1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_ipfw.h" 37 #include "opt_ipsec.h" 38 #include "opt_mbuf_stress_test.h" 39 #include "opt_mpath.h" 40 #include "opt_route.h" 41 #include "opt_sctp.h" 42 #include "opt_rss.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mbuf.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/protosw.h> 53 #include <sys/rmlock.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/ucred.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_llatbl.h> 63 #include <net/netisr.h> 64 #include <net/pfil.h> 65 #include <net/route.h> 66 #include <net/flowtable.h> 67 #ifdef RADIX_MPATH 68 #include <net/radix_mpath.h> 69 #endif 70 #include <net/rss_config.h> 71 #include <net/vnet.h> 72 73 #include <netinet/in.h> 74 #include <netinet/in_kdtrace.h> 75 #include <netinet/in_systm.h> 76 #include <netinet/ip.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_rss.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/ip_options.h> 82 #ifdef SCTP 83 #include <netinet/sctp.h> 84 #include <netinet/sctp_crc32.h> 85 #endif 86 87 #ifdef IPSEC 88 #include <netinet/ip_ipsec.h> 89 #include <netipsec/ipsec.h> 90 #endif /* IPSEC*/ 91 92 #include <machine/in_cksum.h> 93 94 #include <security/mac/mac_framework.h> 95 96 #ifdef MBUF_STRESS_TEST 97 static int mbuf_frag_size = 0; 98 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 99 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 100 #endif 101 102 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 103 104 105 extern int in_mcast_loop; 106 extern struct protosw inetsw[]; 107 108 static inline int 109 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp, 110 struct sockaddr_in *dst, int *fibnum, int *error) 111 { 112 struct m_tag *fwd_tag = NULL; 113 struct mbuf *m; 114 struct in_addr odst; 115 struct ip *ip; 116 117 m = *mp; 118 ip = mtod(m, struct ip *); 119 120 /* Run through list of hooks for output packets. */ 121 odst.s_addr = ip->ip_dst.s_addr; 122 *error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, PFIL_OUT, inp); 123 m = *mp; 124 if ((*error) != 0 || m == NULL) 125 return 1; /* Finished */ 126 127 ip = mtod(m, struct ip *); 128 129 /* See if destination IP address was changed by packet filter. */ 130 if (odst.s_addr != ip->ip_dst.s_addr) { 131 m->m_flags |= M_SKIP_FIREWALL; 132 /* If destination is now ourself drop to ip_input(). */ 133 if (in_localip(ip->ip_dst)) { 134 m->m_flags |= M_FASTFWD_OURS; 135 if (m->m_pkthdr.rcvif == NULL) 136 m->m_pkthdr.rcvif = V_loif; 137 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 138 m->m_pkthdr.csum_flags |= 139 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 140 m->m_pkthdr.csum_data = 0xffff; 141 } 142 m->m_pkthdr.csum_flags |= 143 CSUM_IP_CHECKED | CSUM_IP_VALID; 144 #ifdef SCTP 145 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 146 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 147 #endif 148 *error = netisr_queue(NETISR_IP, m); 149 return 1; /* Finished */ 150 } 151 152 bzero(dst, sizeof(*dst)); 153 dst->sin_family = AF_INET; 154 dst->sin_len = sizeof(*dst); 155 dst->sin_addr = ip->ip_dst; 156 157 return -1; /* Reloop */ 158 } 159 /* See if fib was changed by packet filter. */ 160 if ((*fibnum) != M_GETFIB(m)) { 161 m->m_flags |= M_SKIP_FIREWALL; 162 *fibnum = M_GETFIB(m); 163 return -1; /* Reloop for FIB change */ 164 } 165 166 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 167 if (m->m_flags & M_FASTFWD_OURS) { 168 if (m->m_pkthdr.rcvif == NULL) 169 m->m_pkthdr.rcvif = V_loif; 170 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 171 m->m_pkthdr.csum_flags |= 172 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 173 m->m_pkthdr.csum_data = 0xffff; 174 } 175 #ifdef SCTP 176 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 177 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 178 #endif 179 m->m_pkthdr.csum_flags |= 180 CSUM_IP_CHECKED | CSUM_IP_VALID; 181 182 *error = netisr_queue(NETISR_IP, m); 183 return 1; /* Finished */ 184 } 185 /* Or forward to some other address? */ 186 if ((m->m_flags & M_IP_NEXTHOP) && 187 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 188 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 189 m->m_flags |= M_SKIP_FIREWALL; 190 m->m_flags &= ~M_IP_NEXTHOP; 191 m_tag_delete(m, fwd_tag); 192 193 return -1; /* Reloop for CHANGE of dst */ 194 } 195 196 return 0; 197 } 198 199 /* 200 * IP output. The packet in mbuf chain m contains a skeletal IP 201 * header (with len, off, ttl, proto, tos, src, dst). 202 * The mbuf chain containing the packet will be freed. 203 * The mbuf opt, if present, will not be freed. 204 * If route ro is present and has ro_rt initialized, route lookup would be 205 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 206 * then result of route lookup is stored in ro->ro_rt. 207 * 208 * In the IP forwarding case, the packet will arrive with options already 209 * inserted, so must have a NULL opt pointer. 210 */ 211 int 212 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 213 struct ip_moptions *imo, struct inpcb *inp) 214 { 215 struct rm_priotracker in_ifa_tracker; 216 struct ip *ip; 217 struct ifnet *ifp = NULL; /* keep compiler happy */ 218 struct mbuf *m0; 219 int hlen = sizeof (struct ip); 220 int mtu; 221 int error = 0; 222 struct sockaddr_in *dst; 223 const struct sockaddr_in *gw; 224 struct in_ifaddr *ia; 225 int isbroadcast; 226 uint16_t ip_len, ip_off; 227 struct route iproute; 228 struct rtentry *rte; /* cache for ro->ro_rt */ 229 uint32_t fibnum; 230 int have_ia_ref; 231 #ifdef IPSEC 232 int no_route_but_check_spd = 0; 233 #endif 234 M_ASSERTPKTHDR(m); 235 236 if (inp != NULL) { 237 INP_LOCK_ASSERT(inp); 238 M_SETFIB(m, inp->inp_inc.inc_fibnum); 239 if ((flags & IP_NODEFAULTFLOWID) == 0) { 240 m->m_pkthdr.flowid = inp->inp_flowid; 241 M_HASHTYPE_SET(m, inp->inp_flowtype); 242 } 243 } 244 245 if (ro == NULL) { 246 ro = &iproute; 247 bzero(ro, sizeof (*ro)); 248 } 249 250 #ifdef FLOWTABLE 251 if (ro->ro_rt == NULL) 252 (void )flowtable_lookup(AF_INET, m, ro); 253 #endif 254 255 if (opt) { 256 int len = 0; 257 m = ip_insertoptions(m, opt, &len); 258 if (len != 0) 259 hlen = len; /* ip->ip_hl is updated above */ 260 } 261 ip = mtod(m, struct ip *); 262 ip_len = ntohs(ip->ip_len); 263 ip_off = ntohs(ip->ip_off); 264 265 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 266 ip->ip_v = IPVERSION; 267 ip->ip_hl = hlen >> 2; 268 ip_fillid(ip); 269 IPSTAT_INC(ips_localout); 270 } else { 271 /* Header already set, fetch hlen from there */ 272 hlen = ip->ip_hl << 2; 273 } 274 275 /* 276 * dst/gw handling: 277 * 278 * dst can be rewritten but always points to &ro->ro_dst. 279 * gw is readonly but can point either to dst OR rt_gateway, 280 * therefore we need restore gw if we're redoing lookup. 281 */ 282 gw = dst = (struct sockaddr_in *)&ro->ro_dst; 283 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 284 rte = ro->ro_rt; 285 if (rte == NULL) { 286 bzero(dst, sizeof(*dst)); 287 dst->sin_family = AF_INET; 288 dst->sin_len = sizeof(*dst); 289 dst->sin_addr = ip->ip_dst; 290 } 291 again: 292 /* 293 * Validate route against routing table additions; 294 * a better/more specific route might have been added. 295 */ 296 if (inp) 297 RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 298 /* 299 * If there is a cached route, 300 * check that it is to the same destination 301 * and is still up. If not, free it and try again. 302 * The address family should also be checked in case of sharing the 303 * cache with IPv6. 304 * Also check whether routing cache needs invalidation. 305 */ 306 rte = ro->ro_rt; 307 if (rte && ((rte->rt_flags & RTF_UP) == 0 || 308 rte->rt_ifp == NULL || 309 !RT_LINK_IS_UP(rte->rt_ifp) || 310 dst->sin_family != AF_INET || 311 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) { 312 RTFREE(rte); 313 rte = ro->ro_rt = (struct rtentry *)NULL; 314 } 315 ia = NULL; 316 have_ia_ref = 0; 317 /* 318 * If routing to interface only, short circuit routing lookup. 319 * The use of an all-ones broadcast address implies this; an 320 * interface is specified by the broadcast address of an interface, 321 * or the destination address of a ptp interface. 322 */ 323 if (flags & IP_SENDONES) { 324 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 325 M_GETFIB(m)))) == NULL && 326 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 327 M_GETFIB(m)))) == NULL) { 328 IPSTAT_INC(ips_noroute); 329 error = ENETUNREACH; 330 goto bad; 331 } 332 have_ia_ref = 1; 333 ip->ip_dst.s_addr = INADDR_BROADCAST; 334 dst->sin_addr = ip->ip_dst; 335 ifp = ia->ia_ifp; 336 ip->ip_ttl = 1; 337 isbroadcast = 1; 338 } else if (flags & IP_ROUTETOIF) { 339 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 340 M_GETFIB(m)))) == NULL && 341 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 342 M_GETFIB(m)))) == NULL) { 343 IPSTAT_INC(ips_noroute); 344 error = ENETUNREACH; 345 goto bad; 346 } 347 have_ia_ref = 1; 348 ifp = ia->ia_ifp; 349 ip->ip_ttl = 1; 350 isbroadcast = in_broadcast(dst->sin_addr, ifp); 351 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 352 imo != NULL && imo->imo_multicast_ifp != NULL) { 353 /* 354 * Bypass the normal routing lookup for multicast 355 * packets if the interface is specified. 356 */ 357 ifp = imo->imo_multicast_ifp; 358 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 359 if (ia) 360 have_ia_ref = 1; 361 isbroadcast = 0; /* fool gcc */ 362 } else { 363 /* 364 * We want to do any cloning requested by the link layer, 365 * as this is probably required in all cases for correct 366 * operation (as it is for ARP). 367 */ 368 if (rte == NULL) { 369 #ifdef RADIX_MPATH 370 rtalloc_mpath_fib(ro, 371 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 372 fibnum); 373 #else 374 in_rtalloc_ign(ro, 0, fibnum); 375 #endif 376 rte = ro->ro_rt; 377 } 378 if (rte == NULL || 379 (rte->rt_flags & RTF_UP) == 0 || 380 rte->rt_ifp == NULL || 381 !RT_LINK_IS_UP(rte->rt_ifp)) { 382 #ifdef IPSEC 383 /* 384 * There is no route for this packet, but it is 385 * possible that a matching SPD entry exists. 386 */ 387 no_route_but_check_spd = 1; 388 mtu = 0; /* Silence GCC warning. */ 389 goto sendit; 390 #endif 391 IPSTAT_INC(ips_noroute); 392 error = EHOSTUNREACH; 393 goto bad; 394 } 395 ia = ifatoia(rte->rt_ifa); 396 ifp = rte->rt_ifp; 397 counter_u64_add(rte->rt_pksent, 1); 398 rt_update_ro_flags(ro); 399 if (rte->rt_flags & RTF_GATEWAY) 400 gw = (struct sockaddr_in *)rte->rt_gateway; 401 if (rte->rt_flags & RTF_HOST) 402 isbroadcast = (rte->rt_flags & RTF_BROADCAST); 403 else 404 isbroadcast = in_broadcast(gw->sin_addr, ifp); 405 } 406 407 /* 408 * Calculate MTU. If we have a route that is up, use that, 409 * otherwise use the interface's MTU. 410 */ 411 if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) 412 mtu = rte->rt_mtu; 413 else 414 mtu = ifp->if_mtu; 415 /* Catch a possible divide by zero later. */ 416 KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p", 417 __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp)); 418 419 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 420 m->m_flags |= M_MCAST; 421 /* 422 * IP destination address is multicast. Make sure "gw" 423 * still points to the address in "ro". (It may have been 424 * changed to point to a gateway address, above.) 425 */ 426 gw = dst; 427 /* 428 * See if the caller provided any multicast options 429 */ 430 if (imo != NULL) { 431 ip->ip_ttl = imo->imo_multicast_ttl; 432 if (imo->imo_multicast_vif != -1) 433 ip->ip_src.s_addr = 434 ip_mcast_src ? 435 ip_mcast_src(imo->imo_multicast_vif) : 436 INADDR_ANY; 437 } else 438 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 439 /* 440 * Confirm that the outgoing interface supports multicast. 441 */ 442 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 443 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 444 IPSTAT_INC(ips_noroute); 445 error = ENETUNREACH; 446 goto bad; 447 } 448 } 449 /* 450 * If source address not specified yet, use address 451 * of outgoing interface. 452 */ 453 if (ip->ip_src.s_addr == INADDR_ANY) { 454 /* Interface may have no addresses. */ 455 if (ia != NULL) 456 ip->ip_src = IA_SIN(ia)->sin_addr; 457 } 458 459 if ((imo == NULL && in_mcast_loop) || 460 (imo && imo->imo_multicast_loop)) { 461 /* 462 * Loop back multicast datagram if not expressly 463 * forbidden to do so, even if we are not a member 464 * of the group; ip_input() will filter it later, 465 * thus deferring a hash lookup and mutex acquisition 466 * at the expense of a cheap copy using m_copym(). 467 */ 468 ip_mloopback(ifp, m, hlen); 469 } else { 470 /* 471 * If we are acting as a multicast router, perform 472 * multicast forwarding as if the packet had just 473 * arrived on the interface to which we are about 474 * to send. The multicast forwarding function 475 * recursively calls this function, using the 476 * IP_FORWARDING flag to prevent infinite recursion. 477 * 478 * Multicasts that are looped back by ip_mloopback(), 479 * above, will be forwarded by the ip_input() routine, 480 * if necessary. 481 */ 482 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 483 /* 484 * If rsvp daemon is not running, do not 485 * set ip_moptions. This ensures that the packet 486 * is multicast and not just sent down one link 487 * as prescribed by rsvpd. 488 */ 489 if (!V_rsvp_on) 490 imo = NULL; 491 if (ip_mforward && 492 ip_mforward(ip, ifp, m, imo) != 0) { 493 m_freem(m); 494 goto done; 495 } 496 } 497 } 498 499 /* 500 * Multicasts with a time-to-live of zero may be looped- 501 * back, above, but must not be transmitted on a network. 502 * Also, multicasts addressed to the loopback interface 503 * are not sent -- the above call to ip_mloopback() will 504 * loop back a copy. ip_input() will drop the copy if 505 * this host does not belong to the destination group on 506 * the loopback interface. 507 */ 508 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 509 m_freem(m); 510 goto done; 511 } 512 513 goto sendit; 514 } 515 516 /* 517 * If the source address is not specified yet, use the address 518 * of the outoing interface. 519 */ 520 if (ip->ip_src.s_addr == INADDR_ANY) { 521 /* Interface may have no addresses. */ 522 if (ia != NULL) { 523 ip->ip_src = IA_SIN(ia)->sin_addr; 524 } 525 } 526 527 /* 528 * Look for broadcast address and 529 * verify user is allowed to send 530 * such a packet. 531 */ 532 if (isbroadcast) { 533 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 534 error = EADDRNOTAVAIL; 535 goto bad; 536 } 537 if ((flags & IP_ALLOWBROADCAST) == 0) { 538 error = EACCES; 539 goto bad; 540 } 541 /* don't allow broadcast messages to be fragmented */ 542 if (ip_len > mtu) { 543 error = EMSGSIZE; 544 goto bad; 545 } 546 m->m_flags |= M_BCAST; 547 } else { 548 m->m_flags &= ~M_BCAST; 549 } 550 551 sendit: 552 #ifdef IPSEC 553 switch(ip_ipsec_output(&m, inp, &error)) { 554 case 1: 555 goto bad; 556 case -1: 557 goto done; 558 case 0: 559 default: 560 break; /* Continue with packet processing. */ 561 } 562 /* 563 * Check if there was a route for this packet; return error if not. 564 */ 565 if (no_route_but_check_spd) { 566 IPSTAT_INC(ips_noroute); 567 error = EHOSTUNREACH; 568 goto bad; 569 } 570 /* Update variables that are affected by ipsec4_output(). */ 571 ip = mtod(m, struct ip *); 572 hlen = ip->ip_hl << 2; 573 #endif /* IPSEC */ 574 575 /* Jump over all PFIL processing if hooks are not active. */ 576 if (PFIL_HOOKED(&V_inet_pfil_hook)) { 577 switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) { 578 case 1: /* Finished */ 579 goto done; 580 581 case 0: /* Continue normally */ 582 ip = mtod(m, struct ip *); 583 break; 584 585 case -1: /* Need to try again */ 586 /* Reset everything for a new round */ 587 RO_RTFREE(ro); 588 if (have_ia_ref) 589 ifa_free(&ia->ia_ifa); 590 ro->ro_prepend = NULL; 591 rte = NULL; 592 gw = dst; 593 ip = mtod(m, struct ip *); 594 goto again; 595 596 } 597 } 598 599 /* 127/8 must not appear on wire - RFC1122. */ 600 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 601 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 602 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 603 IPSTAT_INC(ips_badaddr); 604 error = EADDRNOTAVAIL; 605 goto bad; 606 } 607 } 608 609 m->m_pkthdr.csum_flags |= CSUM_IP; 610 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 611 in_delayed_cksum(m); 612 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 613 } 614 #ifdef SCTP 615 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 616 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 617 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 618 } 619 #endif 620 621 /* 622 * If small enough for interface, or the interface will take 623 * care of the fragmentation for us, we can just send directly. 624 */ 625 if (ip_len <= mtu || 626 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 627 ip->ip_sum = 0; 628 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 629 ip->ip_sum = in_cksum(m, hlen); 630 m->m_pkthdr.csum_flags &= ~CSUM_IP; 631 } 632 633 /* 634 * Record statistics for this interface address. 635 * With CSUM_TSO the byte/packet count will be slightly 636 * incorrect because we count the IP+TCP headers only 637 * once instead of for every generated packet. 638 */ 639 if (!(flags & IP_FORWARDING) && ia) { 640 if (m->m_pkthdr.csum_flags & CSUM_TSO) 641 counter_u64_add(ia->ia_ifa.ifa_opackets, 642 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 643 else 644 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 645 646 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 647 } 648 #ifdef MBUF_STRESS_TEST 649 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 650 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 651 #endif 652 /* 653 * Reset layer specific mbuf flags 654 * to avoid confusing lower layers. 655 */ 656 m_clrprotoflags(m); 657 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 658 error = (*ifp->if_output)(ifp, m, 659 (const struct sockaddr *)gw, ro); 660 goto done; 661 } 662 663 /* Balk when DF bit is set or the interface didn't support TSO. */ 664 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 665 error = EMSGSIZE; 666 IPSTAT_INC(ips_cantfrag); 667 goto bad; 668 } 669 670 /* 671 * Too large for interface; fragment if possible. If successful, 672 * on return, m will point to a list of packets to be sent. 673 */ 674 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 675 if (error) 676 goto bad; 677 for (; m; m = m0) { 678 m0 = m->m_nextpkt; 679 m->m_nextpkt = 0; 680 if (error == 0) { 681 /* Record statistics for this interface address. */ 682 if (ia != NULL) { 683 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 684 counter_u64_add(ia->ia_ifa.ifa_obytes, 685 m->m_pkthdr.len); 686 } 687 /* 688 * Reset layer specific mbuf flags 689 * to avoid confusing upper layers. 690 */ 691 m_clrprotoflags(m); 692 693 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 694 error = (*ifp->if_output)(ifp, m, 695 (const struct sockaddr *)gw, ro); 696 } else 697 m_freem(m); 698 } 699 700 if (error == 0) 701 IPSTAT_INC(ips_fragmented); 702 703 done: 704 if (ro == &iproute) 705 RO_RTFREE(ro); 706 else if (rte == NULL) 707 /* 708 * If the caller supplied a route but somehow the reference 709 * to it has been released need to prevent the caller 710 * calling RTFREE on it again. 711 */ 712 ro->ro_rt = NULL; 713 if (have_ia_ref) 714 ifa_free(&ia->ia_ifa); 715 return (error); 716 bad: 717 m_freem(m); 718 goto done; 719 } 720 721 /* 722 * Create a chain of fragments which fit the given mtu. m_frag points to the 723 * mbuf to be fragmented; on return it points to the chain with the fragments. 724 * Return 0 if no error. If error, m_frag may contain a partially built 725 * chain of fragments that should be freed by the caller. 726 * 727 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 728 */ 729 int 730 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 731 u_long if_hwassist_flags) 732 { 733 int error = 0; 734 int hlen = ip->ip_hl << 2; 735 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 736 int off; 737 struct mbuf *m0 = *m_frag; /* the original packet */ 738 int firstlen; 739 struct mbuf **mnext; 740 int nfrags; 741 uint16_t ip_len, ip_off; 742 743 ip_len = ntohs(ip->ip_len); 744 ip_off = ntohs(ip->ip_off); 745 746 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 747 IPSTAT_INC(ips_cantfrag); 748 return EMSGSIZE; 749 } 750 751 /* 752 * Must be able to put at least 8 bytes per fragment. 753 */ 754 if (len < 8) 755 return EMSGSIZE; 756 757 /* 758 * If the interface will not calculate checksums on 759 * fragmented packets, then do it here. 760 */ 761 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 762 in_delayed_cksum(m0); 763 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 764 } 765 #ifdef SCTP 766 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 767 sctp_delayed_cksum(m0, hlen); 768 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 769 } 770 #endif 771 if (len > PAGE_SIZE) { 772 /* 773 * Fragment large datagrams such that each segment 774 * contains a multiple of PAGE_SIZE amount of data, 775 * plus headers. This enables a receiver to perform 776 * page-flipping zero-copy optimizations. 777 * 778 * XXX When does this help given that sender and receiver 779 * could have different page sizes, and also mtu could 780 * be less than the receiver's page size ? 781 */ 782 int newlen; 783 784 off = MIN(mtu, m0->m_pkthdr.len); 785 786 /* 787 * firstlen (off - hlen) must be aligned on an 788 * 8-byte boundary 789 */ 790 if (off < hlen) 791 goto smart_frag_failure; 792 off = ((off - hlen) & ~7) + hlen; 793 newlen = (~PAGE_MASK) & mtu; 794 if ((newlen + sizeof (struct ip)) > mtu) { 795 /* we failed, go back the default */ 796 smart_frag_failure: 797 newlen = len; 798 off = hlen + len; 799 } 800 len = newlen; 801 802 } else { 803 off = hlen + len; 804 } 805 806 firstlen = off - hlen; 807 mnext = &m0->m_nextpkt; /* pointer to next packet */ 808 809 /* 810 * Loop through length of segment after first fragment, 811 * make new header and copy data of each part and link onto chain. 812 * Here, m0 is the original packet, m is the fragment being created. 813 * The fragments are linked off the m_nextpkt of the original 814 * packet, which after processing serves as the first fragment. 815 */ 816 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 817 struct ip *mhip; /* ip header on the fragment */ 818 struct mbuf *m; 819 int mhlen = sizeof (struct ip); 820 821 m = m_gethdr(M_NOWAIT, MT_DATA); 822 if (m == NULL) { 823 error = ENOBUFS; 824 IPSTAT_INC(ips_odropped); 825 goto done; 826 } 827 /* 828 * Make sure the complete packet header gets copied 829 * from the originating mbuf to the newly created 830 * mbuf. This also ensures that existing firewall 831 * classification(s), VLAN tags and so on get copied 832 * to the resulting fragmented packet(s): 833 */ 834 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 835 m_free(m); 836 error = ENOBUFS; 837 IPSTAT_INC(ips_odropped); 838 goto done; 839 } 840 /* 841 * In the first mbuf, leave room for the link header, then 842 * copy the original IP header including options. The payload 843 * goes into an additional mbuf chain returned by m_copym(). 844 */ 845 m->m_data += max_linkhdr; 846 mhip = mtod(m, struct ip *); 847 *mhip = *ip; 848 if (hlen > sizeof (struct ip)) { 849 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 850 mhip->ip_v = IPVERSION; 851 mhip->ip_hl = mhlen >> 2; 852 } 853 m->m_len = mhlen; 854 /* XXX do we need to add ip_off below ? */ 855 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 856 if (off + len >= ip_len) 857 len = ip_len - off; 858 else 859 mhip->ip_off |= IP_MF; 860 mhip->ip_len = htons((u_short)(len + mhlen)); 861 m->m_next = m_copym(m0, off, len, M_NOWAIT); 862 if (m->m_next == NULL) { /* copy failed */ 863 m_free(m); 864 error = ENOBUFS; /* ??? */ 865 IPSTAT_INC(ips_odropped); 866 goto done; 867 } 868 m->m_pkthdr.len = mhlen + len; 869 #ifdef MAC 870 mac_netinet_fragment(m0, m); 871 #endif 872 mhip->ip_off = htons(mhip->ip_off); 873 mhip->ip_sum = 0; 874 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 875 mhip->ip_sum = in_cksum(m, mhlen); 876 m->m_pkthdr.csum_flags &= ~CSUM_IP; 877 } 878 *mnext = m; 879 mnext = &m->m_nextpkt; 880 } 881 IPSTAT_ADD(ips_ofragments, nfrags); 882 883 /* 884 * Update first fragment by trimming what's been copied out 885 * and updating header. 886 */ 887 m_adj(m0, hlen + firstlen - ip_len); 888 m0->m_pkthdr.len = hlen + firstlen; 889 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 890 ip->ip_off = htons(ip_off | IP_MF); 891 ip->ip_sum = 0; 892 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 893 ip->ip_sum = in_cksum(m0, hlen); 894 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 895 } 896 897 done: 898 *m_frag = m0; 899 return error; 900 } 901 902 void 903 in_delayed_cksum(struct mbuf *m) 904 { 905 struct ip *ip; 906 uint16_t csum, offset, ip_len; 907 908 ip = mtod(m, struct ip *); 909 offset = ip->ip_hl << 2 ; 910 ip_len = ntohs(ip->ip_len); 911 csum = in_cksum_skip(m, ip_len, offset); 912 if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0) 913 csum = 0xffff; 914 offset += m->m_pkthdr.csum_data; /* checksum offset */ 915 916 /* find the mbuf in the chain where the checksum starts*/ 917 while ((m != NULL) && (offset >= m->m_len)) { 918 offset -= m->m_len; 919 m = m->m_next; 920 } 921 KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain.")); 922 KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs.")); 923 *(u_short *)(m->m_data + offset) = csum; 924 } 925 926 /* 927 * IP socket option processing. 928 */ 929 int 930 ip_ctloutput(struct socket *so, struct sockopt *sopt) 931 { 932 struct inpcb *inp = sotoinpcb(so); 933 int error, optval; 934 #ifdef RSS 935 uint32_t rss_bucket; 936 int retval; 937 #endif 938 939 error = optval = 0; 940 if (sopt->sopt_level != IPPROTO_IP) { 941 error = EINVAL; 942 943 if (sopt->sopt_level == SOL_SOCKET && 944 sopt->sopt_dir == SOPT_SET) { 945 switch (sopt->sopt_name) { 946 case SO_REUSEADDR: 947 INP_WLOCK(inp); 948 if ((so->so_options & SO_REUSEADDR) != 0) 949 inp->inp_flags2 |= INP_REUSEADDR; 950 else 951 inp->inp_flags2 &= ~INP_REUSEADDR; 952 INP_WUNLOCK(inp); 953 error = 0; 954 break; 955 case SO_REUSEPORT: 956 INP_WLOCK(inp); 957 if ((so->so_options & SO_REUSEPORT) != 0) 958 inp->inp_flags2 |= INP_REUSEPORT; 959 else 960 inp->inp_flags2 &= ~INP_REUSEPORT; 961 INP_WUNLOCK(inp); 962 error = 0; 963 break; 964 case SO_SETFIB: 965 INP_WLOCK(inp); 966 inp->inp_inc.inc_fibnum = so->so_fibnum; 967 INP_WUNLOCK(inp); 968 error = 0; 969 break; 970 default: 971 break; 972 } 973 } 974 return (error); 975 } 976 977 switch (sopt->sopt_dir) { 978 case SOPT_SET: 979 switch (sopt->sopt_name) { 980 case IP_OPTIONS: 981 #ifdef notyet 982 case IP_RETOPTS: 983 #endif 984 { 985 struct mbuf *m; 986 if (sopt->sopt_valsize > MLEN) { 987 error = EMSGSIZE; 988 break; 989 } 990 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 991 if (m == NULL) { 992 error = ENOBUFS; 993 break; 994 } 995 m->m_len = sopt->sopt_valsize; 996 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 997 m->m_len); 998 if (error) { 999 m_free(m); 1000 break; 1001 } 1002 INP_WLOCK(inp); 1003 error = ip_pcbopts(inp, sopt->sopt_name, m); 1004 INP_WUNLOCK(inp); 1005 return (error); 1006 } 1007 1008 case IP_BINDANY: 1009 if (sopt->sopt_td != NULL) { 1010 error = priv_check(sopt->sopt_td, 1011 PRIV_NETINET_BINDANY); 1012 if (error) 1013 break; 1014 } 1015 /* FALLTHROUGH */ 1016 case IP_BINDMULTI: 1017 #ifdef RSS 1018 case IP_RSS_LISTEN_BUCKET: 1019 #endif 1020 case IP_TOS: 1021 case IP_TTL: 1022 case IP_MINTTL: 1023 case IP_RECVOPTS: 1024 case IP_RECVRETOPTS: 1025 case IP_RECVDSTADDR: 1026 case IP_RECVTTL: 1027 case IP_RECVIF: 1028 case IP_ONESBCAST: 1029 case IP_DONTFRAG: 1030 case IP_RECVTOS: 1031 case IP_RECVFLOWID: 1032 #ifdef RSS 1033 case IP_RECVRSSBUCKETID: 1034 #endif 1035 error = sooptcopyin(sopt, &optval, sizeof optval, 1036 sizeof optval); 1037 if (error) 1038 break; 1039 1040 switch (sopt->sopt_name) { 1041 case IP_TOS: 1042 inp->inp_ip_tos = optval; 1043 break; 1044 1045 case IP_TTL: 1046 inp->inp_ip_ttl = optval; 1047 break; 1048 1049 case IP_MINTTL: 1050 if (optval >= 0 && optval <= MAXTTL) 1051 inp->inp_ip_minttl = optval; 1052 else 1053 error = EINVAL; 1054 break; 1055 1056 #define OPTSET(bit) do { \ 1057 INP_WLOCK(inp); \ 1058 if (optval) \ 1059 inp->inp_flags |= bit; \ 1060 else \ 1061 inp->inp_flags &= ~bit; \ 1062 INP_WUNLOCK(inp); \ 1063 } while (0) 1064 1065 #define OPTSET2(bit, val) do { \ 1066 INP_WLOCK(inp); \ 1067 if (val) \ 1068 inp->inp_flags2 |= bit; \ 1069 else \ 1070 inp->inp_flags2 &= ~bit; \ 1071 INP_WUNLOCK(inp); \ 1072 } while (0) 1073 1074 case IP_RECVOPTS: 1075 OPTSET(INP_RECVOPTS); 1076 break; 1077 1078 case IP_RECVRETOPTS: 1079 OPTSET(INP_RECVRETOPTS); 1080 break; 1081 1082 case IP_RECVDSTADDR: 1083 OPTSET(INP_RECVDSTADDR); 1084 break; 1085 1086 case IP_RECVTTL: 1087 OPTSET(INP_RECVTTL); 1088 break; 1089 1090 case IP_RECVIF: 1091 OPTSET(INP_RECVIF); 1092 break; 1093 1094 case IP_ONESBCAST: 1095 OPTSET(INP_ONESBCAST); 1096 break; 1097 case IP_DONTFRAG: 1098 OPTSET(INP_DONTFRAG); 1099 break; 1100 case IP_BINDANY: 1101 OPTSET(INP_BINDANY); 1102 break; 1103 case IP_RECVTOS: 1104 OPTSET(INP_RECVTOS); 1105 break; 1106 case IP_BINDMULTI: 1107 OPTSET2(INP_BINDMULTI, optval); 1108 break; 1109 case IP_RECVFLOWID: 1110 OPTSET2(INP_RECVFLOWID, optval); 1111 break; 1112 #ifdef RSS 1113 case IP_RSS_LISTEN_BUCKET: 1114 if ((optval >= 0) && 1115 (optval < rss_getnumbuckets())) { 1116 inp->inp_rss_listen_bucket = optval; 1117 OPTSET2(INP_RSS_BUCKET_SET, 1); 1118 } else { 1119 error = EINVAL; 1120 } 1121 break; 1122 case IP_RECVRSSBUCKETID: 1123 OPTSET2(INP_RECVRSSBUCKETID, optval); 1124 break; 1125 #endif 1126 } 1127 break; 1128 #undef OPTSET 1129 #undef OPTSET2 1130 1131 /* 1132 * Multicast socket options are processed by the in_mcast 1133 * module. 1134 */ 1135 case IP_MULTICAST_IF: 1136 case IP_MULTICAST_VIF: 1137 case IP_MULTICAST_TTL: 1138 case IP_MULTICAST_LOOP: 1139 case IP_ADD_MEMBERSHIP: 1140 case IP_DROP_MEMBERSHIP: 1141 case IP_ADD_SOURCE_MEMBERSHIP: 1142 case IP_DROP_SOURCE_MEMBERSHIP: 1143 case IP_BLOCK_SOURCE: 1144 case IP_UNBLOCK_SOURCE: 1145 case IP_MSFILTER: 1146 case MCAST_JOIN_GROUP: 1147 case MCAST_LEAVE_GROUP: 1148 case MCAST_JOIN_SOURCE_GROUP: 1149 case MCAST_LEAVE_SOURCE_GROUP: 1150 case MCAST_BLOCK_SOURCE: 1151 case MCAST_UNBLOCK_SOURCE: 1152 error = inp_setmoptions(inp, sopt); 1153 break; 1154 1155 case IP_PORTRANGE: 1156 error = sooptcopyin(sopt, &optval, sizeof optval, 1157 sizeof optval); 1158 if (error) 1159 break; 1160 1161 INP_WLOCK(inp); 1162 switch (optval) { 1163 case IP_PORTRANGE_DEFAULT: 1164 inp->inp_flags &= ~(INP_LOWPORT); 1165 inp->inp_flags &= ~(INP_HIGHPORT); 1166 break; 1167 1168 case IP_PORTRANGE_HIGH: 1169 inp->inp_flags &= ~(INP_LOWPORT); 1170 inp->inp_flags |= INP_HIGHPORT; 1171 break; 1172 1173 case IP_PORTRANGE_LOW: 1174 inp->inp_flags &= ~(INP_HIGHPORT); 1175 inp->inp_flags |= INP_LOWPORT; 1176 break; 1177 1178 default: 1179 error = EINVAL; 1180 break; 1181 } 1182 INP_WUNLOCK(inp); 1183 break; 1184 1185 #ifdef IPSEC 1186 case IP_IPSEC_POLICY: 1187 { 1188 caddr_t req; 1189 struct mbuf *m; 1190 1191 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1192 break; 1193 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1194 break; 1195 req = mtod(m, caddr_t); 1196 error = ipsec_set_policy(inp, sopt->sopt_name, req, 1197 m->m_len, (sopt->sopt_td != NULL) ? 1198 sopt->sopt_td->td_ucred : NULL); 1199 m_freem(m); 1200 break; 1201 } 1202 #endif /* IPSEC */ 1203 1204 default: 1205 error = ENOPROTOOPT; 1206 break; 1207 } 1208 break; 1209 1210 case SOPT_GET: 1211 switch (sopt->sopt_name) { 1212 case IP_OPTIONS: 1213 case IP_RETOPTS: 1214 if (inp->inp_options) 1215 error = sooptcopyout(sopt, 1216 mtod(inp->inp_options, 1217 char *), 1218 inp->inp_options->m_len); 1219 else 1220 sopt->sopt_valsize = 0; 1221 break; 1222 1223 case IP_TOS: 1224 case IP_TTL: 1225 case IP_MINTTL: 1226 case IP_RECVOPTS: 1227 case IP_RECVRETOPTS: 1228 case IP_RECVDSTADDR: 1229 case IP_RECVTTL: 1230 case IP_RECVIF: 1231 case IP_PORTRANGE: 1232 case IP_ONESBCAST: 1233 case IP_DONTFRAG: 1234 case IP_BINDANY: 1235 case IP_RECVTOS: 1236 case IP_BINDMULTI: 1237 case IP_FLOWID: 1238 case IP_FLOWTYPE: 1239 case IP_RECVFLOWID: 1240 #ifdef RSS 1241 case IP_RSSBUCKETID: 1242 case IP_RECVRSSBUCKETID: 1243 #endif 1244 switch (sopt->sopt_name) { 1245 1246 case IP_TOS: 1247 optval = inp->inp_ip_tos; 1248 break; 1249 1250 case IP_TTL: 1251 optval = inp->inp_ip_ttl; 1252 break; 1253 1254 case IP_MINTTL: 1255 optval = inp->inp_ip_minttl; 1256 break; 1257 1258 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1259 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1260 1261 case IP_RECVOPTS: 1262 optval = OPTBIT(INP_RECVOPTS); 1263 break; 1264 1265 case IP_RECVRETOPTS: 1266 optval = OPTBIT(INP_RECVRETOPTS); 1267 break; 1268 1269 case IP_RECVDSTADDR: 1270 optval = OPTBIT(INP_RECVDSTADDR); 1271 break; 1272 1273 case IP_RECVTTL: 1274 optval = OPTBIT(INP_RECVTTL); 1275 break; 1276 1277 case IP_RECVIF: 1278 optval = OPTBIT(INP_RECVIF); 1279 break; 1280 1281 case IP_PORTRANGE: 1282 if (inp->inp_flags & INP_HIGHPORT) 1283 optval = IP_PORTRANGE_HIGH; 1284 else if (inp->inp_flags & INP_LOWPORT) 1285 optval = IP_PORTRANGE_LOW; 1286 else 1287 optval = 0; 1288 break; 1289 1290 case IP_ONESBCAST: 1291 optval = OPTBIT(INP_ONESBCAST); 1292 break; 1293 case IP_DONTFRAG: 1294 optval = OPTBIT(INP_DONTFRAG); 1295 break; 1296 case IP_BINDANY: 1297 optval = OPTBIT(INP_BINDANY); 1298 break; 1299 case IP_RECVTOS: 1300 optval = OPTBIT(INP_RECVTOS); 1301 break; 1302 case IP_FLOWID: 1303 optval = inp->inp_flowid; 1304 break; 1305 case IP_FLOWTYPE: 1306 optval = inp->inp_flowtype; 1307 break; 1308 case IP_RECVFLOWID: 1309 optval = OPTBIT2(INP_RECVFLOWID); 1310 break; 1311 #ifdef RSS 1312 case IP_RSSBUCKETID: 1313 retval = rss_hash2bucket(inp->inp_flowid, 1314 inp->inp_flowtype, 1315 &rss_bucket); 1316 if (retval == 0) 1317 optval = rss_bucket; 1318 else 1319 error = EINVAL; 1320 break; 1321 case IP_RECVRSSBUCKETID: 1322 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1323 break; 1324 #endif 1325 case IP_BINDMULTI: 1326 optval = OPTBIT2(INP_BINDMULTI); 1327 break; 1328 } 1329 error = sooptcopyout(sopt, &optval, sizeof optval); 1330 break; 1331 1332 /* 1333 * Multicast socket options are processed by the in_mcast 1334 * module. 1335 */ 1336 case IP_MULTICAST_IF: 1337 case IP_MULTICAST_VIF: 1338 case IP_MULTICAST_TTL: 1339 case IP_MULTICAST_LOOP: 1340 case IP_MSFILTER: 1341 error = inp_getmoptions(inp, sopt); 1342 break; 1343 1344 #ifdef IPSEC 1345 case IP_IPSEC_POLICY: 1346 { 1347 struct mbuf *m = NULL; 1348 caddr_t req = NULL; 1349 size_t len = 0; 1350 1351 if (m != 0) { 1352 req = mtod(m, caddr_t); 1353 len = m->m_len; 1354 } 1355 error = ipsec_get_policy(sotoinpcb(so), req, len, &m); 1356 if (error == 0) 1357 error = soopt_mcopyout(sopt, m); /* XXX */ 1358 if (error == 0) 1359 m_freem(m); 1360 break; 1361 } 1362 #endif /* IPSEC */ 1363 1364 default: 1365 error = ENOPROTOOPT; 1366 break; 1367 } 1368 break; 1369 } 1370 return (error); 1371 } 1372 1373 /* 1374 * Routine called from ip_output() to loop back a copy of an IP multicast 1375 * packet to the input queue of a specified interface. Note that this 1376 * calls the output routine of the loopback "driver", but with an interface 1377 * pointer that might NOT be a loopback interface -- evil, but easier than 1378 * replicating that code here. 1379 */ 1380 static void 1381 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1382 { 1383 struct ip *ip; 1384 struct mbuf *copym; 1385 1386 /* 1387 * Make a deep copy of the packet because we're going to 1388 * modify the pack in order to generate checksums. 1389 */ 1390 copym = m_dup(m, M_NOWAIT); 1391 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1392 copym = m_pullup(copym, hlen); 1393 if (copym != NULL) { 1394 /* If needed, compute the checksum and mark it as valid. */ 1395 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1396 in_delayed_cksum(copym); 1397 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1398 copym->m_pkthdr.csum_flags |= 1399 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1400 copym->m_pkthdr.csum_data = 0xffff; 1401 } 1402 /* 1403 * We don't bother to fragment if the IP length is greater 1404 * than the interface's MTU. Can this possibly matter? 1405 */ 1406 ip = mtod(copym, struct ip *); 1407 ip->ip_sum = 0; 1408 ip->ip_sum = in_cksum(copym, hlen); 1409 if_simloop(ifp, copym, AF_INET, 0); 1410 } 1411 } 1412