off |= IP_MF; 718 mhip->ip_len = htons((u_short)(len + mhlen)); 719 m->m_next = m_copy(m0, off, len); 720 if (m->m_next == NULL) { /* copy failed */ 721 m_free(m); 722 error = ENOBUFS; /* ??? */ 723 ipstat.ips_odropped++; 724 goto done; 725 } 726 m->m_pkthdr.len = mhlen + len; 727 m->m_pkthdr.rcvif = NULL; 728 #ifdef MAC 729 mac_create_fragment(m0, m); 730 #endif 731 m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags; 732 mhip->ip_off = htons(mhip->ip_off); 733 mhip->ip_sum = 0; 734 if (sw_csum & CSUM_DELAY_IP) 735 mhip->ip_sum = in_cksum(m, mhlen); 736 *mnext = m; 737 mnext = &m->m_nextpkt; 738 } 739 ipstat.ips_ofragments += nfrags; 740 741 /* set first marker for fragment chain */ 742 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 743 m0->m_pkthdr.csum_data = nfrags; 744 745 /* 746 * Update first fragment by trimming what's been copied out 747 * and updating header. 748 */ 749 m_adj(m0, hlen + firstlen - ip->ip_len); 750 m0->m_pkthdr.len = hlen + firstlen; 751 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 752 ip->ip_off |= IP_MF; 753 ip->ip_off = htons(ip->ip_off); 754 ip->ip_sum = 0; 755 if (sw_csum & CSUM_DELAY_IP) 756 ip->ip_sum = in_cksum(m0, hlen); 757 758 done: 759 *m_frag = m0; 760 return error; 761 } 762 763 void 764 in_delayed_cksum(struct mbuf *m) 765 { 766 struct ip *ip; 767 u_short csum, offset; 768 769 ip = mtod(m, struct ip *); 770 offset = ip->ip_hl << 2 ; 771 csum = in_cksum_skip(m, ip->ip_len, offset); 772 if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0) 773 csum = 0xffff; 774 offset += m->m_pkthdr.csum_data; /* checksum offset */ 775 776 if (offset + sizeof(u_short) > m->m_len) { 777 printf("delayed m_pullup, m->len: %d off: %d p: %d\n", 778 m->m_len, offset, ip->ip_p); 779 /* 780 * XXX 781 * this shouldn't happen, but if it does, the 782 * correct behavior may be to insert the checksum 783 * in the appropriate next mbuf in the chain. 784 */ 785 return; 786 } 787 *(u_short *)(m->m_data + offset) = csum; 788 } 789 790 /* 791 * IP socket option processing. 792 */ 793 int 794 ip_ctloutput(so, sopt) 795 struct socket *so; 796 struct sockopt *sopt; 797 { 798 struct inpcb *inp = sotoinpcb(so); 799 int error, optval; 800 801 error = optval = 0; 802 if (sopt->sopt_level != IPPROTO_IP) { 803 return (EINVAL); 804 } 805 806 switch (sopt->sopt_dir) { 807 case SOPT_SET: 808 switch (sopt->sopt_name) { 809 case IP_OPTIONS: 810 #ifdef notyet 811 case IP_RETOPTS: 812 #endif 813 { 814 struct mbuf *m; 815 if (sopt->sopt_valsize > MLEN) { 816 error = EMSGSIZE; 817 break; 818 } 819 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 820 if (m == NULL) { 821 error = ENOBUFS; 822 break; 823 } 824 m->m_len = sopt->sopt_valsize; 825 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 826 m->m_len); 827 if (error) { 828 m_free(m); 829 break; 830 } 831 INP_LOCK(inp); 832 error = ip_pcbopts(inp, sopt->sopt_name, m); 833 INP_UNLOCK(inp); 834 return (error); 835 } 836 837 case IP_TOS: 838 case IP_TTL: 839 case IP_MINTTL: 840 case IP_RECVOPTS: 841 case IP_RECVRETOPTS: 842 case IP_RECVDSTADDR: 843 case IP_RECVTTL: 844 case IP_RECVIF: 845 case IP_FAITH: 846 case IP_ONESBCAST: 847 case IP_DONTFRAG: 848 error = sooptcopyin(sopt, &optval, sizeof optval, 849 sizeof optval); 850 if (error) 851 break; 852 853 switch (sopt->sopt_name) { 854 case IP_TOS: 855 inp->inp_ip_tos = optval; 856 break; 857 858 case IP_TTL: 859 inp->inp_ip_ttl = optval; 860 break; 861 862 case IP_MINTTL: 863 if (optval > 0 && optval <= MAXTTL) 864 inp->inp_ip_minttl = optval; 865 else 866 error = EINVAL; 867 break; 868 869 #define OPTSET(bit) do { \ 870 INP_LOCK(inp); \ 871 if (optval) \ 872 inp->inp_flags |= bit; \ 873 else \ 874 inp->inp_flags &= ~bit; \ 875 INP_UNLOCK(inp); \ 876 } while (0) 877 878 case IP_RECVOPTS: 879 OPTSET(INP_RECVOPTS); 880 break; 881 882 case IP_RECVRETOPTS: 883 OPTSET(INP_RECVRETOPTS); 884 break; 885 886 case IP_RECVDSTADDR: 887 OPTSET(INP_RECVDSTADDR); 888 break; 889 890 case IP_RECVTTL: 891 OPTSET(INP_RECVTTL); 892 break; 893 894 case IP_RECVIF: 895 OPTSET(INP_RECVIF); 896 break; 897 898 case IP_FAITH: 899 OPTSET(INP_FAITH); 900 break; 901 902 case IP_ONESBCAST: 903 OPTSET(INP_ONESBCAST); 904 break; 905 case IP_DONTFRAG: 906 OPTSET(INP_DONTFRAG); 907 break; 908 } 909 break; 910 #undef OPTSET 911 912 case IP_MULTICAST_IF: 913 case IP_MULTICAST_VIF: 914 case IP_MULTICAST_TTL: 915 case IP_MULTICAST_LOOP: 916 case IP_ADD_MEMBERSHIP: 917 case IP_DROP_MEMBERSHIP: 918 error = ip_setmoptions(inp, sopt); 919 break; 920 921 case IP_PORTRANGE: 922 error = sooptcopyin(sopt, &optval, sizeof optval, 923 sizeof optval); 924 if (error) 925 break; 926 927 INP_LOCK(inp); 928 switch (optval) { 929 case IP_PORTRANGE_DEFAULT: 930 inp->inp_flags &= ~(INP_LOWPORT); 931 inp->inp_flags &= ~(INP_HIGHPORT); 932 break; 933 934 case IP_PORTRANGE_HIGH: 935 inp->inp_flags &= ~(INP_LOWPORT); 936 inp->inp_flags |= INP_HIGHPORT; 937 break; 938 939 case IP_PORTRANGE_LOW: 940 inp->inp_flags &= ~(INP_HIGHPORT); 941 inp->inp_flags |= INP_LOWPORT; 942 break; 943 944 default: 945 error = EINVAL; 946 break; 947 } 948 INP_UNLOCK(inp); 949 break; 950 951 #if defined(IPSEC) || defined(FAST_IPSEC) 952 case IP_IPSEC_POLICY: 953 { 954 caddr_t req; 955 size_t len = 0; 956 int priv; 957 struct mbuf *m; 958 int optname; 959 960 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 961 break; 962 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 963 break; 964 priv = (sopt->sopt_td != NULL && 965 suser(sopt->sopt_td) != 0) ? 0 : 1; 966 req = mtod(m, caddr_t); 967 len = m->m_len; 968 optname = sopt->sopt_name; 969 error = ipsec4_set_policy(inp, optname, req, len, priv); 970 m_freem(m); 971 break; 972 } 973 #endif /*IPSEC*/ 974 975 default: 976 error = ENOPROTOOPT; 977 break; 978 } 979 break; 980 981 case SOPT_GET: 982 switch (sopt->sopt_name) { 983 case IP_OPTIONS: 984 case IP_RETOPTS: 985 if (inp->inp_options) 986 error = sooptcopyout(sopt, 987 mtod(inp->inp_options, 988 char *), 989 inp->inp_options->m_len); 990 else 991 sopt->sopt_valsize = 0; 992 break; 993 994 case IP_TOS: 995 case IP_TTL: 996 case IP_MINTTL: 997 case IP_RECVOPTS: 998 case IP_RECVRETOPTS: 999 case IP_RECVDSTADDR: 1000 case IP_RECVTTL: 1001 case IP_RECVIF: 1002 case IP_PORTRANGE: 1003 case IP_FAITH: 1004 case IP_ONESBCAST: 1005 case IP_DONTFRAG: 1006 switch (sopt->sopt_name) { 1007 1008 case IP_TOS: 1009 optval = inp->inp_ip_tos; 1010 break; 1011 1012 case IP_TTL: 1013 optval = inp->inp_ip_ttl; 1014 break; 1015 1016 case IP_MINTTL: 1017 optval = inp->inp_ip_minttl; 1018 break; 1019 1020 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1021 1022 case IP_RECVOPTS: 1023 optval = OPTBIT(INP_RECVOPTS); 1024 break; 1025 1026 case IP_RECVRETOPTS: 1027 optval = OPTBIT(INP_RECVRETOPTS); 1028 break; 1029 1030 case IP_RECVDSTADDR: 1031 optval = OPTBIT(INP_RECVDSTADDR); 1032 break; 1033 1034 case IP_RECVTTL: 1035 optval = OPTBIT(INP_RECVTTL); 1036 break; 1037 1038 case IP_RECVIF: 1039 optval = OPTBIT(INP_RECVIF); 1040 break; 1041 1042 case IP_PORTRANGE: 1043 if (inp->inp_flags & INP_HIGHPORT) 1044 optval = IP_PORTRANGE_HIGH; 1045 else if (inp->inp_flags & INP_LOWPORT) 1046 optval = IP_PORTRANGE_LOW; 1047 else 1048 optval = 0; 1049 break; 1050 1051 case IP_FAITH: 1052 optval = OPTBIT(INP_FAITH); 1053 break; 1054 1055 case IP_ONESBCAST: 1056 optval = OPTBIT(INP_ONESBCAST); 1057 break; 1058 case IP_DONTFRAG: 1059 optval = OPTBIT(INP_DONTFRAG); 1060 break; 1061 } 1062 error = sooptcopyout(sopt, &optval, sizeof optval); 1063 break; 1064 1065 case IP_MULTICAST_IF: 1066 case IP_MULTICAST_VIF: 1067 case IP_MULTICAST_TTL: 1068 case IP_MULTICAST_LOOP: 1069 case IP_ADD_MEMBERSHIP: 1070 case IP_DROP_MEMBERSHIP: 1071 error = ip_getmoptions(inp, sopt); 1072 break; 1073 1074 #if defined(IPSEC) || defined(FAST_IPSEC) 1075 case IP_IPSEC_POLICY: 1076 { 1077 struct mbuf *m = NULL; 1078 caddr_t req = NULL; 1079 size_t len = 0; 1080 1081 if (m != 0) { 1082 req = mtod(m, caddr_t); 1083 len = m->m_len; 1084 } 1085 error = ipsec4_get_policy(sotoinpcb(so), req, len, &m); 1086 if (error == 0) 1087 error = soopt_mcopyout(sopt, m); /* XXX */ 1088 if (error == 0) 1089 m_freem(m); 1090 break; 1091 } 1092 #endif /*IPSEC*/ 1093 1094 default: 1095 error = ENOPROTOOPT; 1096 break; 1097 } 1098 break; 1099 } 1100 return (error); 1101 } 1102 1103 /* 1104 * XXX 1105 * The whole multicast option thing needs to be re-thought. 1106 * Several of these options are equally applicable to non-multicast 1107 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a 1108 * standard option (IP_TTL). 1109 */ 1110 1111 /* 1112 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index. 1113 */ 1114 static struct ifnet * 1115 ip_multicast_if(a, ifindexp) 1116 struct in_addr *a; 1117 int *ifindexp; 1118 { 1119 int ifindex; 1120 struct ifnet *ifp; 1121 1122 if (ifindexp) 1123 *ifindexp = 0; 1124 if (ntohl(a->s_addr) >> 24 == 0) { 1125 ifindex = ntohl(a->s_addr) & 0xffffff; 1126 if (ifindex < 0 || if_index < ifindex) 1127 return NULL; 1128 ifp = ifnet_byindex(ifindex); 1129 if (ifindexp) 1130 *ifindexp = ifindex; 1131 } else { 1132 INADDR_TO_IFP(*a, ifp); 1133 } 1134 return ifp; 1135 } 1136 1137 /* 1138 * Given an inpcb, return its multicast options structure pointer. Accepts 1139 * an unlocked inpcb pointer, but will return it locked. May sleep. 1140 */ 1141 static struct ip_moptions * 1142 ip_findmoptions(struct inpcb *inp) 1143 { 1144 struct ip_moptions *imo; 1145 struct in_multi **immp; 1146 1147 INP_LOCK(inp); 1148 if (inp->inp_moptions != NULL) 1149 return (inp->inp_moptions); 1150 1151 INP_UNLOCK(inp); 1152 1153 imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK); 1154 immp = (struct in_multi **)malloc((sizeof(*immp) * IP_MIN_MEMBERSHIPS), 1155 M_IPMOPTS, M_WAITOK); 1156 1157 imo->imo_multicast_ifp = NULL; 1158 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1159 imo->imo_multicast_vif = -1; 1160 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1161 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 1162 imo->imo_num_memberships = 0; 1163 imo->imo_max_memberships = IP_MIN_MEMBERSHIPS; 1164 imo->imo_membership = immp; 1165 1166 INP_LOCK(inp); 1167 if (inp->inp_moptions != NULL) { 1168 free(immp, M_IPMOPTS); 1169 free(imo, M_IPMOPTS); 1170 return (inp->inp_moptions); 1171 } 1172 inp->inp_moptions = imo; 1173 return (imo); 1174 } 1175 1176 /* 1177 * Set the IP multicast options in response to user setsockopt(). 1178 */ 1179 static int 1180 ip_setmoptions(struct inpcb *inp, struct sockopt *sopt) 1181 { 1182 int error = 0; 1183 int i; 1184 struct in_addr addr; 1185 struct ip_mreq mreq; 1186 struct ifnet *ifp; 1187 struct ip_moptions *imo; 1188 struct route ro; 1189 struct sockaddr_in *dst; 1190 int ifindex; 1191 int s; 1192 1193 switch (sopt->sopt_name) { 1194 /* store an index number for the vif you wanna use in the send */ 1195 case IP_MULTICAST_VIF: 1196 if (legal_vif_num == 0) { 1197 error = EOPNOTSUPP; 1198 break; 1199 } 1200 error = sooptcopyin(sopt, &i, sizeof i, sizeof i); 1201 if (error) 1202 break; 1203 if (!legal_vif_num(i) && (i != -1)) { 1204 error = EINVAL; 1205 break; 1206 } 1207 imo = ip_findmoptions(inp); 1208 imo->imo_multicast_vif = i; 1209 INP_UNLOCK(inp); 1210 break; 1211 1212 case IP_MULTICAST_IF: 1213 /* 1214 * Select the interface for outgoing multicast packets. 1215 */ 1216 error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr); 1217 if (error) 1218 break; 1219 /* 1220 * INADDR_ANY is used to remove a previous selection. 1221 * When no interface is selected, a default one is 1222 * chosen every time a multicast packet is sent. 1223 */ 1224 imo = ip_findmoptions(inp); 1225 if (addr.s_addr == INADDR_ANY) { 1226 imo->imo_multicast_ifp = NULL; 1227 INP_UNLOCK(inp); 1228 break; 1229 } 1230 /* 1231 * The selected interface is identified by its local 1232 * IP address. Find the interface and confirm that 1233 * it supports multicasting. 1234 */ 1235 s = splimp(); 1236 ifp = ip_multicast_if(&addr, &ifindex); 1237 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1238 INP_UNLOCK(inp); 1239 splx(s); 1240 error = EADDRNOTAVAIL; 1241 break; 1242 } 1243 imo->imo_multicast_ifp = ifp; 1244 if (ifindex) 1245 imo->imo_multicast_addr = addr; 1246 else 1247 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1248 INP_UNLOCK(inp); 1249 splx(s); 1250 break; 1251 1252 case IP_MULTICAST_TTL: 1253 /* 1254 * Set the IP time-to-live for outgoing multicast packets. 1255 * The original multicast API required a char argument, 1256 * which is inconsistent with the rest of the socket API. 1257 * We allow either a char or an int. 1258 */ 1259 if (sopt->sopt_valsize == 1) { 1260 u_char ttl; 1261 error = sooptcopyin(sopt, &ttl, 1, 1); 1262 if (error) 1263 break; 1264 imo = ip_findmoptions(inp); 1265 imo->imo_multicast_ttl = ttl; 1266 INP_UNLOCK(inp); 1267 } else { 1268 u_int ttl; 1269 error = sooptcopyin(sopt, &ttl, sizeof ttl, 1270 sizeof ttl); 1271 if (error) 1272 break; 1273 if (ttl > 255) 1274 error = EINVAL; 1275 else { 1276 imo = ip_findmoptions(inp); 1277 imo->imo_multicast_ttl = ttl; 1278 INP_UNLOCK(inp); 1279 } 1280 } 1281 break; 1282 1283 case IP_MULTICAST_LOOP: 1284 /* 1285 * Set the loopback flag for outgoing multicast packets. 1286 * Must be zero or one. The original multicast API required a 1287 * char argument, which is inconsistent with the rest 1288 * of the socket API. We allow either a char or an int. 1289 */ 1290 if (sopt->sopt_valsize == 1) { 1291 u_char loop; 1292 error = sooptcopyin(sopt, &loop, 1, 1); 1293 if (error) 1294 break; 1295 imo = ip_findmoptions(inp); 1296 imo->imo_multicast_loop = !!loop; 1297 INP_UNLOCK(inp); 1298 } else { 1299 u_int loop; 1300 error = sooptcopyin(sopt, &loop, sizeof loop, 1301 sizeof loop); 1302 if (error) 1303 break; 1304 imo = ip_findmoptions(inp); 1305 imo->imo_multicast_loop = !!loop; 1306 INP_UNLOCK(inp); 1307 } 1308 break; 1309 1310 case IP_ADD_MEMBERSHIP: 1311 /* 1312 * Add a multicast group membership. 1313 * Group must be a valid IP multicast address. 1314 */ 1315 error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq); 1316 if (error) 1317 break; 1318 1319 if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) { 1320 error = EINVAL; 1321 break; 1322 } 1323 s = splimp(); 1324 /* 1325 * If no interface address was provided, use the interface of 1326 * the route to the given multicast address. 1327 */ 1328 if (mreq.imr_interface.s_addr == INADDR_ANY) { 1329 bzero((caddr_t)&ro, sizeof(ro)); 1330 dst = (struct sockaddr_in *)&ro.ro_dst; 1331 dst->sin_len = sizeof(*dst); 1332 dst->sin_family = AF_INET; 1333 dst->sin_addr = mreq.imr_multiaddr; 1334 rtalloc_ign(&ro, RTF_CLONING); 1335 if (ro.ro_rt == NULL) { 1336 error = EADDRNOTAVAIL; 1337 splx(s); 1338 break; 1339 } 1340 ifp = ro.ro_rt->rt_ifp; 1341 RTFREE(ro.ro_rt); 1342 } 1343 else { 1344 ifp = ip_multicast_if(&mreq.imr_interface, NULL); 1345 } 1346 1347 /* 1348 * See if we found an interface, and confirm that it 1349 * supports multicast. 1350 */ 1351 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1352 error = EADDRNOTAVAIL; 1353 splx(s); 1354 break; 1355 } 1356 /* 1357 * See if the membership already exists or if all the 1358 * membership slots are full. 1359 */ 1360 imo = ip_findmoptions(inp); 1361 for (i = 0; i < imo->imo_num_memberships; ++i) { 1362 if (imo->imo_membership[i]->inm_ifp == ifp && 1363 imo->imo_membership[i]->inm_addr.s_addr 1364 == mreq.imr_multiaddr.s_addr) 1365 break; 1366 } 1367 if (i < imo->imo_num_memberships) { 1368 INP_UNLOCK(inp); 1369 error = EADDRINUSE; 1370 splx(s); 1371 break; 1372 } 1373 if (imo->imo_num_memberships == imo->imo_max_memberships) { 1374 struct in_multi **nmships, **omships; 1375 size_t newmax; 1376 /* 1377 * Resize the vector to next power-of-two minus 1. If the 1378 * size would exceed the maximum then we know we've really 1379 * run out of entries. Otherwise, we realloc() the vector 1380 * with the INP lock held to avoid introducing a race. 1381 */ 1382 nmships = NULL; 1383 omships = imo->imo_membership; 1384 newmax = ((imo->imo_max_memberships + 1) * 2) - 1; 1385 if (newmax <= IP_MAX_MEMBERSHIPS) { 1386 nmships = (struct in_multi **)realloc(omships, 1387 sizeof(*nmships) * newmax, M_IPMOPTS, M_NOWAIT); 1388 if (nmships != NULL) { 1389 imo->imo_membership = nmships; 1390 imo->imo_max_memberships = newmax; 1391 } 1392 } 1393 if (nmships == NULL) { 1394 INP_UNLOCK(inp); 1395 error = ETOOMANYREFS; 1396 splx(s); 1397 break; 1398 } 1399 } 1400 /* 1401 * Everything looks good; add a new record to the multicast 1402 * address list for the given interface. 1403 */ 1404 if ((imo->imo_membership[i] = 1405 in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) { 1406 INP_UNLOCK(inp); 1407 error = ENOBUFS; 1408 splx(s); 1409 break; 1410 } 1411 ++imo->imo_num_memberships; 1412 INP_UNLOCK(inp); 1413 splx(s); 1414 break; 1415 1416 case IP_DROP_MEMBERSHIP: 1417 /* 1418 * Drop a multicast group membership. 1419 * Group must be a valid IP multicast address. 1420 */ 1421 error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq); 1422 if (error) 1423 break; 1424 1425 if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) { 1426 error = EINVAL; 1427 break; 1428 } 1429 1430 s = splimp(); 1431 /* 1432 * If an interface address was specified, get a pointer 1433 * to its ifnet structure. 1434 */ 1435 if (mreq.imr_interface.s_addr == INADDR_ANY) 1436 ifp = NULL; 1437 else { 1438 ifp = ip_multicast_if(&mreq.imr_interface, NULL); 1439 if (ifp == NULL) { 1440 error = EADDRNOTAVAIL; 1441 splx(s); 1442 break; 1443 } 1444 } 1445 /* 1446 * Find the membership in the membership array. 1447 */ 1448 imo = ip_findmoptions(inp); 1449 for (i = 0; i < imo->imo_num_memberships; ++i) { 1450 if ((ifp == NULL || 1451 imo->imo_membership[i]->inm_ifp == ifp) && 1452 imo->imo_membership[i]->inm_addr.s_addr == 1453 mreq.imr_multiaddr.s_addr) 1454 break; 1455 } 1456 if (i == imo->imo_num_memberships) { 1457 INP_UNLOCK(inp); 1458 error = EADDRNOTAVAIL; 1459 splx(s); 1460 break; 1461 } 1462 /* 1463 * Give up the multicast address record to which the 1464 * membership points. 1465 */ 1466 in_delmulti(imo->imo_membership[i]); 1467 /* 1468 * Remove the gap in the membership array. 1469 */ 1470 for (++i; i < imo->imo_num_memberships; ++i) 1471 imo->imo_membership[i-1] = imo->imo_membership[i]; 1472 --imo->imo_num_memberships; 1473 INP_UNLOCK(inp); 1474 splx(s); 1475 break; 1476 1477 default: 1478 error = EOPNOTSUPP; 1479 break; 1480 } 1481 1482 return (error); 1483 } 1484 1485 /* 1486 * Return the IP multicast options in response to user getsockopt(). 1487 */ 1488 static int 1489 ip_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1490 { 1491 struct ip_moptions *imo; 1492 struct in_addr addr; 1493 struct in_ifaddr *ia; 1494 int error, optval; 1495 u_char coptval; 1496 1497 INP_LOCK(inp); 1498 imo = inp->inp_moptions; 1499 1500 error = 0; 1501 switch (sopt->sopt_name) { 1502 case IP_MULTICAST_VIF: 1503 if (imo != NULL) 1504 optval = imo->imo_multicast_vif; 1505 else 1506 optval = -1; 1507 INP_UNLOCK(inp); 1508 error = sooptcopyout(sopt, &optval, sizeof optval); 1509 break; 1510 1511 case IP_MULTICAST_IF: 1512 if (imo == NULL || imo->imo_multicast_ifp == NULL) 1513 addr.s_addr = INADDR_ANY; 1514 else if (imo->imo_multicast_addr.s_addr) { 1515 /* return the value user has set */ 1516 addr = imo->imo_multicast_addr; 1517 } else { 1518 IFP_TO_IA(imo->imo_multicast_ifp, ia); 1519 addr.s_addr = (ia == NULL) ? INADDR_ANY 1520 : IA_SIN(ia)->sin_addr.s_addr; 1521 } 1522 INP_UNLOCK(inp); 1523 error = sooptcopyout(sopt, &addr, sizeof addr); 1524 break; 1525 1526 case IP_MULTICAST_TTL: 1527 if (imo == 0) 1528 optval = coptval = IP_DEFAULT_MULTICAST_TTL; 1529 else 1530 optval = coptval = imo->imo_multicast_ttl; 1531 INP_UNLOCK(inp); 1532 if (sopt->sopt_valsize == 1) 1533 error = sooptcopyout(sopt, &coptval, 1); 1534 else 1535 error = sooptcopyout(sopt, &optval, sizeof optval); 1536 break; 1537 1538 case IP_MULTICAST_LOOP: 1539 if (imo == 0) 1540 optval = coptval = IP_DEFAULT_MULTICAST_LOOP; 1541 else 1542 optval = coptval = imo->imo_multicast_loop; 1543 INP_UNLOCK(inp); 1544 if (sopt->sopt_valsize == 1) 1545 error = sooptcopyout(sopt, &coptval, 1); 1546 else 1547 error = sooptcopyout(sopt, &optval, sizeof optval); 1548 break; 1549 1550 default: 1551 INP_UNLOCK(inp); 1552 error = ENOPROTOOPT; 1553 break; 1554 } 1555 INP_UNLOCK_ASSERT(inp); 1556 1557 return (error); 1558 } 1559 1560 /* 1561 * Discard the IP multicast options. 1562 */ 1563 void 1564 ip_freemoptions(imo) 1565 register struct ip_moptions *imo; 1566 { 1567 register int i; 1568 1569 if (imo != NULL) { 1570 for (i = 0; i < imo->imo_num_memberships; ++i) 1571 in_delmulti(imo->imo_membership[i]); 1572 free(imo->imo_membership, M_IPMOPTS); 1573 free(imo, M_IPMOPTS); 1574 } 1575 } 1576 1577 /* 1578 * Routine called from ip_output() to loop back a copy of an IP multicast 1579 * packet to the input queue of a specified interface. Note that this 1580 * calls the output routine of the loopback "driver", but with an interface 1581 * pointer that might NOT be a loopback interface -- evil, but easier than 1582 * replicating that code here. 1583 */ 1584 static void 1585 ip_mloopback(ifp, m, dst, hlen) 1586 struct ifnet *ifp; 1587 register struct mbuf *m; 1588 register struct sockaddr_in *dst; 1589 int hlen; 1590 { 1591 register struct ip *ip; 1592 struct mbuf *copym; 1593 1594 copym = m_copy(m, 0, M_COPYALL); 1595 if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen)) 1596 copym = m_pullup(copym, hlen); 1597 if (copym != NULL) { 1598 /* If needed, compute the checksum and mark it as valid. */ 1599 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1600 in_delayed_cksum(copym); 1601 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1602 copym->m_pkthdr.csum_flags |= 1603 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1604 copym->m_pkthdr.csum_data = 0xffff; 1605 } 1606 /* 1607 * We don't bother to fragment if the IP length is greater 1608 * than the interface's MTU. Can this possibly matter? 1609 */ 1610 ip = mtod(copym, struct ip *); 1611 ip->ip_len = htons(ip->ip_len); 1612 ip->ip_off = htons(ip->ip_off); 1613 ip->ip_sum = 0; 1614 ip->ip_sum = in_cksum(copym, hlen); 1615 /* 1616 * NB: 1617 * It's not clear whether there are any lingering 1618 * reentrancy problems in other areas which might 1619 * be exposed by using ip_input directly (in 1620 * particular, everything which modifies the packet 1621 * in-place). Yet another option is using the 1622 * protosw directly to deliver the looped back 1623 * packet. For the moment, we'll err on the side 1624 * of safety by using if_simloop(). 1625 */ 1626 #if 1 /* XXX */ 1627 if (dst->sin_family != AF_INET) { 1628 printf("ip_mloopback: bad address family %d\n", 1629 dst->sin_family); 1630 dst->sin_family = AF_INET; 1631 } 1632 #endif 1633 1634 #ifdef notdef 1635 copym->m_pkthdr.rcvif = ifp; 1636 ip_input(copym); 1637 #else 1638 if_simloop(ifp, copym, dst->sin_family, 0); 1639 #endif 1640 } 1641 } 1642