1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_inet.h" 34 #include "opt_ipsec.h" 35 #include "opt_kern_tls.h" 36 #include "opt_mbuf_stress_test.h" 37 #include "opt_ratelimit.h" 38 #include "opt_route.h" 39 #include "opt_rss.h" 40 #include "opt_sctp.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/ktls.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/protosw.h> 52 #include <sys/sdt.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/sysctl.h> 56 #include <sys/ucred.h> 57 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #include <net/if_private.h> 61 #include <net/if_vlan_var.h> 62 #include <net/if_llatbl.h> 63 #include <net/ethernet.h> 64 #include <net/netisr.h> 65 #include <net/pfil.h> 66 #include <net/route.h> 67 #include <net/route/nhop.h> 68 #include <net/rss_config.h> 69 #include <net/vnet.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_fib.h> 73 #include <netinet/in_kdtrace.h> 74 #include <netinet/in_systm.h> 75 #include <netinet/ip.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_rss.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/ip_options.h> 82 83 #include <netinet/udp.h> 84 #include <netinet/udp_var.h> 85 86 #if defined(SCTP) || defined(SCTP_SUPPORT) 87 #include <netinet/sctp.h> 88 #include <netinet/sctp_crc32.h> 89 #endif 90 91 #include <netipsec/ipsec_support.h> 92 93 #include <machine/in_cksum.h> 94 95 #include <security/mac/mac_framework.h> 96 97 #ifdef MBUF_STRESS_TEST 98 static int mbuf_frag_size = 0; 99 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 100 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 101 #endif 102 103 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 104 105 extern int in_mcast_loop; 106 107 static inline int 108 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 109 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 110 { 111 struct m_tag *fwd_tag = NULL; 112 struct mbuf *m; 113 struct in_addr odst; 114 struct ip *ip; 115 int ret; 116 117 m = *mp; 118 ip = mtod(m, struct ip *); 119 120 /* Run through list of hooks for output packets. */ 121 odst.s_addr = ip->ip_dst.s_addr; 122 if (flags & IP_FORWARDING) 123 ret = pfil_mbuf_fwd(V_inet_pfil_head, mp, ifp, inp); 124 else 125 ret = pfil_mbuf_out(V_inet_pfil_head, mp, ifp, inp); 126 127 switch (ret) { 128 case PFIL_DROPPED: 129 *error = EACCES; 130 /* FALLTHROUGH */ 131 case PFIL_CONSUMED: 132 return 1; /* Finished */ 133 case PFIL_PASS: 134 *error = 0; 135 } 136 m = *mp; 137 ip = mtod(m, struct ip *); 138 139 /* See if destination IP address was changed by packet filter. */ 140 if (odst.s_addr != ip->ip_dst.s_addr) { 141 m->m_flags |= M_SKIP_FIREWALL; 142 /* If destination is now ourself drop to ip_input(). */ 143 if (in_localip(ip->ip_dst)) { 144 m->m_flags |= M_FASTFWD_OURS; 145 if (m->m_pkthdr.rcvif == NULL) 146 m->m_pkthdr.rcvif = V_loif; 147 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 148 m->m_pkthdr.csum_flags |= 149 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 150 m->m_pkthdr.csum_data = 0xffff; 151 } 152 m->m_pkthdr.csum_flags |= 153 CSUM_IP_CHECKED | CSUM_IP_VALID; 154 #if defined(SCTP) || defined(SCTP_SUPPORT) 155 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 156 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 157 #endif 158 *error = netisr_queue(NETISR_IP, m); 159 return 1; /* Finished */ 160 } 161 162 bzero(dst, sizeof(*dst)); 163 dst->sin_family = AF_INET; 164 dst->sin_len = sizeof(*dst); 165 dst->sin_addr = ip->ip_dst; 166 167 return -1; /* Reloop */ 168 } 169 /* See if fib was changed by packet filter. */ 170 if ((*fibnum) != M_GETFIB(m)) { 171 m->m_flags |= M_SKIP_FIREWALL; 172 *fibnum = M_GETFIB(m); 173 return -1; /* Reloop for FIB change */ 174 } 175 176 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 177 if (m->m_flags & M_FASTFWD_OURS) { 178 if (m->m_pkthdr.rcvif == NULL) 179 m->m_pkthdr.rcvif = V_loif; 180 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 181 m->m_pkthdr.csum_flags |= 182 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 183 m->m_pkthdr.csum_data = 0xffff; 184 } 185 #if defined(SCTP) || defined(SCTP_SUPPORT) 186 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 187 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 188 #endif 189 m->m_pkthdr.csum_flags |= 190 CSUM_IP_CHECKED | CSUM_IP_VALID; 191 192 *error = netisr_queue(NETISR_IP, m); 193 return 1; /* Finished */ 194 } 195 /* Or forward to some other address? */ 196 if ((m->m_flags & M_IP_NEXTHOP) && 197 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 198 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 199 m->m_flags |= M_SKIP_FIREWALL; 200 m->m_flags &= ~M_IP_NEXTHOP; 201 m_tag_delete(m, fwd_tag); 202 203 return -1; /* Reloop for CHANGE of dst */ 204 } 205 206 return 0; 207 } 208 209 static int 210 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 211 const struct sockaddr *gw, struct route *ro, bool stamp_tag) 212 { 213 #ifdef KERN_TLS 214 struct ktls_session *tls = NULL; 215 #endif 216 struct m_snd_tag *mst; 217 int error; 218 219 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 220 mst = NULL; 221 222 #ifdef KERN_TLS 223 /* 224 * If this is an unencrypted TLS record, save a reference to 225 * the record. This local reference is used to call 226 * ktls_output_eagain after the mbuf has been freed (thus 227 * dropping the mbuf's reference) in if_output. 228 */ 229 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 230 tls = ktls_hold(m->m_next->m_epg_tls); 231 mst = tls->snd_tag; 232 233 /* 234 * If a TLS session doesn't have a valid tag, it must 235 * have had an earlier ifp mismatch, so drop this 236 * packet. 237 */ 238 if (mst == NULL) { 239 m_freem(m); 240 error = EAGAIN; 241 goto done; 242 } 243 /* 244 * Always stamp tags that include NIC ktls. 245 */ 246 stamp_tag = true; 247 } 248 #endif 249 #ifdef RATELIMIT 250 if (inp != NULL && mst == NULL) { 251 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 252 (inp->inp_snd_tag != NULL && 253 inp->inp_snd_tag->ifp != ifp)) 254 in_pcboutput_txrtlmt(inp, ifp, m); 255 256 if (inp->inp_snd_tag != NULL) 257 mst = inp->inp_snd_tag; 258 } 259 #endif 260 if (stamp_tag && mst != NULL) { 261 KASSERT(m->m_pkthdr.rcvif == NULL, 262 ("trying to add a send tag to a forwarded packet")); 263 if (mst->ifp != ifp) { 264 m_freem(m); 265 error = EAGAIN; 266 goto done; 267 } 268 269 /* stamp send tag on mbuf */ 270 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 271 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 272 } 273 274 error = (*ifp->if_output)(ifp, m, gw, ro); 275 276 done: 277 /* Check for route change invalidating send tags. */ 278 #ifdef KERN_TLS 279 if (tls != NULL) { 280 if (error == EAGAIN) 281 error = ktls_output_eagain(inp, tls); 282 ktls_free(tls); 283 } 284 #endif 285 #ifdef RATELIMIT 286 if (error == EAGAIN) 287 in_pcboutput_eagain(inp); 288 #endif 289 return (error); 290 } 291 292 /* rte<>ro_flags translation */ 293 static inline void 294 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh) 295 { 296 int nh_flags = nh->nh_flags; 297 298 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 299 300 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 301 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 302 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 303 } 304 305 /* 306 * IP output. The packet in mbuf chain m contains a skeletal IP 307 * header (with len, off, ttl, proto, tos, src, dst). 308 * The mbuf chain containing the packet will be freed. 309 * The mbuf opt, if present, will not be freed. 310 * If route ro is present and has ro_rt initialized, route lookup would be 311 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 312 * then result of route lookup is stored in ro->ro_rt. 313 * 314 * In the IP forwarding case, the packet will arrive with options already 315 * inserted, so must have a NULL opt pointer. 316 */ 317 int 318 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 319 struct ip_moptions *imo, struct inpcb *inp) 320 { 321 struct ip *ip; 322 struct ifnet *ifp = NULL; /* keep compiler happy */ 323 struct mbuf *m0; 324 int hlen = sizeof (struct ip); 325 int mtu = 0; 326 int error = 0; 327 int vlan_pcp = -1; 328 struct sockaddr_in *dst; 329 const struct sockaddr *gw; 330 struct in_ifaddr *ia = NULL; 331 struct in_addr src; 332 bool isbroadcast; 333 uint16_t ip_len, ip_off; 334 struct route iproute; 335 uint32_t fibnum; 336 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 337 int no_route_but_check_spd = 0; 338 #endif 339 340 M_ASSERTPKTHDR(m); 341 NET_EPOCH_ASSERT(); 342 343 if (inp != NULL) { 344 INP_LOCK_ASSERT(inp); 345 M_SETFIB(m, inp->inp_inc.inc_fibnum); 346 if ((flags & IP_NODEFAULTFLOWID) == 0) { 347 m->m_pkthdr.flowid = inp->inp_flowid; 348 M_HASHTYPE_SET(m, inp->inp_flowtype); 349 } 350 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 351 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 352 INP_2PCP_SHIFT; 353 #ifdef NUMA 354 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 355 #endif 356 } 357 358 if (opt) { 359 int len = 0; 360 m = ip_insertoptions(m, opt, &len); 361 if (len != 0) 362 hlen = len; /* ip->ip_hl is updated above */ 363 } 364 ip = mtod(m, struct ip *); 365 ip_len = ntohs(ip->ip_len); 366 ip_off = ntohs(ip->ip_off); 367 368 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 369 ip->ip_v = IPVERSION; 370 ip->ip_hl = hlen >> 2; 371 ip_fillid(ip); 372 } else { 373 /* Header already set, fetch hlen from there */ 374 hlen = ip->ip_hl << 2; 375 } 376 if ((flags & IP_FORWARDING) == 0) 377 IPSTAT_INC(ips_localout); 378 379 /* 380 * dst/gw handling: 381 * 382 * gw is readonly but can point either to dst OR rt_gateway, 383 * therefore we need restore gw if we're redoing lookup. 384 */ 385 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 386 if (ro == NULL) { 387 ro = &iproute; 388 bzero(ro, sizeof (*ro)); 389 } 390 dst = (struct sockaddr_in *)&ro->ro_dst; 391 if (ro->ro_nh == NULL) { 392 dst->sin_family = AF_INET; 393 dst->sin_len = sizeof(*dst); 394 dst->sin_addr = ip->ip_dst; 395 } 396 gw = (const struct sockaddr *)dst; 397 again: 398 /* 399 * Validate route against routing table additions; 400 * a better/more specific route might have been added. 401 */ 402 if (inp != NULL && ro->ro_nh != NULL) 403 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 404 /* 405 * If there is a cached route, 406 * check that it is to the same destination 407 * and is still up. If not, free it and try again. 408 * The address family should also be checked in case of sharing the 409 * cache with IPv6. 410 * Also check whether routing cache needs invalidation. 411 */ 412 if (ro->ro_nh != NULL && 413 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 414 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 415 RO_INVALIDATE_CACHE(ro); 416 ia = NULL; 417 /* 418 * If routing to interface only, short circuit routing lookup. 419 * The use of an all-ones broadcast address implies this; an 420 * interface is specified by the broadcast address of an interface, 421 * or the destination address of a ptp interface. 422 */ 423 if (flags & IP_SENDONES) { 424 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 425 M_GETFIB(m)))) == NULL && 426 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 427 M_GETFIB(m)))) == NULL) { 428 IPSTAT_INC(ips_noroute); 429 error = ENETUNREACH; 430 goto bad; 431 } 432 ip->ip_dst.s_addr = INADDR_BROADCAST; 433 dst->sin_addr = ip->ip_dst; 434 ifp = ia->ia_ifp; 435 mtu = ifp->if_mtu; 436 ip->ip_ttl = 1; 437 isbroadcast = true; 438 src = IA_SIN(ia)->sin_addr; 439 } else if (flags & IP_ROUTETOIF) { 440 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 441 M_GETFIB(m)))) == NULL && 442 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 443 M_GETFIB(m)))) == NULL) { 444 IPSTAT_INC(ips_noroute); 445 error = ENETUNREACH; 446 goto bad; 447 } 448 ifp = ia->ia_ifp; 449 mtu = ifp->if_mtu; 450 ip->ip_ttl = 1; 451 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 452 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 453 src = IA_SIN(ia)->sin_addr; 454 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 455 imo != NULL && imo->imo_multicast_ifp != NULL) { 456 /* 457 * Bypass the normal routing lookup for multicast 458 * packets if the interface is specified. 459 */ 460 ifp = imo->imo_multicast_ifp; 461 mtu = ifp->if_mtu; 462 IFP_TO_IA(ifp, ia); 463 isbroadcast = false; 464 /* Interface may have no addresses. */ 465 if (ia != NULL) 466 src = IA_SIN(ia)->sin_addr; 467 else 468 src.s_addr = INADDR_ANY; 469 } else if (ro != &iproute) { 470 if (ro->ro_nh == NULL) { 471 /* 472 * We want to do any cloning requested by the link 473 * layer, as this is probably required in all cases 474 * for correct operation (as it is for ARP). 475 */ 476 uint32_t flowid; 477 flowid = m->m_pkthdr.flowid; 478 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 479 NHR_REF, flowid); 480 481 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 482 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 483 /* 484 * There is no route for this packet, but it is 485 * possible that a matching SPD entry exists. 486 */ 487 no_route_but_check_spd = 1; 488 goto sendit; 489 #endif 490 IPSTAT_INC(ips_noroute); 491 error = EHOSTUNREACH; 492 goto bad; 493 } 494 } 495 struct nhop_object *nh = ro->ro_nh; 496 497 ia = ifatoia(nh->nh_ifa); 498 ifp = nh->nh_ifp; 499 counter_u64_add(nh->nh_pksent, 1); 500 rt_update_ro_flags(ro, nh); 501 if (nh->nh_flags & NHF_GATEWAY) 502 gw = &nh->gw_sa; 503 if (nh->nh_flags & NHF_HOST) 504 isbroadcast = (nh->nh_flags & NHF_BROADCAST); 505 else if ((ifp->if_flags & IFF_BROADCAST) && (gw->sa_family == AF_INET)) 506 isbroadcast = in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia); 507 else 508 isbroadcast = false; 509 mtu = nh->nh_mtu; 510 src = IA_SIN(ia)->sin_addr; 511 } else { 512 struct nhop_object *nh; 513 514 nh = fib4_lookup(M_GETFIB(m), dst->sin_addr, 0, NHR_NONE, 515 m->m_pkthdr.flowid); 516 if (nh == NULL) { 517 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 518 /* 519 * There is no route for this packet, but it is 520 * possible that a matching SPD entry exists. 521 */ 522 no_route_but_check_spd = 1; 523 goto sendit; 524 #endif 525 IPSTAT_INC(ips_noroute); 526 error = EHOSTUNREACH; 527 goto bad; 528 } 529 ifp = nh->nh_ifp; 530 mtu = nh->nh_mtu; 531 rt_update_ro_flags(ro, nh); 532 if (nh->nh_flags & NHF_GATEWAY) 533 gw = &nh->gw_sa; 534 ia = ifatoia(nh->nh_ifa); 535 src = IA_SIN(ia)->sin_addr; 536 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 537 (NHF_HOST | NHF_BROADCAST)) || 538 ((ifp->if_flags & IFF_BROADCAST) && 539 (gw->sa_family == AF_INET) && 540 in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia))); 541 } 542 543 /* Catch a possible divide by zero later. */ 544 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 545 __func__, mtu, ro, 546 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 547 548 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 549 m->m_flags |= M_MCAST; 550 /* 551 * IP destination address is multicast. Make sure "gw" 552 * still points to the address in "ro". (It may have been 553 * changed to point to a gateway address, above.) 554 */ 555 gw = (const struct sockaddr *)dst; 556 /* 557 * See if the caller provided any multicast options 558 */ 559 if (imo != NULL) { 560 ip->ip_ttl = imo->imo_multicast_ttl; 561 if (imo->imo_multicast_vif != -1) 562 ip->ip_src.s_addr = 563 ip_mcast_src ? 564 ip_mcast_src(imo->imo_multicast_vif) : 565 INADDR_ANY; 566 } else 567 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 568 /* 569 * Confirm that the outgoing interface supports multicast. 570 */ 571 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 572 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 573 IPSTAT_INC(ips_noroute); 574 error = ENETUNREACH; 575 goto bad; 576 } 577 } 578 /* 579 * If source address not specified yet, use address 580 * of outgoing interface. 581 */ 582 if (ip->ip_src.s_addr == INADDR_ANY) 583 ip->ip_src = src; 584 585 if ((imo == NULL && in_mcast_loop) || 586 (imo && imo->imo_multicast_loop)) { 587 /* 588 * Loop back multicast datagram if not expressly 589 * forbidden to do so, even if we are not a member 590 * of the group; ip_input() will filter it later, 591 * thus deferring a hash lookup and mutex acquisition 592 * at the expense of a cheap copy using m_copym(). 593 */ 594 ip_mloopback(ifp, m, hlen); 595 } else { 596 /* 597 * If we are acting as a multicast router, perform 598 * multicast forwarding as if the packet had just 599 * arrived on the interface to which we are about 600 * to send. The multicast forwarding function 601 * recursively calls this function, using the 602 * IP_FORWARDING flag to prevent infinite recursion. 603 * 604 * Multicasts that are looped back by ip_mloopback(), 605 * above, will be forwarded by the ip_input() routine, 606 * if necessary. 607 */ 608 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 609 /* 610 * If rsvp daemon is not running, do not 611 * set ip_moptions. This ensures that the packet 612 * is multicast and not just sent down one link 613 * as prescribed by rsvpd. 614 */ 615 if (!V_rsvp_on) 616 imo = NULL; 617 if (ip_mforward && 618 ip_mforward(ip, ifp, m, imo) != 0) { 619 m_freem(m); 620 goto done; 621 } 622 } 623 } 624 625 /* 626 * Multicasts with a time-to-live of zero may be looped- 627 * back, above, but must not be transmitted on a network. 628 * Also, multicasts addressed to the loopback interface 629 * are not sent -- the above call to ip_mloopback() will 630 * loop back a copy. ip_input() will drop the copy if 631 * this host does not belong to the destination group on 632 * the loopback interface. 633 */ 634 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 635 m_freem(m); 636 goto done; 637 } 638 639 goto sendit; 640 } 641 642 /* 643 * If the source address is not specified yet, use the address 644 * of the outoing interface. 645 */ 646 if (ip->ip_src.s_addr == INADDR_ANY) 647 ip->ip_src = src; 648 649 /* 650 * Look for broadcast address and 651 * verify user is allowed to send 652 * such a packet. 653 */ 654 if (isbroadcast) { 655 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 656 error = EADDRNOTAVAIL; 657 goto bad; 658 } 659 if ((flags & IP_ALLOWBROADCAST) == 0) { 660 error = EACCES; 661 goto bad; 662 } 663 /* don't allow broadcast messages to be fragmented */ 664 if (ip_len > mtu) { 665 error = EMSGSIZE; 666 goto bad; 667 } 668 m->m_flags |= M_BCAST; 669 } else { 670 m->m_flags &= ~M_BCAST; 671 } 672 673 sendit: 674 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 675 if (IPSEC_ENABLED(ipv4)) { 676 struct ip ip_hdr; 677 678 if ((error = IPSEC_OUTPUT(ipv4, ifp, m, inp, mtu)) != 0) { 679 if (error == EINPROGRESS) 680 error = 0; 681 goto done; 682 } 683 684 /* Update variables that are affected by ipsec4_output(). */ 685 m_copydata(m, 0, sizeof(ip_hdr), (char *)&ip_hdr); 686 hlen = ip_hdr.ip_hl << 2; 687 } 688 689 /* 690 * Check if there was a route for this packet; return error if not. 691 */ 692 if (no_route_but_check_spd) { 693 IPSTAT_INC(ips_noroute); 694 error = EHOSTUNREACH; 695 goto bad; 696 } 697 #endif /* IPSEC */ 698 699 /* Jump over all PFIL processing if hooks are not active. */ 700 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 701 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 702 &error)) { 703 case 1: /* Finished */ 704 goto done; 705 706 case 0: /* Continue normally */ 707 ip = mtod(m, struct ip *); 708 ip_len = ntohs(ip->ip_len); 709 break; 710 711 case -1: /* Need to try again */ 712 /* Reset everything for a new round */ 713 if (ro != NULL) { 714 RO_NHFREE(ro); 715 ro->ro_prepend = NULL; 716 } 717 gw = (const struct sockaddr *)dst; 718 ip = mtod(m, struct ip *); 719 goto again; 720 } 721 } 722 723 if (vlan_pcp > -1) 724 EVL_APPLY_PRI(m, vlan_pcp); 725 726 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 727 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 728 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 729 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 730 IPSTAT_INC(ips_badaddr); 731 error = EADDRNOTAVAIL; 732 goto bad; 733 } 734 } 735 736 /* Ensure the packet data is mapped if the interface requires it. */ 737 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 738 struct mbuf *m1; 739 740 error = mb_unmapped_to_ext(m, &m1); 741 if (error != 0) { 742 if (error == EINVAL) { 743 if_printf(ifp, "TLS packet\n"); 744 /* XXXKIB */ 745 } else if (error == ENOMEM) { 746 error = ENOBUFS; 747 } 748 IPSTAT_INC(ips_odropped); 749 goto bad; 750 } else { 751 m = m1; 752 } 753 } 754 755 m->m_pkthdr.csum_flags |= CSUM_IP; 756 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 757 in_delayed_cksum(m); 758 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 759 } 760 #if defined(SCTP) || defined(SCTP_SUPPORT) 761 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 762 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 763 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 764 } 765 #endif 766 767 /* 768 * If small enough for interface, or the interface will take 769 * care of the fragmentation for us, we can just send directly. 770 * Note that if_vxlan could have requested TSO even though the outer 771 * frame is UDP. It is correct to not fragment such datagrams and 772 * instead just pass them on to the driver. 773 */ 774 if (ip_len <= mtu || 775 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 776 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 777 ip->ip_sum = 0; 778 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 779 ip->ip_sum = in_cksum(m, hlen); 780 m->m_pkthdr.csum_flags &= ~CSUM_IP; 781 } 782 783 /* 784 * Record statistics for this interface address. 785 * With CSUM_TSO the byte/packet count will be slightly 786 * incorrect because we count the IP+TCP headers only 787 * once instead of for every generated packet. 788 */ 789 if (!(flags & IP_FORWARDING) && ia) { 790 if (m->m_pkthdr.csum_flags & 791 (CSUM_TSO | CSUM_INNER_TSO)) 792 counter_u64_add(ia->ia_ifa.ifa_opackets, 793 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 794 else 795 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 796 797 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 798 } 799 #ifdef MBUF_STRESS_TEST 800 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 801 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 802 #endif 803 /* 804 * Reset layer specific mbuf flags 805 * to avoid confusing lower layers. 806 */ 807 m_clrprotoflags(m); 808 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 809 error = ip_output_send(inp, ifp, m, gw, ro, 810 (flags & IP_NO_SND_TAG_RL) ? false : true); 811 goto done; 812 } 813 814 /* Balk when DF bit is set or the interface didn't support TSO. */ 815 if ((ip_off & IP_DF) || 816 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 817 error = EMSGSIZE; 818 IPSTAT_INC(ips_cantfrag); 819 goto bad; 820 } 821 822 /* 823 * Too large for interface; fragment if possible. If successful, 824 * on return, m will point to a list of packets to be sent. 825 */ 826 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 827 if (error) 828 goto bad; 829 for (; m; m = m0) { 830 m0 = m->m_nextpkt; 831 m->m_nextpkt = 0; 832 if (error == 0) { 833 /* Record statistics for this interface address. */ 834 if (ia != NULL) { 835 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 836 counter_u64_add(ia->ia_ifa.ifa_obytes, 837 m->m_pkthdr.len); 838 } 839 /* 840 * Reset layer specific mbuf flags 841 * to avoid confusing upper layers. 842 */ 843 m_clrprotoflags(m); 844 845 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 846 mtod(m, struct ip *), NULL); 847 error = ip_output_send(inp, ifp, m, gw, ro, true); 848 } else 849 m_freem(m); 850 } 851 852 if (error == 0) 853 IPSTAT_INC(ips_fragmented); 854 855 done: 856 return (error); 857 bad: 858 m_freem(m); 859 goto done; 860 } 861 862 /* 863 * Create a chain of fragments which fit the given mtu. m_frag points to the 864 * mbuf to be fragmented; on return it points to the chain with the fragments. 865 * Return 0 if no error. If error, m_frag may contain a partially built 866 * chain of fragments that should be freed by the caller. 867 * 868 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 869 */ 870 int 871 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 872 u_long if_hwassist_flags) 873 { 874 int error = 0; 875 int hlen = ip->ip_hl << 2; 876 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 877 int off; 878 struct mbuf *m0 = *m_frag; /* the original packet */ 879 int firstlen; 880 struct mbuf **mnext; 881 int nfrags; 882 uint16_t ip_len, ip_off; 883 884 ip_len = ntohs(ip->ip_len); 885 ip_off = ntohs(ip->ip_off); 886 887 /* 888 * Packet shall not have "Don't Fragment" flag and have at least 8 889 * bytes of payload. 890 */ 891 if (__predict_false((ip_off & IP_DF) || len < 8)) { 892 IPSTAT_INC(ips_cantfrag); 893 return (EMSGSIZE); 894 } 895 896 /* 897 * If the interface will not calculate checksums on 898 * fragmented packets, then do it here. 899 */ 900 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 901 in_delayed_cksum(m0); 902 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 903 } 904 #if defined(SCTP) || defined(SCTP_SUPPORT) 905 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 906 sctp_delayed_cksum(m0, hlen); 907 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 908 } 909 #endif 910 if (len > PAGE_SIZE) { 911 /* 912 * Fragment large datagrams such that each segment 913 * contains a multiple of PAGE_SIZE amount of data, 914 * plus headers. This enables a receiver to perform 915 * page-flipping zero-copy optimizations. 916 * 917 * XXX When does this help given that sender and receiver 918 * could have different page sizes, and also mtu could 919 * be less than the receiver's page size ? 920 */ 921 int newlen; 922 923 off = MIN(mtu, m0->m_pkthdr.len); 924 925 /* 926 * firstlen (off - hlen) must be aligned on an 927 * 8-byte boundary 928 */ 929 if (off < hlen) 930 goto smart_frag_failure; 931 off = ((off - hlen) & ~7) + hlen; 932 newlen = (~PAGE_MASK) & mtu; 933 if ((newlen + sizeof (struct ip)) > mtu) { 934 /* we failed, go back the default */ 935 smart_frag_failure: 936 newlen = len; 937 off = hlen + len; 938 } 939 len = newlen; 940 941 } else { 942 off = hlen + len; 943 } 944 945 firstlen = off - hlen; 946 mnext = &m0->m_nextpkt; /* pointer to next packet */ 947 948 /* 949 * Loop through length of segment after first fragment, 950 * make new header and copy data of each part and link onto chain. 951 * Here, m0 is the original packet, m is the fragment being created. 952 * The fragments are linked off the m_nextpkt of the original 953 * packet, which after processing serves as the first fragment. 954 */ 955 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 956 struct ip *mhip; /* ip header on the fragment */ 957 struct mbuf *m; 958 int mhlen = sizeof (struct ip); 959 960 m = m_gethdr(M_NOWAIT, MT_DATA); 961 if (m == NULL) { 962 error = ENOBUFS; 963 IPSTAT_INC(ips_odropped); 964 goto done; 965 } 966 /* 967 * Make sure the complete packet header gets copied 968 * from the originating mbuf to the newly created 969 * mbuf. This also ensures that existing firewall 970 * classification(s), VLAN tags and so on get copied 971 * to the resulting fragmented packet(s): 972 */ 973 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 974 m_free(m); 975 error = ENOBUFS; 976 IPSTAT_INC(ips_odropped); 977 goto done; 978 } 979 /* 980 * In the first mbuf, leave room for the link header, then 981 * copy the original IP header including options. The payload 982 * goes into an additional mbuf chain returned by m_copym(). 983 */ 984 m->m_data += max_linkhdr; 985 mhip = mtod(m, struct ip *); 986 *mhip = *ip; 987 if (hlen > sizeof (struct ip)) { 988 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 989 mhip->ip_v = IPVERSION; 990 mhip->ip_hl = mhlen >> 2; 991 } 992 m->m_len = mhlen; 993 /* XXX do we need to add ip_off below ? */ 994 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 995 if (off + len >= ip_len) 996 len = ip_len - off; 997 else 998 mhip->ip_off |= IP_MF; 999 mhip->ip_len = htons((u_short)(len + mhlen)); 1000 m->m_next = m_copym(m0, off, len, M_NOWAIT); 1001 if (m->m_next == NULL) { /* copy failed */ 1002 m_free(m); 1003 error = ENOBUFS; /* ??? */ 1004 IPSTAT_INC(ips_odropped); 1005 goto done; 1006 } 1007 m->m_pkthdr.len = mhlen + len; 1008 #ifdef MAC 1009 mac_netinet_fragment(m0, m); 1010 #endif 1011 mhip->ip_off = htons(mhip->ip_off); 1012 mhip->ip_sum = 0; 1013 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1014 mhip->ip_sum = in_cksum(m, mhlen); 1015 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1016 } 1017 *mnext = m; 1018 mnext = &m->m_nextpkt; 1019 } 1020 IPSTAT_ADD(ips_ofragments, nfrags); 1021 1022 /* 1023 * Update first fragment by trimming what's been copied out 1024 * and updating header. 1025 */ 1026 m_adj(m0, hlen + firstlen - ip_len); 1027 m0->m_pkthdr.len = hlen + firstlen; 1028 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1029 ip->ip_off = htons(ip_off | IP_MF); 1030 ip->ip_sum = 0; 1031 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1032 ip->ip_sum = in_cksum(m0, hlen); 1033 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1034 } 1035 1036 done: 1037 *m_frag = m0; 1038 return error; 1039 } 1040 1041 void 1042 in_delayed_cksum(struct mbuf *m) 1043 { 1044 struct ip *ip; 1045 struct udphdr *uh; 1046 uint16_t cklen, csum, offset; 1047 1048 ip = mtod(m, struct ip *); 1049 offset = ip->ip_hl << 2 ; 1050 1051 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1052 /* if udp header is not in the first mbuf copy udplen */ 1053 if (offset + sizeof(struct udphdr) > m->m_len) { 1054 m_copydata(m, offset + offsetof(struct udphdr, 1055 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1056 cklen = ntohs(cklen); 1057 } else { 1058 uh = (struct udphdr *)mtodo(m, offset); 1059 cklen = ntohs(uh->uh_ulen); 1060 } 1061 csum = in_cksum_skip(m, cklen + offset, offset); 1062 if (csum == 0) 1063 csum = 0xffff; 1064 } else { 1065 cklen = ntohs(ip->ip_len); 1066 csum = in_cksum_skip(m, cklen, offset); 1067 } 1068 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1069 1070 if (offset + sizeof(csum) > m->m_len) 1071 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1072 else 1073 *(u_short *)mtodo(m, offset) = csum; 1074 } 1075 1076 /* 1077 * IP socket option processing. 1078 */ 1079 int 1080 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1081 { 1082 struct inpcb *inp = sotoinpcb(so); 1083 int error, optval; 1084 #ifdef RSS 1085 uint32_t rss_bucket; 1086 int retval; 1087 #endif 1088 1089 error = optval = 0; 1090 if (sopt->sopt_level != IPPROTO_IP) { 1091 error = EINVAL; 1092 1093 if (sopt->sopt_level == SOL_SOCKET && 1094 sopt->sopt_dir == SOPT_SET) { 1095 switch (sopt->sopt_name) { 1096 case SO_SETFIB: 1097 error = sooptcopyin(sopt, &optval, 1098 sizeof(optval), sizeof(optval)); 1099 if (error != 0) 1100 break; 1101 1102 INP_WLOCK(inp); 1103 if ((inp->inp_flags & INP_BOUNDFIB) != 0 && 1104 optval != so->so_fibnum) { 1105 INP_WUNLOCK(inp); 1106 error = EISCONN; 1107 break; 1108 } 1109 error = sosetfib(inp->inp_socket, optval); 1110 if (error == 0) 1111 inp->inp_inc.inc_fibnum = optval; 1112 INP_WUNLOCK(inp); 1113 break; 1114 case SO_MAX_PACING_RATE: 1115 #ifdef RATELIMIT 1116 INP_WLOCK(inp); 1117 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1118 INP_WUNLOCK(inp); 1119 error = 0; 1120 #else 1121 error = EOPNOTSUPP; 1122 #endif 1123 break; 1124 default: 1125 break; 1126 } 1127 } 1128 return (error); 1129 } 1130 1131 switch (sopt->sopt_dir) { 1132 case SOPT_SET: 1133 switch (sopt->sopt_name) { 1134 case IP_OPTIONS: 1135 #ifdef notyet 1136 case IP_RETOPTS: 1137 #endif 1138 { 1139 struct mbuf *m; 1140 if (sopt->sopt_valsize > MLEN) { 1141 error = EMSGSIZE; 1142 break; 1143 } 1144 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1145 if (m == NULL) { 1146 error = ENOBUFS; 1147 break; 1148 } 1149 m->m_len = sopt->sopt_valsize; 1150 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1151 m->m_len); 1152 if (error) { 1153 m_free(m); 1154 break; 1155 } 1156 INP_WLOCK(inp); 1157 error = ip_pcbopts(inp, sopt->sopt_name, m); 1158 INP_WUNLOCK(inp); 1159 return (error); 1160 } 1161 1162 case IP_BINDANY: 1163 if (sopt->sopt_td != NULL) { 1164 error = priv_check(sopt->sopt_td, 1165 PRIV_NETINET_BINDANY); 1166 if (error) 1167 break; 1168 } 1169 /* FALLTHROUGH */ 1170 case IP_TOS: 1171 case IP_TTL: 1172 case IP_MINTTL: 1173 case IP_RECVOPTS: 1174 case IP_RECVRETOPTS: 1175 case IP_ORIGDSTADDR: 1176 case IP_RECVDSTADDR: 1177 case IP_RECVTTL: 1178 case IP_RECVIF: 1179 case IP_ONESBCAST: 1180 case IP_DONTFRAG: 1181 case IP_RECVTOS: 1182 case IP_RECVFLOWID: 1183 #ifdef RSS 1184 case IP_RECVRSSBUCKETID: 1185 #endif 1186 case IP_VLAN_PCP: 1187 error = sooptcopyin(sopt, &optval, sizeof optval, 1188 sizeof optval); 1189 if (error) 1190 break; 1191 1192 switch (sopt->sopt_name) { 1193 case IP_TOS: 1194 inp->inp_ip_tos = optval; 1195 break; 1196 1197 case IP_TTL: 1198 inp->inp_ip_ttl = optval; 1199 break; 1200 1201 case IP_MINTTL: 1202 if (optval >= 0 && optval <= MAXTTL) 1203 inp->inp_ip_minttl = optval; 1204 else 1205 error = EINVAL; 1206 break; 1207 1208 #define OPTSET(bit) do { \ 1209 INP_WLOCK(inp); \ 1210 if (optval) \ 1211 inp->inp_flags |= bit; \ 1212 else \ 1213 inp->inp_flags &= ~bit; \ 1214 INP_WUNLOCK(inp); \ 1215 } while (0) 1216 1217 #define OPTSET2(bit, val) do { \ 1218 INP_WLOCK(inp); \ 1219 if (val) \ 1220 inp->inp_flags2 |= bit; \ 1221 else \ 1222 inp->inp_flags2 &= ~bit; \ 1223 INP_WUNLOCK(inp); \ 1224 } while (0) 1225 1226 case IP_RECVOPTS: 1227 OPTSET(INP_RECVOPTS); 1228 break; 1229 1230 case IP_RECVRETOPTS: 1231 OPTSET(INP_RECVRETOPTS); 1232 break; 1233 1234 case IP_RECVDSTADDR: 1235 OPTSET(INP_RECVDSTADDR); 1236 break; 1237 1238 case IP_ORIGDSTADDR: 1239 OPTSET2(INP_ORIGDSTADDR, optval); 1240 break; 1241 1242 case IP_RECVTTL: 1243 OPTSET(INP_RECVTTL); 1244 break; 1245 1246 case IP_RECVIF: 1247 OPTSET(INP_RECVIF); 1248 break; 1249 1250 case IP_ONESBCAST: 1251 OPTSET(INP_ONESBCAST); 1252 break; 1253 case IP_DONTFRAG: 1254 OPTSET(INP_DONTFRAG); 1255 break; 1256 case IP_BINDANY: 1257 OPTSET(INP_BINDANY); 1258 break; 1259 case IP_RECVTOS: 1260 OPTSET(INP_RECVTOS); 1261 break; 1262 case IP_RECVFLOWID: 1263 OPTSET2(INP_RECVFLOWID, optval); 1264 break; 1265 #ifdef RSS 1266 case IP_RECVRSSBUCKETID: 1267 OPTSET2(INP_RECVRSSBUCKETID, optval); 1268 break; 1269 #endif 1270 case IP_VLAN_PCP: 1271 if ((optval >= -1) && (optval <= 1272 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1273 if (optval == -1) { 1274 INP_WLOCK(inp); 1275 inp->inp_flags2 &= 1276 ~(INP_2PCP_SET | 1277 INP_2PCP_MASK); 1278 INP_WUNLOCK(inp); 1279 } else { 1280 INP_WLOCK(inp); 1281 inp->inp_flags2 |= 1282 INP_2PCP_SET; 1283 inp->inp_flags2 &= 1284 ~INP_2PCP_MASK; 1285 inp->inp_flags2 |= 1286 optval << INP_2PCP_SHIFT; 1287 INP_WUNLOCK(inp); 1288 } 1289 } else 1290 error = EINVAL; 1291 break; 1292 } 1293 break; 1294 #undef OPTSET 1295 #undef OPTSET2 1296 1297 /* 1298 * Multicast socket options are processed by the in_mcast 1299 * module. 1300 */ 1301 case IP_MULTICAST_IF: 1302 case IP_MULTICAST_VIF: 1303 case IP_MULTICAST_TTL: 1304 case IP_MULTICAST_LOOP: 1305 case IP_ADD_MEMBERSHIP: 1306 case IP_DROP_MEMBERSHIP: 1307 case IP_ADD_SOURCE_MEMBERSHIP: 1308 case IP_DROP_SOURCE_MEMBERSHIP: 1309 case IP_BLOCK_SOURCE: 1310 case IP_UNBLOCK_SOURCE: 1311 case IP_MSFILTER: 1312 case MCAST_JOIN_GROUP: 1313 case MCAST_LEAVE_GROUP: 1314 case MCAST_JOIN_SOURCE_GROUP: 1315 case MCAST_LEAVE_SOURCE_GROUP: 1316 case MCAST_BLOCK_SOURCE: 1317 case MCAST_UNBLOCK_SOURCE: 1318 error = inp_setmoptions(inp, sopt); 1319 break; 1320 1321 case IP_PORTRANGE: 1322 error = sooptcopyin(sopt, &optval, sizeof optval, 1323 sizeof optval); 1324 if (error) 1325 break; 1326 1327 INP_WLOCK(inp); 1328 switch (optval) { 1329 case IP_PORTRANGE_DEFAULT: 1330 inp->inp_flags &= ~(INP_LOWPORT); 1331 inp->inp_flags &= ~(INP_HIGHPORT); 1332 break; 1333 1334 case IP_PORTRANGE_HIGH: 1335 inp->inp_flags &= ~(INP_LOWPORT); 1336 inp->inp_flags |= INP_HIGHPORT; 1337 break; 1338 1339 case IP_PORTRANGE_LOW: 1340 inp->inp_flags &= ~(INP_HIGHPORT); 1341 inp->inp_flags |= INP_LOWPORT; 1342 break; 1343 1344 default: 1345 error = EINVAL; 1346 break; 1347 } 1348 INP_WUNLOCK(inp); 1349 break; 1350 1351 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1352 case IP_IPSEC_POLICY: 1353 if (IPSEC_ENABLED(ipv4)) { 1354 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1355 break; 1356 } 1357 /* FALLTHROUGH */ 1358 #endif /* IPSEC */ 1359 1360 default: 1361 error = ENOPROTOOPT; 1362 break; 1363 } 1364 break; 1365 1366 case SOPT_GET: 1367 switch (sopt->sopt_name) { 1368 case IP_OPTIONS: 1369 case IP_RETOPTS: 1370 INP_RLOCK(inp); 1371 if (inp->inp_options) { 1372 struct mbuf *options; 1373 1374 options = m_copym(inp->inp_options, 0, 1375 M_COPYALL, M_NOWAIT); 1376 INP_RUNLOCK(inp); 1377 if (options != NULL) { 1378 error = sooptcopyout(sopt, 1379 mtod(options, char *), 1380 options->m_len); 1381 m_freem(options); 1382 } else 1383 error = ENOMEM; 1384 } else { 1385 INP_RUNLOCK(inp); 1386 sopt->sopt_valsize = 0; 1387 } 1388 break; 1389 1390 case IP_TOS: 1391 case IP_TTL: 1392 case IP_MINTTL: 1393 case IP_RECVOPTS: 1394 case IP_RECVRETOPTS: 1395 case IP_ORIGDSTADDR: 1396 case IP_RECVDSTADDR: 1397 case IP_RECVTTL: 1398 case IP_RECVIF: 1399 case IP_PORTRANGE: 1400 case IP_ONESBCAST: 1401 case IP_DONTFRAG: 1402 case IP_BINDANY: 1403 case IP_RECVTOS: 1404 case IP_FLOWID: 1405 case IP_FLOWTYPE: 1406 case IP_RECVFLOWID: 1407 #ifdef RSS 1408 case IP_RSSBUCKETID: 1409 case IP_RECVRSSBUCKETID: 1410 #endif 1411 case IP_VLAN_PCP: 1412 switch (sopt->sopt_name) { 1413 case IP_TOS: 1414 optval = inp->inp_ip_tos; 1415 break; 1416 1417 case IP_TTL: 1418 optval = inp->inp_ip_ttl; 1419 break; 1420 1421 case IP_MINTTL: 1422 optval = inp->inp_ip_minttl; 1423 break; 1424 1425 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1426 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1427 1428 case IP_RECVOPTS: 1429 optval = OPTBIT(INP_RECVOPTS); 1430 break; 1431 1432 case IP_RECVRETOPTS: 1433 optval = OPTBIT(INP_RECVRETOPTS); 1434 break; 1435 1436 case IP_RECVDSTADDR: 1437 optval = OPTBIT(INP_RECVDSTADDR); 1438 break; 1439 1440 case IP_ORIGDSTADDR: 1441 optval = OPTBIT2(INP_ORIGDSTADDR); 1442 break; 1443 1444 case IP_RECVTTL: 1445 optval = OPTBIT(INP_RECVTTL); 1446 break; 1447 1448 case IP_RECVIF: 1449 optval = OPTBIT(INP_RECVIF); 1450 break; 1451 1452 case IP_PORTRANGE: 1453 if (inp->inp_flags & INP_HIGHPORT) 1454 optval = IP_PORTRANGE_HIGH; 1455 else if (inp->inp_flags & INP_LOWPORT) 1456 optval = IP_PORTRANGE_LOW; 1457 else 1458 optval = 0; 1459 break; 1460 1461 case IP_ONESBCAST: 1462 optval = OPTBIT(INP_ONESBCAST); 1463 break; 1464 case IP_DONTFRAG: 1465 optval = OPTBIT(INP_DONTFRAG); 1466 break; 1467 case IP_BINDANY: 1468 optval = OPTBIT(INP_BINDANY); 1469 break; 1470 case IP_RECVTOS: 1471 optval = OPTBIT(INP_RECVTOS); 1472 break; 1473 case IP_FLOWID: 1474 optval = inp->inp_flowid; 1475 break; 1476 case IP_FLOWTYPE: 1477 optval = inp->inp_flowtype; 1478 break; 1479 case IP_RECVFLOWID: 1480 optval = OPTBIT2(INP_RECVFLOWID); 1481 break; 1482 #ifdef RSS 1483 case IP_RSSBUCKETID: 1484 retval = rss_hash2bucket(inp->inp_flowid, 1485 inp->inp_flowtype, 1486 &rss_bucket); 1487 if (retval == 0) 1488 optval = rss_bucket; 1489 else 1490 error = EINVAL; 1491 break; 1492 case IP_RECVRSSBUCKETID: 1493 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1494 break; 1495 #endif 1496 case IP_VLAN_PCP: 1497 if (OPTBIT2(INP_2PCP_SET)) { 1498 optval = (inp->inp_flags2 & 1499 INP_2PCP_MASK) >> INP_2PCP_SHIFT; 1500 } else { 1501 optval = -1; 1502 } 1503 break; 1504 } 1505 error = sooptcopyout(sopt, &optval, sizeof optval); 1506 break; 1507 1508 /* 1509 * Multicast socket options are processed by the in_mcast 1510 * module. 1511 */ 1512 case IP_MULTICAST_IF: 1513 case IP_MULTICAST_VIF: 1514 case IP_MULTICAST_TTL: 1515 case IP_MULTICAST_LOOP: 1516 case IP_MSFILTER: 1517 error = inp_getmoptions(inp, sopt); 1518 break; 1519 1520 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1521 case IP_IPSEC_POLICY: 1522 if (IPSEC_ENABLED(ipv4)) { 1523 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1524 break; 1525 } 1526 /* FALLTHROUGH */ 1527 #endif /* IPSEC */ 1528 1529 default: 1530 error = ENOPROTOOPT; 1531 break; 1532 } 1533 break; 1534 } 1535 return (error); 1536 } 1537 1538 /* 1539 * Routine called from ip_output() to loop back a copy of an IP multicast 1540 * packet to the input queue of a specified interface. Note that this 1541 * calls the output routine of the loopback "driver", but with an interface 1542 * pointer that might NOT be a loopback interface -- evil, but easier than 1543 * replicating that code here. 1544 */ 1545 static void 1546 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1547 { 1548 struct ip *ip; 1549 struct mbuf *copym; 1550 1551 /* 1552 * Make a deep copy of the packet because we're going to 1553 * modify the pack in order to generate checksums. 1554 */ 1555 copym = m_dup(m, M_NOWAIT); 1556 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1557 copym = m_pullup(copym, hlen); 1558 if (copym != NULL) { 1559 /* If needed, compute the checksum and mark it as valid. */ 1560 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1561 in_delayed_cksum(copym); 1562 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1563 copym->m_pkthdr.csum_flags |= 1564 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1565 copym->m_pkthdr.csum_data = 0xffff; 1566 } 1567 /* 1568 * We don't bother to fragment if the IP length is greater 1569 * than the interface's MTU. Can this possibly matter? 1570 */ 1571 ip = mtod(copym, struct ip *); 1572 ip->ip_sum = 0; 1573 ip->ip_sum = in_cksum(copym, hlen); 1574 if_simloop(ifp, copym, AF_INET, 0); 1575 } 1576 } 1577