xref: /freebsd/sys/netinet/ip_output.c (revision a3d9bf49b57923118c339642594246ef73872ee8)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_inet.h"
38 #include "opt_ipsec.h"
39 #include "opt_kern_tls.h"
40 #include "opt_mbuf_stress_test.h"
41 #include "opt_mpath.h"
42 #include "opt_ratelimit.h"
43 #include "opt_route.h"
44 #include "opt_rss.h"
45 #include "opt_sctp.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/ktls.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/protosw.h>
57 #include <sys/rmlock.h>
58 #include <sys/sdt.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sysctl.h>
62 #include <sys/ucred.h>
63 
64 #include <net/if.h>
65 #include <net/if_var.h>
66 #include <net/if_llatbl.h>
67 #include <net/netisr.h>
68 #include <net/pfil.h>
69 #include <net/route.h>
70 #include <net/route/nhop.h>
71 #include <net/rss_config.h>
72 #include <net/vnet.h>
73 
74 #include <netinet/in.h>
75 #include <netinet/in_fib.h>
76 #include <netinet/in_kdtrace.h>
77 #include <netinet/in_systm.h>
78 #include <netinet/ip.h>
79 #include <netinet/in_fib.h>
80 #include <netinet/in_pcb.h>
81 #include <netinet/in_rss.h>
82 #include <netinet/in_var.h>
83 #include <netinet/ip_var.h>
84 #include <netinet/ip_options.h>
85 
86 #include <netinet/udp.h>
87 #include <netinet/udp_var.h>
88 
89 #if defined(SCTP) || defined(SCTP_SUPPORT)
90 #include <netinet/sctp.h>
91 #include <netinet/sctp_crc32.h>
92 #endif
93 
94 #include <netipsec/ipsec_support.h>
95 
96 #include <machine/in_cksum.h>
97 
98 #include <security/mac/mac_framework.h>
99 
100 #ifdef MBUF_STRESS_TEST
101 static int mbuf_frag_size = 0;
102 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
103 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
104 #endif
105 
106 static void	ip_mloopback(struct ifnet *, const struct mbuf *, int);
107 
108 extern int in_mcast_loop;
109 extern	struct protosw inetsw[];
110 
111 static inline int
112 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags,
113     struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error)
114 {
115 	struct m_tag *fwd_tag = NULL;
116 	struct mbuf *m;
117 	struct in_addr odst;
118 	struct ip *ip;
119 	int pflags = PFIL_OUT;
120 
121 	if (flags & IP_FORWARDING)
122 		pflags |= PFIL_FWD;
123 
124 	m = *mp;
125 	ip = mtod(m, struct ip *);
126 
127 	/* Run through list of hooks for output packets. */
128 	odst.s_addr = ip->ip_dst.s_addr;
129 	switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) {
130 	case PFIL_DROPPED:
131 		*error = EACCES;
132 		/* FALLTHROUGH */
133 	case PFIL_CONSUMED:
134 		return 1; /* Finished */
135 	case PFIL_PASS:
136 		*error = 0;
137 	}
138 	m = *mp;
139 	ip = mtod(m, struct ip *);
140 
141 	/* See if destination IP address was changed by packet filter. */
142 	if (odst.s_addr != ip->ip_dst.s_addr) {
143 		m->m_flags |= M_SKIP_FIREWALL;
144 		/* If destination is now ourself drop to ip_input(). */
145 		if (in_localip(ip->ip_dst)) {
146 			m->m_flags |= M_FASTFWD_OURS;
147 			if (m->m_pkthdr.rcvif == NULL)
148 				m->m_pkthdr.rcvif = V_loif;
149 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
150 				m->m_pkthdr.csum_flags |=
151 					CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
152 				m->m_pkthdr.csum_data = 0xffff;
153 			}
154 			m->m_pkthdr.csum_flags |=
155 				CSUM_IP_CHECKED | CSUM_IP_VALID;
156 #if defined(SCTP) || defined(SCTP_SUPPORT)
157 			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
158 				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
159 #endif
160 			*error = netisr_queue(NETISR_IP, m);
161 			return 1; /* Finished */
162 		}
163 
164 		bzero(dst, sizeof(*dst));
165 		dst->sin_family = AF_INET;
166 		dst->sin_len = sizeof(*dst);
167 		dst->sin_addr = ip->ip_dst;
168 
169 		return -1; /* Reloop */
170 	}
171 	/* See if fib was changed by packet filter. */
172 	if ((*fibnum) != M_GETFIB(m)) {
173 		m->m_flags |= M_SKIP_FIREWALL;
174 		*fibnum = M_GETFIB(m);
175 		return -1; /* Reloop for FIB change */
176 	}
177 
178 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
179 	if (m->m_flags & M_FASTFWD_OURS) {
180 		if (m->m_pkthdr.rcvif == NULL)
181 			m->m_pkthdr.rcvif = V_loif;
182 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
183 			m->m_pkthdr.csum_flags |=
184 				CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
185 			m->m_pkthdr.csum_data = 0xffff;
186 		}
187 #if defined(SCTP) || defined(SCTP_SUPPORT)
188 		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
189 			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
190 #endif
191 		m->m_pkthdr.csum_flags |=
192 			CSUM_IP_CHECKED | CSUM_IP_VALID;
193 
194 		*error = netisr_queue(NETISR_IP, m);
195 		return 1; /* Finished */
196 	}
197 	/* Or forward to some other address? */
198 	if ((m->m_flags & M_IP_NEXTHOP) &&
199 	    ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) {
200 		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
201 		m->m_flags |= M_SKIP_FIREWALL;
202 		m->m_flags &= ~M_IP_NEXTHOP;
203 		m_tag_delete(m, fwd_tag);
204 
205 		return -1; /* Reloop for CHANGE of dst */
206 	}
207 
208 	return 0;
209 }
210 
211 static int
212 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m,
213     const struct sockaddr_in *gw, struct route *ro, bool stamp_tag)
214 {
215 #ifdef KERN_TLS
216 	struct ktls_session *tls = NULL;
217 #endif
218 	struct m_snd_tag *mst;
219 	int error;
220 
221 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
222 	mst = NULL;
223 
224 #ifdef KERN_TLS
225 	/*
226 	 * If this is an unencrypted TLS record, save a reference to
227 	 * the record.  This local reference is used to call
228 	 * ktls_output_eagain after the mbuf has been freed (thus
229 	 * dropping the mbuf's reference) in if_output.
230 	 */
231 	if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) {
232 		tls = ktls_hold(m->m_next->m_epg_tls);
233 		mst = tls->snd_tag;
234 
235 		/*
236 		 * If a TLS session doesn't have a valid tag, it must
237 		 * have had an earlier ifp mismatch, so drop this
238 		 * packet.
239 		 */
240 		if (mst == NULL) {
241 			error = EAGAIN;
242 			goto done;
243 		}
244 		/*
245 		 * Always stamp tags that include NIC ktls.
246 		 */
247 		stamp_tag = true;
248 	}
249 #endif
250 #ifdef RATELIMIT
251 	if (inp != NULL && mst == NULL) {
252 		if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 ||
253 		    (inp->inp_snd_tag != NULL &&
254 		    inp->inp_snd_tag->ifp != ifp))
255 			in_pcboutput_txrtlmt(inp, ifp, m);
256 
257 		if (inp->inp_snd_tag != NULL)
258 			mst = inp->inp_snd_tag;
259 	}
260 #endif
261 	if (stamp_tag && mst != NULL) {
262 		KASSERT(m->m_pkthdr.rcvif == NULL,
263 		    ("trying to add a send tag to a forwarded packet"));
264 		if (mst->ifp != ifp) {
265 			error = EAGAIN;
266 			goto done;
267 		}
268 
269 		/* stamp send tag on mbuf */
270 		m->m_pkthdr.snd_tag = m_snd_tag_ref(mst);
271 		m->m_pkthdr.csum_flags |= CSUM_SND_TAG;
272 	}
273 
274 	error = (*ifp->if_output)(ifp, m, (const struct sockaddr *)gw, ro);
275 
276 done:
277 	/* Check for route change invalidating send tags. */
278 #ifdef KERN_TLS
279 	if (tls != NULL) {
280 		if (error == EAGAIN)
281 			error = ktls_output_eagain(inp, tls);
282 		ktls_free(tls);
283 	}
284 #endif
285 #ifdef RATELIMIT
286 	if (error == EAGAIN)
287 		in_pcboutput_eagain(inp);
288 #endif
289 	return (error);
290 }
291 
292 /* rte<>ro_flags translation */
293 static inline void
294 rt_update_ro_flags(struct route *ro)
295 {
296 	int nh_flags = ro->ro_nh->nh_flags;
297 
298 	ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW);
299 
300 	ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0;
301 	ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0;
302 	ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0;
303 }
304 
305 /*
306  * IP output.  The packet in mbuf chain m contains a skeletal IP
307  * header (with len, off, ttl, proto, tos, src, dst).
308  * The mbuf chain containing the packet will be freed.
309  * The mbuf opt, if present, will not be freed.
310  * If route ro is present and has ro_rt initialized, route lookup would be
311  * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
312  * then result of route lookup is stored in ro->ro_rt.
313  *
314  * In the IP forwarding case, the packet will arrive with options already
315  * inserted, so must have a NULL opt pointer.
316  */
317 int
318 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
319     struct ip_moptions *imo, struct inpcb *inp)
320 {
321 	struct rm_priotracker in_ifa_tracker;
322 	struct ip *ip;
323 	struct ifnet *ifp = NULL;	/* keep compiler happy */
324 	struct mbuf *m0;
325 	int hlen = sizeof (struct ip);
326 	int mtu = 0;
327 	int error = 0;
328 	struct sockaddr_in *dst, sin;
329 	const struct sockaddr_in *gw;
330 	struct in_ifaddr *ia = NULL;
331 	struct in_addr src;
332 	int isbroadcast;
333 	uint16_t ip_len, ip_off;
334 	uint32_t fibnum;
335 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
336 	int no_route_but_check_spd = 0;
337 #endif
338 
339 	M_ASSERTPKTHDR(m);
340 	NET_EPOCH_ASSERT();
341 
342 	if (inp != NULL) {
343 		INP_LOCK_ASSERT(inp);
344 		M_SETFIB(m, inp->inp_inc.inc_fibnum);
345 		if ((flags & IP_NODEFAULTFLOWID) == 0) {
346 			m->m_pkthdr.flowid = inp->inp_flowid;
347 			M_HASHTYPE_SET(m, inp->inp_flowtype);
348 		}
349 #ifdef NUMA
350 		m->m_pkthdr.numa_domain = inp->inp_numa_domain;
351 #endif
352 	}
353 
354 	if (opt) {
355 		int len = 0;
356 		m = ip_insertoptions(m, opt, &len);
357 		if (len != 0)
358 			hlen = len; /* ip->ip_hl is updated above */
359 	}
360 	ip = mtod(m, struct ip *);
361 	ip_len = ntohs(ip->ip_len);
362 	ip_off = ntohs(ip->ip_off);
363 
364 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
365 		ip->ip_v = IPVERSION;
366 		ip->ip_hl = hlen >> 2;
367 		ip_fillid(ip);
368 	} else {
369 		/* Header already set, fetch hlen from there */
370 		hlen = ip->ip_hl << 2;
371 	}
372 	if ((flags & IP_FORWARDING) == 0)
373 		IPSTAT_INC(ips_localout);
374 
375 	/*
376 	 * dst/gw handling:
377 	 *
378 	 * gw is readonly but can point either to dst OR rt_gateway,
379 	 * therefore we need restore gw if we're redoing lookup.
380 	 */
381 	fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
382 	if (ro != NULL)
383 		dst = (struct sockaddr_in *)&ro->ro_dst;
384 	else
385 		dst = &sin;
386 	if (ro == NULL || ro->ro_nh == NULL) {
387 		bzero(dst, sizeof(*dst));
388 		dst->sin_family = AF_INET;
389 		dst->sin_len = sizeof(*dst);
390 		dst->sin_addr = ip->ip_dst;
391 	}
392 	gw = dst;
393 again:
394 	/*
395 	 * Validate route against routing table additions;
396 	 * a better/more specific route might have been added.
397 	 */
398 	if (inp != NULL && ro != NULL && ro->ro_nh != NULL)
399 		NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum);
400 	/*
401 	 * If there is a cached route,
402 	 * check that it is to the same destination
403 	 * and is still up.  If not, free it and try again.
404 	 * The address family should also be checked in case of sharing the
405 	 * cache with IPv6.
406 	 * Also check whether routing cache needs invalidation.
407 	 */
408 	if (ro != NULL && ro->ro_nh != NULL &&
409 	    ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET ||
410 	    dst->sin_addr.s_addr != ip->ip_dst.s_addr))
411 		RO_INVALIDATE_CACHE(ro);
412 	ia = NULL;
413 	/*
414 	 * If routing to interface only, short circuit routing lookup.
415 	 * The use of an all-ones broadcast address implies this; an
416 	 * interface is specified by the broadcast address of an interface,
417 	 * or the destination address of a ptp interface.
418 	 */
419 	if (flags & IP_SENDONES) {
420 		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst),
421 						      M_GETFIB(m)))) == NULL &&
422 		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
423 						    M_GETFIB(m)))) == NULL) {
424 			IPSTAT_INC(ips_noroute);
425 			error = ENETUNREACH;
426 			goto bad;
427 		}
428 		ip->ip_dst.s_addr = INADDR_BROADCAST;
429 		dst->sin_addr = ip->ip_dst;
430 		ifp = ia->ia_ifp;
431 		mtu = ifp->if_mtu;
432 		ip->ip_ttl = 1;
433 		isbroadcast = 1;
434 		src = IA_SIN(ia)->sin_addr;
435 	} else if (flags & IP_ROUTETOIF) {
436 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
437 						    M_GETFIB(m)))) == NULL &&
438 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0,
439 						M_GETFIB(m)))) == NULL) {
440 			IPSTAT_INC(ips_noroute);
441 			error = ENETUNREACH;
442 			goto bad;
443 		}
444 		ifp = ia->ia_ifp;
445 		mtu = ifp->if_mtu;
446 		ip->ip_ttl = 1;
447 		isbroadcast = ifp->if_flags & IFF_BROADCAST ?
448 		    in_ifaddr_broadcast(dst->sin_addr, ia) : 0;
449 		src = IA_SIN(ia)->sin_addr;
450 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
451 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
452 		/*
453 		 * Bypass the normal routing lookup for multicast
454 		 * packets if the interface is specified.
455 		 */
456 		ifp = imo->imo_multicast_ifp;
457 		mtu = ifp->if_mtu;
458 		IFP_TO_IA(ifp, ia, &in_ifa_tracker);
459 		isbroadcast = 0;	/* fool gcc */
460 		/* Interface may have no addresses. */
461 		if (ia != NULL)
462 			src = IA_SIN(ia)->sin_addr;
463 		else
464 			src.s_addr = INADDR_ANY;
465 	} else if (ro != NULL) {
466 		if (ro->ro_nh == NULL) {
467 			/*
468 			 * We want to do any cloning requested by the link
469 			 * layer, as this is probably required in all cases
470 			 * for correct operation (as it is for ARP).
471 			 */
472 			uint32_t flowid;
473 #ifdef RADIX_MPATH
474 			flowid = ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr);
475 #else
476 			flowid = m->m_pkthdr.flowid;
477 #endif
478 			ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0,
479 			    NHR_REF, flowid);
480 
481 			if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) {
482 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
483 				/*
484 				 * There is no route for this packet, but it is
485 				 * possible that a matching SPD entry exists.
486 				 */
487 				no_route_but_check_spd = 1;
488 				goto sendit;
489 #endif
490 				IPSTAT_INC(ips_noroute);
491 				error = EHOSTUNREACH;
492 				goto bad;
493 			}
494 		}
495 		ia = ifatoia(ro->ro_nh->nh_ifa);
496 		ifp = ro->ro_nh->nh_ifp;
497 		counter_u64_add(ro->ro_nh->nh_pksent, 1);
498 		rt_update_ro_flags(ro);
499 		if (ro->ro_nh->nh_flags & NHF_GATEWAY)
500 			gw = &ro->ro_nh->gw4_sa;
501 		if (ro->ro_nh->nh_flags & NHF_HOST)
502 			isbroadcast = (ro->ro_nh->nh_flags & NHF_BROADCAST);
503 		else if (ifp->if_flags & IFF_BROADCAST)
504 			isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia);
505 		else
506 			isbroadcast = 0;
507 		if (ro->ro_nh->nh_flags & NHF_HOST)
508 			mtu = ro->ro_nh->nh_mtu;
509 		else
510 			mtu = ifp->if_mtu;
511 		src = IA_SIN(ia)->sin_addr;
512 	} else {
513 		struct nhop_object *nh;
514 
515 		nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_NONE,
516 		    m->m_pkthdr.flowid);
517 		if (nh == NULL) {
518 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
519 			/*
520 			 * There is no route for this packet, but it is
521 			 * possible that a matching SPD entry exists.
522 			 */
523 			no_route_but_check_spd = 1;
524 			goto sendit;
525 #endif
526 			IPSTAT_INC(ips_noroute);
527 			error = EHOSTUNREACH;
528 			goto bad;
529 		}
530 		ifp = nh->nh_ifp;
531 		mtu = nh->nh_mtu;
532 		/*
533 		 * We are rewriting here dst to be gw actually, contradicting
534 		 * comment at the beginning of the function. However, in this
535 		 * case we are always dealing with on stack dst.
536 		 * In case if pfil(9) sends us back to beginning of the
537 		 * function, the dst would be rewritten by ip_output_pfil().
538 		 */
539 		MPASS(dst == &sin);
540 		if (nh->nh_flags & NHF_GATEWAY)
541 			dst->sin_addr = nh->gw4_sa.sin_addr;
542 		ia = ifatoia(nh->nh_ifa);
543 		src = IA_SIN(ia)->sin_addr;
544 		isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) ==
545 		    (NHF_HOST | NHF_BROADCAST)) ||
546 		    ((ifp->if_flags & IFF_BROADCAST) &&
547 		    in_ifaddr_broadcast(dst->sin_addr, ia)));
548 	}
549 
550 	/* Catch a possible divide by zero later. */
551 	KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p",
552 	    __func__, mtu, ro,
553 	    (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp));
554 
555 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
556 		m->m_flags |= M_MCAST;
557 		/*
558 		 * IP destination address is multicast.  Make sure "gw"
559 		 * still points to the address in "ro".  (It may have been
560 		 * changed to point to a gateway address, above.)
561 		 */
562 		gw = dst;
563 		/*
564 		 * See if the caller provided any multicast options
565 		 */
566 		if (imo != NULL) {
567 			ip->ip_ttl = imo->imo_multicast_ttl;
568 			if (imo->imo_multicast_vif != -1)
569 				ip->ip_src.s_addr =
570 				    ip_mcast_src ?
571 				    ip_mcast_src(imo->imo_multicast_vif) :
572 				    INADDR_ANY;
573 		} else
574 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
575 		/*
576 		 * Confirm that the outgoing interface supports multicast.
577 		 */
578 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
579 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
580 				IPSTAT_INC(ips_noroute);
581 				error = ENETUNREACH;
582 				goto bad;
583 			}
584 		}
585 		/*
586 		 * If source address not specified yet, use address
587 		 * of outgoing interface.
588 		 */
589 		if (ip->ip_src.s_addr == INADDR_ANY)
590 			ip->ip_src = src;
591 
592 		if ((imo == NULL && in_mcast_loop) ||
593 		    (imo && imo->imo_multicast_loop)) {
594 			/*
595 			 * Loop back multicast datagram if not expressly
596 			 * forbidden to do so, even if we are not a member
597 			 * of the group; ip_input() will filter it later,
598 			 * thus deferring a hash lookup and mutex acquisition
599 			 * at the expense of a cheap copy using m_copym().
600 			 */
601 			ip_mloopback(ifp, m, hlen);
602 		} else {
603 			/*
604 			 * If we are acting as a multicast router, perform
605 			 * multicast forwarding as if the packet had just
606 			 * arrived on the interface to which we are about
607 			 * to send.  The multicast forwarding function
608 			 * recursively calls this function, using the
609 			 * IP_FORWARDING flag to prevent infinite recursion.
610 			 *
611 			 * Multicasts that are looped back by ip_mloopback(),
612 			 * above, will be forwarded by the ip_input() routine,
613 			 * if necessary.
614 			 */
615 			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
616 				/*
617 				 * If rsvp daemon is not running, do not
618 				 * set ip_moptions. This ensures that the packet
619 				 * is multicast and not just sent down one link
620 				 * as prescribed by rsvpd.
621 				 */
622 				if (!V_rsvp_on)
623 					imo = NULL;
624 				if (ip_mforward &&
625 				    ip_mforward(ip, ifp, m, imo) != 0) {
626 					m_freem(m);
627 					goto done;
628 				}
629 			}
630 		}
631 
632 		/*
633 		 * Multicasts with a time-to-live of zero may be looped-
634 		 * back, above, but must not be transmitted on a network.
635 		 * Also, multicasts addressed to the loopback interface
636 		 * are not sent -- the above call to ip_mloopback() will
637 		 * loop back a copy. ip_input() will drop the copy if
638 		 * this host does not belong to the destination group on
639 		 * the loopback interface.
640 		 */
641 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
642 			m_freem(m);
643 			goto done;
644 		}
645 
646 		goto sendit;
647 	}
648 
649 	/*
650 	 * If the source address is not specified yet, use the address
651 	 * of the outoing interface.
652 	 */
653 	if (ip->ip_src.s_addr == INADDR_ANY)
654 		ip->ip_src = src;
655 
656 	/*
657 	 * Look for broadcast address and
658 	 * verify user is allowed to send
659 	 * such a packet.
660 	 */
661 	if (isbroadcast) {
662 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
663 			error = EADDRNOTAVAIL;
664 			goto bad;
665 		}
666 		if ((flags & IP_ALLOWBROADCAST) == 0) {
667 			error = EACCES;
668 			goto bad;
669 		}
670 		/* don't allow broadcast messages to be fragmented */
671 		if (ip_len > mtu) {
672 			error = EMSGSIZE;
673 			goto bad;
674 		}
675 		m->m_flags |= M_BCAST;
676 	} else {
677 		m->m_flags &= ~M_BCAST;
678 	}
679 
680 sendit:
681 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
682 	if (IPSEC_ENABLED(ipv4)) {
683 		if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) {
684 			if (error == EINPROGRESS)
685 				error = 0;
686 			goto done;
687 		}
688 	}
689 	/*
690 	 * Check if there was a route for this packet; return error if not.
691 	 */
692 	if (no_route_but_check_spd) {
693 		IPSTAT_INC(ips_noroute);
694 		error = EHOSTUNREACH;
695 		goto bad;
696 	}
697 	/* Update variables that are affected by ipsec4_output(). */
698 	ip = mtod(m, struct ip *);
699 	hlen = ip->ip_hl << 2;
700 #endif /* IPSEC */
701 
702 	/* Jump over all PFIL processing if hooks are not active. */
703 	if (PFIL_HOOKED_OUT(V_inet_pfil_head)) {
704 		switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum,
705 		    &error)) {
706 		case 1: /* Finished */
707 			goto done;
708 
709 		case 0: /* Continue normally */
710 			ip = mtod(m, struct ip *);
711 			break;
712 
713 		case -1: /* Need to try again */
714 			/* Reset everything for a new round */
715 			if (ro != NULL) {
716 				RO_NHFREE(ro);
717 				ro->ro_prepend = NULL;
718 			}
719 			gw = dst;
720 			ip = mtod(m, struct ip *);
721 			goto again;
722 		}
723 	}
724 
725 	/* IN_LOOPBACK must not appear on the wire - RFC1122. */
726 	if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) ||
727 	    IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) {
728 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
729 			IPSTAT_INC(ips_badaddr);
730 			error = EADDRNOTAVAIL;
731 			goto bad;
732 		}
733 	}
734 
735 	m->m_pkthdr.csum_flags |= CSUM_IP;
736 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
737 		m = mb_unmapped_to_ext(m);
738 		if (m == NULL) {
739 			IPSTAT_INC(ips_odropped);
740 			error = ENOBUFS;
741 			goto bad;
742 		}
743 		in_delayed_cksum(m);
744 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
745 	} else if ((ifp->if_capenable & IFCAP_NOMAP) == 0) {
746 		m = mb_unmapped_to_ext(m);
747 		if (m == NULL) {
748 			IPSTAT_INC(ips_odropped);
749 			error = ENOBUFS;
750 			goto bad;
751 		}
752 	}
753 #if defined(SCTP) || defined(SCTP_SUPPORT)
754 	if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
755 		m = mb_unmapped_to_ext(m);
756 		if (m == NULL) {
757 			IPSTAT_INC(ips_odropped);
758 			error = ENOBUFS;
759 			goto bad;
760 		}
761 		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
762 		m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
763 	}
764 #endif
765 
766 	/*
767 	 * If small enough for interface, or the interface will take
768 	 * care of the fragmentation for us, we can just send directly.
769 	 * Note that if_vxlan could have requested TSO even though the outer
770 	 * frame is UDP.  It is correct to not fragment such datagrams and
771 	 * instead just pass them on to the driver.
772 	 */
773 	if (ip_len <= mtu ||
774 	    (m->m_pkthdr.csum_flags & ifp->if_hwassist &
775 	    (CSUM_TSO | CSUM_INNER_TSO)) != 0) {
776 		ip->ip_sum = 0;
777 		if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
778 			ip->ip_sum = in_cksum(m, hlen);
779 			m->m_pkthdr.csum_flags &= ~CSUM_IP;
780 		}
781 
782 		/*
783 		 * Record statistics for this interface address.
784 		 * With CSUM_TSO the byte/packet count will be slightly
785 		 * incorrect because we count the IP+TCP headers only
786 		 * once instead of for every generated packet.
787 		 */
788 		if (!(flags & IP_FORWARDING) && ia) {
789 			if (m->m_pkthdr.csum_flags &
790 			    (CSUM_TSO | CSUM_INNER_TSO))
791 				counter_u64_add(ia->ia_ifa.ifa_opackets,
792 				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz);
793 			else
794 				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
795 
796 			counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len);
797 		}
798 #ifdef MBUF_STRESS_TEST
799 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
800 			m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
801 #endif
802 		/*
803 		 * Reset layer specific mbuf flags
804 		 * to avoid confusing lower layers.
805 		 */
806 		m_clrprotoflags(m);
807 		IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
808 		error = ip_output_send(inp, ifp, m, gw, ro,
809 		    (flags & IP_NO_SND_TAG_RL) ? false : true);
810 		goto done;
811 	}
812 
813 	/* Balk when DF bit is set or the interface didn't support TSO. */
814 	if ((ip_off & IP_DF) ||
815 	    (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) {
816 		error = EMSGSIZE;
817 		IPSTAT_INC(ips_cantfrag);
818 		goto bad;
819 	}
820 
821 	/*
822 	 * Too large for interface; fragment if possible. If successful,
823 	 * on return, m will point to a list of packets to be sent.
824 	 */
825 	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
826 	if (error)
827 		goto bad;
828 	for (; m; m = m0) {
829 		m0 = m->m_nextpkt;
830 		m->m_nextpkt = 0;
831 		if (error == 0) {
832 			/* Record statistics for this interface address. */
833 			if (ia != NULL) {
834 				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
835 				counter_u64_add(ia->ia_ifa.ifa_obytes,
836 				    m->m_pkthdr.len);
837 			}
838 			/*
839 			 * Reset layer specific mbuf flags
840 			 * to avoid confusing upper layers.
841 			 */
842 			m_clrprotoflags(m);
843 
844 			IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp,
845 			    mtod(m, struct ip *), NULL);
846 			error = ip_output_send(inp, ifp, m, gw, ro, true);
847 		} else
848 			m_freem(m);
849 	}
850 
851 	if (error == 0)
852 		IPSTAT_INC(ips_fragmented);
853 
854 done:
855 	return (error);
856  bad:
857 	m_freem(m);
858 	goto done;
859 }
860 
861 /*
862  * Create a chain of fragments which fit the given mtu. m_frag points to the
863  * mbuf to be fragmented; on return it points to the chain with the fragments.
864  * Return 0 if no error. If error, m_frag may contain a partially built
865  * chain of fragments that should be freed by the caller.
866  *
867  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
868  */
869 int
870 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
871     u_long if_hwassist_flags)
872 {
873 	int error = 0;
874 	int hlen = ip->ip_hl << 2;
875 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
876 	int off;
877 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
878 	int firstlen;
879 	struct mbuf **mnext;
880 	int nfrags;
881 	uint16_t ip_len, ip_off;
882 
883 	ip_len = ntohs(ip->ip_len);
884 	ip_off = ntohs(ip->ip_off);
885 
886 	if (ip_off & IP_DF) {	/* Fragmentation not allowed */
887 		IPSTAT_INC(ips_cantfrag);
888 		return EMSGSIZE;
889 	}
890 
891 	/*
892 	 * Must be able to put at least 8 bytes per fragment.
893 	 */
894 	if (len < 8)
895 		return EMSGSIZE;
896 
897 	/*
898 	 * If the interface will not calculate checksums on
899 	 * fragmented packets, then do it here.
900 	 */
901 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
902 		m0 = mb_unmapped_to_ext(m0);
903 		if (m0 == NULL) {
904 			error = ENOBUFS;
905 			IPSTAT_INC(ips_odropped);
906 			goto done;
907 		}
908 		in_delayed_cksum(m0);
909 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
910 	}
911 #if defined(SCTP) || defined(SCTP_SUPPORT)
912 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
913 		m0 = mb_unmapped_to_ext(m0);
914 		if (m0 == NULL) {
915 			error = ENOBUFS;
916 			IPSTAT_INC(ips_odropped);
917 			goto done;
918 		}
919 		sctp_delayed_cksum(m0, hlen);
920 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
921 	}
922 #endif
923 	if (len > PAGE_SIZE) {
924 		/*
925 		 * Fragment large datagrams such that each segment
926 		 * contains a multiple of PAGE_SIZE amount of data,
927 		 * plus headers. This enables a receiver to perform
928 		 * page-flipping zero-copy optimizations.
929 		 *
930 		 * XXX When does this help given that sender and receiver
931 		 * could have different page sizes, and also mtu could
932 		 * be less than the receiver's page size ?
933 		 */
934 		int newlen;
935 
936 		off = MIN(mtu, m0->m_pkthdr.len);
937 
938 		/*
939 		 * firstlen (off - hlen) must be aligned on an
940 		 * 8-byte boundary
941 		 */
942 		if (off < hlen)
943 			goto smart_frag_failure;
944 		off = ((off - hlen) & ~7) + hlen;
945 		newlen = (~PAGE_MASK) & mtu;
946 		if ((newlen + sizeof (struct ip)) > mtu) {
947 			/* we failed, go back the default */
948 smart_frag_failure:
949 			newlen = len;
950 			off = hlen + len;
951 		}
952 		len = newlen;
953 
954 	} else {
955 		off = hlen + len;
956 	}
957 
958 	firstlen = off - hlen;
959 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
960 
961 	/*
962 	 * Loop through length of segment after first fragment,
963 	 * make new header and copy data of each part and link onto chain.
964 	 * Here, m0 is the original packet, m is the fragment being created.
965 	 * The fragments are linked off the m_nextpkt of the original
966 	 * packet, which after processing serves as the first fragment.
967 	 */
968 	for (nfrags = 1; off < ip_len; off += len, nfrags++) {
969 		struct ip *mhip;	/* ip header on the fragment */
970 		struct mbuf *m;
971 		int mhlen = sizeof (struct ip);
972 
973 		m = m_gethdr(M_NOWAIT, MT_DATA);
974 		if (m == NULL) {
975 			error = ENOBUFS;
976 			IPSTAT_INC(ips_odropped);
977 			goto done;
978 		}
979 		/*
980 		 * Make sure the complete packet header gets copied
981 		 * from the originating mbuf to the newly created
982 		 * mbuf. This also ensures that existing firewall
983 		 * classification(s), VLAN tags and so on get copied
984 		 * to the resulting fragmented packet(s):
985 		 */
986 		if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
987 			m_free(m);
988 			error = ENOBUFS;
989 			IPSTAT_INC(ips_odropped);
990 			goto done;
991 		}
992 		/*
993 		 * In the first mbuf, leave room for the link header, then
994 		 * copy the original IP header including options. The payload
995 		 * goes into an additional mbuf chain returned by m_copym().
996 		 */
997 		m->m_data += max_linkhdr;
998 		mhip = mtod(m, struct ip *);
999 		*mhip = *ip;
1000 		if (hlen > sizeof (struct ip)) {
1001 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1002 			mhip->ip_v = IPVERSION;
1003 			mhip->ip_hl = mhlen >> 2;
1004 		}
1005 		m->m_len = mhlen;
1006 		/* XXX do we need to add ip_off below ? */
1007 		mhip->ip_off = ((off - hlen) >> 3) + ip_off;
1008 		if (off + len >= ip_len)
1009 			len = ip_len - off;
1010 		else
1011 			mhip->ip_off |= IP_MF;
1012 		mhip->ip_len = htons((u_short)(len + mhlen));
1013 		m->m_next = m_copym(m0, off, len, M_NOWAIT);
1014 		if (m->m_next == NULL) {	/* copy failed */
1015 			m_free(m);
1016 			error = ENOBUFS;	/* ??? */
1017 			IPSTAT_INC(ips_odropped);
1018 			goto done;
1019 		}
1020 		m->m_pkthdr.len = mhlen + len;
1021 #ifdef MAC
1022 		mac_netinet_fragment(m0, m);
1023 #endif
1024 		mhip->ip_off = htons(mhip->ip_off);
1025 		mhip->ip_sum = 0;
1026 		if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
1027 			mhip->ip_sum = in_cksum(m, mhlen);
1028 			m->m_pkthdr.csum_flags &= ~CSUM_IP;
1029 		}
1030 		*mnext = m;
1031 		mnext = &m->m_nextpkt;
1032 	}
1033 	IPSTAT_ADD(ips_ofragments, nfrags);
1034 
1035 	/*
1036 	 * Update first fragment by trimming what's been copied out
1037 	 * and updating header.
1038 	 */
1039 	m_adj(m0, hlen + firstlen - ip_len);
1040 	m0->m_pkthdr.len = hlen + firstlen;
1041 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1042 	ip->ip_off = htons(ip_off | IP_MF);
1043 	ip->ip_sum = 0;
1044 	if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
1045 		ip->ip_sum = in_cksum(m0, hlen);
1046 		m0->m_pkthdr.csum_flags &= ~CSUM_IP;
1047 	}
1048 
1049 done:
1050 	*m_frag = m0;
1051 	return error;
1052 }
1053 
1054 void
1055 in_delayed_cksum(struct mbuf *m)
1056 {
1057 	struct ip *ip;
1058 	struct udphdr *uh;
1059 	uint16_t cklen, csum, offset;
1060 
1061 	ip = mtod(m, struct ip *);
1062 	offset = ip->ip_hl << 2 ;
1063 
1064 	if (m->m_pkthdr.csum_flags & CSUM_UDP) {
1065 		/* if udp header is not in the first mbuf copy udplen */
1066 		if (offset + sizeof(struct udphdr) > m->m_len) {
1067 			m_copydata(m, offset + offsetof(struct udphdr,
1068 			    uh_ulen), sizeof(cklen), (caddr_t)&cklen);
1069 			cklen = ntohs(cklen);
1070 		} else {
1071 			uh = (struct udphdr *)mtodo(m, offset);
1072 			cklen = ntohs(uh->uh_ulen);
1073 		}
1074 		csum = in_cksum_skip(m, cklen + offset, offset);
1075 		if (csum == 0)
1076 			csum = 0xffff;
1077 	} else {
1078 		cklen = ntohs(ip->ip_len);
1079 		csum = in_cksum_skip(m, cklen, offset);
1080 	}
1081 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1082 
1083 	if (offset + sizeof(csum) > m->m_len)
1084 		m_copyback(m, offset, sizeof(csum), (caddr_t)&csum);
1085 	else
1086 		*(u_short *)mtodo(m, offset) = csum;
1087 }
1088 
1089 /*
1090  * IP socket option processing.
1091  */
1092 int
1093 ip_ctloutput(struct socket *so, struct sockopt *sopt)
1094 {
1095 	struct inpcb *inp = sotoinpcb(so);
1096 	int	error, optval;
1097 #ifdef	RSS
1098 	uint32_t rss_bucket;
1099 	int retval;
1100 #endif
1101 
1102 	error = optval = 0;
1103 	if (sopt->sopt_level != IPPROTO_IP) {
1104 		error = EINVAL;
1105 
1106 		if (sopt->sopt_level == SOL_SOCKET &&
1107 		    sopt->sopt_dir == SOPT_SET) {
1108 			switch (sopt->sopt_name) {
1109 			case SO_REUSEADDR:
1110 				INP_WLOCK(inp);
1111 				if ((so->so_options & SO_REUSEADDR) != 0)
1112 					inp->inp_flags2 |= INP_REUSEADDR;
1113 				else
1114 					inp->inp_flags2 &= ~INP_REUSEADDR;
1115 				INP_WUNLOCK(inp);
1116 				error = 0;
1117 				break;
1118 			case SO_REUSEPORT:
1119 				INP_WLOCK(inp);
1120 				if ((so->so_options & SO_REUSEPORT) != 0)
1121 					inp->inp_flags2 |= INP_REUSEPORT;
1122 				else
1123 					inp->inp_flags2 &= ~INP_REUSEPORT;
1124 				INP_WUNLOCK(inp);
1125 				error = 0;
1126 				break;
1127 			case SO_REUSEPORT_LB:
1128 				INP_WLOCK(inp);
1129 				if ((so->so_options & SO_REUSEPORT_LB) != 0)
1130 					inp->inp_flags2 |= INP_REUSEPORT_LB;
1131 				else
1132 					inp->inp_flags2 &= ~INP_REUSEPORT_LB;
1133 				INP_WUNLOCK(inp);
1134 				error = 0;
1135 				break;
1136 			case SO_SETFIB:
1137 				INP_WLOCK(inp);
1138 				inp->inp_inc.inc_fibnum = so->so_fibnum;
1139 				INP_WUNLOCK(inp);
1140 				error = 0;
1141 				break;
1142 			case SO_MAX_PACING_RATE:
1143 #ifdef RATELIMIT
1144 				INP_WLOCK(inp);
1145 				inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
1146 				INP_WUNLOCK(inp);
1147 				error = 0;
1148 #else
1149 				error = EOPNOTSUPP;
1150 #endif
1151 				break;
1152 			default:
1153 				break;
1154 			}
1155 		}
1156 		return (error);
1157 	}
1158 
1159 	switch (sopt->sopt_dir) {
1160 	case SOPT_SET:
1161 		switch (sopt->sopt_name) {
1162 		case IP_OPTIONS:
1163 #ifdef notyet
1164 		case IP_RETOPTS:
1165 #endif
1166 		{
1167 			struct mbuf *m;
1168 			if (sopt->sopt_valsize > MLEN) {
1169 				error = EMSGSIZE;
1170 				break;
1171 			}
1172 			m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
1173 			if (m == NULL) {
1174 				error = ENOBUFS;
1175 				break;
1176 			}
1177 			m->m_len = sopt->sopt_valsize;
1178 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1179 					    m->m_len);
1180 			if (error) {
1181 				m_free(m);
1182 				break;
1183 			}
1184 			INP_WLOCK(inp);
1185 			error = ip_pcbopts(inp, sopt->sopt_name, m);
1186 			INP_WUNLOCK(inp);
1187 			return (error);
1188 		}
1189 
1190 		case IP_BINDANY:
1191 			if (sopt->sopt_td != NULL) {
1192 				error = priv_check(sopt->sopt_td,
1193 				    PRIV_NETINET_BINDANY);
1194 				if (error)
1195 					break;
1196 			}
1197 			/* FALLTHROUGH */
1198 		case IP_BINDMULTI:
1199 #ifdef	RSS
1200 		case IP_RSS_LISTEN_BUCKET:
1201 #endif
1202 		case IP_TOS:
1203 		case IP_TTL:
1204 		case IP_MINTTL:
1205 		case IP_RECVOPTS:
1206 		case IP_RECVRETOPTS:
1207 		case IP_ORIGDSTADDR:
1208 		case IP_RECVDSTADDR:
1209 		case IP_RECVTTL:
1210 		case IP_RECVIF:
1211 		case IP_ONESBCAST:
1212 		case IP_DONTFRAG:
1213 		case IP_RECVTOS:
1214 		case IP_RECVFLOWID:
1215 #ifdef	RSS
1216 		case IP_RECVRSSBUCKETID:
1217 #endif
1218 			error = sooptcopyin(sopt, &optval, sizeof optval,
1219 					    sizeof optval);
1220 			if (error)
1221 				break;
1222 
1223 			switch (sopt->sopt_name) {
1224 			case IP_TOS:
1225 				inp->inp_ip_tos = optval;
1226 				break;
1227 
1228 			case IP_TTL:
1229 				inp->inp_ip_ttl = optval;
1230 				break;
1231 
1232 			case IP_MINTTL:
1233 				if (optval >= 0 && optval <= MAXTTL)
1234 					inp->inp_ip_minttl = optval;
1235 				else
1236 					error = EINVAL;
1237 				break;
1238 
1239 #define	OPTSET(bit) do {						\
1240 	INP_WLOCK(inp);							\
1241 	if (optval)							\
1242 		inp->inp_flags |= bit;					\
1243 	else								\
1244 		inp->inp_flags &= ~bit;					\
1245 	INP_WUNLOCK(inp);						\
1246 } while (0)
1247 
1248 #define	OPTSET2(bit, val) do {						\
1249 	INP_WLOCK(inp);							\
1250 	if (val)							\
1251 		inp->inp_flags2 |= bit;					\
1252 	else								\
1253 		inp->inp_flags2 &= ~bit;				\
1254 	INP_WUNLOCK(inp);						\
1255 } while (0)
1256 
1257 			case IP_RECVOPTS:
1258 				OPTSET(INP_RECVOPTS);
1259 				break;
1260 
1261 			case IP_RECVRETOPTS:
1262 				OPTSET(INP_RECVRETOPTS);
1263 				break;
1264 
1265 			case IP_RECVDSTADDR:
1266 				OPTSET(INP_RECVDSTADDR);
1267 				break;
1268 
1269 			case IP_ORIGDSTADDR:
1270 				OPTSET2(INP_ORIGDSTADDR, optval);
1271 				break;
1272 
1273 			case IP_RECVTTL:
1274 				OPTSET(INP_RECVTTL);
1275 				break;
1276 
1277 			case IP_RECVIF:
1278 				OPTSET(INP_RECVIF);
1279 				break;
1280 
1281 			case IP_ONESBCAST:
1282 				OPTSET(INP_ONESBCAST);
1283 				break;
1284 			case IP_DONTFRAG:
1285 				OPTSET(INP_DONTFRAG);
1286 				break;
1287 			case IP_BINDANY:
1288 				OPTSET(INP_BINDANY);
1289 				break;
1290 			case IP_RECVTOS:
1291 				OPTSET(INP_RECVTOS);
1292 				break;
1293 			case IP_BINDMULTI:
1294 				OPTSET2(INP_BINDMULTI, optval);
1295 				break;
1296 			case IP_RECVFLOWID:
1297 				OPTSET2(INP_RECVFLOWID, optval);
1298 				break;
1299 #ifdef	RSS
1300 			case IP_RSS_LISTEN_BUCKET:
1301 				if ((optval >= 0) &&
1302 				    (optval < rss_getnumbuckets())) {
1303 					inp->inp_rss_listen_bucket = optval;
1304 					OPTSET2(INP_RSS_BUCKET_SET, 1);
1305 				} else {
1306 					error = EINVAL;
1307 				}
1308 				break;
1309 			case IP_RECVRSSBUCKETID:
1310 				OPTSET2(INP_RECVRSSBUCKETID, optval);
1311 				break;
1312 #endif
1313 			}
1314 			break;
1315 #undef OPTSET
1316 #undef OPTSET2
1317 
1318 		/*
1319 		 * Multicast socket options are processed by the in_mcast
1320 		 * module.
1321 		 */
1322 		case IP_MULTICAST_IF:
1323 		case IP_MULTICAST_VIF:
1324 		case IP_MULTICAST_TTL:
1325 		case IP_MULTICAST_LOOP:
1326 		case IP_ADD_MEMBERSHIP:
1327 		case IP_DROP_MEMBERSHIP:
1328 		case IP_ADD_SOURCE_MEMBERSHIP:
1329 		case IP_DROP_SOURCE_MEMBERSHIP:
1330 		case IP_BLOCK_SOURCE:
1331 		case IP_UNBLOCK_SOURCE:
1332 		case IP_MSFILTER:
1333 		case MCAST_JOIN_GROUP:
1334 		case MCAST_LEAVE_GROUP:
1335 		case MCAST_JOIN_SOURCE_GROUP:
1336 		case MCAST_LEAVE_SOURCE_GROUP:
1337 		case MCAST_BLOCK_SOURCE:
1338 		case MCAST_UNBLOCK_SOURCE:
1339 			error = inp_setmoptions(inp, sopt);
1340 			break;
1341 
1342 		case IP_PORTRANGE:
1343 			error = sooptcopyin(sopt, &optval, sizeof optval,
1344 					    sizeof optval);
1345 			if (error)
1346 				break;
1347 
1348 			INP_WLOCK(inp);
1349 			switch (optval) {
1350 			case IP_PORTRANGE_DEFAULT:
1351 				inp->inp_flags &= ~(INP_LOWPORT);
1352 				inp->inp_flags &= ~(INP_HIGHPORT);
1353 				break;
1354 
1355 			case IP_PORTRANGE_HIGH:
1356 				inp->inp_flags &= ~(INP_LOWPORT);
1357 				inp->inp_flags |= INP_HIGHPORT;
1358 				break;
1359 
1360 			case IP_PORTRANGE_LOW:
1361 				inp->inp_flags &= ~(INP_HIGHPORT);
1362 				inp->inp_flags |= INP_LOWPORT;
1363 				break;
1364 
1365 			default:
1366 				error = EINVAL;
1367 				break;
1368 			}
1369 			INP_WUNLOCK(inp);
1370 			break;
1371 
1372 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1373 		case IP_IPSEC_POLICY:
1374 			if (IPSEC_ENABLED(ipv4)) {
1375 				error = IPSEC_PCBCTL(ipv4, inp, sopt);
1376 				break;
1377 			}
1378 			/* FALLTHROUGH */
1379 #endif /* IPSEC */
1380 
1381 		default:
1382 			error = ENOPROTOOPT;
1383 			break;
1384 		}
1385 		break;
1386 
1387 	case SOPT_GET:
1388 		switch (sopt->sopt_name) {
1389 		case IP_OPTIONS:
1390 		case IP_RETOPTS:
1391 			INP_RLOCK(inp);
1392 			if (inp->inp_options) {
1393 				struct mbuf *options;
1394 
1395 				options = m_copym(inp->inp_options, 0,
1396 				    M_COPYALL, M_NOWAIT);
1397 				INP_RUNLOCK(inp);
1398 				if (options != NULL) {
1399 					error = sooptcopyout(sopt,
1400 							     mtod(options, char *),
1401 							     options->m_len);
1402 					m_freem(options);
1403 				} else
1404 					error = ENOMEM;
1405 			} else {
1406 				INP_RUNLOCK(inp);
1407 				sopt->sopt_valsize = 0;
1408 			}
1409 			break;
1410 
1411 		case IP_TOS:
1412 		case IP_TTL:
1413 		case IP_MINTTL:
1414 		case IP_RECVOPTS:
1415 		case IP_RECVRETOPTS:
1416 		case IP_ORIGDSTADDR:
1417 		case IP_RECVDSTADDR:
1418 		case IP_RECVTTL:
1419 		case IP_RECVIF:
1420 		case IP_PORTRANGE:
1421 		case IP_ONESBCAST:
1422 		case IP_DONTFRAG:
1423 		case IP_BINDANY:
1424 		case IP_RECVTOS:
1425 		case IP_BINDMULTI:
1426 		case IP_FLOWID:
1427 		case IP_FLOWTYPE:
1428 		case IP_RECVFLOWID:
1429 #ifdef	RSS
1430 		case IP_RSSBUCKETID:
1431 		case IP_RECVRSSBUCKETID:
1432 #endif
1433 			switch (sopt->sopt_name) {
1434 			case IP_TOS:
1435 				optval = inp->inp_ip_tos;
1436 				break;
1437 
1438 			case IP_TTL:
1439 				optval = inp->inp_ip_ttl;
1440 				break;
1441 
1442 			case IP_MINTTL:
1443 				optval = inp->inp_ip_minttl;
1444 				break;
1445 
1446 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1447 #define	OPTBIT2(bit)	(inp->inp_flags2 & bit ? 1 : 0)
1448 
1449 			case IP_RECVOPTS:
1450 				optval = OPTBIT(INP_RECVOPTS);
1451 				break;
1452 
1453 			case IP_RECVRETOPTS:
1454 				optval = OPTBIT(INP_RECVRETOPTS);
1455 				break;
1456 
1457 			case IP_RECVDSTADDR:
1458 				optval = OPTBIT(INP_RECVDSTADDR);
1459 				break;
1460 
1461 			case IP_ORIGDSTADDR:
1462 				optval = OPTBIT2(INP_ORIGDSTADDR);
1463 				break;
1464 
1465 			case IP_RECVTTL:
1466 				optval = OPTBIT(INP_RECVTTL);
1467 				break;
1468 
1469 			case IP_RECVIF:
1470 				optval = OPTBIT(INP_RECVIF);
1471 				break;
1472 
1473 			case IP_PORTRANGE:
1474 				if (inp->inp_flags & INP_HIGHPORT)
1475 					optval = IP_PORTRANGE_HIGH;
1476 				else if (inp->inp_flags & INP_LOWPORT)
1477 					optval = IP_PORTRANGE_LOW;
1478 				else
1479 					optval = 0;
1480 				break;
1481 
1482 			case IP_ONESBCAST:
1483 				optval = OPTBIT(INP_ONESBCAST);
1484 				break;
1485 			case IP_DONTFRAG:
1486 				optval = OPTBIT(INP_DONTFRAG);
1487 				break;
1488 			case IP_BINDANY:
1489 				optval = OPTBIT(INP_BINDANY);
1490 				break;
1491 			case IP_RECVTOS:
1492 				optval = OPTBIT(INP_RECVTOS);
1493 				break;
1494 			case IP_FLOWID:
1495 				optval = inp->inp_flowid;
1496 				break;
1497 			case IP_FLOWTYPE:
1498 				optval = inp->inp_flowtype;
1499 				break;
1500 			case IP_RECVFLOWID:
1501 				optval = OPTBIT2(INP_RECVFLOWID);
1502 				break;
1503 #ifdef	RSS
1504 			case IP_RSSBUCKETID:
1505 				retval = rss_hash2bucket(inp->inp_flowid,
1506 				    inp->inp_flowtype,
1507 				    &rss_bucket);
1508 				if (retval == 0)
1509 					optval = rss_bucket;
1510 				else
1511 					error = EINVAL;
1512 				break;
1513 			case IP_RECVRSSBUCKETID:
1514 				optval = OPTBIT2(INP_RECVRSSBUCKETID);
1515 				break;
1516 #endif
1517 			case IP_BINDMULTI:
1518 				optval = OPTBIT2(INP_BINDMULTI);
1519 				break;
1520 			}
1521 			error = sooptcopyout(sopt, &optval, sizeof optval);
1522 			break;
1523 
1524 		/*
1525 		 * Multicast socket options are processed by the in_mcast
1526 		 * module.
1527 		 */
1528 		case IP_MULTICAST_IF:
1529 		case IP_MULTICAST_VIF:
1530 		case IP_MULTICAST_TTL:
1531 		case IP_MULTICAST_LOOP:
1532 		case IP_MSFILTER:
1533 			error = inp_getmoptions(inp, sopt);
1534 			break;
1535 
1536 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1537 		case IP_IPSEC_POLICY:
1538 			if (IPSEC_ENABLED(ipv4)) {
1539 				error = IPSEC_PCBCTL(ipv4, inp, sopt);
1540 				break;
1541 			}
1542 			/* FALLTHROUGH */
1543 #endif /* IPSEC */
1544 
1545 		default:
1546 			error = ENOPROTOOPT;
1547 			break;
1548 		}
1549 		break;
1550 	}
1551 	return (error);
1552 }
1553 
1554 /*
1555  * Routine called from ip_output() to loop back a copy of an IP multicast
1556  * packet to the input queue of a specified interface.  Note that this
1557  * calls the output routine of the loopback "driver", but with an interface
1558  * pointer that might NOT be a loopback interface -- evil, but easier than
1559  * replicating that code here.
1560  */
1561 static void
1562 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen)
1563 {
1564 	struct ip *ip;
1565 	struct mbuf *copym;
1566 
1567 	/*
1568 	 * Make a deep copy of the packet because we're going to
1569 	 * modify the pack in order to generate checksums.
1570 	 */
1571 	copym = m_dup(m, M_NOWAIT);
1572 	if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen))
1573 		copym = m_pullup(copym, hlen);
1574 	if (copym != NULL) {
1575 		/* If needed, compute the checksum and mark it as valid. */
1576 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1577 			in_delayed_cksum(copym);
1578 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1579 			copym->m_pkthdr.csum_flags |=
1580 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1581 			copym->m_pkthdr.csum_data = 0xffff;
1582 		}
1583 		/*
1584 		 * We don't bother to fragment if the IP length is greater
1585 		 * than the interface's MTU.  Can this possibly matter?
1586 		 */
1587 		ip = mtod(copym, struct ip *);
1588 		ip->ip_sum = 0;
1589 		ip->ip_sum = in_cksum(copym, hlen);
1590 		if_simloop(ifp, copym, AF_INET, 0);
1591 	}
1592 }
1593