1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_kern_tls.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_mpath.h" 42 #include "opt_ratelimit.h" 43 #include "opt_route.h" 44 #include "opt_rss.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/kernel.h> 50 #include <sys/ktls.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mbuf.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/protosw.h> 57 #include <sys/rmlock.h> 58 #include <sys/sdt.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sysctl.h> 62 #include <sys/ucred.h> 63 64 #include <net/if.h> 65 #include <net/if_var.h> 66 #include <net/if_llatbl.h> 67 #include <net/netisr.h> 68 #include <net/pfil.h> 69 #include <net/route.h> 70 #include <net/route/nhop.h> 71 #include <net/rss_config.h> 72 #include <net/vnet.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_fib.h> 76 #include <netinet/in_kdtrace.h> 77 #include <netinet/in_systm.h> 78 #include <netinet/ip.h> 79 #include <netinet/in_fib.h> 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_rss.h> 82 #include <netinet/in_var.h> 83 #include <netinet/ip_var.h> 84 #include <netinet/ip_options.h> 85 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #if defined(SCTP) || defined(SCTP_SUPPORT) 90 #include <netinet/sctp.h> 91 #include <netinet/sctp_crc32.h> 92 #endif 93 94 #include <netipsec/ipsec_support.h> 95 96 #include <machine/in_cksum.h> 97 98 #include <security/mac/mac_framework.h> 99 100 #ifdef MBUF_STRESS_TEST 101 static int mbuf_frag_size = 0; 102 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 103 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 104 #endif 105 106 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 107 108 extern int in_mcast_loop; 109 extern struct protosw inetsw[]; 110 111 static inline int 112 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 113 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 114 { 115 struct m_tag *fwd_tag = NULL; 116 struct mbuf *m; 117 struct in_addr odst; 118 struct ip *ip; 119 int pflags = PFIL_OUT; 120 121 if (flags & IP_FORWARDING) 122 pflags |= PFIL_FWD; 123 124 m = *mp; 125 ip = mtod(m, struct ip *); 126 127 /* Run through list of hooks for output packets. */ 128 odst.s_addr = ip->ip_dst.s_addr; 129 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { 130 case PFIL_DROPPED: 131 *error = EACCES; 132 /* FALLTHROUGH */ 133 case PFIL_CONSUMED: 134 return 1; /* Finished */ 135 case PFIL_PASS: 136 *error = 0; 137 } 138 m = *mp; 139 ip = mtod(m, struct ip *); 140 141 /* See if destination IP address was changed by packet filter. */ 142 if (odst.s_addr != ip->ip_dst.s_addr) { 143 m->m_flags |= M_SKIP_FIREWALL; 144 /* If destination is now ourself drop to ip_input(). */ 145 if (in_localip(ip->ip_dst)) { 146 m->m_flags |= M_FASTFWD_OURS; 147 if (m->m_pkthdr.rcvif == NULL) 148 m->m_pkthdr.rcvif = V_loif; 149 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 150 m->m_pkthdr.csum_flags |= 151 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 152 m->m_pkthdr.csum_data = 0xffff; 153 } 154 m->m_pkthdr.csum_flags |= 155 CSUM_IP_CHECKED | CSUM_IP_VALID; 156 #if defined(SCTP) || defined(SCTP_SUPPORT) 157 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 158 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 159 #endif 160 *error = netisr_queue(NETISR_IP, m); 161 return 1; /* Finished */ 162 } 163 164 bzero(dst, sizeof(*dst)); 165 dst->sin_family = AF_INET; 166 dst->sin_len = sizeof(*dst); 167 dst->sin_addr = ip->ip_dst; 168 169 return -1; /* Reloop */ 170 } 171 /* See if fib was changed by packet filter. */ 172 if ((*fibnum) != M_GETFIB(m)) { 173 m->m_flags |= M_SKIP_FIREWALL; 174 *fibnum = M_GETFIB(m); 175 return -1; /* Reloop for FIB change */ 176 } 177 178 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 179 if (m->m_flags & M_FASTFWD_OURS) { 180 if (m->m_pkthdr.rcvif == NULL) 181 m->m_pkthdr.rcvif = V_loif; 182 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 183 m->m_pkthdr.csum_flags |= 184 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 185 m->m_pkthdr.csum_data = 0xffff; 186 } 187 #if defined(SCTP) || defined(SCTP_SUPPORT) 188 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 189 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 190 #endif 191 m->m_pkthdr.csum_flags |= 192 CSUM_IP_CHECKED | CSUM_IP_VALID; 193 194 *error = netisr_queue(NETISR_IP, m); 195 return 1; /* Finished */ 196 } 197 /* Or forward to some other address? */ 198 if ((m->m_flags & M_IP_NEXTHOP) && 199 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 200 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 201 m->m_flags |= M_SKIP_FIREWALL; 202 m->m_flags &= ~M_IP_NEXTHOP; 203 m_tag_delete(m, fwd_tag); 204 205 return -1; /* Reloop for CHANGE of dst */ 206 } 207 208 return 0; 209 } 210 211 static int 212 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 213 const struct sockaddr_in *gw, struct route *ro, bool stamp_tag) 214 { 215 #ifdef KERN_TLS 216 struct ktls_session *tls = NULL; 217 #endif 218 struct m_snd_tag *mst; 219 int error; 220 221 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 222 mst = NULL; 223 224 #ifdef KERN_TLS 225 /* 226 * If this is an unencrypted TLS record, save a reference to 227 * the record. This local reference is used to call 228 * ktls_output_eagain after the mbuf has been freed (thus 229 * dropping the mbuf's reference) in if_output. 230 */ 231 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 232 tls = ktls_hold(m->m_next->m_epg_tls); 233 mst = tls->snd_tag; 234 235 /* 236 * If a TLS session doesn't have a valid tag, it must 237 * have had an earlier ifp mismatch, so drop this 238 * packet. 239 */ 240 if (mst == NULL) { 241 error = EAGAIN; 242 goto done; 243 } 244 /* 245 * Always stamp tags that include NIC ktls. 246 */ 247 stamp_tag = true; 248 } 249 #endif 250 #ifdef RATELIMIT 251 if (inp != NULL && mst == NULL) { 252 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 253 (inp->inp_snd_tag != NULL && 254 inp->inp_snd_tag->ifp != ifp)) 255 in_pcboutput_txrtlmt(inp, ifp, m); 256 257 if (inp->inp_snd_tag != NULL) 258 mst = inp->inp_snd_tag; 259 } 260 #endif 261 if (stamp_tag && mst != NULL) { 262 KASSERT(m->m_pkthdr.rcvif == NULL, 263 ("trying to add a send tag to a forwarded packet")); 264 if (mst->ifp != ifp) { 265 error = EAGAIN; 266 goto done; 267 } 268 269 /* stamp send tag on mbuf */ 270 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 271 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 272 } 273 274 error = (*ifp->if_output)(ifp, m, (const struct sockaddr *)gw, ro); 275 276 done: 277 /* Check for route change invalidating send tags. */ 278 #ifdef KERN_TLS 279 if (tls != NULL) { 280 if (error == EAGAIN) 281 error = ktls_output_eagain(inp, tls); 282 ktls_free(tls); 283 } 284 #endif 285 #ifdef RATELIMIT 286 if (error == EAGAIN) 287 in_pcboutput_eagain(inp); 288 #endif 289 return (error); 290 } 291 292 /* rte<>ro_flags translation */ 293 static inline void 294 rt_update_ro_flags(struct route *ro) 295 { 296 int nh_flags = ro->ro_nh->nh_flags; 297 298 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 299 300 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 301 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 302 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 303 } 304 305 /* 306 * IP output. The packet in mbuf chain m contains a skeletal IP 307 * header (with len, off, ttl, proto, tos, src, dst). 308 * The mbuf chain containing the packet will be freed. 309 * The mbuf opt, if present, will not be freed. 310 * If route ro is present and has ro_rt initialized, route lookup would be 311 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 312 * then result of route lookup is stored in ro->ro_rt. 313 * 314 * In the IP forwarding case, the packet will arrive with options already 315 * inserted, so must have a NULL opt pointer. 316 */ 317 int 318 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 319 struct ip_moptions *imo, struct inpcb *inp) 320 { 321 struct rm_priotracker in_ifa_tracker; 322 struct ip *ip; 323 struct ifnet *ifp = NULL; /* keep compiler happy */ 324 struct mbuf *m0; 325 int hlen = sizeof (struct ip); 326 int mtu = 0; 327 int error = 0; 328 struct sockaddr_in *dst, sin; 329 const struct sockaddr_in *gw; 330 struct in_ifaddr *ia = NULL; 331 struct in_addr src; 332 int isbroadcast; 333 uint16_t ip_len, ip_off; 334 uint32_t fibnum; 335 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 336 int no_route_but_check_spd = 0; 337 #endif 338 339 M_ASSERTPKTHDR(m); 340 NET_EPOCH_ASSERT(); 341 342 if (inp != NULL) { 343 INP_LOCK_ASSERT(inp); 344 M_SETFIB(m, inp->inp_inc.inc_fibnum); 345 if ((flags & IP_NODEFAULTFLOWID) == 0) { 346 m->m_pkthdr.flowid = inp->inp_flowid; 347 M_HASHTYPE_SET(m, inp->inp_flowtype); 348 } 349 #ifdef NUMA 350 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 351 #endif 352 } 353 354 if (opt) { 355 int len = 0; 356 m = ip_insertoptions(m, opt, &len); 357 if (len != 0) 358 hlen = len; /* ip->ip_hl is updated above */ 359 } 360 ip = mtod(m, struct ip *); 361 ip_len = ntohs(ip->ip_len); 362 ip_off = ntohs(ip->ip_off); 363 364 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 365 ip->ip_v = IPVERSION; 366 ip->ip_hl = hlen >> 2; 367 ip_fillid(ip); 368 } else { 369 /* Header already set, fetch hlen from there */ 370 hlen = ip->ip_hl << 2; 371 } 372 if ((flags & IP_FORWARDING) == 0) 373 IPSTAT_INC(ips_localout); 374 375 /* 376 * dst/gw handling: 377 * 378 * gw is readonly but can point either to dst OR rt_gateway, 379 * therefore we need restore gw if we're redoing lookup. 380 */ 381 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 382 if (ro != NULL) 383 dst = (struct sockaddr_in *)&ro->ro_dst; 384 else 385 dst = &sin; 386 if (ro == NULL || ro->ro_nh == NULL) { 387 bzero(dst, sizeof(*dst)); 388 dst->sin_family = AF_INET; 389 dst->sin_len = sizeof(*dst); 390 dst->sin_addr = ip->ip_dst; 391 } 392 gw = dst; 393 again: 394 /* 395 * Validate route against routing table additions; 396 * a better/more specific route might have been added. 397 */ 398 if (inp != NULL && ro != NULL && ro->ro_nh != NULL) 399 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 400 /* 401 * If there is a cached route, 402 * check that it is to the same destination 403 * and is still up. If not, free it and try again. 404 * The address family should also be checked in case of sharing the 405 * cache with IPv6. 406 * Also check whether routing cache needs invalidation. 407 */ 408 if (ro != NULL && ro->ro_nh != NULL && 409 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 410 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 411 RO_INVALIDATE_CACHE(ro); 412 ia = NULL; 413 /* 414 * If routing to interface only, short circuit routing lookup. 415 * The use of an all-ones broadcast address implies this; an 416 * interface is specified by the broadcast address of an interface, 417 * or the destination address of a ptp interface. 418 */ 419 if (flags & IP_SENDONES) { 420 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 421 M_GETFIB(m)))) == NULL && 422 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 423 M_GETFIB(m)))) == NULL) { 424 IPSTAT_INC(ips_noroute); 425 error = ENETUNREACH; 426 goto bad; 427 } 428 ip->ip_dst.s_addr = INADDR_BROADCAST; 429 dst->sin_addr = ip->ip_dst; 430 ifp = ia->ia_ifp; 431 mtu = ifp->if_mtu; 432 ip->ip_ttl = 1; 433 isbroadcast = 1; 434 src = IA_SIN(ia)->sin_addr; 435 } else if (flags & IP_ROUTETOIF) { 436 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 437 M_GETFIB(m)))) == NULL && 438 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 439 M_GETFIB(m)))) == NULL) { 440 IPSTAT_INC(ips_noroute); 441 error = ENETUNREACH; 442 goto bad; 443 } 444 ifp = ia->ia_ifp; 445 mtu = ifp->if_mtu; 446 ip->ip_ttl = 1; 447 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 448 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 449 src = IA_SIN(ia)->sin_addr; 450 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 451 imo != NULL && imo->imo_multicast_ifp != NULL) { 452 /* 453 * Bypass the normal routing lookup for multicast 454 * packets if the interface is specified. 455 */ 456 ifp = imo->imo_multicast_ifp; 457 mtu = ifp->if_mtu; 458 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 459 isbroadcast = 0; /* fool gcc */ 460 /* Interface may have no addresses. */ 461 if (ia != NULL) 462 src = IA_SIN(ia)->sin_addr; 463 else 464 src.s_addr = INADDR_ANY; 465 } else if (ro != NULL) { 466 if (ro->ro_nh == NULL) { 467 /* 468 * We want to do any cloning requested by the link 469 * layer, as this is probably required in all cases 470 * for correct operation (as it is for ARP). 471 */ 472 uint32_t flowid; 473 #ifdef RADIX_MPATH 474 flowid = ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr); 475 #else 476 flowid = m->m_pkthdr.flowid; 477 #endif 478 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 479 NHR_REF, flowid); 480 481 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 482 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 483 /* 484 * There is no route for this packet, but it is 485 * possible that a matching SPD entry exists. 486 */ 487 no_route_but_check_spd = 1; 488 goto sendit; 489 #endif 490 IPSTAT_INC(ips_noroute); 491 error = EHOSTUNREACH; 492 goto bad; 493 } 494 } 495 ia = ifatoia(ro->ro_nh->nh_ifa); 496 ifp = ro->ro_nh->nh_ifp; 497 counter_u64_add(ro->ro_nh->nh_pksent, 1); 498 rt_update_ro_flags(ro); 499 if (ro->ro_nh->nh_flags & NHF_GATEWAY) 500 gw = &ro->ro_nh->gw4_sa; 501 if (ro->ro_nh->nh_flags & NHF_HOST) 502 isbroadcast = (ro->ro_nh->nh_flags & NHF_BROADCAST); 503 else if (ifp->if_flags & IFF_BROADCAST) 504 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 505 else 506 isbroadcast = 0; 507 if (ro->ro_nh->nh_flags & NHF_HOST) 508 mtu = ro->ro_nh->nh_mtu; 509 else 510 mtu = ifp->if_mtu; 511 src = IA_SIN(ia)->sin_addr; 512 } else { 513 struct nhop_object *nh; 514 515 nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_NONE, 516 m->m_pkthdr.flowid); 517 if (nh == NULL) { 518 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 519 /* 520 * There is no route for this packet, but it is 521 * possible that a matching SPD entry exists. 522 */ 523 no_route_but_check_spd = 1; 524 goto sendit; 525 #endif 526 IPSTAT_INC(ips_noroute); 527 error = EHOSTUNREACH; 528 goto bad; 529 } 530 ifp = nh->nh_ifp; 531 mtu = nh->nh_mtu; 532 /* 533 * We are rewriting here dst to be gw actually, contradicting 534 * comment at the beginning of the function. However, in this 535 * case we are always dealing with on stack dst. 536 * In case if pfil(9) sends us back to beginning of the 537 * function, the dst would be rewritten by ip_output_pfil(). 538 */ 539 MPASS(dst == &sin); 540 if (nh->nh_flags & NHF_GATEWAY) 541 dst->sin_addr = nh->gw4_sa.sin_addr; 542 ia = ifatoia(nh->nh_ifa); 543 src = IA_SIN(ia)->sin_addr; 544 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 545 (NHF_HOST | NHF_BROADCAST)) || 546 ((ifp->if_flags & IFF_BROADCAST) && 547 in_ifaddr_broadcast(dst->sin_addr, ia))); 548 } 549 550 /* Catch a possible divide by zero later. */ 551 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 552 __func__, mtu, ro, 553 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 554 555 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 556 m->m_flags |= M_MCAST; 557 /* 558 * IP destination address is multicast. Make sure "gw" 559 * still points to the address in "ro". (It may have been 560 * changed to point to a gateway address, above.) 561 */ 562 gw = dst; 563 /* 564 * See if the caller provided any multicast options 565 */ 566 if (imo != NULL) { 567 ip->ip_ttl = imo->imo_multicast_ttl; 568 if (imo->imo_multicast_vif != -1) 569 ip->ip_src.s_addr = 570 ip_mcast_src ? 571 ip_mcast_src(imo->imo_multicast_vif) : 572 INADDR_ANY; 573 } else 574 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 575 /* 576 * Confirm that the outgoing interface supports multicast. 577 */ 578 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 579 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 580 IPSTAT_INC(ips_noroute); 581 error = ENETUNREACH; 582 goto bad; 583 } 584 } 585 /* 586 * If source address not specified yet, use address 587 * of outgoing interface. 588 */ 589 if (ip->ip_src.s_addr == INADDR_ANY) 590 ip->ip_src = src; 591 592 if ((imo == NULL && in_mcast_loop) || 593 (imo && imo->imo_multicast_loop)) { 594 /* 595 * Loop back multicast datagram if not expressly 596 * forbidden to do so, even if we are not a member 597 * of the group; ip_input() will filter it later, 598 * thus deferring a hash lookup and mutex acquisition 599 * at the expense of a cheap copy using m_copym(). 600 */ 601 ip_mloopback(ifp, m, hlen); 602 } else { 603 /* 604 * If we are acting as a multicast router, perform 605 * multicast forwarding as if the packet had just 606 * arrived on the interface to which we are about 607 * to send. The multicast forwarding function 608 * recursively calls this function, using the 609 * IP_FORWARDING flag to prevent infinite recursion. 610 * 611 * Multicasts that are looped back by ip_mloopback(), 612 * above, will be forwarded by the ip_input() routine, 613 * if necessary. 614 */ 615 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 616 /* 617 * If rsvp daemon is not running, do not 618 * set ip_moptions. This ensures that the packet 619 * is multicast and not just sent down one link 620 * as prescribed by rsvpd. 621 */ 622 if (!V_rsvp_on) 623 imo = NULL; 624 if (ip_mforward && 625 ip_mforward(ip, ifp, m, imo) != 0) { 626 m_freem(m); 627 goto done; 628 } 629 } 630 } 631 632 /* 633 * Multicasts with a time-to-live of zero may be looped- 634 * back, above, but must not be transmitted on a network. 635 * Also, multicasts addressed to the loopback interface 636 * are not sent -- the above call to ip_mloopback() will 637 * loop back a copy. ip_input() will drop the copy if 638 * this host does not belong to the destination group on 639 * the loopback interface. 640 */ 641 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 642 m_freem(m); 643 goto done; 644 } 645 646 goto sendit; 647 } 648 649 /* 650 * If the source address is not specified yet, use the address 651 * of the outoing interface. 652 */ 653 if (ip->ip_src.s_addr == INADDR_ANY) 654 ip->ip_src = src; 655 656 /* 657 * Look for broadcast address and 658 * verify user is allowed to send 659 * such a packet. 660 */ 661 if (isbroadcast) { 662 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 663 error = EADDRNOTAVAIL; 664 goto bad; 665 } 666 if ((flags & IP_ALLOWBROADCAST) == 0) { 667 error = EACCES; 668 goto bad; 669 } 670 /* don't allow broadcast messages to be fragmented */ 671 if (ip_len > mtu) { 672 error = EMSGSIZE; 673 goto bad; 674 } 675 m->m_flags |= M_BCAST; 676 } else { 677 m->m_flags &= ~M_BCAST; 678 } 679 680 sendit: 681 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 682 if (IPSEC_ENABLED(ipv4)) { 683 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 684 if (error == EINPROGRESS) 685 error = 0; 686 goto done; 687 } 688 } 689 /* 690 * Check if there was a route for this packet; return error if not. 691 */ 692 if (no_route_but_check_spd) { 693 IPSTAT_INC(ips_noroute); 694 error = EHOSTUNREACH; 695 goto bad; 696 } 697 /* Update variables that are affected by ipsec4_output(). */ 698 ip = mtod(m, struct ip *); 699 hlen = ip->ip_hl << 2; 700 #endif /* IPSEC */ 701 702 /* Jump over all PFIL processing if hooks are not active. */ 703 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 704 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 705 &error)) { 706 case 1: /* Finished */ 707 goto done; 708 709 case 0: /* Continue normally */ 710 ip = mtod(m, struct ip *); 711 break; 712 713 case -1: /* Need to try again */ 714 /* Reset everything for a new round */ 715 if (ro != NULL) { 716 RO_NHFREE(ro); 717 ro->ro_prepend = NULL; 718 } 719 gw = dst; 720 ip = mtod(m, struct ip *); 721 goto again; 722 } 723 } 724 725 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 726 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 727 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 728 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 729 IPSTAT_INC(ips_badaddr); 730 error = EADDRNOTAVAIL; 731 goto bad; 732 } 733 } 734 735 m->m_pkthdr.csum_flags |= CSUM_IP; 736 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 737 m = mb_unmapped_to_ext(m); 738 if (m == NULL) { 739 IPSTAT_INC(ips_odropped); 740 error = ENOBUFS; 741 goto bad; 742 } 743 in_delayed_cksum(m); 744 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 745 } else if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 746 m = mb_unmapped_to_ext(m); 747 if (m == NULL) { 748 IPSTAT_INC(ips_odropped); 749 error = ENOBUFS; 750 goto bad; 751 } 752 } 753 #if defined(SCTP) || defined(SCTP_SUPPORT) 754 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 755 m = mb_unmapped_to_ext(m); 756 if (m == NULL) { 757 IPSTAT_INC(ips_odropped); 758 error = ENOBUFS; 759 goto bad; 760 } 761 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 762 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 763 } 764 #endif 765 766 /* 767 * If small enough for interface, or the interface will take 768 * care of the fragmentation for us, we can just send directly. 769 * Note that if_vxlan could have requested TSO even though the outer 770 * frame is UDP. It is correct to not fragment such datagrams and 771 * instead just pass them on to the driver. 772 */ 773 if (ip_len <= mtu || 774 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 775 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 776 ip->ip_sum = 0; 777 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 778 ip->ip_sum = in_cksum(m, hlen); 779 m->m_pkthdr.csum_flags &= ~CSUM_IP; 780 } 781 782 /* 783 * Record statistics for this interface address. 784 * With CSUM_TSO the byte/packet count will be slightly 785 * incorrect because we count the IP+TCP headers only 786 * once instead of for every generated packet. 787 */ 788 if (!(flags & IP_FORWARDING) && ia) { 789 if (m->m_pkthdr.csum_flags & 790 (CSUM_TSO | CSUM_INNER_TSO)) 791 counter_u64_add(ia->ia_ifa.ifa_opackets, 792 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 793 else 794 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 795 796 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 797 } 798 #ifdef MBUF_STRESS_TEST 799 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 800 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 801 #endif 802 /* 803 * Reset layer specific mbuf flags 804 * to avoid confusing lower layers. 805 */ 806 m_clrprotoflags(m); 807 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 808 error = ip_output_send(inp, ifp, m, gw, ro, 809 (flags & IP_NO_SND_TAG_RL) ? false : true); 810 goto done; 811 } 812 813 /* Balk when DF bit is set or the interface didn't support TSO. */ 814 if ((ip_off & IP_DF) || 815 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 816 error = EMSGSIZE; 817 IPSTAT_INC(ips_cantfrag); 818 goto bad; 819 } 820 821 /* 822 * Too large for interface; fragment if possible. If successful, 823 * on return, m will point to a list of packets to be sent. 824 */ 825 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 826 if (error) 827 goto bad; 828 for (; m; m = m0) { 829 m0 = m->m_nextpkt; 830 m->m_nextpkt = 0; 831 if (error == 0) { 832 /* Record statistics for this interface address. */ 833 if (ia != NULL) { 834 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 835 counter_u64_add(ia->ia_ifa.ifa_obytes, 836 m->m_pkthdr.len); 837 } 838 /* 839 * Reset layer specific mbuf flags 840 * to avoid confusing upper layers. 841 */ 842 m_clrprotoflags(m); 843 844 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 845 mtod(m, struct ip *), NULL); 846 error = ip_output_send(inp, ifp, m, gw, ro, true); 847 } else 848 m_freem(m); 849 } 850 851 if (error == 0) 852 IPSTAT_INC(ips_fragmented); 853 854 done: 855 return (error); 856 bad: 857 m_freem(m); 858 goto done; 859 } 860 861 /* 862 * Create a chain of fragments which fit the given mtu. m_frag points to the 863 * mbuf to be fragmented; on return it points to the chain with the fragments. 864 * Return 0 if no error. If error, m_frag may contain a partially built 865 * chain of fragments that should be freed by the caller. 866 * 867 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 868 */ 869 int 870 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 871 u_long if_hwassist_flags) 872 { 873 int error = 0; 874 int hlen = ip->ip_hl << 2; 875 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 876 int off; 877 struct mbuf *m0 = *m_frag; /* the original packet */ 878 int firstlen; 879 struct mbuf **mnext; 880 int nfrags; 881 uint16_t ip_len, ip_off; 882 883 ip_len = ntohs(ip->ip_len); 884 ip_off = ntohs(ip->ip_off); 885 886 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 887 IPSTAT_INC(ips_cantfrag); 888 return EMSGSIZE; 889 } 890 891 /* 892 * Must be able to put at least 8 bytes per fragment. 893 */ 894 if (len < 8) 895 return EMSGSIZE; 896 897 /* 898 * If the interface will not calculate checksums on 899 * fragmented packets, then do it here. 900 */ 901 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 902 m0 = mb_unmapped_to_ext(m0); 903 if (m0 == NULL) { 904 error = ENOBUFS; 905 IPSTAT_INC(ips_odropped); 906 goto done; 907 } 908 in_delayed_cksum(m0); 909 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 910 } 911 #if defined(SCTP) || defined(SCTP_SUPPORT) 912 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 913 m0 = mb_unmapped_to_ext(m0); 914 if (m0 == NULL) { 915 error = ENOBUFS; 916 IPSTAT_INC(ips_odropped); 917 goto done; 918 } 919 sctp_delayed_cksum(m0, hlen); 920 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 921 } 922 #endif 923 if (len > PAGE_SIZE) { 924 /* 925 * Fragment large datagrams such that each segment 926 * contains a multiple of PAGE_SIZE amount of data, 927 * plus headers. This enables a receiver to perform 928 * page-flipping zero-copy optimizations. 929 * 930 * XXX When does this help given that sender and receiver 931 * could have different page sizes, and also mtu could 932 * be less than the receiver's page size ? 933 */ 934 int newlen; 935 936 off = MIN(mtu, m0->m_pkthdr.len); 937 938 /* 939 * firstlen (off - hlen) must be aligned on an 940 * 8-byte boundary 941 */ 942 if (off < hlen) 943 goto smart_frag_failure; 944 off = ((off - hlen) & ~7) + hlen; 945 newlen = (~PAGE_MASK) & mtu; 946 if ((newlen + sizeof (struct ip)) > mtu) { 947 /* we failed, go back the default */ 948 smart_frag_failure: 949 newlen = len; 950 off = hlen + len; 951 } 952 len = newlen; 953 954 } else { 955 off = hlen + len; 956 } 957 958 firstlen = off - hlen; 959 mnext = &m0->m_nextpkt; /* pointer to next packet */ 960 961 /* 962 * Loop through length of segment after first fragment, 963 * make new header and copy data of each part and link onto chain. 964 * Here, m0 is the original packet, m is the fragment being created. 965 * The fragments are linked off the m_nextpkt of the original 966 * packet, which after processing serves as the first fragment. 967 */ 968 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 969 struct ip *mhip; /* ip header on the fragment */ 970 struct mbuf *m; 971 int mhlen = sizeof (struct ip); 972 973 m = m_gethdr(M_NOWAIT, MT_DATA); 974 if (m == NULL) { 975 error = ENOBUFS; 976 IPSTAT_INC(ips_odropped); 977 goto done; 978 } 979 /* 980 * Make sure the complete packet header gets copied 981 * from the originating mbuf to the newly created 982 * mbuf. This also ensures that existing firewall 983 * classification(s), VLAN tags and so on get copied 984 * to the resulting fragmented packet(s): 985 */ 986 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 987 m_free(m); 988 error = ENOBUFS; 989 IPSTAT_INC(ips_odropped); 990 goto done; 991 } 992 /* 993 * In the first mbuf, leave room for the link header, then 994 * copy the original IP header including options. The payload 995 * goes into an additional mbuf chain returned by m_copym(). 996 */ 997 m->m_data += max_linkhdr; 998 mhip = mtod(m, struct ip *); 999 *mhip = *ip; 1000 if (hlen > sizeof (struct ip)) { 1001 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 1002 mhip->ip_v = IPVERSION; 1003 mhip->ip_hl = mhlen >> 2; 1004 } 1005 m->m_len = mhlen; 1006 /* XXX do we need to add ip_off below ? */ 1007 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 1008 if (off + len >= ip_len) 1009 len = ip_len - off; 1010 else 1011 mhip->ip_off |= IP_MF; 1012 mhip->ip_len = htons((u_short)(len + mhlen)); 1013 m->m_next = m_copym(m0, off, len, M_NOWAIT); 1014 if (m->m_next == NULL) { /* copy failed */ 1015 m_free(m); 1016 error = ENOBUFS; /* ??? */ 1017 IPSTAT_INC(ips_odropped); 1018 goto done; 1019 } 1020 m->m_pkthdr.len = mhlen + len; 1021 #ifdef MAC 1022 mac_netinet_fragment(m0, m); 1023 #endif 1024 mhip->ip_off = htons(mhip->ip_off); 1025 mhip->ip_sum = 0; 1026 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1027 mhip->ip_sum = in_cksum(m, mhlen); 1028 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1029 } 1030 *mnext = m; 1031 mnext = &m->m_nextpkt; 1032 } 1033 IPSTAT_ADD(ips_ofragments, nfrags); 1034 1035 /* 1036 * Update first fragment by trimming what's been copied out 1037 * and updating header. 1038 */ 1039 m_adj(m0, hlen + firstlen - ip_len); 1040 m0->m_pkthdr.len = hlen + firstlen; 1041 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1042 ip->ip_off = htons(ip_off | IP_MF); 1043 ip->ip_sum = 0; 1044 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1045 ip->ip_sum = in_cksum(m0, hlen); 1046 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1047 } 1048 1049 done: 1050 *m_frag = m0; 1051 return error; 1052 } 1053 1054 void 1055 in_delayed_cksum(struct mbuf *m) 1056 { 1057 struct ip *ip; 1058 struct udphdr *uh; 1059 uint16_t cklen, csum, offset; 1060 1061 ip = mtod(m, struct ip *); 1062 offset = ip->ip_hl << 2 ; 1063 1064 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1065 /* if udp header is not in the first mbuf copy udplen */ 1066 if (offset + sizeof(struct udphdr) > m->m_len) { 1067 m_copydata(m, offset + offsetof(struct udphdr, 1068 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1069 cklen = ntohs(cklen); 1070 } else { 1071 uh = (struct udphdr *)mtodo(m, offset); 1072 cklen = ntohs(uh->uh_ulen); 1073 } 1074 csum = in_cksum_skip(m, cklen + offset, offset); 1075 if (csum == 0) 1076 csum = 0xffff; 1077 } else { 1078 cklen = ntohs(ip->ip_len); 1079 csum = in_cksum_skip(m, cklen, offset); 1080 } 1081 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1082 1083 if (offset + sizeof(csum) > m->m_len) 1084 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1085 else 1086 *(u_short *)mtodo(m, offset) = csum; 1087 } 1088 1089 /* 1090 * IP socket option processing. 1091 */ 1092 int 1093 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1094 { 1095 struct inpcb *inp = sotoinpcb(so); 1096 int error, optval; 1097 #ifdef RSS 1098 uint32_t rss_bucket; 1099 int retval; 1100 #endif 1101 1102 error = optval = 0; 1103 if (sopt->sopt_level != IPPROTO_IP) { 1104 error = EINVAL; 1105 1106 if (sopt->sopt_level == SOL_SOCKET && 1107 sopt->sopt_dir == SOPT_SET) { 1108 switch (sopt->sopt_name) { 1109 case SO_REUSEADDR: 1110 INP_WLOCK(inp); 1111 if ((so->so_options & SO_REUSEADDR) != 0) 1112 inp->inp_flags2 |= INP_REUSEADDR; 1113 else 1114 inp->inp_flags2 &= ~INP_REUSEADDR; 1115 INP_WUNLOCK(inp); 1116 error = 0; 1117 break; 1118 case SO_REUSEPORT: 1119 INP_WLOCK(inp); 1120 if ((so->so_options & SO_REUSEPORT) != 0) 1121 inp->inp_flags2 |= INP_REUSEPORT; 1122 else 1123 inp->inp_flags2 &= ~INP_REUSEPORT; 1124 INP_WUNLOCK(inp); 1125 error = 0; 1126 break; 1127 case SO_REUSEPORT_LB: 1128 INP_WLOCK(inp); 1129 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1130 inp->inp_flags2 |= INP_REUSEPORT_LB; 1131 else 1132 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1133 INP_WUNLOCK(inp); 1134 error = 0; 1135 break; 1136 case SO_SETFIB: 1137 INP_WLOCK(inp); 1138 inp->inp_inc.inc_fibnum = so->so_fibnum; 1139 INP_WUNLOCK(inp); 1140 error = 0; 1141 break; 1142 case SO_MAX_PACING_RATE: 1143 #ifdef RATELIMIT 1144 INP_WLOCK(inp); 1145 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1146 INP_WUNLOCK(inp); 1147 error = 0; 1148 #else 1149 error = EOPNOTSUPP; 1150 #endif 1151 break; 1152 default: 1153 break; 1154 } 1155 } 1156 return (error); 1157 } 1158 1159 switch (sopt->sopt_dir) { 1160 case SOPT_SET: 1161 switch (sopt->sopt_name) { 1162 case IP_OPTIONS: 1163 #ifdef notyet 1164 case IP_RETOPTS: 1165 #endif 1166 { 1167 struct mbuf *m; 1168 if (sopt->sopt_valsize > MLEN) { 1169 error = EMSGSIZE; 1170 break; 1171 } 1172 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1173 if (m == NULL) { 1174 error = ENOBUFS; 1175 break; 1176 } 1177 m->m_len = sopt->sopt_valsize; 1178 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1179 m->m_len); 1180 if (error) { 1181 m_free(m); 1182 break; 1183 } 1184 INP_WLOCK(inp); 1185 error = ip_pcbopts(inp, sopt->sopt_name, m); 1186 INP_WUNLOCK(inp); 1187 return (error); 1188 } 1189 1190 case IP_BINDANY: 1191 if (sopt->sopt_td != NULL) { 1192 error = priv_check(sopt->sopt_td, 1193 PRIV_NETINET_BINDANY); 1194 if (error) 1195 break; 1196 } 1197 /* FALLTHROUGH */ 1198 case IP_BINDMULTI: 1199 #ifdef RSS 1200 case IP_RSS_LISTEN_BUCKET: 1201 #endif 1202 case IP_TOS: 1203 case IP_TTL: 1204 case IP_MINTTL: 1205 case IP_RECVOPTS: 1206 case IP_RECVRETOPTS: 1207 case IP_ORIGDSTADDR: 1208 case IP_RECVDSTADDR: 1209 case IP_RECVTTL: 1210 case IP_RECVIF: 1211 case IP_ONESBCAST: 1212 case IP_DONTFRAG: 1213 case IP_RECVTOS: 1214 case IP_RECVFLOWID: 1215 #ifdef RSS 1216 case IP_RECVRSSBUCKETID: 1217 #endif 1218 error = sooptcopyin(sopt, &optval, sizeof optval, 1219 sizeof optval); 1220 if (error) 1221 break; 1222 1223 switch (sopt->sopt_name) { 1224 case IP_TOS: 1225 inp->inp_ip_tos = optval; 1226 break; 1227 1228 case IP_TTL: 1229 inp->inp_ip_ttl = optval; 1230 break; 1231 1232 case IP_MINTTL: 1233 if (optval >= 0 && optval <= MAXTTL) 1234 inp->inp_ip_minttl = optval; 1235 else 1236 error = EINVAL; 1237 break; 1238 1239 #define OPTSET(bit) do { \ 1240 INP_WLOCK(inp); \ 1241 if (optval) \ 1242 inp->inp_flags |= bit; \ 1243 else \ 1244 inp->inp_flags &= ~bit; \ 1245 INP_WUNLOCK(inp); \ 1246 } while (0) 1247 1248 #define OPTSET2(bit, val) do { \ 1249 INP_WLOCK(inp); \ 1250 if (val) \ 1251 inp->inp_flags2 |= bit; \ 1252 else \ 1253 inp->inp_flags2 &= ~bit; \ 1254 INP_WUNLOCK(inp); \ 1255 } while (0) 1256 1257 case IP_RECVOPTS: 1258 OPTSET(INP_RECVOPTS); 1259 break; 1260 1261 case IP_RECVRETOPTS: 1262 OPTSET(INP_RECVRETOPTS); 1263 break; 1264 1265 case IP_RECVDSTADDR: 1266 OPTSET(INP_RECVDSTADDR); 1267 break; 1268 1269 case IP_ORIGDSTADDR: 1270 OPTSET2(INP_ORIGDSTADDR, optval); 1271 break; 1272 1273 case IP_RECVTTL: 1274 OPTSET(INP_RECVTTL); 1275 break; 1276 1277 case IP_RECVIF: 1278 OPTSET(INP_RECVIF); 1279 break; 1280 1281 case IP_ONESBCAST: 1282 OPTSET(INP_ONESBCAST); 1283 break; 1284 case IP_DONTFRAG: 1285 OPTSET(INP_DONTFRAG); 1286 break; 1287 case IP_BINDANY: 1288 OPTSET(INP_BINDANY); 1289 break; 1290 case IP_RECVTOS: 1291 OPTSET(INP_RECVTOS); 1292 break; 1293 case IP_BINDMULTI: 1294 OPTSET2(INP_BINDMULTI, optval); 1295 break; 1296 case IP_RECVFLOWID: 1297 OPTSET2(INP_RECVFLOWID, optval); 1298 break; 1299 #ifdef RSS 1300 case IP_RSS_LISTEN_BUCKET: 1301 if ((optval >= 0) && 1302 (optval < rss_getnumbuckets())) { 1303 inp->inp_rss_listen_bucket = optval; 1304 OPTSET2(INP_RSS_BUCKET_SET, 1); 1305 } else { 1306 error = EINVAL; 1307 } 1308 break; 1309 case IP_RECVRSSBUCKETID: 1310 OPTSET2(INP_RECVRSSBUCKETID, optval); 1311 break; 1312 #endif 1313 } 1314 break; 1315 #undef OPTSET 1316 #undef OPTSET2 1317 1318 /* 1319 * Multicast socket options are processed by the in_mcast 1320 * module. 1321 */ 1322 case IP_MULTICAST_IF: 1323 case IP_MULTICAST_VIF: 1324 case IP_MULTICAST_TTL: 1325 case IP_MULTICAST_LOOP: 1326 case IP_ADD_MEMBERSHIP: 1327 case IP_DROP_MEMBERSHIP: 1328 case IP_ADD_SOURCE_MEMBERSHIP: 1329 case IP_DROP_SOURCE_MEMBERSHIP: 1330 case IP_BLOCK_SOURCE: 1331 case IP_UNBLOCK_SOURCE: 1332 case IP_MSFILTER: 1333 case MCAST_JOIN_GROUP: 1334 case MCAST_LEAVE_GROUP: 1335 case MCAST_JOIN_SOURCE_GROUP: 1336 case MCAST_LEAVE_SOURCE_GROUP: 1337 case MCAST_BLOCK_SOURCE: 1338 case MCAST_UNBLOCK_SOURCE: 1339 error = inp_setmoptions(inp, sopt); 1340 break; 1341 1342 case IP_PORTRANGE: 1343 error = sooptcopyin(sopt, &optval, sizeof optval, 1344 sizeof optval); 1345 if (error) 1346 break; 1347 1348 INP_WLOCK(inp); 1349 switch (optval) { 1350 case IP_PORTRANGE_DEFAULT: 1351 inp->inp_flags &= ~(INP_LOWPORT); 1352 inp->inp_flags &= ~(INP_HIGHPORT); 1353 break; 1354 1355 case IP_PORTRANGE_HIGH: 1356 inp->inp_flags &= ~(INP_LOWPORT); 1357 inp->inp_flags |= INP_HIGHPORT; 1358 break; 1359 1360 case IP_PORTRANGE_LOW: 1361 inp->inp_flags &= ~(INP_HIGHPORT); 1362 inp->inp_flags |= INP_LOWPORT; 1363 break; 1364 1365 default: 1366 error = EINVAL; 1367 break; 1368 } 1369 INP_WUNLOCK(inp); 1370 break; 1371 1372 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1373 case IP_IPSEC_POLICY: 1374 if (IPSEC_ENABLED(ipv4)) { 1375 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1376 break; 1377 } 1378 /* FALLTHROUGH */ 1379 #endif /* IPSEC */ 1380 1381 default: 1382 error = ENOPROTOOPT; 1383 break; 1384 } 1385 break; 1386 1387 case SOPT_GET: 1388 switch (sopt->sopt_name) { 1389 case IP_OPTIONS: 1390 case IP_RETOPTS: 1391 INP_RLOCK(inp); 1392 if (inp->inp_options) { 1393 struct mbuf *options; 1394 1395 options = m_copym(inp->inp_options, 0, 1396 M_COPYALL, M_NOWAIT); 1397 INP_RUNLOCK(inp); 1398 if (options != NULL) { 1399 error = sooptcopyout(sopt, 1400 mtod(options, char *), 1401 options->m_len); 1402 m_freem(options); 1403 } else 1404 error = ENOMEM; 1405 } else { 1406 INP_RUNLOCK(inp); 1407 sopt->sopt_valsize = 0; 1408 } 1409 break; 1410 1411 case IP_TOS: 1412 case IP_TTL: 1413 case IP_MINTTL: 1414 case IP_RECVOPTS: 1415 case IP_RECVRETOPTS: 1416 case IP_ORIGDSTADDR: 1417 case IP_RECVDSTADDR: 1418 case IP_RECVTTL: 1419 case IP_RECVIF: 1420 case IP_PORTRANGE: 1421 case IP_ONESBCAST: 1422 case IP_DONTFRAG: 1423 case IP_BINDANY: 1424 case IP_RECVTOS: 1425 case IP_BINDMULTI: 1426 case IP_FLOWID: 1427 case IP_FLOWTYPE: 1428 case IP_RECVFLOWID: 1429 #ifdef RSS 1430 case IP_RSSBUCKETID: 1431 case IP_RECVRSSBUCKETID: 1432 #endif 1433 switch (sopt->sopt_name) { 1434 case IP_TOS: 1435 optval = inp->inp_ip_tos; 1436 break; 1437 1438 case IP_TTL: 1439 optval = inp->inp_ip_ttl; 1440 break; 1441 1442 case IP_MINTTL: 1443 optval = inp->inp_ip_minttl; 1444 break; 1445 1446 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1447 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1448 1449 case IP_RECVOPTS: 1450 optval = OPTBIT(INP_RECVOPTS); 1451 break; 1452 1453 case IP_RECVRETOPTS: 1454 optval = OPTBIT(INP_RECVRETOPTS); 1455 break; 1456 1457 case IP_RECVDSTADDR: 1458 optval = OPTBIT(INP_RECVDSTADDR); 1459 break; 1460 1461 case IP_ORIGDSTADDR: 1462 optval = OPTBIT2(INP_ORIGDSTADDR); 1463 break; 1464 1465 case IP_RECVTTL: 1466 optval = OPTBIT(INP_RECVTTL); 1467 break; 1468 1469 case IP_RECVIF: 1470 optval = OPTBIT(INP_RECVIF); 1471 break; 1472 1473 case IP_PORTRANGE: 1474 if (inp->inp_flags & INP_HIGHPORT) 1475 optval = IP_PORTRANGE_HIGH; 1476 else if (inp->inp_flags & INP_LOWPORT) 1477 optval = IP_PORTRANGE_LOW; 1478 else 1479 optval = 0; 1480 break; 1481 1482 case IP_ONESBCAST: 1483 optval = OPTBIT(INP_ONESBCAST); 1484 break; 1485 case IP_DONTFRAG: 1486 optval = OPTBIT(INP_DONTFRAG); 1487 break; 1488 case IP_BINDANY: 1489 optval = OPTBIT(INP_BINDANY); 1490 break; 1491 case IP_RECVTOS: 1492 optval = OPTBIT(INP_RECVTOS); 1493 break; 1494 case IP_FLOWID: 1495 optval = inp->inp_flowid; 1496 break; 1497 case IP_FLOWTYPE: 1498 optval = inp->inp_flowtype; 1499 break; 1500 case IP_RECVFLOWID: 1501 optval = OPTBIT2(INP_RECVFLOWID); 1502 break; 1503 #ifdef RSS 1504 case IP_RSSBUCKETID: 1505 retval = rss_hash2bucket(inp->inp_flowid, 1506 inp->inp_flowtype, 1507 &rss_bucket); 1508 if (retval == 0) 1509 optval = rss_bucket; 1510 else 1511 error = EINVAL; 1512 break; 1513 case IP_RECVRSSBUCKETID: 1514 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1515 break; 1516 #endif 1517 case IP_BINDMULTI: 1518 optval = OPTBIT2(INP_BINDMULTI); 1519 break; 1520 } 1521 error = sooptcopyout(sopt, &optval, sizeof optval); 1522 break; 1523 1524 /* 1525 * Multicast socket options are processed by the in_mcast 1526 * module. 1527 */ 1528 case IP_MULTICAST_IF: 1529 case IP_MULTICAST_VIF: 1530 case IP_MULTICAST_TTL: 1531 case IP_MULTICAST_LOOP: 1532 case IP_MSFILTER: 1533 error = inp_getmoptions(inp, sopt); 1534 break; 1535 1536 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1537 case IP_IPSEC_POLICY: 1538 if (IPSEC_ENABLED(ipv4)) { 1539 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1540 break; 1541 } 1542 /* FALLTHROUGH */ 1543 #endif /* IPSEC */ 1544 1545 default: 1546 error = ENOPROTOOPT; 1547 break; 1548 } 1549 break; 1550 } 1551 return (error); 1552 } 1553 1554 /* 1555 * Routine called from ip_output() to loop back a copy of an IP multicast 1556 * packet to the input queue of a specified interface. Note that this 1557 * calls the output routine of the loopback "driver", but with an interface 1558 * pointer that might NOT be a loopback interface -- evil, but easier than 1559 * replicating that code here. 1560 */ 1561 static void 1562 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1563 { 1564 struct ip *ip; 1565 struct mbuf *copym; 1566 1567 /* 1568 * Make a deep copy of the packet because we're going to 1569 * modify the pack in order to generate checksums. 1570 */ 1571 copym = m_dup(m, M_NOWAIT); 1572 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1573 copym = m_pullup(copym, hlen); 1574 if (copym != NULL) { 1575 /* If needed, compute the checksum and mark it as valid. */ 1576 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1577 in_delayed_cksum(copym); 1578 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1579 copym->m_pkthdr.csum_flags |= 1580 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1581 copym->m_pkthdr.csum_data = 0xffff; 1582 } 1583 /* 1584 * We don't bother to fragment if the IP length is greater 1585 * than the interface's MTU. Can this possibly matter? 1586 */ 1587 ip = mtod(copym, struct ip *); 1588 ip->ip_sum = 0; 1589 ip->ip_sum = in_cksum(copym, hlen); 1590 if_simloop(ifp, copym, AF_INET, 0); 1591 } 1592 } 1593