xref: /freebsd/sys/netinet/ip_output.c (revision ceaec73d406831b1251babb61675df0a1aa54a31)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  * $FreeBSD$
31  */
32 
33 #include "opt_ipfw.h"
34 #include "opt_ipsec.h"
35 #include "opt_mac.h"
36 #include "opt_mbuf_stress_test.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/mac.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/sysctl.h>
48 
49 #include <net/if.h>
50 #include <net/netisr.h>
51 #include <net/pfil.h>
52 #include <net/route.h>
53 
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/ip.h>
57 #include <netinet/in_pcb.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip_var.h>
60 
61 #include <machine/in_cksum.h>
62 
63 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
64 
65 #ifdef IPSEC
66 #include <netinet6/ipsec.h>
67 #include <netkey/key.h>
68 #ifdef IPSEC_DEBUG
69 #include <netkey/key_debug.h>
70 #else
71 #define	KEYDEBUG(lev,arg)
72 #endif
73 #endif /*IPSEC*/
74 
75 #ifdef FAST_IPSEC
76 #include <netipsec/ipsec.h>
77 #include <netipsec/xform.h>
78 #include <netipsec/key.h>
79 #endif /*FAST_IPSEC*/
80 
81 #define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
82 				x, (ntohl(a.s_addr)>>24)&0xFF,\
83 				  (ntohl(a.s_addr)>>16)&0xFF,\
84 				  (ntohl(a.s_addr)>>8)&0xFF,\
85 				  (ntohl(a.s_addr))&0xFF, y);
86 
87 u_short ip_id;
88 
89 #ifdef MBUF_STRESS_TEST
90 int mbuf_frag_size = 0;
91 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
92 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
93 #endif
94 
95 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
96 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
97 static void	ip_mloopback
98 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
99 static int	ip_getmoptions(struct inpcb *, struct sockopt *);
100 static int	ip_pcbopts(struct inpcb *, int, struct mbuf *);
101 static int	ip_setmoptions(struct inpcb *, struct sockopt *);
102 
103 int	ip_optcopy(struct ip *, struct ip *);
104 
105 
106 extern	struct protosw inetsw[];
107 
108 /*
109  * IP output.  The packet in mbuf chain m contains a skeletal IP
110  * header (with len, off, ttl, proto, tos, src, dst).
111  * The mbuf chain containing the packet will be freed.
112  * The mbuf opt, if present, will not be freed.
113  * In the IP forwarding case, the packet will arrive with options already
114  * inserted, so must have a NULL opt pointer.
115  */
116 int
117 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro,
118 	int flags, struct ip_moptions *imo, struct inpcb *inp)
119 {
120 	struct ip *ip;
121 	struct ifnet *ifp = NULL;	/* keep compiler happy */
122 	struct mbuf *m0;
123 	int hlen = sizeof (struct ip);
124 	int len, error = 0;
125 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
126 	struct in_ifaddr *ia = NULL;
127 	int isbroadcast, sw_csum;
128 	struct route iproute;
129 	struct in_addr odst;
130 #ifdef IPFIREWALL_FORWARD
131 	struct m_tag *fwd_tag = NULL;
132 #endif
133 #ifdef IPSEC
134 	struct secpolicy *sp = NULL;
135 #endif
136 #ifdef FAST_IPSEC
137 	struct secpolicy *sp = NULL;
138 	struct tdb_ident *tdbi;
139 	struct m_tag *mtag;
140 	int s;
141 #endif /* FAST_IPSEC */
142 
143 	M_ASSERTPKTHDR(m);
144 
145 	if (ro == NULL) {
146 		ro = &iproute;
147 		bzero(ro, sizeof (*ro));
148 	}
149 
150 	if (inp != NULL)
151 		INP_LOCK_ASSERT(inp);
152 
153 	if (opt) {
154 		len = 0;
155 		m = ip_insertoptions(m, opt, &len);
156 		if (len != 0)
157 			hlen = len;
158 	}
159 	ip = mtod(m, struct ip *);
160 
161 	/*
162 	 * Fill in IP header.  If we are not allowing fragmentation,
163 	 * then the ip_id field is meaningless, but we don't set it
164 	 * to zero.  Doing so causes various problems when devices along
165 	 * the path (routers, load balancers, firewalls, etc.) illegally
166 	 * disable DF on our packet.  Note that a 16-bit counter
167 	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
168 	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
169 	 * for Counting NATted Hosts", Proc. IMW'02, available at
170 	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
171 	 */
172 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
173 		ip->ip_v = IPVERSION;
174 		ip->ip_hl = hlen >> 2;
175 		ip->ip_id = ip_newid();
176 		ipstat.ips_localout++;
177 	} else {
178 		hlen = ip->ip_hl << 2;
179 	}
180 
181 	dst = (struct sockaddr_in *)&ro->ro_dst;
182 again:
183 	/*
184 	 * If there is a cached route,
185 	 * check that it is to the same destination
186 	 * and is still up.  If not, free it and try again.
187 	 * The address family should also be checked in case of sharing the
188 	 * cache with IPv6.
189 	 */
190 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
191 			  dst->sin_family != AF_INET ||
192 			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
193 		RTFREE(ro->ro_rt);
194 		ro->ro_rt = (struct rtentry *)0;
195 	}
196 #ifdef IPFIREWALL_FORWARD
197 	if (ro->ro_rt == NULL && fwd_tag == NULL) {
198 #else
199 	if (ro->ro_rt == NULL) {
200 #endif
201 		bzero(dst, sizeof(*dst));
202 		dst->sin_family = AF_INET;
203 		dst->sin_len = sizeof(*dst);
204 		dst->sin_addr = ip->ip_dst;
205 	}
206 	/*
207 	 * If routing to interface only,
208 	 * short circuit routing lookup.
209 	 */
210 	if (flags & IP_ROUTETOIF) {
211 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
212 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
213 			ipstat.ips_noroute++;
214 			error = ENETUNREACH;
215 			goto bad;
216 		}
217 		ifp = ia->ia_ifp;
218 		ip->ip_ttl = 1;
219 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
220 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
221 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
222 		/*
223 		 * Bypass the normal routing lookup for multicast
224 		 * packets if the interface is specified.
225 		 */
226 		ifp = imo->imo_multicast_ifp;
227 		IFP_TO_IA(ifp, ia);
228 		isbroadcast = 0;	/* fool gcc */
229 	} else {
230 		/*
231 		 * We want to do any cloning requested by the link layer,
232 		 * as this is probably required in all cases for correct
233 		 * operation (as it is for ARP).
234 		 */
235 		if (ro->ro_rt == NULL)
236 			rtalloc_ign(ro, 0);
237 		if (ro->ro_rt == NULL) {
238 			ipstat.ips_noroute++;
239 			error = EHOSTUNREACH;
240 			goto bad;
241 		}
242 		ia = ifatoia(ro->ro_rt->rt_ifa);
243 		ifp = ro->ro_rt->rt_ifp;
244 		ro->ro_rt->rt_rmx.rmx_pksent++;
245 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
246 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
247 		if (ro->ro_rt->rt_flags & RTF_HOST)
248 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
249 		else
250 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
251 	}
252 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
253 		struct in_multi *inm;
254 
255 		m->m_flags |= M_MCAST;
256 		/*
257 		 * IP destination address is multicast.  Make sure "dst"
258 		 * still points to the address in "ro".  (It may have been
259 		 * changed to point to a gateway address, above.)
260 		 */
261 		dst = (struct sockaddr_in *)&ro->ro_dst;
262 		/*
263 		 * See if the caller provided any multicast options
264 		 */
265 		if (imo != NULL) {
266 			ip->ip_ttl = imo->imo_multicast_ttl;
267 			if (imo->imo_multicast_vif != -1)
268 				ip->ip_src.s_addr =
269 				    ip_mcast_src ?
270 				    ip_mcast_src(imo->imo_multicast_vif) :
271 				    INADDR_ANY;
272 		} else
273 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
274 		/*
275 		 * Confirm that the outgoing interface supports multicast.
276 		 */
277 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
278 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
279 				ipstat.ips_noroute++;
280 				error = ENETUNREACH;
281 				goto bad;
282 			}
283 		}
284 		/*
285 		 * If source address not specified yet, use address
286 		 * of outgoing interface.
287 		 */
288 		if (ip->ip_src.s_addr == INADDR_ANY) {
289 			/* Interface may have no addresses. */
290 			if (ia != NULL)
291 				ip->ip_src = IA_SIN(ia)->sin_addr;
292 		}
293 
294 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
295 		if (inm != NULL &&
296 		   (imo == NULL || imo->imo_multicast_loop)) {
297 			/*
298 			 * If we belong to the destination multicast group
299 			 * on the outgoing interface, and the caller did not
300 			 * forbid loopback, loop back a copy.
301 			 */
302 			ip_mloopback(ifp, m, dst, hlen);
303 		}
304 		else {
305 			/*
306 			 * If we are acting as a multicast router, perform
307 			 * multicast forwarding as if the packet had just
308 			 * arrived on the interface to which we are about
309 			 * to send.  The multicast forwarding function
310 			 * recursively calls this function, using the
311 			 * IP_FORWARDING flag to prevent infinite recursion.
312 			 *
313 			 * Multicasts that are looped back by ip_mloopback(),
314 			 * above, will be forwarded by the ip_input() routine,
315 			 * if necessary.
316 			 */
317 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
318 				/*
319 				 * If rsvp daemon is not running, do not
320 				 * set ip_moptions. This ensures that the packet
321 				 * is multicast and not just sent down one link
322 				 * as prescribed by rsvpd.
323 				 */
324 				if (!rsvp_on)
325 					imo = NULL;
326 				if (ip_mforward &&
327 				    ip_mforward(ip, ifp, m, imo) != 0) {
328 					m_freem(m);
329 					goto done;
330 				}
331 			}
332 		}
333 
334 		/*
335 		 * Multicasts with a time-to-live of zero may be looped-
336 		 * back, above, but must not be transmitted on a network.
337 		 * Also, multicasts addressed to the loopback interface
338 		 * are not sent -- the above call to ip_mloopback() will
339 		 * loop back a copy if this host actually belongs to the
340 		 * destination group on the loopback interface.
341 		 */
342 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
343 			m_freem(m);
344 			goto done;
345 		}
346 
347 		goto sendit;
348 	}
349 #ifndef notdef
350 	/*
351 	 * If the source address is not specified yet, use the address
352 	 * of the outoing interface.
353 	 */
354 	if (ip->ip_src.s_addr == INADDR_ANY) {
355 		/* Interface may have no addresses. */
356 		if (ia != NULL) {
357 			ip->ip_src = IA_SIN(ia)->sin_addr;
358 		}
359 	}
360 #endif /* notdef */
361 	/*
362 	 * Verify that we have any chance at all of being able to queue the
363 	 * packet or packet fragments, unless ALTQ is enabled on the given
364 	 * interface in which case packetdrop should be done by queueing.
365 	 */
366 #ifdef ALTQ
367 	if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
368 	    ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
369 	    ifp->if_snd.ifq_maxlen))
370 #else
371 	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
372 	    ifp->if_snd.ifq_maxlen)
373 #endif /* ALTQ */
374 	{
375 		error = ENOBUFS;
376 		ipstat.ips_odropped++;
377 		goto bad;
378 	}
379 
380 	/*
381 	 * Look for broadcast address and
382 	 * verify user is allowed to send
383 	 * such a packet.
384 	 */
385 	if (isbroadcast) {
386 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
387 			error = EADDRNOTAVAIL;
388 			goto bad;
389 		}
390 		if ((flags & IP_ALLOWBROADCAST) == 0) {
391 			error = EACCES;
392 			goto bad;
393 		}
394 		/* don't allow broadcast messages to be fragmented */
395 		if (ip->ip_len > ifp->if_mtu) {
396 			error = EMSGSIZE;
397 			goto bad;
398 		}
399 		if (flags & IP_SENDONES)
400 			ip->ip_dst.s_addr = INADDR_BROADCAST;
401 		m->m_flags |= M_BCAST;
402 	} else {
403 		m->m_flags &= ~M_BCAST;
404 	}
405 
406 sendit:
407 #ifdef IPSEC
408 	/* get SP for this packet */
409 	if (inp == NULL)
410 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
411 		    flags, &error);
412 	else
413 		sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
414 
415 	if (sp == NULL) {
416 		ipsecstat.out_inval++;
417 		goto bad;
418 	}
419 
420 	error = 0;
421 
422 	/* check policy */
423 	switch (sp->policy) {
424 	case IPSEC_POLICY_DISCARD:
425 		/*
426 		 * This packet is just discarded.
427 		 */
428 		ipsecstat.out_polvio++;
429 		goto bad;
430 
431 	case IPSEC_POLICY_BYPASS:
432 	case IPSEC_POLICY_NONE:
433 	case IPSEC_POLICY_TCP:
434 		/* no need to do IPsec. */
435 		goto skip_ipsec;
436 
437 	case IPSEC_POLICY_IPSEC:
438 		if (sp->req == NULL) {
439 			/* acquire a policy */
440 			error = key_spdacquire(sp);
441 			goto bad;
442 		}
443 		break;
444 
445 	case IPSEC_POLICY_ENTRUST:
446 	default:
447 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
448 	}
449     {
450 	struct ipsec_output_state state;
451 	bzero(&state, sizeof(state));
452 	state.m = m;
453 	if (flags & IP_ROUTETOIF) {
454 		state.ro = &iproute;
455 		bzero(&iproute, sizeof(iproute));
456 	} else
457 		state.ro = ro;
458 	state.dst = (struct sockaddr *)dst;
459 
460 	ip->ip_sum = 0;
461 
462 	/*
463 	 * XXX
464 	 * delayed checksums are not currently compatible with IPsec
465 	 */
466 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
467 		in_delayed_cksum(m);
468 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
469 	}
470 
471 	ip->ip_len = htons(ip->ip_len);
472 	ip->ip_off = htons(ip->ip_off);
473 
474 	error = ipsec4_output(&state, sp, flags);
475 
476 	m = state.m;
477 	if (flags & IP_ROUTETOIF) {
478 		/*
479 		 * if we have tunnel mode SA, we may need to ignore
480 		 * IP_ROUTETOIF.
481 		 */
482 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
483 			flags &= ~IP_ROUTETOIF;
484 			ro = state.ro;
485 		}
486 	} else
487 		ro = state.ro;
488 	dst = (struct sockaddr_in *)state.dst;
489 	if (error) {
490 		/* mbuf is already reclaimed in ipsec4_output. */
491 		m = NULL;
492 		switch (error) {
493 		case EHOSTUNREACH:
494 		case ENETUNREACH:
495 		case EMSGSIZE:
496 		case ENOBUFS:
497 		case ENOMEM:
498 			break;
499 		default:
500 			printf("ip4_output (ipsec): error code %d\n", error);
501 			/*fall through*/
502 		case ENOENT:
503 			/* don't show these error codes to the user */
504 			error = 0;
505 			break;
506 		}
507 		goto bad;
508 	}
509 
510 	/* be sure to update variables that are affected by ipsec4_output() */
511 	ip = mtod(m, struct ip *);
512 	hlen = ip->ip_hl << 2;
513 	if (ro->ro_rt == NULL) {
514 		if ((flags & IP_ROUTETOIF) == 0) {
515 			printf("ip_output: "
516 				"can't update route after IPsec processing\n");
517 			error = EHOSTUNREACH;	/*XXX*/
518 			goto bad;
519 		}
520 	} else {
521 		if (state.encap) {
522 			ia = ifatoia(ro->ro_rt->rt_ifa);
523 			ifp = ro->ro_rt->rt_ifp;
524 		}
525 	}
526     }
527 
528 	/* make it flipped, again. */
529 	ip->ip_len = ntohs(ip->ip_len);
530 	ip->ip_off = ntohs(ip->ip_off);
531 skip_ipsec:
532 #endif /*IPSEC*/
533 #ifdef FAST_IPSEC
534 	/*
535 	 * Check the security policy (SP) for the packet and, if
536 	 * required, do IPsec-related processing.  There are two
537 	 * cases here; the first time a packet is sent through
538 	 * it will be untagged and handled by ipsec4_checkpolicy.
539 	 * If the packet is resubmitted to ip_output (e.g. after
540 	 * AH, ESP, etc. processing), there will be a tag to bypass
541 	 * the lookup and related policy checking.
542 	 */
543 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
544 	s = splnet();
545 	if (mtag != NULL) {
546 		tdbi = (struct tdb_ident *)(mtag + 1);
547 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
548 		if (sp == NULL)
549 			error = -EINVAL;	/* force silent drop */
550 		m_tag_delete(m, mtag);
551 	} else {
552 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
553 					&error, inp);
554 	}
555 	/*
556 	 * There are four return cases:
557 	 *    sp != NULL	 	    apply IPsec policy
558 	 *    sp == NULL, error == 0	    no IPsec handling needed
559 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
560 	 *    sp == NULL, error != 0	    discard packet, report error
561 	 */
562 	if (sp != NULL) {
563 		/* Loop detection, check if ipsec processing already done */
564 		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
565 		for (mtag = m_tag_first(m); mtag != NULL;
566 		     mtag = m_tag_next(m, mtag)) {
567 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
568 				continue;
569 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
570 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
571 				continue;
572 			/*
573 			 * Check if policy has an SA associated with it.
574 			 * This can happen when an SP has yet to acquire
575 			 * an SA; e.g. on first reference.  If it occurs,
576 			 * then we let ipsec4_process_packet do its thing.
577 			 */
578 			if (sp->req->sav == NULL)
579 				break;
580 			tdbi = (struct tdb_ident *)(mtag + 1);
581 			if (tdbi->spi == sp->req->sav->spi &&
582 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
583 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
584 				 sizeof (union sockaddr_union)) == 0) {
585 				/*
586 				 * No IPsec processing is needed, free
587 				 * reference to SP.
588 				 *
589 				 * NB: null pointer to avoid free at
590 				 *     done: below.
591 				 */
592 				KEY_FREESP(&sp), sp = NULL;
593 				splx(s);
594 				goto spd_done;
595 			}
596 		}
597 
598 		/*
599 		 * Do delayed checksums now because we send before
600 		 * this is done in the normal processing path.
601 		 */
602 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
603 			in_delayed_cksum(m);
604 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
605 		}
606 
607 		ip->ip_len = htons(ip->ip_len);
608 		ip->ip_off = htons(ip->ip_off);
609 
610 		/* NB: callee frees mbuf */
611 		error = ipsec4_process_packet(m, sp->req, flags, 0);
612 		/*
613 		 * Preserve KAME behaviour: ENOENT can be returned
614 		 * when an SA acquire is in progress.  Don't propagate
615 		 * this to user-level; it confuses applications.
616 		 *
617 		 * XXX this will go away when the SADB is redone.
618 		 */
619 		if (error == ENOENT)
620 			error = 0;
621 		splx(s);
622 		goto done;
623 	} else {
624 		splx(s);
625 
626 		if (error != 0) {
627 			/*
628 			 * Hack: -EINVAL is used to signal that a packet
629 			 * should be silently discarded.  This is typically
630 			 * because we asked key management for an SA and
631 			 * it was delayed (e.g. kicked up to IKE).
632 			 */
633 			if (error == -EINVAL)
634 				error = 0;
635 			goto bad;
636 		} else {
637 			/* No IPsec processing for this packet. */
638 		}
639 #ifdef notyet
640 		/*
641 		 * If deferred crypto processing is needed, check that
642 		 * the interface supports it.
643 		 */
644 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
645 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
646 			/* notify IPsec to do its own crypto */
647 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
648 			error = EHOSTUNREACH;
649 			goto bad;
650 		}
651 #endif
652 	}
653 spd_done:
654 #endif /* FAST_IPSEC */
655 
656 	/* Jump over all PFIL processing if hooks are not active. */
657 	if (inet_pfil_hook.ph_busy_count == -1)
658 		goto passout;
659 
660 	/* Run through list of hooks for output packets. */
661 	odst.s_addr = ip->ip_dst.s_addr;
662 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
663 	if (error != 0 || m == NULL)
664 		goto done;
665 
666 	ip = mtod(m, struct ip *);
667 
668 	/* See if destination IP address was changed by packet filter. */
669 	if (odst.s_addr != ip->ip_dst.s_addr) {
670 		m->m_flags |= M_SKIP_FIREWALL;
671 		/* If destination is now ourself drop to ip_input(). */
672 		if (in_localip(ip->ip_dst)) {
673 			m->m_flags |= M_FASTFWD_OURS;
674 			if (m->m_pkthdr.rcvif == NULL)
675 				m->m_pkthdr.rcvif = loif;
676 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
677 				m->m_pkthdr.csum_flags |=
678 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
679 				m->m_pkthdr.csum_data = 0xffff;
680 			}
681 			m->m_pkthdr.csum_flags |=
682 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
683 
684 			error = netisr_queue(NETISR_IP, m);
685 			goto done;
686 		} else
687 			goto again;	/* Redo the routing table lookup. */
688 	}
689 
690 #ifdef IPFIREWALL_FORWARD
691 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
692 	if (m->m_flags & M_FASTFWD_OURS) {
693 		if (m->m_pkthdr.rcvif == NULL)
694 			m->m_pkthdr.rcvif = loif;
695 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
696 			m->m_pkthdr.csum_flags |=
697 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
698 			m->m_pkthdr.csum_data = 0xffff;
699 		}
700 		m->m_pkthdr.csum_flags |=
701 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
702 
703 		error = netisr_queue(NETISR_IP, m);
704 		goto done;
705 	}
706 	/* Or forward to some other address? */
707 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
708 	if (fwd_tag) {
709 #ifndef IPFIREWALL_FORWARD_EXTENDED
710 		if (!in_localip(ip->ip_src) && !in_localaddr(ip->ip_dst)) {
711 #endif
712 			dst = (struct sockaddr_in *)&ro->ro_dst;
713 			bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
714 			m->m_flags |= M_SKIP_FIREWALL;
715 			m_tag_delete(m, fwd_tag);
716 			goto again;
717 #ifndef IPFIREWALL_FORWARD_EXTENDED
718 		} else {
719 			m_tag_delete(m, fwd_tag);
720 			/* Continue. */
721 		}
722 #endif
723 	}
724 #endif /* IPFIREWALL_FORWARD */
725 
726 passout:
727 	/* 127/8 must not appear on wire - RFC1122. */
728 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
729 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
730 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
731 			ipstat.ips_badaddr++;
732 			error = EADDRNOTAVAIL;
733 			goto bad;
734 		}
735 	}
736 
737 	m->m_pkthdr.csum_flags |= CSUM_IP;
738 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
739 	if (sw_csum & CSUM_DELAY_DATA) {
740 		in_delayed_cksum(m);
741 		sw_csum &= ~CSUM_DELAY_DATA;
742 	}
743 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
744 
745 	/*
746 	 * If small enough for interface, or the interface will take
747 	 * care of the fragmentation for us, can just send directly.
748 	 */
749 	if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
750 	    ((ip->ip_off & IP_DF) == 0))) {
751 		ip->ip_len = htons(ip->ip_len);
752 		ip->ip_off = htons(ip->ip_off);
753 		ip->ip_sum = 0;
754 		if (sw_csum & CSUM_DELAY_IP)
755 			ip->ip_sum = in_cksum(m, hlen);
756 
757 		/* Record statistics for this interface address. */
758 		if (!(flags & IP_FORWARDING) && ia) {
759 			ia->ia_ifa.if_opackets++;
760 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
761 		}
762 
763 #ifdef IPSEC
764 		/* clean ipsec history once it goes out of the node */
765 		ipsec_delaux(m);
766 #endif
767 
768 #ifdef MBUF_STRESS_TEST
769 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
770 			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
771 #endif
772 		error = (*ifp->if_output)(ifp, m,
773 				(struct sockaddr *)dst, ro->ro_rt);
774 		goto done;
775 	}
776 
777 	if (ip->ip_off & IP_DF) {
778 		error = EMSGSIZE;
779 		/*
780 		 * This case can happen if the user changed the MTU
781 		 * of an interface after enabling IP on it.  Because
782 		 * most netifs don't keep track of routes pointing to
783 		 * them, there is no way for one to update all its
784 		 * routes when the MTU is changed.
785 		 */
786 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
787 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
788 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
789 		}
790 		ipstat.ips_cantfrag++;
791 		goto bad;
792 	}
793 
794 	/*
795 	 * Too large for interface; fragment if possible. If successful,
796 	 * on return, m will point to a list of packets to be sent.
797 	 */
798 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
799 	if (error)
800 		goto bad;
801 	for (; m; m = m0) {
802 		m0 = m->m_nextpkt;
803 		m->m_nextpkt = 0;
804 #ifdef IPSEC
805 		/* clean ipsec history once it goes out of the node */
806 		ipsec_delaux(m);
807 #endif
808 		if (error == 0) {
809 			/* Record statistics for this interface address. */
810 			if (ia != NULL) {
811 				ia->ia_ifa.if_opackets++;
812 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
813 			}
814 
815 			error = (*ifp->if_output)(ifp, m,
816 			    (struct sockaddr *)dst, ro->ro_rt);
817 		} else
818 			m_freem(m);
819 	}
820 
821 	if (error == 0)
822 		ipstat.ips_fragmented++;
823 
824 done:
825 	if (ro == &iproute && ro->ro_rt) {
826 		RTFREE(ro->ro_rt);
827 	}
828 #ifdef IPSEC
829 	if (sp != NULL) {
830 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
831 			printf("DP ip_output call free SP:%p\n", sp));
832 		key_freesp(sp);
833 	}
834 #endif
835 #ifdef FAST_IPSEC
836 	if (sp != NULL)
837 		KEY_FREESP(&sp);
838 #endif
839 	return (error);
840 bad:
841 	m_freem(m);
842 	goto done;
843 }
844 
845 /*
846  * Create a chain of fragments which fit the given mtu. m_frag points to the
847  * mbuf to be fragmented; on return it points to the chain with the fragments.
848  * Return 0 if no error. If error, m_frag may contain a partially built
849  * chain of fragments that should be freed by the caller.
850  *
851  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
852  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
853  */
854 int
855 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
856 	    u_long if_hwassist_flags, int sw_csum)
857 {
858 	int error = 0;
859 	int hlen = ip->ip_hl << 2;
860 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
861 	int off;
862 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
863 	int firstlen;
864 	struct mbuf **mnext;
865 	int nfrags;
866 
867 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
868 		ipstat.ips_cantfrag++;
869 		return EMSGSIZE;
870 	}
871 
872 	/*
873 	 * Must be able to put at least 8 bytes per fragment.
874 	 */
875 	if (len < 8)
876 		return EMSGSIZE;
877 
878 	/*
879 	 * If the interface will not calculate checksums on
880 	 * fragmented packets, then do it here.
881 	 */
882 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
883 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
884 		in_delayed_cksum(m0);
885 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
886 	}
887 
888 	if (len > PAGE_SIZE) {
889 		/*
890 		 * Fragment large datagrams such that each segment
891 		 * contains a multiple of PAGE_SIZE amount of data,
892 		 * plus headers. This enables a receiver to perform
893 		 * page-flipping zero-copy optimizations.
894 		 *
895 		 * XXX When does this help given that sender and receiver
896 		 * could have different page sizes, and also mtu could
897 		 * be less than the receiver's page size ?
898 		 */
899 		int newlen;
900 		struct mbuf *m;
901 
902 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
903 			off += m->m_len;
904 
905 		/*
906 		 * firstlen (off - hlen) must be aligned on an
907 		 * 8-byte boundary
908 		 */
909 		if (off < hlen)
910 			goto smart_frag_failure;
911 		off = ((off - hlen) & ~7) + hlen;
912 		newlen = (~PAGE_MASK) & mtu;
913 		if ((newlen + sizeof (struct ip)) > mtu) {
914 			/* we failed, go back the default */
915 smart_frag_failure:
916 			newlen = len;
917 			off = hlen + len;
918 		}
919 		len = newlen;
920 
921 	} else {
922 		off = hlen + len;
923 	}
924 
925 	firstlen = off - hlen;
926 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
927 
928 	/*
929 	 * Loop through length of segment after first fragment,
930 	 * make new header and copy data of each part and link onto chain.
931 	 * Here, m0 is the original packet, m is the fragment being created.
932 	 * The fragments are linked off the m_nextpkt of the original
933 	 * packet, which after processing serves as the first fragment.
934 	 */
935 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
936 		struct ip *mhip;	/* ip header on the fragment */
937 		struct mbuf *m;
938 		int mhlen = sizeof (struct ip);
939 
940 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
941 		if (m == NULL) {
942 			error = ENOBUFS;
943 			ipstat.ips_odropped++;
944 			goto done;
945 		}
946 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
947 		/*
948 		 * In the first mbuf, leave room for the link header, then
949 		 * copy the original IP header including options. The payload
950 		 * goes into an additional mbuf chain returned by m_copy().
951 		 */
952 		m->m_data += max_linkhdr;
953 		mhip = mtod(m, struct ip *);
954 		*mhip = *ip;
955 		if (hlen > sizeof (struct ip)) {
956 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
957 			mhip->ip_v = IPVERSION;
958 			mhip->ip_hl = mhlen >> 2;
959 		}
960 		m->m_len = mhlen;
961 		/* XXX do we need to add ip->ip_off below ? */
962 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
963 		if (off + len >= ip->ip_len) {	/* last fragment */
964 			len = ip->ip_len - off;
965 			m->m_flags |= M_LASTFRAG;
966 		} else
967 			mhip->ip_off |= IP_MF;
968 		mhip->ip_len = htons((u_short)(len + mhlen));
969 		m->m_next = m_copy(m0, off, len);
970 		if (m->m_next == NULL) {	/* copy failed */
971 			m_free(m);
972 			error = ENOBUFS;	/* ??? */
973 			ipstat.ips_odropped++;
974 			goto done;
975 		}
976 		m->m_pkthdr.len = mhlen + len;
977 		m->m_pkthdr.rcvif = (struct ifnet *)0;
978 #ifdef MAC
979 		mac_create_fragment(m0, m);
980 #endif
981 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
982 		mhip->ip_off = htons(mhip->ip_off);
983 		mhip->ip_sum = 0;
984 		if (sw_csum & CSUM_DELAY_IP)
985 			mhip->ip_sum = in_cksum(m, mhlen);
986 		*mnext = m;
987 		mnext = &m->m_nextpkt;
988 	}
989 	ipstat.ips_ofragments += nfrags;
990 
991 	/* set first marker for fragment chain */
992 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
993 	m0->m_pkthdr.csum_data = nfrags;
994 
995 	/*
996 	 * Update first fragment by trimming what's been copied out
997 	 * and updating header.
998 	 */
999 	m_adj(m0, hlen + firstlen - ip->ip_len);
1000 	m0->m_pkthdr.len = hlen + firstlen;
1001 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1002 	ip->ip_off |= IP_MF;
1003 	ip->ip_off = htons(ip->ip_off);
1004 	ip->ip_sum = 0;
1005 	if (sw_csum & CSUM_DELAY_IP)
1006 		ip->ip_sum = in_cksum(m0, hlen);
1007 
1008 done:
1009 	*m_frag = m0;
1010 	return error;
1011 }
1012 
1013 void
1014 in_delayed_cksum(struct mbuf *m)
1015 {
1016 	struct ip *ip;
1017 	u_short csum, offset;
1018 
1019 	ip = mtod(m, struct ip *);
1020 	offset = ip->ip_hl << 2 ;
1021 	csum = in_cksum_skip(m, ip->ip_len, offset);
1022 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1023 		csum = 0xffff;
1024 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1025 
1026 	if (offset + sizeof(u_short) > m->m_len) {
1027 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1028 		    m->m_len, offset, ip->ip_p);
1029 		/*
1030 		 * XXX
1031 		 * this shouldn't happen, but if it does, the
1032 		 * correct behavior may be to insert the checksum
1033 		 * in the existing chain instead of rearranging it.
1034 		 */
1035 		m = m_pullup(m, offset + sizeof(u_short));
1036 	}
1037 	*(u_short *)(m->m_data + offset) = csum;
1038 }
1039 
1040 /*
1041  * Insert IP options into preformed packet.
1042  * Adjust IP destination as required for IP source routing,
1043  * as indicated by a non-zero in_addr at the start of the options.
1044  *
1045  * XXX This routine assumes that the packet has no options in place.
1046  */
1047 static struct mbuf *
1048 ip_insertoptions(m, opt, phlen)
1049 	register struct mbuf *m;
1050 	struct mbuf *opt;
1051 	int *phlen;
1052 {
1053 	register struct ipoption *p = mtod(opt, struct ipoption *);
1054 	struct mbuf *n;
1055 	register struct ip *ip = mtod(m, struct ip *);
1056 	unsigned optlen;
1057 
1058 	optlen = opt->m_len - sizeof(p->ipopt_dst);
1059 	if (optlen + ip->ip_len > IP_MAXPACKET) {
1060 		*phlen = 0;
1061 		return (m);		/* XXX should fail */
1062 	}
1063 	if (p->ipopt_dst.s_addr)
1064 		ip->ip_dst = p->ipopt_dst;
1065 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1066 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1067 		if (n == NULL) {
1068 			*phlen = 0;
1069 			return (m);
1070 		}
1071 		M_MOVE_PKTHDR(n, m);
1072 		n->m_pkthdr.rcvif = (struct ifnet *)0;
1073 #ifdef MAC
1074 		mac_create_mbuf_from_mbuf(m, n);
1075 #endif
1076 		n->m_pkthdr.len += optlen;
1077 		m->m_len -= sizeof(struct ip);
1078 		m->m_data += sizeof(struct ip);
1079 		n->m_next = m;
1080 		m = n;
1081 		m->m_len = optlen + sizeof(struct ip);
1082 		m->m_data += max_linkhdr;
1083 		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1084 	} else {
1085 		m->m_data -= optlen;
1086 		m->m_len += optlen;
1087 		m->m_pkthdr.len += optlen;
1088 		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1089 	}
1090 	ip = mtod(m, struct ip *);
1091 	bcopy(p->ipopt_list, ip + 1, optlen);
1092 	*phlen = sizeof(struct ip) + optlen;
1093 	ip->ip_v = IPVERSION;
1094 	ip->ip_hl = *phlen >> 2;
1095 	ip->ip_len += optlen;
1096 	return (m);
1097 }
1098 
1099 /*
1100  * Copy options from ip to jp,
1101  * omitting those not copied during fragmentation.
1102  */
1103 int
1104 ip_optcopy(ip, jp)
1105 	struct ip *ip, *jp;
1106 {
1107 	register u_char *cp, *dp;
1108 	int opt, optlen, cnt;
1109 
1110 	cp = (u_char *)(ip + 1);
1111 	dp = (u_char *)(jp + 1);
1112 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1113 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1114 		opt = cp[0];
1115 		if (opt == IPOPT_EOL)
1116 			break;
1117 		if (opt == IPOPT_NOP) {
1118 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1119 			*dp++ = IPOPT_NOP;
1120 			optlen = 1;
1121 			continue;
1122 		}
1123 
1124 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1125 		    ("ip_optcopy: malformed ipv4 option"));
1126 		optlen = cp[IPOPT_OLEN];
1127 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1128 		    ("ip_optcopy: malformed ipv4 option"));
1129 
1130 		/* bogus lengths should have been caught by ip_dooptions */
1131 		if (optlen > cnt)
1132 			optlen = cnt;
1133 		if (IPOPT_COPIED(opt)) {
1134 			bcopy(cp, dp, optlen);
1135 			dp += optlen;
1136 		}
1137 	}
1138 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1139 		*dp++ = IPOPT_EOL;
1140 	return (optlen);
1141 }
1142 
1143 /*
1144  * IP socket option processing.
1145  */
1146 int
1147 ip_ctloutput(so, sopt)
1148 	struct socket *so;
1149 	struct sockopt *sopt;
1150 {
1151 	struct	inpcb *inp = sotoinpcb(so);
1152 	int	error, optval;
1153 
1154 	error = optval = 0;
1155 	if (sopt->sopt_level != IPPROTO_IP) {
1156 		return (EINVAL);
1157 	}
1158 
1159 	switch (sopt->sopt_dir) {
1160 	case SOPT_SET:
1161 		switch (sopt->sopt_name) {
1162 		case IP_OPTIONS:
1163 #ifdef notyet
1164 		case IP_RETOPTS:
1165 #endif
1166 		{
1167 			struct mbuf *m;
1168 			if (sopt->sopt_valsize > MLEN) {
1169 				error = EMSGSIZE;
1170 				break;
1171 			}
1172 			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1173 			if (m == NULL) {
1174 				error = ENOBUFS;
1175 				break;
1176 			}
1177 			m->m_len = sopt->sopt_valsize;
1178 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1179 					    m->m_len);
1180 			INP_LOCK(inp);
1181 			error = ip_pcbopts(inp, sopt->sopt_name, m);
1182 			INP_UNLOCK(inp);
1183 			return (error);
1184 		}
1185 
1186 		case IP_TOS:
1187 		case IP_TTL:
1188 		case IP_RECVOPTS:
1189 		case IP_RECVRETOPTS:
1190 		case IP_RECVDSTADDR:
1191 		case IP_RECVTTL:
1192 		case IP_RECVIF:
1193 		case IP_FAITH:
1194 		case IP_ONESBCAST:
1195 			error = sooptcopyin(sopt, &optval, sizeof optval,
1196 					    sizeof optval);
1197 			if (error)
1198 				break;
1199 
1200 			switch (sopt->sopt_name) {
1201 			case IP_TOS:
1202 				inp->inp_ip_tos = optval;
1203 				break;
1204 
1205 			case IP_TTL:
1206 				inp->inp_ip_ttl = optval;
1207 				break;
1208 #define	OPTSET(bit) do {						\
1209 	INP_LOCK(inp);							\
1210 	if (optval)							\
1211 		inp->inp_flags |= bit;					\
1212 	else								\
1213 		inp->inp_flags &= ~bit;					\
1214 	INP_UNLOCK(inp);						\
1215 } while (0)
1216 
1217 			case IP_RECVOPTS:
1218 				OPTSET(INP_RECVOPTS);
1219 				break;
1220 
1221 			case IP_RECVRETOPTS:
1222 				OPTSET(INP_RECVRETOPTS);
1223 				break;
1224 
1225 			case IP_RECVDSTADDR:
1226 				OPTSET(INP_RECVDSTADDR);
1227 				break;
1228 
1229 			case IP_RECVTTL:
1230 				OPTSET(INP_RECVTTL);
1231 				break;
1232 
1233 			case IP_RECVIF:
1234 				OPTSET(INP_RECVIF);
1235 				break;
1236 
1237 			case IP_FAITH:
1238 				OPTSET(INP_FAITH);
1239 				break;
1240 
1241 			case IP_ONESBCAST:
1242 				OPTSET(INP_ONESBCAST);
1243 				break;
1244 			}
1245 			break;
1246 #undef OPTSET
1247 
1248 		case IP_MULTICAST_IF:
1249 		case IP_MULTICAST_VIF:
1250 		case IP_MULTICAST_TTL:
1251 		case IP_MULTICAST_LOOP:
1252 		case IP_ADD_MEMBERSHIP:
1253 		case IP_DROP_MEMBERSHIP:
1254 			error = ip_setmoptions(inp, sopt);
1255 			break;
1256 
1257 		case IP_PORTRANGE:
1258 			error = sooptcopyin(sopt, &optval, sizeof optval,
1259 					    sizeof optval);
1260 			if (error)
1261 				break;
1262 
1263 			INP_LOCK(inp);
1264 			switch (optval) {
1265 			case IP_PORTRANGE_DEFAULT:
1266 				inp->inp_flags &= ~(INP_LOWPORT);
1267 				inp->inp_flags &= ~(INP_HIGHPORT);
1268 				break;
1269 
1270 			case IP_PORTRANGE_HIGH:
1271 				inp->inp_flags &= ~(INP_LOWPORT);
1272 				inp->inp_flags |= INP_HIGHPORT;
1273 				break;
1274 
1275 			case IP_PORTRANGE_LOW:
1276 				inp->inp_flags &= ~(INP_HIGHPORT);
1277 				inp->inp_flags |= INP_LOWPORT;
1278 				break;
1279 
1280 			default:
1281 				error = EINVAL;
1282 				break;
1283 			}
1284 			INP_UNLOCK(inp);
1285 			break;
1286 
1287 #if defined(IPSEC) || defined(FAST_IPSEC)
1288 		case IP_IPSEC_POLICY:
1289 		{
1290 			caddr_t req;
1291 			size_t len = 0;
1292 			int priv;
1293 			struct mbuf *m;
1294 			int optname;
1295 
1296 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1297 				break;
1298 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1299 				break;
1300 			priv = (sopt->sopt_td != NULL &&
1301 				suser(sopt->sopt_td) != 0) ? 0 : 1;
1302 			req = mtod(m, caddr_t);
1303 			len = m->m_len;
1304 			optname = sopt->sopt_name;
1305 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1306 			m_freem(m);
1307 			break;
1308 		}
1309 #endif /*IPSEC*/
1310 
1311 		default:
1312 			error = ENOPROTOOPT;
1313 			break;
1314 		}
1315 		break;
1316 
1317 	case SOPT_GET:
1318 		switch (sopt->sopt_name) {
1319 		case IP_OPTIONS:
1320 		case IP_RETOPTS:
1321 			if (inp->inp_options)
1322 				error = sooptcopyout(sopt,
1323 						     mtod(inp->inp_options,
1324 							  char *),
1325 						     inp->inp_options->m_len);
1326 			else
1327 				sopt->sopt_valsize = 0;
1328 			break;
1329 
1330 		case IP_TOS:
1331 		case IP_TTL:
1332 		case IP_RECVOPTS:
1333 		case IP_RECVRETOPTS:
1334 		case IP_RECVDSTADDR:
1335 		case IP_RECVTTL:
1336 		case IP_RECVIF:
1337 		case IP_PORTRANGE:
1338 		case IP_FAITH:
1339 		case IP_ONESBCAST:
1340 			switch (sopt->sopt_name) {
1341 
1342 			case IP_TOS:
1343 				optval = inp->inp_ip_tos;
1344 				break;
1345 
1346 			case IP_TTL:
1347 				optval = inp->inp_ip_ttl;
1348 				break;
1349 
1350 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1351 
1352 			case IP_RECVOPTS:
1353 				optval = OPTBIT(INP_RECVOPTS);
1354 				break;
1355 
1356 			case IP_RECVRETOPTS:
1357 				optval = OPTBIT(INP_RECVRETOPTS);
1358 				break;
1359 
1360 			case IP_RECVDSTADDR:
1361 				optval = OPTBIT(INP_RECVDSTADDR);
1362 				break;
1363 
1364 			case IP_RECVTTL:
1365 				optval = OPTBIT(INP_RECVTTL);
1366 				break;
1367 
1368 			case IP_RECVIF:
1369 				optval = OPTBIT(INP_RECVIF);
1370 				break;
1371 
1372 			case IP_PORTRANGE:
1373 				if (inp->inp_flags & INP_HIGHPORT)
1374 					optval = IP_PORTRANGE_HIGH;
1375 				else if (inp->inp_flags & INP_LOWPORT)
1376 					optval = IP_PORTRANGE_LOW;
1377 				else
1378 					optval = 0;
1379 				break;
1380 
1381 			case IP_FAITH:
1382 				optval = OPTBIT(INP_FAITH);
1383 				break;
1384 
1385 			case IP_ONESBCAST:
1386 				optval = OPTBIT(INP_ONESBCAST);
1387 				break;
1388 			}
1389 			error = sooptcopyout(sopt, &optval, sizeof optval);
1390 			break;
1391 
1392 		case IP_MULTICAST_IF:
1393 		case IP_MULTICAST_VIF:
1394 		case IP_MULTICAST_TTL:
1395 		case IP_MULTICAST_LOOP:
1396 		case IP_ADD_MEMBERSHIP:
1397 		case IP_DROP_MEMBERSHIP:
1398 			error = ip_getmoptions(inp, sopt);
1399 			break;
1400 
1401 #if defined(IPSEC) || defined(FAST_IPSEC)
1402 		case IP_IPSEC_POLICY:
1403 		{
1404 			struct mbuf *m = NULL;
1405 			caddr_t req = NULL;
1406 			size_t len = 0;
1407 
1408 			if (m != 0) {
1409 				req = mtod(m, caddr_t);
1410 				len = m->m_len;
1411 			}
1412 			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1413 			if (error == 0)
1414 				error = soopt_mcopyout(sopt, m); /* XXX */
1415 			if (error == 0)
1416 				m_freem(m);
1417 			break;
1418 		}
1419 #endif /*IPSEC*/
1420 
1421 		default:
1422 			error = ENOPROTOOPT;
1423 			break;
1424 		}
1425 		break;
1426 	}
1427 	return (error);
1428 }
1429 
1430 /*
1431  * Set up IP options in pcb for insertion in output packets.
1432  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1433  * with destination address if source routed.
1434  */
1435 static int
1436 ip_pcbopts(struct inpcb *inp, int optname, struct mbuf *m)
1437 {
1438 	register int cnt, optlen;
1439 	register u_char *cp;
1440 	struct mbuf **pcbopt;
1441 	u_char opt;
1442 
1443 	INP_LOCK_ASSERT(inp);
1444 
1445 	pcbopt = &inp->inp_options;
1446 
1447 	/* turn off any old options */
1448 	if (*pcbopt)
1449 		(void)m_free(*pcbopt);
1450 	*pcbopt = 0;
1451 	if (m == NULL || m->m_len == 0) {
1452 		/*
1453 		 * Only turning off any previous options.
1454 		 */
1455 		if (m != NULL)
1456 			(void)m_free(m);
1457 		return (0);
1458 	}
1459 
1460 	if (m->m_len % sizeof(int32_t))
1461 		goto bad;
1462 	/*
1463 	 * IP first-hop destination address will be stored before
1464 	 * actual options; move other options back
1465 	 * and clear it when none present.
1466 	 */
1467 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1468 		goto bad;
1469 	cnt = m->m_len;
1470 	m->m_len += sizeof(struct in_addr);
1471 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1472 	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1473 	bzero(mtod(m, void *), sizeof(struct in_addr));
1474 
1475 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1476 		opt = cp[IPOPT_OPTVAL];
1477 		if (opt == IPOPT_EOL)
1478 			break;
1479 		if (opt == IPOPT_NOP)
1480 			optlen = 1;
1481 		else {
1482 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1483 				goto bad;
1484 			optlen = cp[IPOPT_OLEN];
1485 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1486 				goto bad;
1487 		}
1488 		switch (opt) {
1489 
1490 		default:
1491 			break;
1492 
1493 		case IPOPT_LSRR:
1494 		case IPOPT_SSRR:
1495 			/*
1496 			 * user process specifies route as:
1497 			 *	->A->B->C->D
1498 			 * D must be our final destination (but we can't
1499 			 * check that since we may not have connected yet).
1500 			 * A is first hop destination, which doesn't appear in
1501 			 * actual IP option, but is stored before the options.
1502 			 */
1503 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1504 				goto bad;
1505 			m->m_len -= sizeof(struct in_addr);
1506 			cnt -= sizeof(struct in_addr);
1507 			optlen -= sizeof(struct in_addr);
1508 			cp[IPOPT_OLEN] = optlen;
1509 			/*
1510 			 * Move first hop before start of options.
1511 			 */
1512 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1513 			    sizeof(struct in_addr));
1514 			/*
1515 			 * Then copy rest of options back
1516 			 * to close up the deleted entry.
1517 			 */
1518 			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1519 			    &cp[IPOPT_OFFSET+1],
1520 			    (unsigned)cnt - (IPOPT_MINOFF - 1));
1521 			break;
1522 		}
1523 	}
1524 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1525 		goto bad;
1526 	*pcbopt = m;
1527 	return (0);
1528 
1529 bad:
1530 	(void)m_free(m);
1531 	return (EINVAL);
1532 }
1533 
1534 /*
1535  * XXX
1536  * The whole multicast option thing needs to be re-thought.
1537  * Several of these options are equally applicable to non-multicast
1538  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1539  * standard option (IP_TTL).
1540  */
1541 
1542 /*
1543  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1544  */
1545 static struct ifnet *
1546 ip_multicast_if(a, ifindexp)
1547 	struct in_addr *a;
1548 	int *ifindexp;
1549 {
1550 	int ifindex;
1551 	struct ifnet *ifp;
1552 
1553 	if (ifindexp)
1554 		*ifindexp = 0;
1555 	if (ntohl(a->s_addr) >> 24 == 0) {
1556 		ifindex = ntohl(a->s_addr) & 0xffffff;
1557 		if (ifindex < 0 || if_index < ifindex)
1558 			return NULL;
1559 		ifp = ifnet_byindex(ifindex);
1560 		if (ifindexp)
1561 			*ifindexp = ifindex;
1562 	} else {
1563 		INADDR_TO_IFP(*a, ifp);
1564 	}
1565 	return ifp;
1566 }
1567 
1568 /*
1569  * Set the IP multicast options in response to user setsockopt().
1570  */
1571 static int
1572 ip_setmoptions(struct inpcb *inp, struct sockopt *sopt)
1573 {
1574 	int error = 0;
1575 	int i;
1576 	struct in_addr addr;
1577 	struct ip_mreq mreq;
1578 	struct ifnet *ifp;
1579 	struct ip_moptions *imo;
1580 	struct route ro;
1581 	struct sockaddr_in *dst;
1582 	int ifindex;
1583 	int s;
1584 
1585 	imo = inp->inp_moptions;
1586 	if (imo == NULL) {
1587 		/*
1588 		 * No multicast option buffer attached to the pcb;
1589 		 * allocate one and initialize to default values.
1590 		 */
1591 		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1592 		    M_WAITOK);
1593 
1594 		if (imo == NULL)
1595 			return (ENOBUFS);
1596 		inp->inp_moptions = imo;
1597 		imo->imo_multicast_ifp = NULL;
1598 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1599 		imo->imo_multicast_vif = -1;
1600 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1601 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1602 		imo->imo_num_memberships = 0;
1603 	}
1604 
1605 	switch (sopt->sopt_name) {
1606 	/* store an index number for the vif you wanna use in the send */
1607 	case IP_MULTICAST_VIF:
1608 		if (legal_vif_num == 0) {
1609 			error = EOPNOTSUPP;
1610 			break;
1611 		}
1612 		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1613 		if (error)
1614 			break;
1615 		if (!legal_vif_num(i) && (i != -1)) {
1616 			error = EINVAL;
1617 			break;
1618 		}
1619 		imo->imo_multicast_vif = i;
1620 		break;
1621 
1622 	case IP_MULTICAST_IF:
1623 		/*
1624 		 * Select the interface for outgoing multicast packets.
1625 		 */
1626 		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1627 		if (error)
1628 			break;
1629 		/*
1630 		 * INADDR_ANY is used to remove a previous selection.
1631 		 * When no interface is selected, a default one is
1632 		 * chosen every time a multicast packet is sent.
1633 		 */
1634 		if (addr.s_addr == INADDR_ANY) {
1635 			imo->imo_multicast_ifp = NULL;
1636 			break;
1637 		}
1638 		/*
1639 		 * The selected interface is identified by its local
1640 		 * IP address.  Find the interface and confirm that
1641 		 * it supports multicasting.
1642 		 */
1643 		s = splimp();
1644 		ifp = ip_multicast_if(&addr, &ifindex);
1645 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1646 			splx(s);
1647 			error = EADDRNOTAVAIL;
1648 			break;
1649 		}
1650 		imo->imo_multicast_ifp = ifp;
1651 		if (ifindex)
1652 			imo->imo_multicast_addr = addr;
1653 		else
1654 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1655 		splx(s);
1656 		break;
1657 
1658 	case IP_MULTICAST_TTL:
1659 		/*
1660 		 * Set the IP time-to-live for outgoing multicast packets.
1661 		 * The original multicast API required a char argument,
1662 		 * which is inconsistent with the rest of the socket API.
1663 		 * We allow either a char or an int.
1664 		 */
1665 		if (sopt->sopt_valsize == 1) {
1666 			u_char ttl;
1667 			error = sooptcopyin(sopt, &ttl, 1, 1);
1668 			if (error)
1669 				break;
1670 			imo->imo_multicast_ttl = ttl;
1671 		} else {
1672 			u_int ttl;
1673 			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1674 					    sizeof ttl);
1675 			if (error)
1676 				break;
1677 			if (ttl > 255)
1678 				error = EINVAL;
1679 			else
1680 				imo->imo_multicast_ttl = ttl;
1681 		}
1682 		break;
1683 
1684 	case IP_MULTICAST_LOOP:
1685 		/*
1686 		 * Set the loopback flag for outgoing multicast packets.
1687 		 * Must be zero or one.  The original multicast API required a
1688 		 * char argument, which is inconsistent with the rest
1689 		 * of the socket API.  We allow either a char or an int.
1690 		 */
1691 		if (sopt->sopt_valsize == 1) {
1692 			u_char loop;
1693 			error = sooptcopyin(sopt, &loop, 1, 1);
1694 			if (error)
1695 				break;
1696 			imo->imo_multicast_loop = !!loop;
1697 		} else {
1698 			u_int loop;
1699 			error = sooptcopyin(sopt, &loop, sizeof loop,
1700 					    sizeof loop);
1701 			if (error)
1702 				break;
1703 			imo->imo_multicast_loop = !!loop;
1704 		}
1705 		break;
1706 
1707 	case IP_ADD_MEMBERSHIP:
1708 		/*
1709 		 * Add a multicast group membership.
1710 		 * Group must be a valid IP multicast address.
1711 		 */
1712 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1713 		if (error)
1714 			break;
1715 
1716 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1717 			error = EINVAL;
1718 			break;
1719 		}
1720 		s = splimp();
1721 		/*
1722 		 * If no interface address was provided, use the interface of
1723 		 * the route to the given multicast address.
1724 		 */
1725 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1726 			bzero((caddr_t)&ro, sizeof(ro));
1727 			dst = (struct sockaddr_in *)&ro.ro_dst;
1728 			dst->sin_len = sizeof(*dst);
1729 			dst->sin_family = AF_INET;
1730 			dst->sin_addr = mreq.imr_multiaddr;
1731 			rtalloc_ign(&ro, RTF_CLONING);
1732 			if (ro.ro_rt == NULL) {
1733 				error = EADDRNOTAVAIL;
1734 				splx(s);
1735 				break;
1736 			}
1737 			ifp = ro.ro_rt->rt_ifp;
1738 			RTFREE(ro.ro_rt);
1739 		}
1740 		else {
1741 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1742 		}
1743 
1744 		/*
1745 		 * See if we found an interface, and confirm that it
1746 		 * supports multicast.
1747 		 */
1748 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1749 			error = EADDRNOTAVAIL;
1750 			splx(s);
1751 			break;
1752 		}
1753 		/*
1754 		 * See if the membership already exists or if all the
1755 		 * membership slots are full.
1756 		 */
1757 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1758 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1759 			    imo->imo_membership[i]->inm_addr.s_addr
1760 						== mreq.imr_multiaddr.s_addr)
1761 				break;
1762 		}
1763 		if (i < imo->imo_num_memberships) {
1764 			error = EADDRINUSE;
1765 			splx(s);
1766 			break;
1767 		}
1768 		if (i == IP_MAX_MEMBERSHIPS) {
1769 			error = ETOOMANYREFS;
1770 			splx(s);
1771 			break;
1772 		}
1773 		/*
1774 		 * Everything looks good; add a new record to the multicast
1775 		 * address list for the given interface.
1776 		 */
1777 		if ((imo->imo_membership[i] =
1778 		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1779 			error = ENOBUFS;
1780 			splx(s);
1781 			break;
1782 		}
1783 		++imo->imo_num_memberships;
1784 		splx(s);
1785 		break;
1786 
1787 	case IP_DROP_MEMBERSHIP:
1788 		/*
1789 		 * Drop a multicast group membership.
1790 		 * Group must be a valid IP multicast address.
1791 		 */
1792 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1793 		if (error)
1794 			break;
1795 
1796 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1797 			error = EINVAL;
1798 			break;
1799 		}
1800 
1801 		s = splimp();
1802 		/*
1803 		 * If an interface address was specified, get a pointer
1804 		 * to its ifnet structure.
1805 		 */
1806 		if (mreq.imr_interface.s_addr == INADDR_ANY)
1807 			ifp = NULL;
1808 		else {
1809 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1810 			if (ifp == NULL) {
1811 				error = EADDRNOTAVAIL;
1812 				splx(s);
1813 				break;
1814 			}
1815 		}
1816 		/*
1817 		 * Find the membership in the membership array.
1818 		 */
1819 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1820 			if ((ifp == NULL ||
1821 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1822 			     imo->imo_membership[i]->inm_addr.s_addr ==
1823 			     mreq.imr_multiaddr.s_addr)
1824 				break;
1825 		}
1826 		if (i == imo->imo_num_memberships) {
1827 			error = EADDRNOTAVAIL;
1828 			splx(s);
1829 			break;
1830 		}
1831 		/*
1832 		 * Give up the multicast address record to which the
1833 		 * membership points.
1834 		 */
1835 		in_delmulti(imo->imo_membership[i]);
1836 		/*
1837 		 * Remove the gap in the membership array.
1838 		 */
1839 		for (++i; i < imo->imo_num_memberships; ++i)
1840 			imo->imo_membership[i-1] = imo->imo_membership[i];
1841 		--imo->imo_num_memberships;
1842 		splx(s);
1843 		break;
1844 
1845 	default:
1846 		error = EOPNOTSUPP;
1847 		break;
1848 	}
1849 
1850 	/*
1851 	 * If all options have default values, no need to keep the mbuf.
1852 	 */
1853 	if (imo->imo_multicast_ifp == NULL &&
1854 	    imo->imo_multicast_vif == -1 &&
1855 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1856 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1857 	    imo->imo_num_memberships == 0) {
1858 		free(inp->inp_moptions, M_IPMOPTS);
1859 		inp->inp_moptions = NULL;
1860 	}
1861 
1862 	return (error);
1863 }
1864 
1865 /*
1866  * Return the IP multicast options in response to user getsockopt().
1867  */
1868 static int
1869 ip_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1870 {
1871 	struct ip_moptions *imo;
1872 	struct in_addr addr;
1873 	struct in_ifaddr *ia;
1874 	int error, optval;
1875 	u_char coptval;
1876 
1877 	INP_LOCK(inp);
1878 	imo = inp->inp_moptions;
1879 
1880 	error = 0;
1881 	switch (sopt->sopt_name) {
1882 	case IP_MULTICAST_VIF:
1883 		if (imo != NULL)
1884 			optval = imo->imo_multicast_vif;
1885 		else
1886 			optval = -1;
1887 		INP_UNLOCK(inp);
1888 		error = sooptcopyout(sopt, &optval, sizeof optval);
1889 		break;
1890 
1891 	case IP_MULTICAST_IF:
1892 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1893 			addr.s_addr = INADDR_ANY;
1894 		else if (imo->imo_multicast_addr.s_addr) {
1895 			/* return the value user has set */
1896 			addr = imo->imo_multicast_addr;
1897 		} else {
1898 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1899 			addr.s_addr = (ia == NULL) ? INADDR_ANY
1900 				: IA_SIN(ia)->sin_addr.s_addr;
1901 		}
1902 		INP_UNLOCK(inp);
1903 		error = sooptcopyout(sopt, &addr, sizeof addr);
1904 		break;
1905 
1906 	case IP_MULTICAST_TTL:
1907 		if (imo == 0)
1908 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1909 		else
1910 			optval = coptval = imo->imo_multicast_ttl;
1911 		INP_UNLOCK(inp);
1912 		if (sopt->sopt_valsize == 1)
1913 			error = sooptcopyout(sopt, &coptval, 1);
1914 		else
1915 			error = sooptcopyout(sopt, &optval, sizeof optval);
1916 		break;
1917 
1918 	case IP_MULTICAST_LOOP:
1919 		if (imo == 0)
1920 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1921 		else
1922 			optval = coptval = imo->imo_multicast_loop;
1923 		INP_UNLOCK(inp);
1924 		if (sopt->sopt_valsize == 1)
1925 			error = sooptcopyout(sopt, &coptval, 1);
1926 		else
1927 			error = sooptcopyout(sopt, &optval, sizeof optval);
1928 		break;
1929 
1930 	default:
1931 		INP_UNLOCK(inp);
1932 		error = ENOPROTOOPT;
1933 		break;
1934 	}
1935 	INP_UNLOCK_ASSERT(inp);
1936 
1937 	return (error);
1938 }
1939 
1940 /*
1941  * Discard the IP multicast options.
1942  */
1943 void
1944 ip_freemoptions(imo)
1945 	register struct ip_moptions *imo;
1946 {
1947 	register int i;
1948 
1949 	if (imo != NULL) {
1950 		for (i = 0; i < imo->imo_num_memberships; ++i)
1951 			in_delmulti(imo->imo_membership[i]);
1952 		free(imo, M_IPMOPTS);
1953 	}
1954 }
1955 
1956 /*
1957  * Routine called from ip_output() to loop back a copy of an IP multicast
1958  * packet to the input queue of a specified interface.  Note that this
1959  * calls the output routine of the loopback "driver", but with an interface
1960  * pointer that might NOT be a loopback interface -- evil, but easier than
1961  * replicating that code here.
1962  */
1963 static void
1964 ip_mloopback(ifp, m, dst, hlen)
1965 	struct ifnet *ifp;
1966 	register struct mbuf *m;
1967 	register struct sockaddr_in *dst;
1968 	int hlen;
1969 {
1970 	register struct ip *ip;
1971 	struct mbuf *copym;
1972 
1973 	copym = m_copy(m, 0, M_COPYALL);
1974 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1975 		copym = m_pullup(copym, hlen);
1976 	if (copym != NULL) {
1977 		/* If needed, compute the checksum and mark it as valid. */
1978 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1979 			in_delayed_cksum(copym);
1980 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1981 			copym->m_pkthdr.csum_flags |=
1982 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1983 			copym->m_pkthdr.csum_data = 0xffff;
1984 		}
1985 		/*
1986 		 * We don't bother to fragment if the IP length is greater
1987 		 * than the interface's MTU.  Can this possibly matter?
1988 		 */
1989 		ip = mtod(copym, struct ip *);
1990 		ip->ip_len = htons(ip->ip_len);
1991 		ip->ip_off = htons(ip->ip_off);
1992 		ip->ip_sum = 0;
1993 		ip->ip_sum = in_cksum(copym, hlen);
1994 		/*
1995 		 * NB:
1996 		 * It's not clear whether there are any lingering
1997 		 * reentrancy problems in other areas which might
1998 		 * be exposed by using ip_input directly (in
1999 		 * particular, everything which modifies the packet
2000 		 * in-place).  Yet another option is using the
2001 		 * protosw directly to deliver the looped back
2002 		 * packet.  For the moment, we'll err on the side
2003 		 * of safety by using if_simloop().
2004 		 */
2005 #if 1 /* XXX */
2006 		if (dst->sin_family != AF_INET) {
2007 			printf("ip_mloopback: bad address family %d\n",
2008 						dst->sin_family);
2009 			dst->sin_family = AF_INET;
2010 		}
2011 #endif
2012 
2013 #ifdef notdef
2014 		copym->m_pkthdr.rcvif = ifp;
2015 		ip_input(copym);
2016 #else
2017 		if_simloop(ifp, copym, dst->sin_family, 0);
2018 #endif
2019 	}
2020 }
2021