1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_ipfw.h" 37 #include "opt_ipsec.h" 38 #include "opt_mbuf_stress_test.h" 39 #include "opt_mpath.h" 40 #include "opt_route.h" 41 #include "opt_sctp.h" 42 #include "opt_rss.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mbuf.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/protosw.h> 53 #include <sys/rmlock.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/ucred.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_llatbl.h> 63 #include <net/netisr.h> 64 #include <net/pfil.h> 65 #include <net/route.h> 66 #include <net/flowtable.h> 67 #ifdef RADIX_MPATH 68 #include <net/radix_mpath.h> 69 #endif 70 #include <net/rss_config.h> 71 #include <net/vnet.h> 72 73 #include <netinet/in.h> 74 #include <netinet/in_kdtrace.h> 75 #include <netinet/in_systm.h> 76 #include <netinet/ip.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_rss.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/ip_options.h> 82 #ifdef SCTP 83 #include <netinet/sctp.h> 84 #include <netinet/sctp_crc32.h> 85 #endif 86 87 #ifdef IPSEC 88 #include <netinet/ip_ipsec.h> 89 #include <netipsec/ipsec.h> 90 #endif /* IPSEC*/ 91 92 #include <machine/in_cksum.h> 93 94 #include <security/mac/mac_framework.h> 95 96 #ifdef MBUF_STRESS_TEST 97 static int mbuf_frag_size = 0; 98 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 99 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 100 #endif 101 102 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 103 104 105 extern int in_mcast_loop; 106 extern struct protosw inetsw[]; 107 108 static inline int 109 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp, 110 struct sockaddr_in *dst, int *fibnum, int *error) 111 { 112 struct m_tag *fwd_tag = NULL; 113 struct mbuf *m; 114 struct in_addr odst; 115 struct ip *ip; 116 117 m = *mp; 118 ip = mtod(m, struct ip *); 119 120 /* Run through list of hooks for output packets. */ 121 odst.s_addr = ip->ip_dst.s_addr; 122 *error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, PFIL_OUT, inp); 123 m = *mp; 124 if ((*error) != 0 || m == NULL) 125 return 1; /* Finished */ 126 127 ip = mtod(m, struct ip *); 128 129 /* See if destination IP address was changed by packet filter. */ 130 if (odst.s_addr != ip->ip_dst.s_addr) { 131 m->m_flags |= M_SKIP_FIREWALL; 132 /* If destination is now ourself drop to ip_input(). */ 133 if (in_localip(ip->ip_dst)) { 134 m->m_flags |= M_FASTFWD_OURS; 135 if (m->m_pkthdr.rcvif == NULL) 136 m->m_pkthdr.rcvif = V_loif; 137 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 138 m->m_pkthdr.csum_flags |= 139 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 140 m->m_pkthdr.csum_data = 0xffff; 141 } 142 m->m_pkthdr.csum_flags |= 143 CSUM_IP_CHECKED | CSUM_IP_VALID; 144 #ifdef SCTP 145 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 146 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 147 #endif 148 *error = netisr_queue(NETISR_IP, m); 149 return 1; /* Finished */ 150 } 151 152 bzero(dst, sizeof(*dst)); 153 dst->sin_family = AF_INET; 154 dst->sin_len = sizeof(*dst); 155 dst->sin_addr = ip->ip_dst; 156 157 return -1; /* Reloop */ 158 } 159 /* See if fib was changed by packet filter. */ 160 if ((*fibnum) != M_GETFIB(m)) { 161 m->m_flags |= M_SKIP_FIREWALL; 162 *fibnum = M_GETFIB(m); 163 return -1; /* Reloop for FIB change */ 164 } 165 166 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 167 if (m->m_flags & M_FASTFWD_OURS) { 168 if (m->m_pkthdr.rcvif == NULL) 169 m->m_pkthdr.rcvif = V_loif; 170 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 171 m->m_pkthdr.csum_flags |= 172 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 173 m->m_pkthdr.csum_data = 0xffff; 174 } 175 #ifdef SCTP 176 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 177 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 178 #endif 179 m->m_pkthdr.csum_flags |= 180 CSUM_IP_CHECKED | CSUM_IP_VALID; 181 182 *error = netisr_queue(NETISR_IP, m); 183 return 1; /* Finished */ 184 } 185 /* Or forward to some other address? */ 186 if ((m->m_flags & M_IP_NEXTHOP) && 187 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 188 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 189 m->m_flags |= M_SKIP_FIREWALL; 190 m->m_flags &= ~M_IP_NEXTHOP; 191 m_tag_delete(m, fwd_tag); 192 193 return -1; /* Reloop for CHANGE of dst */ 194 } 195 196 return 0; 197 } 198 199 /* 200 * IP output. The packet in mbuf chain m contains a skeletal IP 201 * header (with len, off, ttl, proto, tos, src, dst). 202 * The mbuf chain containing the packet will be freed. 203 * The mbuf opt, if present, will not be freed. 204 * If route ro is present and has ro_rt initialized, route lookup would be 205 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 206 * then result of route lookup is stored in ro->ro_rt. 207 * 208 * In the IP forwarding case, the packet will arrive with options already 209 * inserted, so must have a NULL opt pointer. 210 */ 211 int 212 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 213 struct ip_moptions *imo, struct inpcb *inp) 214 { 215 struct rm_priotracker in_ifa_tracker; 216 struct ip *ip; 217 struct ifnet *ifp = NULL; /* keep compiler happy */ 218 struct mbuf *m0; 219 int hlen = sizeof (struct ip); 220 int mtu; 221 int error = 0; 222 struct sockaddr_in *dst; 223 const struct sockaddr_in *gw; 224 struct in_ifaddr *ia; 225 int isbroadcast; 226 uint16_t ip_len, ip_off; 227 struct route iproute; 228 struct rtentry *rte; /* cache for ro->ro_rt */ 229 uint32_t fibnum; 230 int have_ia_ref; 231 #ifdef IPSEC 232 int no_route_but_check_spd = 0; 233 #endif 234 M_ASSERTPKTHDR(m); 235 236 if (inp != NULL) { 237 INP_LOCK_ASSERT(inp); 238 M_SETFIB(m, inp->inp_inc.inc_fibnum); 239 if ((flags & IP_NODEFAULTFLOWID) == 0) { 240 m->m_pkthdr.flowid = inp->inp_flowid; 241 M_HASHTYPE_SET(m, inp->inp_flowtype); 242 } 243 } 244 245 if (ro == NULL) { 246 ro = &iproute; 247 bzero(ro, sizeof (*ro)); 248 } 249 250 #ifdef FLOWTABLE 251 if (ro->ro_rt == NULL) 252 (void )flowtable_lookup(AF_INET, m, ro); 253 #endif 254 255 if (opt) { 256 int len = 0; 257 m = ip_insertoptions(m, opt, &len); 258 if (len != 0) 259 hlen = len; /* ip->ip_hl is updated above */ 260 } 261 ip = mtod(m, struct ip *); 262 ip_len = ntohs(ip->ip_len); 263 ip_off = ntohs(ip->ip_off); 264 265 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 266 ip->ip_v = IPVERSION; 267 ip->ip_hl = hlen >> 2; 268 ip_fillid(ip); 269 IPSTAT_INC(ips_localout); 270 } else { 271 /* Header already set, fetch hlen from there */ 272 hlen = ip->ip_hl << 2; 273 } 274 275 /* 276 * dst/gw handling: 277 * 278 * dst can be rewritten but always points to &ro->ro_dst. 279 * gw is readonly but can point either to dst OR rt_gateway, 280 * therefore we need restore gw if we're redoing lookup. 281 */ 282 gw = dst = (struct sockaddr_in *)&ro->ro_dst; 283 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 284 rte = ro->ro_rt; 285 /* 286 * The address family should also be checked in case of sharing 287 * the cache with IPv6. 288 */ 289 if (rte == NULL || dst->sin_family != AF_INET) { 290 bzero(dst, sizeof(*dst)); 291 dst->sin_family = AF_INET; 292 dst->sin_len = sizeof(*dst); 293 dst->sin_addr = ip->ip_dst; 294 } 295 again: 296 ia = NULL; 297 have_ia_ref = 0; 298 /* 299 * If routing to interface only, short circuit routing lookup. 300 * The use of an all-ones broadcast address implies this; an 301 * interface is specified by the broadcast address of an interface, 302 * or the destination address of a ptp interface. 303 */ 304 if (flags & IP_SENDONES) { 305 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 306 M_GETFIB(m)))) == NULL && 307 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 308 M_GETFIB(m)))) == NULL) { 309 IPSTAT_INC(ips_noroute); 310 error = ENETUNREACH; 311 goto bad; 312 } 313 have_ia_ref = 1; 314 ip->ip_dst.s_addr = INADDR_BROADCAST; 315 dst->sin_addr = ip->ip_dst; 316 ifp = ia->ia_ifp; 317 ip->ip_ttl = 1; 318 isbroadcast = 1; 319 } else if (flags & IP_ROUTETOIF) { 320 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 321 M_GETFIB(m)))) == NULL && 322 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 323 M_GETFIB(m)))) == NULL) { 324 IPSTAT_INC(ips_noroute); 325 error = ENETUNREACH; 326 goto bad; 327 } 328 have_ia_ref = 1; 329 ifp = ia->ia_ifp; 330 ip->ip_ttl = 1; 331 isbroadcast = in_broadcast(dst->sin_addr, ifp); 332 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 333 imo != NULL && imo->imo_multicast_ifp != NULL) { 334 /* 335 * Bypass the normal routing lookup for multicast 336 * packets if the interface is specified. 337 */ 338 ifp = imo->imo_multicast_ifp; 339 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 340 if (ia) 341 have_ia_ref = 1; 342 isbroadcast = 0; /* fool gcc */ 343 } else { 344 /* 345 * We want to do any cloning requested by the link layer, 346 * as this is probably required in all cases for correct 347 * operation (as it is for ARP). 348 */ 349 if (rte == NULL) { 350 #ifdef RADIX_MPATH 351 rtalloc_mpath_fib(ro, 352 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 353 fibnum); 354 #else 355 in_rtalloc_ign(ro, 0, fibnum); 356 #endif 357 rte = ro->ro_rt; 358 } 359 if (rte == NULL || 360 (rte->rt_flags & RTF_UP) == 0 || 361 rte->rt_ifp == NULL || 362 !RT_LINK_IS_UP(rte->rt_ifp)) { 363 #ifdef IPSEC 364 /* 365 * There is no route for this packet, but it is 366 * possible that a matching SPD entry exists. 367 */ 368 no_route_but_check_spd = 1; 369 mtu = 0; /* Silence GCC warning. */ 370 goto sendit; 371 #endif 372 IPSTAT_INC(ips_noroute); 373 error = EHOSTUNREACH; 374 goto bad; 375 } 376 ia = ifatoia(rte->rt_ifa); 377 ifp = rte->rt_ifp; 378 counter_u64_add(rte->rt_pksent, 1); 379 if (rte->rt_flags & RTF_GATEWAY) 380 gw = (struct sockaddr_in *)rte->rt_gateway; 381 if (rte->rt_flags & RTF_HOST) 382 isbroadcast = (rte->rt_flags & RTF_BROADCAST); 383 else 384 isbroadcast = in_broadcast(gw->sin_addr, ifp); 385 } 386 387 /* 388 * Calculate MTU. If we have a route that is up, use that, 389 * otherwise use the interface's MTU. 390 */ 391 if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) 392 mtu = rte->rt_mtu; 393 else 394 mtu = ifp->if_mtu; 395 /* Catch a possible divide by zero later. */ 396 KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p", 397 __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp)); 398 399 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 400 m->m_flags |= M_MCAST; 401 /* 402 * IP destination address is multicast. Make sure "gw" 403 * still points to the address in "ro". (It may have been 404 * changed to point to a gateway address, above.) 405 */ 406 gw = dst; 407 /* 408 * See if the caller provided any multicast options 409 */ 410 if (imo != NULL) { 411 ip->ip_ttl = imo->imo_multicast_ttl; 412 if (imo->imo_multicast_vif != -1) 413 ip->ip_src.s_addr = 414 ip_mcast_src ? 415 ip_mcast_src(imo->imo_multicast_vif) : 416 INADDR_ANY; 417 } else 418 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 419 /* 420 * Confirm that the outgoing interface supports multicast. 421 */ 422 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 423 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 424 IPSTAT_INC(ips_noroute); 425 error = ENETUNREACH; 426 goto bad; 427 } 428 } 429 /* 430 * If source address not specified yet, use address 431 * of outgoing interface. 432 */ 433 if (ip->ip_src.s_addr == INADDR_ANY) { 434 /* Interface may have no addresses. */ 435 if (ia != NULL) 436 ip->ip_src = IA_SIN(ia)->sin_addr; 437 } 438 439 if ((imo == NULL && in_mcast_loop) || 440 (imo && imo->imo_multicast_loop)) { 441 /* 442 * Loop back multicast datagram if not expressly 443 * forbidden to do so, even if we are not a member 444 * of the group; ip_input() will filter it later, 445 * thus deferring a hash lookup and mutex acquisition 446 * at the expense of a cheap copy using m_copym(). 447 */ 448 ip_mloopback(ifp, m, hlen); 449 } else { 450 /* 451 * If we are acting as a multicast router, perform 452 * multicast forwarding as if the packet had just 453 * arrived on the interface to which we are about 454 * to send. The multicast forwarding function 455 * recursively calls this function, using the 456 * IP_FORWARDING flag to prevent infinite recursion. 457 * 458 * Multicasts that are looped back by ip_mloopback(), 459 * above, will be forwarded by the ip_input() routine, 460 * if necessary. 461 */ 462 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 463 /* 464 * If rsvp daemon is not running, do not 465 * set ip_moptions. This ensures that the packet 466 * is multicast and not just sent down one link 467 * as prescribed by rsvpd. 468 */ 469 if (!V_rsvp_on) 470 imo = NULL; 471 if (ip_mforward && 472 ip_mforward(ip, ifp, m, imo) != 0) { 473 m_freem(m); 474 goto done; 475 } 476 } 477 } 478 479 /* 480 * Multicasts with a time-to-live of zero may be looped- 481 * back, above, but must not be transmitted on a network. 482 * Also, multicasts addressed to the loopback interface 483 * are not sent -- the above call to ip_mloopback() will 484 * loop back a copy. ip_input() will drop the copy if 485 * this host does not belong to the destination group on 486 * the loopback interface. 487 */ 488 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 489 m_freem(m); 490 goto done; 491 } 492 493 goto sendit; 494 } 495 496 /* 497 * If the source address is not specified yet, use the address 498 * of the outoing interface. 499 */ 500 if (ip->ip_src.s_addr == INADDR_ANY) { 501 /* Interface may have no addresses. */ 502 if (ia != NULL) { 503 ip->ip_src = IA_SIN(ia)->sin_addr; 504 } 505 } 506 507 /* 508 * Look for broadcast address and 509 * verify user is allowed to send 510 * such a packet. 511 */ 512 if (isbroadcast) { 513 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 514 error = EADDRNOTAVAIL; 515 goto bad; 516 } 517 if ((flags & IP_ALLOWBROADCAST) == 0) { 518 error = EACCES; 519 goto bad; 520 } 521 /* don't allow broadcast messages to be fragmented */ 522 if (ip_len > mtu) { 523 error = EMSGSIZE; 524 goto bad; 525 } 526 m->m_flags |= M_BCAST; 527 } else { 528 m->m_flags &= ~M_BCAST; 529 } 530 531 sendit: 532 #ifdef IPSEC 533 switch(ip_ipsec_output(&m, inp, &error)) { 534 case 1: 535 goto bad; 536 case -1: 537 goto done; 538 case 0: 539 default: 540 break; /* Continue with packet processing. */ 541 } 542 /* 543 * Check if there was a route for this packet; return error if not. 544 */ 545 if (no_route_but_check_spd) { 546 IPSTAT_INC(ips_noroute); 547 error = EHOSTUNREACH; 548 goto bad; 549 } 550 /* Update variables that are affected by ipsec4_output(). */ 551 ip = mtod(m, struct ip *); 552 hlen = ip->ip_hl << 2; 553 #endif /* IPSEC */ 554 555 /* Jump over all PFIL processing if hooks are not active. */ 556 if (PFIL_HOOKED(&V_inet_pfil_hook)) { 557 switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) { 558 case 1: /* Finished */ 559 goto done; 560 561 case 0: /* Continue normally */ 562 ip = mtod(m, struct ip *); 563 break; 564 565 case -1: /* Need to try again */ 566 /* Reset everything for a new round */ 567 RO_RTFREE(ro); 568 if (have_ia_ref) 569 ifa_free(&ia->ia_ifa); 570 ro->ro_lle = NULL; 571 rte = NULL; 572 gw = dst; 573 ip = mtod(m, struct ip *); 574 goto again; 575 576 } 577 } 578 579 /* 127/8 must not appear on wire - RFC1122. */ 580 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 581 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 582 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 583 IPSTAT_INC(ips_badaddr); 584 error = EADDRNOTAVAIL; 585 goto bad; 586 } 587 } 588 589 m->m_pkthdr.csum_flags |= CSUM_IP; 590 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 591 in_delayed_cksum(m); 592 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 593 } 594 #ifdef SCTP 595 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 596 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 597 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 598 } 599 #endif 600 601 /* 602 * If small enough for interface, or the interface will take 603 * care of the fragmentation for us, we can just send directly. 604 */ 605 if (ip_len <= mtu || 606 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 607 ip->ip_sum = 0; 608 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 609 ip->ip_sum = in_cksum(m, hlen); 610 m->m_pkthdr.csum_flags &= ~CSUM_IP; 611 } 612 613 /* 614 * Record statistics for this interface address. 615 * With CSUM_TSO the byte/packet count will be slightly 616 * incorrect because we count the IP+TCP headers only 617 * once instead of for every generated packet. 618 */ 619 if (!(flags & IP_FORWARDING) && ia) { 620 if (m->m_pkthdr.csum_flags & CSUM_TSO) 621 counter_u64_add(ia->ia_ifa.ifa_opackets, 622 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 623 else 624 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 625 626 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 627 } 628 #ifdef MBUF_STRESS_TEST 629 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 630 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 631 #endif 632 /* 633 * Reset layer specific mbuf flags 634 * to avoid confusing lower layers. 635 */ 636 m_clrprotoflags(m); 637 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 638 error = (*ifp->if_output)(ifp, m, 639 (const struct sockaddr *)gw, ro); 640 goto done; 641 } 642 643 /* Balk when DF bit is set or the interface didn't support TSO. */ 644 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 645 error = EMSGSIZE; 646 IPSTAT_INC(ips_cantfrag); 647 goto bad; 648 } 649 650 /* 651 * Too large for interface; fragment if possible. If successful, 652 * on return, m will point to a list of packets to be sent. 653 */ 654 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 655 if (error) 656 goto bad; 657 for (; m; m = m0) { 658 m0 = m->m_nextpkt; 659 m->m_nextpkt = 0; 660 if (error == 0) { 661 /* Record statistics for this interface address. */ 662 if (ia != NULL) { 663 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 664 counter_u64_add(ia->ia_ifa.ifa_obytes, 665 m->m_pkthdr.len); 666 } 667 /* 668 * Reset layer specific mbuf flags 669 * to avoid confusing upper layers. 670 */ 671 m_clrprotoflags(m); 672 673 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 674 error = (*ifp->if_output)(ifp, m, 675 (const struct sockaddr *)gw, ro); 676 } else 677 m_freem(m); 678 } 679 680 if (error == 0) 681 IPSTAT_INC(ips_fragmented); 682 683 done: 684 if (ro == &iproute) 685 RO_RTFREE(ro); 686 else if (rte == NULL) 687 /* 688 * If the caller supplied a route but somehow the reference 689 * to it has been released need to prevent the caller 690 * calling RTFREE on it again. 691 */ 692 ro->ro_rt = NULL; 693 if (have_ia_ref) 694 ifa_free(&ia->ia_ifa); 695 return (error); 696 bad: 697 m_freem(m); 698 goto done; 699 } 700 701 /* 702 * Create a chain of fragments which fit the given mtu. m_frag points to the 703 * mbuf to be fragmented; on return it points to the chain with the fragments. 704 * Return 0 if no error. If error, m_frag may contain a partially built 705 * chain of fragments that should be freed by the caller. 706 * 707 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 708 */ 709 int 710 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 711 u_long if_hwassist_flags) 712 { 713 int error = 0; 714 int hlen = ip->ip_hl << 2; 715 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 716 int off; 717 struct mbuf *m0 = *m_frag; /* the original packet */ 718 int firstlen; 719 struct mbuf **mnext; 720 int nfrags; 721 uint16_t ip_len, ip_off; 722 723 ip_len = ntohs(ip->ip_len); 724 ip_off = ntohs(ip->ip_off); 725 726 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 727 IPSTAT_INC(ips_cantfrag); 728 return EMSGSIZE; 729 } 730 731 /* 732 * Must be able to put at least 8 bytes per fragment. 733 */ 734 if (len < 8) 735 return EMSGSIZE; 736 737 /* 738 * If the interface will not calculate checksums on 739 * fragmented packets, then do it here. 740 */ 741 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 742 in_delayed_cksum(m0); 743 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 744 } 745 #ifdef SCTP 746 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 747 sctp_delayed_cksum(m0, hlen); 748 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 749 } 750 #endif 751 if (len > PAGE_SIZE) { 752 /* 753 * Fragment large datagrams such that each segment 754 * contains a multiple of PAGE_SIZE amount of data, 755 * plus headers. This enables a receiver to perform 756 * page-flipping zero-copy optimizations. 757 * 758 * XXX When does this help given that sender and receiver 759 * could have different page sizes, and also mtu could 760 * be less than the receiver's page size ? 761 */ 762 int newlen; 763 764 off = MIN(mtu, m0->m_pkthdr.len); 765 766 /* 767 * firstlen (off - hlen) must be aligned on an 768 * 8-byte boundary 769 */ 770 if (off < hlen) 771 goto smart_frag_failure; 772 off = ((off - hlen) & ~7) + hlen; 773 newlen = (~PAGE_MASK) & mtu; 774 if ((newlen + sizeof (struct ip)) > mtu) { 775 /* we failed, go back the default */ 776 smart_frag_failure: 777 newlen = len; 778 off = hlen + len; 779 } 780 len = newlen; 781 782 } else { 783 off = hlen + len; 784 } 785 786 firstlen = off - hlen; 787 mnext = &m0->m_nextpkt; /* pointer to next packet */ 788 789 /* 790 * Loop through length of segment after first fragment, 791 * make new header and copy data of each part and link onto chain. 792 * Here, m0 is the original packet, m is the fragment being created. 793 * The fragments are linked off the m_nextpkt of the original 794 * packet, which after processing serves as the first fragment. 795 */ 796 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 797 struct ip *mhip; /* ip header on the fragment */ 798 struct mbuf *m; 799 int mhlen = sizeof (struct ip); 800 801 m = m_gethdr(M_NOWAIT, MT_DATA); 802 if (m == NULL) { 803 error = ENOBUFS; 804 IPSTAT_INC(ips_odropped); 805 goto done; 806 } 807 /* 808 * Make sure the complete packet header gets copied 809 * from the originating mbuf to the newly created 810 * mbuf. This also ensures that existing firewall 811 * classification(s), VLAN tags and so on get copied 812 * to the resulting fragmented packet(s): 813 */ 814 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 815 m_free(m); 816 error = ENOBUFS; 817 IPSTAT_INC(ips_odropped); 818 goto done; 819 } 820 /* 821 * In the first mbuf, leave room for the link header, then 822 * copy the original IP header including options. The payload 823 * goes into an additional mbuf chain returned by m_copym(). 824 */ 825 m->m_data += max_linkhdr; 826 mhip = mtod(m, struct ip *); 827 *mhip = *ip; 828 if (hlen > sizeof (struct ip)) { 829 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 830 mhip->ip_v = IPVERSION; 831 mhip->ip_hl = mhlen >> 2; 832 } 833 m->m_len = mhlen; 834 /* XXX do we need to add ip_off below ? */ 835 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 836 if (off + len >= ip_len) 837 len = ip_len - off; 838 else 839 mhip->ip_off |= IP_MF; 840 mhip->ip_len = htons((u_short)(len + mhlen)); 841 m->m_next = m_copym(m0, off, len, M_NOWAIT); 842 if (m->m_next == NULL) { /* copy failed */ 843 m_free(m); 844 error = ENOBUFS; /* ??? */ 845 IPSTAT_INC(ips_odropped); 846 goto done; 847 } 848 m->m_pkthdr.len = mhlen + len; 849 #ifdef MAC 850 mac_netinet_fragment(m0, m); 851 #endif 852 mhip->ip_off = htons(mhip->ip_off); 853 mhip->ip_sum = 0; 854 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 855 mhip->ip_sum = in_cksum(m, mhlen); 856 m->m_pkthdr.csum_flags &= ~CSUM_IP; 857 } 858 *mnext = m; 859 mnext = &m->m_nextpkt; 860 } 861 IPSTAT_ADD(ips_ofragments, nfrags); 862 863 /* 864 * Update first fragment by trimming what's been copied out 865 * and updating header. 866 */ 867 m_adj(m0, hlen + firstlen - ip_len); 868 m0->m_pkthdr.len = hlen + firstlen; 869 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 870 ip->ip_off = htons(ip_off | IP_MF); 871 ip->ip_sum = 0; 872 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 873 ip->ip_sum = in_cksum(m0, hlen); 874 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 875 } 876 877 done: 878 *m_frag = m0; 879 return error; 880 } 881 882 void 883 in_delayed_cksum(struct mbuf *m) 884 { 885 struct ip *ip; 886 uint16_t csum, offset, ip_len; 887 888 ip = mtod(m, struct ip *); 889 offset = ip->ip_hl << 2 ; 890 ip_len = ntohs(ip->ip_len); 891 csum = in_cksum_skip(m, ip_len, offset); 892 if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0) 893 csum = 0xffff; 894 offset += m->m_pkthdr.csum_data; /* checksum offset */ 895 896 /* find the mbuf in the chain where the checksum starts*/ 897 while ((m != NULL) && (offset >= m->m_len)) { 898 offset -= m->m_len; 899 m = m->m_next; 900 } 901 KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain.")); 902 KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs.")); 903 *(u_short *)(m->m_data + offset) = csum; 904 } 905 906 /* 907 * IP socket option processing. 908 */ 909 int 910 ip_ctloutput(struct socket *so, struct sockopt *sopt) 911 { 912 struct inpcb *inp = sotoinpcb(so); 913 int error, optval; 914 #ifdef RSS 915 uint32_t rss_bucket; 916 int retval; 917 #endif 918 919 error = optval = 0; 920 if (sopt->sopt_level != IPPROTO_IP) { 921 error = EINVAL; 922 923 if (sopt->sopt_level == SOL_SOCKET && 924 sopt->sopt_dir == SOPT_SET) { 925 switch (sopt->sopt_name) { 926 case SO_REUSEADDR: 927 INP_WLOCK(inp); 928 if ((so->so_options & SO_REUSEADDR) != 0) 929 inp->inp_flags2 |= INP_REUSEADDR; 930 else 931 inp->inp_flags2 &= ~INP_REUSEADDR; 932 INP_WUNLOCK(inp); 933 error = 0; 934 break; 935 case SO_REUSEPORT: 936 INP_WLOCK(inp); 937 if ((so->so_options & SO_REUSEPORT) != 0) 938 inp->inp_flags2 |= INP_REUSEPORT; 939 else 940 inp->inp_flags2 &= ~INP_REUSEPORT; 941 INP_WUNLOCK(inp); 942 error = 0; 943 break; 944 case SO_SETFIB: 945 INP_WLOCK(inp); 946 inp->inp_inc.inc_fibnum = so->so_fibnum; 947 INP_WUNLOCK(inp); 948 error = 0; 949 break; 950 default: 951 break; 952 } 953 } 954 return (error); 955 } 956 957 switch (sopt->sopt_dir) { 958 case SOPT_SET: 959 switch (sopt->sopt_name) { 960 case IP_OPTIONS: 961 #ifdef notyet 962 case IP_RETOPTS: 963 #endif 964 { 965 struct mbuf *m; 966 if (sopt->sopt_valsize > MLEN) { 967 error = EMSGSIZE; 968 break; 969 } 970 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 971 if (m == NULL) { 972 error = ENOBUFS; 973 break; 974 } 975 m->m_len = sopt->sopt_valsize; 976 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 977 m->m_len); 978 if (error) { 979 m_free(m); 980 break; 981 } 982 INP_WLOCK(inp); 983 error = ip_pcbopts(inp, sopt->sopt_name, m); 984 INP_WUNLOCK(inp); 985 return (error); 986 } 987 988 case IP_BINDANY: 989 if (sopt->sopt_td != NULL) { 990 error = priv_check(sopt->sopt_td, 991 PRIV_NETINET_BINDANY); 992 if (error) 993 break; 994 } 995 /* FALLTHROUGH */ 996 case IP_BINDMULTI: 997 #ifdef RSS 998 case IP_RSS_LISTEN_BUCKET: 999 #endif 1000 case IP_TOS: 1001 case IP_TTL: 1002 case IP_MINTTL: 1003 case IP_RECVOPTS: 1004 case IP_RECVRETOPTS: 1005 case IP_RECVDSTADDR: 1006 case IP_RECVTTL: 1007 case IP_RECVIF: 1008 case IP_ONESBCAST: 1009 case IP_DONTFRAG: 1010 case IP_RECVTOS: 1011 case IP_RECVFLOWID: 1012 #ifdef RSS 1013 case IP_RECVRSSBUCKETID: 1014 #endif 1015 error = sooptcopyin(sopt, &optval, sizeof optval, 1016 sizeof optval); 1017 if (error) 1018 break; 1019 1020 switch (sopt->sopt_name) { 1021 case IP_TOS: 1022 inp->inp_ip_tos = optval; 1023 break; 1024 1025 case IP_TTL: 1026 inp->inp_ip_ttl = optval; 1027 break; 1028 1029 case IP_MINTTL: 1030 if (optval >= 0 && optval <= MAXTTL) 1031 inp->inp_ip_minttl = optval; 1032 else 1033 error = EINVAL; 1034 break; 1035 1036 #define OPTSET(bit) do { \ 1037 INP_WLOCK(inp); \ 1038 if (optval) \ 1039 inp->inp_flags |= bit; \ 1040 else \ 1041 inp->inp_flags &= ~bit; \ 1042 INP_WUNLOCK(inp); \ 1043 } while (0) 1044 1045 #define OPTSET2(bit, val) do { \ 1046 INP_WLOCK(inp); \ 1047 if (val) \ 1048 inp->inp_flags2 |= bit; \ 1049 else \ 1050 inp->inp_flags2 &= ~bit; \ 1051 INP_WUNLOCK(inp); \ 1052 } while (0) 1053 1054 case IP_RECVOPTS: 1055 OPTSET(INP_RECVOPTS); 1056 break; 1057 1058 case IP_RECVRETOPTS: 1059 OPTSET(INP_RECVRETOPTS); 1060 break; 1061 1062 case IP_RECVDSTADDR: 1063 OPTSET(INP_RECVDSTADDR); 1064 break; 1065 1066 case IP_RECVTTL: 1067 OPTSET(INP_RECVTTL); 1068 break; 1069 1070 case IP_RECVIF: 1071 OPTSET(INP_RECVIF); 1072 break; 1073 1074 case IP_ONESBCAST: 1075 OPTSET(INP_ONESBCAST); 1076 break; 1077 case IP_DONTFRAG: 1078 OPTSET(INP_DONTFRAG); 1079 break; 1080 case IP_BINDANY: 1081 OPTSET(INP_BINDANY); 1082 break; 1083 case IP_RECVTOS: 1084 OPTSET(INP_RECVTOS); 1085 break; 1086 case IP_BINDMULTI: 1087 OPTSET2(INP_BINDMULTI, optval); 1088 break; 1089 case IP_RECVFLOWID: 1090 OPTSET2(INP_RECVFLOWID, optval); 1091 break; 1092 #ifdef RSS 1093 case IP_RSS_LISTEN_BUCKET: 1094 if ((optval >= 0) && 1095 (optval < rss_getnumbuckets())) { 1096 inp->inp_rss_listen_bucket = optval; 1097 OPTSET2(INP_RSS_BUCKET_SET, 1); 1098 } else { 1099 error = EINVAL; 1100 } 1101 break; 1102 case IP_RECVRSSBUCKETID: 1103 OPTSET2(INP_RECVRSSBUCKETID, optval); 1104 break; 1105 #endif 1106 } 1107 break; 1108 #undef OPTSET 1109 #undef OPTSET2 1110 1111 /* 1112 * Multicast socket options are processed by the in_mcast 1113 * module. 1114 */ 1115 case IP_MULTICAST_IF: 1116 case IP_MULTICAST_VIF: 1117 case IP_MULTICAST_TTL: 1118 case IP_MULTICAST_LOOP: 1119 case IP_ADD_MEMBERSHIP: 1120 case IP_DROP_MEMBERSHIP: 1121 case IP_ADD_SOURCE_MEMBERSHIP: 1122 case IP_DROP_SOURCE_MEMBERSHIP: 1123 case IP_BLOCK_SOURCE: 1124 case IP_UNBLOCK_SOURCE: 1125 case IP_MSFILTER: 1126 case MCAST_JOIN_GROUP: 1127 case MCAST_LEAVE_GROUP: 1128 case MCAST_JOIN_SOURCE_GROUP: 1129 case MCAST_LEAVE_SOURCE_GROUP: 1130 case MCAST_BLOCK_SOURCE: 1131 case MCAST_UNBLOCK_SOURCE: 1132 error = inp_setmoptions(inp, sopt); 1133 break; 1134 1135 case IP_PORTRANGE: 1136 error = sooptcopyin(sopt, &optval, sizeof optval, 1137 sizeof optval); 1138 if (error) 1139 break; 1140 1141 INP_WLOCK(inp); 1142 switch (optval) { 1143 case IP_PORTRANGE_DEFAULT: 1144 inp->inp_flags &= ~(INP_LOWPORT); 1145 inp->inp_flags &= ~(INP_HIGHPORT); 1146 break; 1147 1148 case IP_PORTRANGE_HIGH: 1149 inp->inp_flags &= ~(INP_LOWPORT); 1150 inp->inp_flags |= INP_HIGHPORT; 1151 break; 1152 1153 case IP_PORTRANGE_LOW: 1154 inp->inp_flags &= ~(INP_HIGHPORT); 1155 inp->inp_flags |= INP_LOWPORT; 1156 break; 1157 1158 default: 1159 error = EINVAL; 1160 break; 1161 } 1162 INP_WUNLOCK(inp); 1163 break; 1164 1165 #ifdef IPSEC 1166 case IP_IPSEC_POLICY: 1167 { 1168 caddr_t req; 1169 struct mbuf *m; 1170 1171 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1172 break; 1173 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1174 break; 1175 req = mtod(m, caddr_t); 1176 error = ipsec_set_policy(inp, sopt->sopt_name, req, 1177 m->m_len, (sopt->sopt_td != NULL) ? 1178 sopt->sopt_td->td_ucred : NULL); 1179 m_freem(m); 1180 break; 1181 } 1182 #endif /* IPSEC */ 1183 1184 default: 1185 error = ENOPROTOOPT; 1186 break; 1187 } 1188 break; 1189 1190 case SOPT_GET: 1191 switch (sopt->sopt_name) { 1192 case IP_OPTIONS: 1193 case IP_RETOPTS: 1194 if (inp->inp_options) 1195 error = sooptcopyout(sopt, 1196 mtod(inp->inp_options, 1197 char *), 1198 inp->inp_options->m_len); 1199 else 1200 sopt->sopt_valsize = 0; 1201 break; 1202 1203 case IP_TOS: 1204 case IP_TTL: 1205 case IP_MINTTL: 1206 case IP_RECVOPTS: 1207 case IP_RECVRETOPTS: 1208 case IP_RECVDSTADDR: 1209 case IP_RECVTTL: 1210 case IP_RECVIF: 1211 case IP_PORTRANGE: 1212 case IP_ONESBCAST: 1213 case IP_DONTFRAG: 1214 case IP_BINDANY: 1215 case IP_RECVTOS: 1216 case IP_BINDMULTI: 1217 case IP_FLOWID: 1218 case IP_FLOWTYPE: 1219 case IP_RECVFLOWID: 1220 #ifdef RSS 1221 case IP_RSSBUCKETID: 1222 case IP_RECVRSSBUCKETID: 1223 #endif 1224 switch (sopt->sopt_name) { 1225 1226 case IP_TOS: 1227 optval = inp->inp_ip_tos; 1228 break; 1229 1230 case IP_TTL: 1231 optval = inp->inp_ip_ttl; 1232 break; 1233 1234 case IP_MINTTL: 1235 optval = inp->inp_ip_minttl; 1236 break; 1237 1238 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1239 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1240 1241 case IP_RECVOPTS: 1242 optval = OPTBIT(INP_RECVOPTS); 1243 break; 1244 1245 case IP_RECVRETOPTS: 1246 optval = OPTBIT(INP_RECVRETOPTS); 1247 break; 1248 1249 case IP_RECVDSTADDR: 1250 optval = OPTBIT(INP_RECVDSTADDR); 1251 break; 1252 1253 case IP_RECVTTL: 1254 optval = OPTBIT(INP_RECVTTL); 1255 break; 1256 1257 case IP_RECVIF: 1258 optval = OPTBIT(INP_RECVIF); 1259 break; 1260 1261 case IP_PORTRANGE: 1262 if (inp->inp_flags & INP_HIGHPORT) 1263 optval = IP_PORTRANGE_HIGH; 1264 else if (inp->inp_flags & INP_LOWPORT) 1265 optval = IP_PORTRANGE_LOW; 1266 else 1267 optval = 0; 1268 break; 1269 1270 case IP_ONESBCAST: 1271 optval = OPTBIT(INP_ONESBCAST); 1272 break; 1273 case IP_DONTFRAG: 1274 optval = OPTBIT(INP_DONTFRAG); 1275 break; 1276 case IP_BINDANY: 1277 optval = OPTBIT(INP_BINDANY); 1278 break; 1279 case IP_RECVTOS: 1280 optval = OPTBIT(INP_RECVTOS); 1281 break; 1282 case IP_FLOWID: 1283 optval = inp->inp_flowid; 1284 break; 1285 case IP_FLOWTYPE: 1286 optval = inp->inp_flowtype; 1287 break; 1288 case IP_RECVFLOWID: 1289 optval = OPTBIT2(INP_RECVFLOWID); 1290 break; 1291 #ifdef RSS 1292 case IP_RSSBUCKETID: 1293 retval = rss_hash2bucket(inp->inp_flowid, 1294 inp->inp_flowtype, 1295 &rss_bucket); 1296 if (retval == 0) 1297 optval = rss_bucket; 1298 else 1299 error = EINVAL; 1300 break; 1301 case IP_RECVRSSBUCKETID: 1302 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1303 break; 1304 #endif 1305 case IP_BINDMULTI: 1306 optval = OPTBIT2(INP_BINDMULTI); 1307 break; 1308 } 1309 error = sooptcopyout(sopt, &optval, sizeof optval); 1310 break; 1311 1312 /* 1313 * Multicast socket options are processed by the in_mcast 1314 * module. 1315 */ 1316 case IP_MULTICAST_IF: 1317 case IP_MULTICAST_VIF: 1318 case IP_MULTICAST_TTL: 1319 case IP_MULTICAST_LOOP: 1320 case IP_MSFILTER: 1321 error = inp_getmoptions(inp, sopt); 1322 break; 1323 1324 #ifdef IPSEC 1325 case IP_IPSEC_POLICY: 1326 { 1327 struct mbuf *m = NULL; 1328 caddr_t req = NULL; 1329 size_t len = 0; 1330 1331 if (m != 0) { 1332 req = mtod(m, caddr_t); 1333 len = m->m_len; 1334 } 1335 error = ipsec_get_policy(sotoinpcb(so), req, len, &m); 1336 if (error == 0) 1337 error = soopt_mcopyout(sopt, m); /* XXX */ 1338 if (error == 0) 1339 m_freem(m); 1340 break; 1341 } 1342 #endif /* IPSEC */ 1343 1344 default: 1345 error = ENOPROTOOPT; 1346 break; 1347 } 1348 break; 1349 } 1350 return (error); 1351 } 1352 1353 /* 1354 * Routine called from ip_output() to loop back a copy of an IP multicast 1355 * packet to the input queue of a specified interface. Note that this 1356 * calls the output routine of the loopback "driver", but with an interface 1357 * pointer that might NOT be a loopback interface -- evil, but easier than 1358 * replicating that code here. 1359 */ 1360 static void 1361 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1362 { 1363 struct ip *ip; 1364 struct mbuf *copym; 1365 1366 /* 1367 * Make a deep copy of the packet because we're going to 1368 * modify the pack in order to generate checksums. 1369 */ 1370 copym = m_dup(m, M_NOWAIT); 1371 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1372 copym = m_pullup(copym, hlen); 1373 if (copym != NULL) { 1374 /* If needed, compute the checksum and mark it as valid. */ 1375 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1376 in_delayed_cksum(copym); 1377 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1378 copym->m_pkthdr.csum_flags |= 1379 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1380 copym->m_pkthdr.csum_data = 0xffff; 1381 } 1382 /* 1383 * We don't bother to fragment if the IP length is greater 1384 * than the interface's MTU. Can this possibly matter? 1385 */ 1386 ip = mtod(copym, struct ip *); 1387 ip->ip_sum = 0; 1388 ip->ip_sum = in_cksum(copym, hlen); 1389 if_simloop(ifp, copym, AF_INET, 0); 1390 } 1391 } 1392