1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_inet.h" 34 #include "opt_ipsec.h" 35 #include "opt_kern_tls.h" 36 #include "opt_mbuf_stress_test.h" 37 #include "opt_ratelimit.h" 38 #include "opt_route.h" 39 #include "opt_rss.h" 40 #include "opt_sctp.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/ktls.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/protosw.h> 52 #include <sys/sdt.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/sysctl.h> 56 #include <sys/ucred.h> 57 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #include <net/if_private.h> 61 #include <net/if_vlan_var.h> 62 #include <net/if_llatbl.h> 63 #include <net/ethernet.h> 64 #include <net/netisr.h> 65 #include <net/pfil.h> 66 #include <net/route.h> 67 #include <net/route/nhop.h> 68 #include <net/rss_config.h> 69 #include <net/vnet.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_fib.h> 73 #include <netinet/in_kdtrace.h> 74 #include <netinet/in_systm.h> 75 #include <netinet/ip.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_rss.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/ip_options.h> 82 83 #include <netinet/udp.h> 84 #include <netinet/udp_var.h> 85 86 #if defined(SCTP) || defined(SCTP_SUPPORT) 87 #include <netinet/sctp.h> 88 #include <netinet/sctp_crc32.h> 89 #endif 90 91 #include <netipsec/ipsec_support.h> 92 93 #include <machine/in_cksum.h> 94 95 #include <security/mac/mac_framework.h> 96 97 #ifdef MBUF_STRESS_TEST 98 static int mbuf_frag_size = 0; 99 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 100 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 101 #endif 102 103 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 104 105 extern int in_mcast_loop; 106 107 static inline int 108 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 109 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 110 { 111 struct m_tag *fwd_tag = NULL; 112 struct mbuf *m; 113 struct in_addr odst; 114 struct ip *ip; 115 116 m = *mp; 117 ip = mtod(m, struct ip *); 118 119 /* Run through list of hooks for output packets. */ 120 odst.s_addr = ip->ip_dst.s_addr; 121 switch (pfil_mbuf_out(V_inet_pfil_head, mp, ifp, inp)) { 122 case PFIL_DROPPED: 123 *error = EACCES; 124 /* FALLTHROUGH */ 125 case PFIL_CONSUMED: 126 return 1; /* Finished */ 127 case PFIL_PASS: 128 *error = 0; 129 } 130 m = *mp; 131 ip = mtod(m, struct ip *); 132 133 /* See if destination IP address was changed by packet filter. */ 134 if (odst.s_addr != ip->ip_dst.s_addr) { 135 m->m_flags |= M_SKIP_FIREWALL; 136 /* If destination is now ourself drop to ip_input(). */ 137 if (in_localip(ip->ip_dst)) { 138 m->m_flags |= M_FASTFWD_OURS; 139 if (m->m_pkthdr.rcvif == NULL) 140 m->m_pkthdr.rcvif = V_loif; 141 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 142 m->m_pkthdr.csum_flags |= 143 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 144 m->m_pkthdr.csum_data = 0xffff; 145 } 146 m->m_pkthdr.csum_flags |= 147 CSUM_IP_CHECKED | CSUM_IP_VALID; 148 #if defined(SCTP) || defined(SCTP_SUPPORT) 149 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 150 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 151 #endif 152 *error = netisr_queue(NETISR_IP, m); 153 return 1; /* Finished */ 154 } 155 156 bzero(dst, sizeof(*dst)); 157 dst->sin_family = AF_INET; 158 dst->sin_len = sizeof(*dst); 159 dst->sin_addr = ip->ip_dst; 160 161 return -1; /* Reloop */ 162 } 163 /* See if fib was changed by packet filter. */ 164 if ((*fibnum) != M_GETFIB(m)) { 165 m->m_flags |= M_SKIP_FIREWALL; 166 *fibnum = M_GETFIB(m); 167 return -1; /* Reloop for FIB change */ 168 } 169 170 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 171 if (m->m_flags & M_FASTFWD_OURS) { 172 if (m->m_pkthdr.rcvif == NULL) 173 m->m_pkthdr.rcvif = V_loif; 174 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 175 m->m_pkthdr.csum_flags |= 176 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 177 m->m_pkthdr.csum_data = 0xffff; 178 } 179 #if defined(SCTP) || defined(SCTP_SUPPORT) 180 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 181 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 182 #endif 183 m->m_pkthdr.csum_flags |= 184 CSUM_IP_CHECKED | CSUM_IP_VALID; 185 186 *error = netisr_queue(NETISR_IP, m); 187 return 1; /* Finished */ 188 } 189 /* Or forward to some other address? */ 190 if ((m->m_flags & M_IP_NEXTHOP) && 191 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 192 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 193 m->m_flags |= M_SKIP_FIREWALL; 194 m->m_flags &= ~M_IP_NEXTHOP; 195 m_tag_delete(m, fwd_tag); 196 197 return -1; /* Reloop for CHANGE of dst */ 198 } 199 200 return 0; 201 } 202 203 static int 204 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 205 const struct sockaddr *gw, struct route *ro, bool stamp_tag) 206 { 207 #ifdef KERN_TLS 208 struct ktls_session *tls = NULL; 209 #endif 210 struct m_snd_tag *mst; 211 int error; 212 213 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 214 mst = NULL; 215 216 #ifdef KERN_TLS 217 /* 218 * If this is an unencrypted TLS record, save a reference to 219 * the record. This local reference is used to call 220 * ktls_output_eagain after the mbuf has been freed (thus 221 * dropping the mbuf's reference) in if_output. 222 */ 223 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 224 tls = ktls_hold(m->m_next->m_epg_tls); 225 mst = tls->snd_tag; 226 227 /* 228 * If a TLS session doesn't have a valid tag, it must 229 * have had an earlier ifp mismatch, so drop this 230 * packet. 231 */ 232 if (mst == NULL) { 233 m_freem(m); 234 error = EAGAIN; 235 goto done; 236 } 237 /* 238 * Always stamp tags that include NIC ktls. 239 */ 240 stamp_tag = true; 241 } 242 #endif 243 #ifdef RATELIMIT 244 if (inp != NULL && mst == NULL) { 245 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 246 (inp->inp_snd_tag != NULL && 247 inp->inp_snd_tag->ifp != ifp)) 248 in_pcboutput_txrtlmt(inp, ifp, m); 249 250 if (inp->inp_snd_tag != NULL) 251 mst = inp->inp_snd_tag; 252 } 253 #endif 254 if (stamp_tag && mst != NULL) { 255 KASSERT(m->m_pkthdr.rcvif == NULL, 256 ("trying to add a send tag to a forwarded packet")); 257 if (mst->ifp != ifp) { 258 m_freem(m); 259 error = EAGAIN; 260 goto done; 261 } 262 263 /* stamp send tag on mbuf */ 264 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 265 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 266 } 267 268 error = (*ifp->if_output)(ifp, m, gw, ro); 269 270 done: 271 /* Check for route change invalidating send tags. */ 272 #ifdef KERN_TLS 273 if (tls != NULL) { 274 if (error == EAGAIN) 275 error = ktls_output_eagain(inp, tls); 276 ktls_free(tls); 277 } 278 #endif 279 #ifdef RATELIMIT 280 if (error == EAGAIN) 281 in_pcboutput_eagain(inp); 282 #endif 283 return (error); 284 } 285 286 /* rte<>ro_flags translation */ 287 static inline void 288 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh) 289 { 290 int nh_flags = nh->nh_flags; 291 292 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 293 294 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 295 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 296 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 297 } 298 299 /* 300 * IP output. The packet in mbuf chain m contains a skeletal IP 301 * header (with len, off, ttl, proto, tos, src, dst). 302 * The mbuf chain containing the packet will be freed. 303 * The mbuf opt, if present, will not be freed. 304 * If route ro is present and has ro_rt initialized, route lookup would be 305 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 306 * then result of route lookup is stored in ro->ro_rt. 307 * 308 * In the IP forwarding case, the packet will arrive with options already 309 * inserted, so must have a NULL opt pointer. 310 */ 311 int 312 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 313 struct ip_moptions *imo, struct inpcb *inp) 314 { 315 struct ip *ip; 316 struct ifnet *ifp = NULL; /* keep compiler happy */ 317 struct mbuf *m0; 318 int hlen = sizeof (struct ip); 319 int mtu = 0; 320 int error = 0; 321 int vlan_pcp = -1; 322 struct sockaddr_in *dst; 323 const struct sockaddr *gw; 324 struct in_ifaddr *ia = NULL; 325 struct in_addr src; 326 int isbroadcast; 327 uint16_t ip_len, ip_off; 328 struct route iproute; 329 uint32_t fibnum; 330 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 331 int no_route_but_check_spd = 0; 332 #endif 333 334 M_ASSERTPKTHDR(m); 335 NET_EPOCH_ASSERT(); 336 337 if (inp != NULL) { 338 INP_LOCK_ASSERT(inp); 339 M_SETFIB(m, inp->inp_inc.inc_fibnum); 340 if ((flags & IP_NODEFAULTFLOWID) == 0) { 341 m->m_pkthdr.flowid = inp->inp_flowid; 342 M_HASHTYPE_SET(m, inp->inp_flowtype); 343 } 344 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 345 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 346 INP_2PCP_SHIFT; 347 #ifdef NUMA 348 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 349 #endif 350 } 351 352 if (opt) { 353 int len = 0; 354 m = ip_insertoptions(m, opt, &len); 355 if (len != 0) 356 hlen = len; /* ip->ip_hl is updated above */ 357 } 358 ip = mtod(m, struct ip *); 359 ip_len = ntohs(ip->ip_len); 360 ip_off = ntohs(ip->ip_off); 361 362 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 363 ip->ip_v = IPVERSION; 364 ip->ip_hl = hlen >> 2; 365 ip_fillid(ip); 366 } else { 367 /* Header already set, fetch hlen from there */ 368 hlen = ip->ip_hl << 2; 369 } 370 if ((flags & IP_FORWARDING) == 0) 371 IPSTAT_INC(ips_localout); 372 373 /* 374 * dst/gw handling: 375 * 376 * gw is readonly but can point either to dst OR rt_gateway, 377 * therefore we need restore gw if we're redoing lookup. 378 */ 379 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 380 if (ro == NULL) { 381 ro = &iproute; 382 bzero(ro, sizeof (*ro)); 383 } 384 dst = (struct sockaddr_in *)&ro->ro_dst; 385 if (ro->ro_nh == NULL) { 386 dst->sin_family = AF_INET; 387 dst->sin_len = sizeof(*dst); 388 dst->sin_addr = ip->ip_dst; 389 } 390 gw = (const struct sockaddr *)dst; 391 again: 392 /* 393 * Validate route against routing table additions; 394 * a better/more specific route might have been added. 395 */ 396 if (inp != NULL && ro->ro_nh != NULL) 397 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 398 /* 399 * If there is a cached route, 400 * check that it is to the same destination 401 * and is still up. If not, free it and try again. 402 * The address family should also be checked in case of sharing the 403 * cache with IPv6. 404 * Also check whether routing cache needs invalidation. 405 */ 406 if (ro->ro_nh != NULL && 407 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 408 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 409 RO_INVALIDATE_CACHE(ro); 410 ia = NULL; 411 /* 412 * If routing to interface only, short circuit routing lookup. 413 * The use of an all-ones broadcast address implies this; an 414 * interface is specified by the broadcast address of an interface, 415 * or the destination address of a ptp interface. 416 */ 417 if (flags & IP_SENDONES) { 418 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 419 M_GETFIB(m)))) == NULL && 420 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 421 M_GETFIB(m)))) == NULL) { 422 IPSTAT_INC(ips_noroute); 423 error = ENETUNREACH; 424 goto bad; 425 } 426 ip->ip_dst.s_addr = INADDR_BROADCAST; 427 dst->sin_addr = ip->ip_dst; 428 ifp = ia->ia_ifp; 429 mtu = ifp->if_mtu; 430 ip->ip_ttl = 1; 431 isbroadcast = 1; 432 src = IA_SIN(ia)->sin_addr; 433 } else if (flags & IP_ROUTETOIF) { 434 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 435 M_GETFIB(m)))) == NULL && 436 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 437 M_GETFIB(m)))) == NULL) { 438 IPSTAT_INC(ips_noroute); 439 error = ENETUNREACH; 440 goto bad; 441 } 442 ifp = ia->ia_ifp; 443 mtu = ifp->if_mtu; 444 ip->ip_ttl = 1; 445 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 446 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 447 src = IA_SIN(ia)->sin_addr; 448 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 449 imo != NULL && imo->imo_multicast_ifp != NULL) { 450 /* 451 * Bypass the normal routing lookup for multicast 452 * packets if the interface is specified. 453 */ 454 ifp = imo->imo_multicast_ifp; 455 mtu = ifp->if_mtu; 456 IFP_TO_IA(ifp, ia); 457 isbroadcast = 0; /* fool gcc */ 458 /* Interface may have no addresses. */ 459 if (ia != NULL) 460 src = IA_SIN(ia)->sin_addr; 461 else 462 src.s_addr = INADDR_ANY; 463 } else if (ro != &iproute) { 464 if (ro->ro_nh == NULL) { 465 /* 466 * We want to do any cloning requested by the link 467 * layer, as this is probably required in all cases 468 * for correct operation (as it is for ARP). 469 */ 470 uint32_t flowid; 471 flowid = m->m_pkthdr.flowid; 472 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 473 NHR_REF, flowid); 474 475 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 476 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 477 /* 478 * There is no route for this packet, but it is 479 * possible that a matching SPD entry exists. 480 */ 481 no_route_but_check_spd = 1; 482 goto sendit; 483 #endif 484 IPSTAT_INC(ips_noroute); 485 error = EHOSTUNREACH; 486 goto bad; 487 } 488 } 489 struct nhop_object *nh = ro->ro_nh; 490 491 ia = ifatoia(nh->nh_ifa); 492 ifp = nh->nh_ifp; 493 counter_u64_add(nh->nh_pksent, 1); 494 rt_update_ro_flags(ro, nh); 495 if (nh->nh_flags & NHF_GATEWAY) 496 gw = &nh->gw_sa; 497 if (nh->nh_flags & NHF_HOST) 498 isbroadcast = (nh->nh_flags & NHF_BROADCAST); 499 else if ((ifp->if_flags & IFF_BROADCAST) && (gw->sa_family == AF_INET)) 500 isbroadcast = in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia); 501 else 502 isbroadcast = 0; 503 mtu = nh->nh_mtu; 504 src = IA_SIN(ia)->sin_addr; 505 } else { 506 struct nhop_object *nh; 507 508 nh = fib4_lookup(M_GETFIB(m), dst->sin_addr, 0, NHR_NONE, 509 m->m_pkthdr.flowid); 510 if (nh == NULL) { 511 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 512 /* 513 * There is no route for this packet, but it is 514 * possible that a matching SPD entry exists. 515 */ 516 no_route_but_check_spd = 1; 517 goto sendit; 518 #endif 519 IPSTAT_INC(ips_noroute); 520 error = EHOSTUNREACH; 521 goto bad; 522 } 523 ifp = nh->nh_ifp; 524 mtu = nh->nh_mtu; 525 rt_update_ro_flags(ro, nh); 526 if (nh->nh_flags & NHF_GATEWAY) 527 gw = &nh->gw_sa; 528 ia = ifatoia(nh->nh_ifa); 529 src = IA_SIN(ia)->sin_addr; 530 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 531 (NHF_HOST | NHF_BROADCAST)) || 532 ((ifp->if_flags & IFF_BROADCAST) && 533 (gw->sa_family == AF_INET) && 534 in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia))); 535 } 536 537 /* Catch a possible divide by zero later. */ 538 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 539 __func__, mtu, ro, 540 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 541 542 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 543 m->m_flags |= M_MCAST; 544 /* 545 * IP destination address is multicast. Make sure "gw" 546 * still points to the address in "ro". (It may have been 547 * changed to point to a gateway address, above.) 548 */ 549 gw = (const struct sockaddr *)dst; 550 /* 551 * See if the caller provided any multicast options 552 */ 553 if (imo != NULL) { 554 ip->ip_ttl = imo->imo_multicast_ttl; 555 if (imo->imo_multicast_vif != -1) 556 ip->ip_src.s_addr = 557 ip_mcast_src ? 558 ip_mcast_src(imo->imo_multicast_vif) : 559 INADDR_ANY; 560 } else 561 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 562 /* 563 * Confirm that the outgoing interface supports multicast. 564 */ 565 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 566 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 567 IPSTAT_INC(ips_noroute); 568 error = ENETUNREACH; 569 goto bad; 570 } 571 } 572 /* 573 * If source address not specified yet, use address 574 * of outgoing interface. 575 */ 576 if (ip->ip_src.s_addr == INADDR_ANY) 577 ip->ip_src = src; 578 579 if ((imo == NULL && in_mcast_loop) || 580 (imo && imo->imo_multicast_loop)) { 581 /* 582 * Loop back multicast datagram if not expressly 583 * forbidden to do so, even if we are not a member 584 * of the group; ip_input() will filter it later, 585 * thus deferring a hash lookup and mutex acquisition 586 * at the expense of a cheap copy using m_copym(). 587 */ 588 ip_mloopback(ifp, m, hlen); 589 } else { 590 /* 591 * If we are acting as a multicast router, perform 592 * multicast forwarding as if the packet had just 593 * arrived on the interface to which we are about 594 * to send. The multicast forwarding function 595 * recursively calls this function, using the 596 * IP_FORWARDING flag to prevent infinite recursion. 597 * 598 * Multicasts that are looped back by ip_mloopback(), 599 * above, will be forwarded by the ip_input() routine, 600 * if necessary. 601 */ 602 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 603 /* 604 * If rsvp daemon is not running, do not 605 * set ip_moptions. This ensures that the packet 606 * is multicast and not just sent down one link 607 * as prescribed by rsvpd. 608 */ 609 if (!V_rsvp_on) 610 imo = NULL; 611 if (ip_mforward && 612 ip_mforward(ip, ifp, m, imo) != 0) { 613 m_freem(m); 614 goto done; 615 } 616 } 617 } 618 619 /* 620 * Multicasts with a time-to-live of zero may be looped- 621 * back, above, but must not be transmitted on a network. 622 * Also, multicasts addressed to the loopback interface 623 * are not sent -- the above call to ip_mloopback() will 624 * loop back a copy. ip_input() will drop the copy if 625 * this host does not belong to the destination group on 626 * the loopback interface. 627 */ 628 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 629 m_freem(m); 630 goto done; 631 } 632 633 goto sendit; 634 } 635 636 /* 637 * If the source address is not specified yet, use the address 638 * of the outoing interface. 639 */ 640 if (ip->ip_src.s_addr == INADDR_ANY) 641 ip->ip_src = src; 642 643 /* 644 * Look for broadcast address and 645 * verify user is allowed to send 646 * such a packet. 647 */ 648 if (isbroadcast) { 649 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 650 error = EADDRNOTAVAIL; 651 goto bad; 652 } 653 if ((flags & IP_ALLOWBROADCAST) == 0) { 654 error = EACCES; 655 goto bad; 656 } 657 /* don't allow broadcast messages to be fragmented */ 658 if (ip_len > mtu) { 659 error = EMSGSIZE; 660 goto bad; 661 } 662 m->m_flags |= M_BCAST; 663 } else { 664 m->m_flags &= ~M_BCAST; 665 } 666 667 sendit: 668 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 669 if (IPSEC_ENABLED(ipv4)) { 670 m = mb_unmapped_to_ext(m); 671 if (m == NULL) { 672 IPSTAT_INC(ips_odropped); 673 error = ENOBUFS; 674 goto bad; 675 } 676 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 677 if (error == EINPROGRESS) 678 error = 0; 679 goto done; 680 } 681 } 682 /* 683 * Check if there was a route for this packet; return error if not. 684 */ 685 if (no_route_but_check_spd) { 686 IPSTAT_INC(ips_noroute); 687 error = EHOSTUNREACH; 688 goto bad; 689 } 690 /* Update variables that are affected by ipsec4_output(). */ 691 ip = mtod(m, struct ip *); 692 hlen = ip->ip_hl << 2; 693 #endif /* IPSEC */ 694 695 /* Jump over all PFIL processing if hooks are not active. */ 696 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 697 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 698 &error)) { 699 case 1: /* Finished */ 700 goto done; 701 702 case 0: /* Continue normally */ 703 ip = mtod(m, struct ip *); 704 ip_len = ntohs(ip->ip_len); 705 break; 706 707 case -1: /* Need to try again */ 708 /* Reset everything for a new round */ 709 if (ro != NULL) { 710 RO_NHFREE(ro); 711 ro->ro_prepend = NULL; 712 } 713 gw = (const struct sockaddr *)dst; 714 ip = mtod(m, struct ip *); 715 goto again; 716 } 717 } 718 719 if (vlan_pcp > -1) 720 EVL_APPLY_PRI(m, vlan_pcp); 721 722 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 723 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 724 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 725 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 726 IPSTAT_INC(ips_badaddr); 727 error = EADDRNOTAVAIL; 728 goto bad; 729 } 730 } 731 732 /* Ensure the packet data is mapped if the interface requires it. */ 733 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 734 m = mb_unmapped_to_ext(m); 735 if (m == NULL) { 736 IPSTAT_INC(ips_odropped); 737 error = ENOBUFS; 738 goto bad; 739 } 740 } 741 742 m->m_pkthdr.csum_flags |= CSUM_IP; 743 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 744 in_delayed_cksum(m); 745 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 746 } 747 #if defined(SCTP) || defined(SCTP_SUPPORT) 748 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 749 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 750 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 751 } 752 #endif 753 754 /* 755 * If small enough for interface, or the interface will take 756 * care of the fragmentation for us, we can just send directly. 757 * Note that if_vxlan could have requested TSO even though the outer 758 * frame is UDP. It is correct to not fragment such datagrams and 759 * instead just pass them on to the driver. 760 */ 761 if (ip_len <= mtu || 762 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 763 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 764 ip->ip_sum = 0; 765 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 766 ip->ip_sum = in_cksum(m, hlen); 767 m->m_pkthdr.csum_flags &= ~CSUM_IP; 768 } 769 770 /* 771 * Record statistics for this interface address. 772 * With CSUM_TSO the byte/packet count will be slightly 773 * incorrect because we count the IP+TCP headers only 774 * once instead of for every generated packet. 775 */ 776 if (!(flags & IP_FORWARDING) && ia) { 777 if (m->m_pkthdr.csum_flags & 778 (CSUM_TSO | CSUM_INNER_TSO)) 779 counter_u64_add(ia->ia_ifa.ifa_opackets, 780 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 781 else 782 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 783 784 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 785 } 786 #ifdef MBUF_STRESS_TEST 787 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 788 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 789 #endif 790 /* 791 * Reset layer specific mbuf flags 792 * to avoid confusing lower layers. 793 */ 794 m_clrprotoflags(m); 795 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 796 error = ip_output_send(inp, ifp, m, gw, ro, 797 (flags & IP_NO_SND_TAG_RL) ? false : true); 798 goto done; 799 } 800 801 /* Balk when DF bit is set or the interface didn't support TSO. */ 802 if ((ip_off & IP_DF) || 803 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 804 error = EMSGSIZE; 805 IPSTAT_INC(ips_cantfrag); 806 goto bad; 807 } 808 809 /* 810 * Too large for interface; fragment if possible. If successful, 811 * on return, m will point to a list of packets to be sent. 812 */ 813 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 814 if (error) 815 goto bad; 816 for (; m; m = m0) { 817 m0 = m->m_nextpkt; 818 m->m_nextpkt = 0; 819 if (error == 0) { 820 /* Record statistics for this interface address. */ 821 if (ia != NULL) { 822 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 823 counter_u64_add(ia->ia_ifa.ifa_obytes, 824 m->m_pkthdr.len); 825 } 826 /* 827 * Reset layer specific mbuf flags 828 * to avoid confusing upper layers. 829 */ 830 m_clrprotoflags(m); 831 832 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 833 mtod(m, struct ip *), NULL); 834 error = ip_output_send(inp, ifp, m, gw, ro, true); 835 } else 836 m_freem(m); 837 } 838 839 if (error == 0) 840 IPSTAT_INC(ips_fragmented); 841 842 done: 843 return (error); 844 bad: 845 m_freem(m); 846 goto done; 847 } 848 849 /* 850 * Create a chain of fragments which fit the given mtu. m_frag points to the 851 * mbuf to be fragmented; on return it points to the chain with the fragments. 852 * Return 0 if no error. If error, m_frag may contain a partially built 853 * chain of fragments that should be freed by the caller. 854 * 855 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 856 */ 857 int 858 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 859 u_long if_hwassist_flags) 860 { 861 int error = 0; 862 int hlen = ip->ip_hl << 2; 863 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 864 int off; 865 struct mbuf *m0 = *m_frag; /* the original packet */ 866 int firstlen; 867 struct mbuf **mnext; 868 int nfrags; 869 uint16_t ip_len, ip_off; 870 871 ip_len = ntohs(ip->ip_len); 872 ip_off = ntohs(ip->ip_off); 873 874 /* 875 * Packet shall not have "Don't Fragment" flag and have at least 8 876 * bytes of payload. 877 */ 878 if (__predict_false((ip_off & IP_DF) || len < 8)) { 879 IPSTAT_INC(ips_cantfrag); 880 return (EMSGSIZE); 881 } 882 883 /* 884 * If the interface will not calculate checksums on 885 * fragmented packets, then do it here. 886 */ 887 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 888 in_delayed_cksum(m0); 889 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 890 } 891 #if defined(SCTP) || defined(SCTP_SUPPORT) 892 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 893 sctp_delayed_cksum(m0, hlen); 894 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 895 } 896 #endif 897 if (len > PAGE_SIZE) { 898 /* 899 * Fragment large datagrams such that each segment 900 * contains a multiple of PAGE_SIZE amount of data, 901 * plus headers. This enables a receiver to perform 902 * page-flipping zero-copy optimizations. 903 * 904 * XXX When does this help given that sender and receiver 905 * could have different page sizes, and also mtu could 906 * be less than the receiver's page size ? 907 */ 908 int newlen; 909 910 off = MIN(mtu, m0->m_pkthdr.len); 911 912 /* 913 * firstlen (off - hlen) must be aligned on an 914 * 8-byte boundary 915 */ 916 if (off < hlen) 917 goto smart_frag_failure; 918 off = ((off - hlen) & ~7) + hlen; 919 newlen = (~PAGE_MASK) & mtu; 920 if ((newlen + sizeof (struct ip)) > mtu) { 921 /* we failed, go back the default */ 922 smart_frag_failure: 923 newlen = len; 924 off = hlen + len; 925 } 926 len = newlen; 927 928 } else { 929 off = hlen + len; 930 } 931 932 firstlen = off - hlen; 933 mnext = &m0->m_nextpkt; /* pointer to next packet */ 934 935 /* 936 * Loop through length of segment after first fragment, 937 * make new header and copy data of each part and link onto chain. 938 * Here, m0 is the original packet, m is the fragment being created. 939 * The fragments are linked off the m_nextpkt of the original 940 * packet, which after processing serves as the first fragment. 941 */ 942 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 943 struct ip *mhip; /* ip header on the fragment */ 944 struct mbuf *m; 945 int mhlen = sizeof (struct ip); 946 947 m = m_gethdr(M_NOWAIT, MT_DATA); 948 if (m == NULL) { 949 error = ENOBUFS; 950 IPSTAT_INC(ips_odropped); 951 goto done; 952 } 953 /* 954 * Make sure the complete packet header gets copied 955 * from the originating mbuf to the newly created 956 * mbuf. This also ensures that existing firewall 957 * classification(s), VLAN tags and so on get copied 958 * to the resulting fragmented packet(s): 959 */ 960 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 961 m_free(m); 962 error = ENOBUFS; 963 IPSTAT_INC(ips_odropped); 964 goto done; 965 } 966 /* 967 * In the first mbuf, leave room for the link header, then 968 * copy the original IP header including options. The payload 969 * goes into an additional mbuf chain returned by m_copym(). 970 */ 971 m->m_data += max_linkhdr; 972 mhip = mtod(m, struct ip *); 973 *mhip = *ip; 974 if (hlen > sizeof (struct ip)) { 975 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 976 mhip->ip_v = IPVERSION; 977 mhip->ip_hl = mhlen >> 2; 978 } 979 m->m_len = mhlen; 980 /* XXX do we need to add ip_off below ? */ 981 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 982 if (off + len >= ip_len) 983 len = ip_len - off; 984 else 985 mhip->ip_off |= IP_MF; 986 mhip->ip_len = htons((u_short)(len + mhlen)); 987 m->m_next = m_copym(m0, off, len, M_NOWAIT); 988 if (m->m_next == NULL) { /* copy failed */ 989 m_free(m); 990 error = ENOBUFS; /* ??? */ 991 IPSTAT_INC(ips_odropped); 992 goto done; 993 } 994 m->m_pkthdr.len = mhlen + len; 995 #ifdef MAC 996 mac_netinet_fragment(m0, m); 997 #endif 998 mhip->ip_off = htons(mhip->ip_off); 999 mhip->ip_sum = 0; 1000 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1001 mhip->ip_sum = in_cksum(m, mhlen); 1002 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1003 } 1004 *mnext = m; 1005 mnext = &m->m_nextpkt; 1006 } 1007 IPSTAT_ADD(ips_ofragments, nfrags); 1008 1009 /* 1010 * Update first fragment by trimming what's been copied out 1011 * and updating header. 1012 */ 1013 m_adj(m0, hlen + firstlen - ip_len); 1014 m0->m_pkthdr.len = hlen + firstlen; 1015 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1016 ip->ip_off = htons(ip_off | IP_MF); 1017 ip->ip_sum = 0; 1018 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1019 ip->ip_sum = in_cksum(m0, hlen); 1020 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1021 } 1022 1023 done: 1024 *m_frag = m0; 1025 return error; 1026 } 1027 1028 void 1029 in_delayed_cksum(struct mbuf *m) 1030 { 1031 struct ip *ip; 1032 struct udphdr *uh; 1033 uint16_t cklen, csum, offset; 1034 1035 ip = mtod(m, struct ip *); 1036 offset = ip->ip_hl << 2 ; 1037 1038 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1039 /* if udp header is not in the first mbuf copy udplen */ 1040 if (offset + sizeof(struct udphdr) > m->m_len) { 1041 m_copydata(m, offset + offsetof(struct udphdr, 1042 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1043 cklen = ntohs(cklen); 1044 } else { 1045 uh = (struct udphdr *)mtodo(m, offset); 1046 cklen = ntohs(uh->uh_ulen); 1047 } 1048 csum = in_cksum_skip(m, cklen + offset, offset); 1049 if (csum == 0) 1050 csum = 0xffff; 1051 } else { 1052 cklen = ntohs(ip->ip_len); 1053 csum = in_cksum_skip(m, cklen, offset); 1054 } 1055 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1056 1057 if (offset + sizeof(csum) > m->m_len) 1058 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1059 else 1060 *(u_short *)mtodo(m, offset) = csum; 1061 } 1062 1063 /* 1064 * IP socket option processing. 1065 */ 1066 int 1067 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1068 { 1069 struct inpcb *inp = sotoinpcb(so); 1070 int error, optval; 1071 #ifdef RSS 1072 uint32_t rss_bucket; 1073 int retval; 1074 #endif 1075 1076 error = optval = 0; 1077 if (sopt->sopt_level != IPPROTO_IP) { 1078 error = EINVAL; 1079 1080 if (sopt->sopt_level == SOL_SOCKET && 1081 sopt->sopt_dir == SOPT_SET) { 1082 switch (sopt->sopt_name) { 1083 case SO_SETFIB: 1084 INP_WLOCK(inp); 1085 inp->inp_inc.inc_fibnum = so->so_fibnum; 1086 INP_WUNLOCK(inp); 1087 error = 0; 1088 break; 1089 case SO_MAX_PACING_RATE: 1090 #ifdef RATELIMIT 1091 INP_WLOCK(inp); 1092 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1093 INP_WUNLOCK(inp); 1094 error = 0; 1095 #else 1096 error = EOPNOTSUPP; 1097 #endif 1098 break; 1099 default: 1100 break; 1101 } 1102 } 1103 return (error); 1104 } 1105 1106 switch (sopt->sopt_dir) { 1107 case SOPT_SET: 1108 switch (sopt->sopt_name) { 1109 case IP_OPTIONS: 1110 #ifdef notyet 1111 case IP_RETOPTS: 1112 #endif 1113 { 1114 struct mbuf *m; 1115 if (sopt->sopt_valsize > MLEN) { 1116 error = EMSGSIZE; 1117 break; 1118 } 1119 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1120 if (m == NULL) { 1121 error = ENOBUFS; 1122 break; 1123 } 1124 m->m_len = sopt->sopt_valsize; 1125 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1126 m->m_len); 1127 if (error) { 1128 m_free(m); 1129 break; 1130 } 1131 INP_WLOCK(inp); 1132 error = ip_pcbopts(inp, sopt->sopt_name, m); 1133 INP_WUNLOCK(inp); 1134 return (error); 1135 } 1136 1137 case IP_BINDANY: 1138 if (sopt->sopt_td != NULL) { 1139 error = priv_check(sopt->sopt_td, 1140 PRIV_NETINET_BINDANY); 1141 if (error) 1142 break; 1143 } 1144 /* FALLTHROUGH */ 1145 case IP_TOS: 1146 case IP_TTL: 1147 case IP_MINTTL: 1148 case IP_RECVOPTS: 1149 case IP_RECVRETOPTS: 1150 case IP_ORIGDSTADDR: 1151 case IP_RECVDSTADDR: 1152 case IP_RECVTTL: 1153 case IP_RECVIF: 1154 case IP_ONESBCAST: 1155 case IP_DONTFRAG: 1156 case IP_RECVTOS: 1157 case IP_RECVFLOWID: 1158 #ifdef RSS 1159 case IP_RECVRSSBUCKETID: 1160 #endif 1161 case IP_VLAN_PCP: 1162 error = sooptcopyin(sopt, &optval, sizeof optval, 1163 sizeof optval); 1164 if (error) 1165 break; 1166 1167 switch (sopt->sopt_name) { 1168 case IP_TOS: 1169 inp->inp_ip_tos = optval; 1170 break; 1171 1172 case IP_TTL: 1173 inp->inp_ip_ttl = optval; 1174 break; 1175 1176 case IP_MINTTL: 1177 if (optval >= 0 && optval <= MAXTTL) 1178 inp->inp_ip_minttl = optval; 1179 else 1180 error = EINVAL; 1181 break; 1182 1183 #define OPTSET(bit) do { \ 1184 INP_WLOCK(inp); \ 1185 if (optval) \ 1186 inp->inp_flags |= bit; \ 1187 else \ 1188 inp->inp_flags &= ~bit; \ 1189 INP_WUNLOCK(inp); \ 1190 } while (0) 1191 1192 #define OPTSET2(bit, val) do { \ 1193 INP_WLOCK(inp); \ 1194 if (val) \ 1195 inp->inp_flags2 |= bit; \ 1196 else \ 1197 inp->inp_flags2 &= ~bit; \ 1198 INP_WUNLOCK(inp); \ 1199 } while (0) 1200 1201 case IP_RECVOPTS: 1202 OPTSET(INP_RECVOPTS); 1203 break; 1204 1205 case IP_RECVRETOPTS: 1206 OPTSET(INP_RECVRETOPTS); 1207 break; 1208 1209 case IP_RECVDSTADDR: 1210 OPTSET(INP_RECVDSTADDR); 1211 break; 1212 1213 case IP_ORIGDSTADDR: 1214 OPTSET2(INP_ORIGDSTADDR, optval); 1215 break; 1216 1217 case IP_RECVTTL: 1218 OPTSET(INP_RECVTTL); 1219 break; 1220 1221 case IP_RECVIF: 1222 OPTSET(INP_RECVIF); 1223 break; 1224 1225 case IP_ONESBCAST: 1226 OPTSET(INP_ONESBCAST); 1227 break; 1228 case IP_DONTFRAG: 1229 OPTSET(INP_DONTFRAG); 1230 break; 1231 case IP_BINDANY: 1232 OPTSET(INP_BINDANY); 1233 break; 1234 case IP_RECVTOS: 1235 OPTSET(INP_RECVTOS); 1236 break; 1237 case IP_RECVFLOWID: 1238 OPTSET2(INP_RECVFLOWID, optval); 1239 break; 1240 #ifdef RSS 1241 case IP_RECVRSSBUCKETID: 1242 OPTSET2(INP_RECVRSSBUCKETID, optval); 1243 break; 1244 #endif 1245 case IP_VLAN_PCP: 1246 if ((optval >= -1) && (optval <= 1247 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1248 if (optval == -1) { 1249 INP_WLOCK(inp); 1250 inp->inp_flags2 &= 1251 ~(INP_2PCP_SET | 1252 INP_2PCP_MASK); 1253 INP_WUNLOCK(inp); 1254 } else { 1255 INP_WLOCK(inp); 1256 inp->inp_flags2 |= 1257 INP_2PCP_SET; 1258 inp->inp_flags2 &= 1259 ~INP_2PCP_MASK; 1260 inp->inp_flags2 |= 1261 optval << INP_2PCP_SHIFT; 1262 INP_WUNLOCK(inp); 1263 } 1264 } else 1265 error = EINVAL; 1266 break; 1267 } 1268 break; 1269 #undef OPTSET 1270 #undef OPTSET2 1271 1272 /* 1273 * Multicast socket options are processed by the in_mcast 1274 * module. 1275 */ 1276 case IP_MULTICAST_IF: 1277 case IP_MULTICAST_VIF: 1278 case IP_MULTICAST_TTL: 1279 case IP_MULTICAST_LOOP: 1280 case IP_ADD_MEMBERSHIP: 1281 case IP_DROP_MEMBERSHIP: 1282 case IP_ADD_SOURCE_MEMBERSHIP: 1283 case IP_DROP_SOURCE_MEMBERSHIP: 1284 case IP_BLOCK_SOURCE: 1285 case IP_UNBLOCK_SOURCE: 1286 case IP_MSFILTER: 1287 case MCAST_JOIN_GROUP: 1288 case MCAST_LEAVE_GROUP: 1289 case MCAST_JOIN_SOURCE_GROUP: 1290 case MCAST_LEAVE_SOURCE_GROUP: 1291 case MCAST_BLOCK_SOURCE: 1292 case MCAST_UNBLOCK_SOURCE: 1293 error = inp_setmoptions(inp, sopt); 1294 break; 1295 1296 case IP_PORTRANGE: 1297 error = sooptcopyin(sopt, &optval, sizeof optval, 1298 sizeof optval); 1299 if (error) 1300 break; 1301 1302 INP_WLOCK(inp); 1303 switch (optval) { 1304 case IP_PORTRANGE_DEFAULT: 1305 inp->inp_flags &= ~(INP_LOWPORT); 1306 inp->inp_flags &= ~(INP_HIGHPORT); 1307 break; 1308 1309 case IP_PORTRANGE_HIGH: 1310 inp->inp_flags &= ~(INP_LOWPORT); 1311 inp->inp_flags |= INP_HIGHPORT; 1312 break; 1313 1314 case IP_PORTRANGE_LOW: 1315 inp->inp_flags &= ~(INP_HIGHPORT); 1316 inp->inp_flags |= INP_LOWPORT; 1317 break; 1318 1319 default: 1320 error = EINVAL; 1321 break; 1322 } 1323 INP_WUNLOCK(inp); 1324 break; 1325 1326 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1327 case IP_IPSEC_POLICY: 1328 if (IPSEC_ENABLED(ipv4)) { 1329 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1330 break; 1331 } 1332 /* FALLTHROUGH */ 1333 #endif /* IPSEC */ 1334 1335 default: 1336 error = ENOPROTOOPT; 1337 break; 1338 } 1339 break; 1340 1341 case SOPT_GET: 1342 switch (sopt->sopt_name) { 1343 case IP_OPTIONS: 1344 case IP_RETOPTS: 1345 INP_RLOCK(inp); 1346 if (inp->inp_options) { 1347 struct mbuf *options; 1348 1349 options = m_copym(inp->inp_options, 0, 1350 M_COPYALL, M_NOWAIT); 1351 INP_RUNLOCK(inp); 1352 if (options != NULL) { 1353 error = sooptcopyout(sopt, 1354 mtod(options, char *), 1355 options->m_len); 1356 m_freem(options); 1357 } else 1358 error = ENOMEM; 1359 } else { 1360 INP_RUNLOCK(inp); 1361 sopt->sopt_valsize = 0; 1362 } 1363 break; 1364 1365 case IP_TOS: 1366 case IP_TTL: 1367 case IP_MINTTL: 1368 case IP_RECVOPTS: 1369 case IP_RECVRETOPTS: 1370 case IP_ORIGDSTADDR: 1371 case IP_RECVDSTADDR: 1372 case IP_RECVTTL: 1373 case IP_RECVIF: 1374 case IP_PORTRANGE: 1375 case IP_ONESBCAST: 1376 case IP_DONTFRAG: 1377 case IP_BINDANY: 1378 case IP_RECVTOS: 1379 case IP_FLOWID: 1380 case IP_FLOWTYPE: 1381 case IP_RECVFLOWID: 1382 #ifdef RSS 1383 case IP_RSSBUCKETID: 1384 case IP_RECVRSSBUCKETID: 1385 #endif 1386 case IP_VLAN_PCP: 1387 switch (sopt->sopt_name) { 1388 case IP_TOS: 1389 optval = inp->inp_ip_tos; 1390 break; 1391 1392 case IP_TTL: 1393 optval = inp->inp_ip_ttl; 1394 break; 1395 1396 case IP_MINTTL: 1397 optval = inp->inp_ip_minttl; 1398 break; 1399 1400 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1401 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1402 1403 case IP_RECVOPTS: 1404 optval = OPTBIT(INP_RECVOPTS); 1405 break; 1406 1407 case IP_RECVRETOPTS: 1408 optval = OPTBIT(INP_RECVRETOPTS); 1409 break; 1410 1411 case IP_RECVDSTADDR: 1412 optval = OPTBIT(INP_RECVDSTADDR); 1413 break; 1414 1415 case IP_ORIGDSTADDR: 1416 optval = OPTBIT2(INP_ORIGDSTADDR); 1417 break; 1418 1419 case IP_RECVTTL: 1420 optval = OPTBIT(INP_RECVTTL); 1421 break; 1422 1423 case IP_RECVIF: 1424 optval = OPTBIT(INP_RECVIF); 1425 break; 1426 1427 case IP_PORTRANGE: 1428 if (inp->inp_flags & INP_HIGHPORT) 1429 optval = IP_PORTRANGE_HIGH; 1430 else if (inp->inp_flags & INP_LOWPORT) 1431 optval = IP_PORTRANGE_LOW; 1432 else 1433 optval = 0; 1434 break; 1435 1436 case IP_ONESBCAST: 1437 optval = OPTBIT(INP_ONESBCAST); 1438 break; 1439 case IP_DONTFRAG: 1440 optval = OPTBIT(INP_DONTFRAG); 1441 break; 1442 case IP_BINDANY: 1443 optval = OPTBIT(INP_BINDANY); 1444 break; 1445 case IP_RECVTOS: 1446 optval = OPTBIT(INP_RECVTOS); 1447 break; 1448 case IP_FLOWID: 1449 optval = inp->inp_flowid; 1450 break; 1451 case IP_FLOWTYPE: 1452 optval = inp->inp_flowtype; 1453 break; 1454 case IP_RECVFLOWID: 1455 optval = OPTBIT2(INP_RECVFLOWID); 1456 break; 1457 #ifdef RSS 1458 case IP_RSSBUCKETID: 1459 retval = rss_hash2bucket(inp->inp_flowid, 1460 inp->inp_flowtype, 1461 &rss_bucket); 1462 if (retval == 0) 1463 optval = rss_bucket; 1464 else 1465 error = EINVAL; 1466 break; 1467 case IP_RECVRSSBUCKETID: 1468 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1469 break; 1470 #endif 1471 case IP_VLAN_PCP: 1472 if (OPTBIT2(INP_2PCP_SET)) { 1473 optval = (inp->inp_flags2 & 1474 INP_2PCP_MASK) >> INP_2PCP_SHIFT; 1475 } else { 1476 optval = -1; 1477 } 1478 break; 1479 } 1480 error = sooptcopyout(sopt, &optval, sizeof optval); 1481 break; 1482 1483 /* 1484 * Multicast socket options are processed by the in_mcast 1485 * module. 1486 */ 1487 case IP_MULTICAST_IF: 1488 case IP_MULTICAST_VIF: 1489 case IP_MULTICAST_TTL: 1490 case IP_MULTICAST_LOOP: 1491 case IP_MSFILTER: 1492 error = inp_getmoptions(inp, sopt); 1493 break; 1494 1495 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1496 case IP_IPSEC_POLICY: 1497 if (IPSEC_ENABLED(ipv4)) { 1498 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1499 break; 1500 } 1501 /* FALLTHROUGH */ 1502 #endif /* IPSEC */ 1503 1504 default: 1505 error = ENOPROTOOPT; 1506 break; 1507 } 1508 break; 1509 } 1510 return (error); 1511 } 1512 1513 /* 1514 * Routine called from ip_output() to loop back a copy of an IP multicast 1515 * packet to the input queue of a specified interface. Note that this 1516 * calls the output routine of the loopback "driver", but with an interface 1517 * pointer that might NOT be a loopback interface -- evil, but easier than 1518 * replicating that code here. 1519 */ 1520 static void 1521 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1522 { 1523 struct ip *ip; 1524 struct mbuf *copym; 1525 1526 /* 1527 * Make a deep copy of the packet because we're going to 1528 * modify the pack in order to generate checksums. 1529 */ 1530 copym = m_dup(m, M_NOWAIT); 1531 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1532 copym = m_pullup(copym, hlen); 1533 if (copym != NULL) { 1534 /* If needed, compute the checksum and mark it as valid. */ 1535 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1536 in_delayed_cksum(copym); 1537 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1538 copym->m_pkthdr.csum_flags |= 1539 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1540 copym->m_pkthdr.csum_data = 0xffff; 1541 } 1542 /* 1543 * We don't bother to fragment if the IP length is greater 1544 * than the interface's MTU. Can this possibly matter? 1545 */ 1546 ip = mtod(copym, struct ip *); 1547 ip->ip_sum = 0; 1548 ip->ip_sum = in_cksum(copym, hlen); 1549 if_simloop(ifp, copym, AF_INET, 0); 1550 } 1551 } 1552