1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_kern_tls.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_ratelimit.h" 42 #include "opt_route.h" 43 #include "opt_rss.h" 44 #include "opt_sctp.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/ktls.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/priv.h> 54 #include <sys/proc.h> 55 #include <sys/protosw.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sysctl.h> 60 #include <sys/ucred.h> 61 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_vlan_var.h> 65 #include <net/if_llatbl.h> 66 #include <net/ethernet.h> 67 #include <net/netisr.h> 68 #include <net/pfil.h> 69 #include <net/route.h> 70 #include <net/route/nhop.h> 71 #include <net/rss_config.h> 72 #include <net/vnet.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_fib.h> 76 #include <netinet/in_kdtrace.h> 77 #include <netinet/in_systm.h> 78 #include <netinet/ip.h> 79 #include <netinet/in_fib.h> 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_rss.h> 82 #include <netinet/in_var.h> 83 #include <netinet/ip_var.h> 84 #include <netinet/ip_options.h> 85 #include <netinet/ip_mroute.h> 86 87 #include <netinet/udp.h> 88 #include <netinet/udp_var.h> 89 90 #if defined(SCTP) || defined(SCTP_SUPPORT) 91 #include <netinet/sctp.h> 92 #include <netinet/sctp_crc32.h> 93 #endif 94 95 #include <netipsec/ipsec_support.h> 96 97 #include <machine/in_cksum.h> 98 99 #include <security/mac/mac_framework.h> 100 101 #ifdef MBUF_STRESS_TEST 102 static int mbuf_frag_size = 0; 103 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 104 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 105 #endif 106 107 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 108 109 extern int in_mcast_loop; 110 extern struct protosw inetsw[]; 111 112 static inline int 113 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 114 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 115 { 116 struct m_tag *fwd_tag = NULL; 117 struct mbuf *m; 118 struct in_addr odst; 119 struct ip *ip; 120 int pflags = PFIL_OUT; 121 122 if (flags & IP_FORWARDING) 123 pflags |= PFIL_FWD; 124 125 m = *mp; 126 ip = mtod(m, struct ip *); 127 128 /* Run through list of hooks for output packets. */ 129 odst.s_addr = ip->ip_dst.s_addr; 130 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { 131 case PFIL_DROPPED: 132 *error = EACCES; 133 /* FALLTHROUGH */ 134 case PFIL_CONSUMED: 135 return 1; /* Finished */ 136 case PFIL_PASS: 137 *error = 0; 138 } 139 m = *mp; 140 ip = mtod(m, struct ip *); 141 142 /* See if destination IP address was changed by packet filter. */ 143 if (odst.s_addr != ip->ip_dst.s_addr) { 144 m->m_flags |= M_SKIP_FIREWALL; 145 /* If destination is now ourself drop to ip_input(). */ 146 if (in_localip(ip->ip_dst)) { 147 m->m_flags |= M_FASTFWD_OURS; 148 if (m->m_pkthdr.rcvif == NULL) 149 m->m_pkthdr.rcvif = V_loif; 150 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 151 m->m_pkthdr.csum_flags |= 152 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 153 m->m_pkthdr.csum_data = 0xffff; 154 } 155 m->m_pkthdr.csum_flags |= 156 CSUM_IP_CHECKED | CSUM_IP_VALID; 157 #if defined(SCTP) || defined(SCTP_SUPPORT) 158 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 159 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 160 #endif 161 *error = netisr_queue(NETISR_IP, m); 162 return 1; /* Finished */ 163 } 164 165 bzero(dst, sizeof(*dst)); 166 dst->sin_family = AF_INET; 167 dst->sin_len = sizeof(*dst); 168 dst->sin_addr = ip->ip_dst; 169 170 return -1; /* Reloop */ 171 } 172 /* See if fib was changed by packet filter. */ 173 if ((*fibnum) != M_GETFIB(m)) { 174 m->m_flags |= M_SKIP_FIREWALL; 175 *fibnum = M_GETFIB(m); 176 return -1; /* Reloop for FIB change */ 177 } 178 179 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 180 if (m->m_flags & M_FASTFWD_OURS) { 181 if (m->m_pkthdr.rcvif == NULL) 182 m->m_pkthdr.rcvif = V_loif; 183 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 184 m->m_pkthdr.csum_flags |= 185 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 186 m->m_pkthdr.csum_data = 0xffff; 187 } 188 #if defined(SCTP) || defined(SCTP_SUPPORT) 189 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 190 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 191 #endif 192 m->m_pkthdr.csum_flags |= 193 CSUM_IP_CHECKED | CSUM_IP_VALID; 194 195 *error = netisr_queue(NETISR_IP, m); 196 return 1; /* Finished */ 197 } 198 /* Or forward to some other address? */ 199 if ((m->m_flags & M_IP_NEXTHOP) && 200 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 201 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 202 m->m_flags |= M_SKIP_FIREWALL; 203 m->m_flags &= ~M_IP_NEXTHOP; 204 m_tag_delete(m, fwd_tag); 205 206 return -1; /* Reloop for CHANGE of dst */ 207 } 208 209 return 0; 210 } 211 212 static int 213 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 214 const struct sockaddr *gw, struct route *ro, bool stamp_tag) 215 { 216 #ifdef KERN_TLS 217 struct ktls_session *tls = NULL; 218 #endif 219 struct m_snd_tag *mst; 220 int error; 221 222 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 223 mst = NULL; 224 225 #ifdef KERN_TLS 226 /* 227 * If this is an unencrypted TLS record, save a reference to 228 * the record. This local reference is used to call 229 * ktls_output_eagain after the mbuf has been freed (thus 230 * dropping the mbuf's reference) in if_output. 231 */ 232 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 233 tls = ktls_hold(m->m_next->m_epg_tls); 234 mst = tls->snd_tag; 235 236 /* 237 * If a TLS session doesn't have a valid tag, it must 238 * have had an earlier ifp mismatch, so drop this 239 * packet. 240 */ 241 if (mst == NULL) { 242 m_freem(m); 243 error = EAGAIN; 244 goto done; 245 } 246 /* 247 * Always stamp tags that include NIC ktls. 248 */ 249 stamp_tag = true; 250 } 251 #endif 252 #ifdef RATELIMIT 253 if (inp != NULL && mst == NULL) { 254 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 255 (inp->inp_snd_tag != NULL && 256 inp->inp_snd_tag->ifp != ifp)) 257 in_pcboutput_txrtlmt(inp, ifp, m); 258 259 if (inp->inp_snd_tag != NULL) 260 mst = inp->inp_snd_tag; 261 } 262 #endif 263 if (stamp_tag && mst != NULL) { 264 KASSERT(m->m_pkthdr.rcvif == NULL, 265 ("trying to add a send tag to a forwarded packet")); 266 if (mst->ifp != ifp) { 267 m_freem(m); 268 error = EAGAIN; 269 goto done; 270 } 271 272 /* stamp send tag on mbuf */ 273 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 274 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 275 } 276 277 error = (*ifp->if_output)(ifp, m, gw, ro); 278 279 done: 280 /* Check for route change invalidating send tags. */ 281 #ifdef KERN_TLS 282 if (tls != NULL) { 283 if (error == EAGAIN) 284 error = ktls_output_eagain(inp, tls); 285 ktls_free(tls); 286 } 287 #endif 288 #ifdef RATELIMIT 289 if (error == EAGAIN) 290 in_pcboutput_eagain(inp); 291 #endif 292 return (error); 293 } 294 295 /* rte<>ro_flags translation */ 296 static inline void 297 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh) 298 { 299 int nh_flags = nh->nh_flags; 300 301 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 302 303 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 304 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 305 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 306 } 307 308 /* 309 * IP output. The packet in mbuf chain m contains a skeletal IP 310 * header (with len, off, ttl, proto, tos, src, dst). 311 * The mbuf chain containing the packet will be freed. 312 * The mbuf opt, if present, will not be freed. 313 * If route ro is present and has ro_rt initialized, route lookup would be 314 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 315 * then result of route lookup is stored in ro->ro_rt. 316 * 317 * In the IP forwarding case, the packet will arrive with options already 318 * inserted, so must have a NULL opt pointer. 319 */ 320 int 321 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 322 struct ip_moptions *imo, struct inpcb *inp) 323 { 324 MROUTER_RLOCK_TRACKER; 325 struct ip *ip; 326 struct ifnet *ifp = NULL; /* keep compiler happy */ 327 struct mbuf *m0; 328 int hlen = sizeof (struct ip); 329 int mtu = 0; 330 int error = 0; 331 int vlan_pcp = -1; 332 struct sockaddr_in *dst; 333 const struct sockaddr *gw; 334 struct in_ifaddr *ia = NULL; 335 struct in_addr src; 336 int isbroadcast; 337 uint16_t ip_len, ip_off; 338 struct route iproute; 339 uint32_t fibnum; 340 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 341 int no_route_but_check_spd = 0; 342 #endif 343 344 M_ASSERTPKTHDR(m); 345 NET_EPOCH_ASSERT(); 346 347 if (inp != NULL) { 348 INP_LOCK_ASSERT(inp); 349 M_SETFIB(m, inp->inp_inc.inc_fibnum); 350 if ((flags & IP_NODEFAULTFLOWID) == 0) { 351 m->m_pkthdr.flowid = inp->inp_flowid; 352 M_HASHTYPE_SET(m, inp->inp_flowtype); 353 } 354 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 355 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 356 INP_2PCP_SHIFT; 357 #ifdef NUMA 358 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 359 #endif 360 } 361 362 if (opt) { 363 int len = 0; 364 m = ip_insertoptions(m, opt, &len); 365 if (len != 0) 366 hlen = len; /* ip->ip_hl is updated above */ 367 } 368 ip = mtod(m, struct ip *); 369 ip_len = ntohs(ip->ip_len); 370 ip_off = ntohs(ip->ip_off); 371 372 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 373 ip->ip_v = IPVERSION; 374 ip->ip_hl = hlen >> 2; 375 ip_fillid(ip); 376 } else { 377 /* Header already set, fetch hlen from there */ 378 hlen = ip->ip_hl << 2; 379 } 380 if ((flags & IP_FORWARDING) == 0) 381 IPSTAT_INC(ips_localout); 382 383 /* 384 * dst/gw handling: 385 * 386 * gw is readonly but can point either to dst OR rt_gateway, 387 * therefore we need restore gw if we're redoing lookup. 388 */ 389 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 390 if (ro == NULL) { 391 ro = &iproute; 392 bzero(ro, sizeof (*ro)); 393 } 394 dst = (struct sockaddr_in *)&ro->ro_dst; 395 if (ro->ro_nh == NULL) { 396 dst->sin_family = AF_INET; 397 dst->sin_len = sizeof(*dst); 398 dst->sin_addr = ip->ip_dst; 399 } 400 gw = (const struct sockaddr *)dst; 401 again: 402 /* 403 * Validate route against routing table additions; 404 * a better/more specific route might have been added. 405 */ 406 if (inp != NULL && ro->ro_nh != NULL) 407 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 408 /* 409 * If there is a cached route, 410 * check that it is to the same destination 411 * and is still up. If not, free it and try again. 412 * The address family should also be checked in case of sharing the 413 * cache with IPv6. 414 * Also check whether routing cache needs invalidation. 415 */ 416 if (ro->ro_nh != NULL && 417 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 418 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 419 RO_INVALIDATE_CACHE(ro); 420 ia = NULL; 421 /* 422 * If routing to interface only, short circuit routing lookup. 423 * The use of an all-ones broadcast address implies this; an 424 * interface is specified by the broadcast address of an interface, 425 * or the destination address of a ptp interface. 426 */ 427 if (flags & IP_SENDONES) { 428 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 429 M_GETFIB(m)))) == NULL && 430 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 431 M_GETFIB(m)))) == NULL) { 432 IPSTAT_INC(ips_noroute); 433 error = ENETUNREACH; 434 goto bad; 435 } 436 ip->ip_dst.s_addr = INADDR_BROADCAST; 437 dst->sin_addr = ip->ip_dst; 438 ifp = ia->ia_ifp; 439 mtu = ifp->if_mtu; 440 ip->ip_ttl = 1; 441 isbroadcast = 1; 442 src = IA_SIN(ia)->sin_addr; 443 } else if (flags & IP_ROUTETOIF) { 444 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 445 M_GETFIB(m)))) == NULL && 446 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 447 M_GETFIB(m)))) == NULL) { 448 IPSTAT_INC(ips_noroute); 449 error = ENETUNREACH; 450 goto bad; 451 } 452 ifp = ia->ia_ifp; 453 mtu = ifp->if_mtu; 454 ip->ip_ttl = 1; 455 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 456 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 457 src = IA_SIN(ia)->sin_addr; 458 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 459 imo != NULL && imo->imo_multicast_ifp != NULL) { 460 /* 461 * Bypass the normal routing lookup for multicast 462 * packets if the interface is specified. 463 */ 464 ifp = imo->imo_multicast_ifp; 465 mtu = ifp->if_mtu; 466 IFP_TO_IA(ifp, ia); 467 isbroadcast = 0; /* fool gcc */ 468 /* Interface may have no addresses. */ 469 if (ia != NULL) 470 src = IA_SIN(ia)->sin_addr; 471 else 472 src.s_addr = INADDR_ANY; 473 } else if (ro != &iproute) { 474 if (ro->ro_nh == NULL) { 475 /* 476 * We want to do any cloning requested by the link 477 * layer, as this is probably required in all cases 478 * for correct operation (as it is for ARP). 479 */ 480 uint32_t flowid; 481 flowid = m->m_pkthdr.flowid; 482 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 483 NHR_REF, flowid); 484 485 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 486 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 487 /* 488 * There is no route for this packet, but it is 489 * possible that a matching SPD entry exists. 490 */ 491 no_route_but_check_spd = 1; 492 goto sendit; 493 #endif 494 IPSTAT_INC(ips_noroute); 495 error = EHOSTUNREACH; 496 goto bad; 497 } 498 } 499 struct nhop_object *nh = ro->ro_nh; 500 501 ia = ifatoia(nh->nh_ifa); 502 ifp = nh->nh_ifp; 503 counter_u64_add(nh->nh_pksent, 1); 504 rt_update_ro_flags(ro, nh); 505 if (nh->nh_flags & NHF_GATEWAY) 506 gw = &nh->gw_sa; 507 if (nh->nh_flags & NHF_HOST) 508 isbroadcast = (nh->nh_flags & NHF_BROADCAST); 509 else if ((ifp->if_flags & IFF_BROADCAST) && (gw->sa_family == AF_INET)) 510 isbroadcast = in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia); 511 else 512 isbroadcast = 0; 513 mtu = nh->nh_mtu; 514 src = IA_SIN(ia)->sin_addr; 515 } else { 516 struct nhop_object *nh; 517 518 nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_NONE, 519 m->m_pkthdr.flowid); 520 if (nh == NULL) { 521 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 522 /* 523 * There is no route for this packet, but it is 524 * possible that a matching SPD entry exists. 525 */ 526 no_route_but_check_spd = 1; 527 goto sendit; 528 #endif 529 IPSTAT_INC(ips_noroute); 530 error = EHOSTUNREACH; 531 goto bad; 532 } 533 ifp = nh->nh_ifp; 534 mtu = nh->nh_mtu; 535 rt_update_ro_flags(ro, nh); 536 if (nh->nh_flags & NHF_GATEWAY) 537 gw = &nh->gw_sa; 538 ia = ifatoia(nh->nh_ifa); 539 src = IA_SIN(ia)->sin_addr; 540 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 541 (NHF_HOST | NHF_BROADCAST)) || 542 ((ifp->if_flags & IFF_BROADCAST) && 543 (gw->sa_family == AF_INET) && 544 in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia))); 545 } 546 547 /* Catch a possible divide by zero later. */ 548 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 549 __func__, mtu, ro, 550 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 551 552 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 553 m->m_flags |= M_MCAST; 554 /* 555 * IP destination address is multicast. Make sure "gw" 556 * still points to the address in "ro". (It may have been 557 * changed to point to a gateway address, above.) 558 */ 559 gw = (const struct sockaddr *)dst; 560 /* 561 * See if the caller provided any multicast options 562 */ 563 if (imo != NULL) { 564 ip->ip_ttl = imo->imo_multicast_ttl; 565 if (imo->imo_multicast_vif != -1) 566 ip->ip_src.s_addr = 567 ip_mcast_src ? 568 ip_mcast_src(imo->imo_multicast_vif) : 569 INADDR_ANY; 570 } else 571 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 572 /* 573 * Confirm that the outgoing interface supports multicast. 574 */ 575 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 576 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 577 IPSTAT_INC(ips_noroute); 578 error = ENETUNREACH; 579 goto bad; 580 } 581 } 582 /* 583 * If source address not specified yet, use address 584 * of outgoing interface. 585 */ 586 if (ip->ip_src.s_addr == INADDR_ANY) 587 ip->ip_src = src; 588 589 if ((imo == NULL && in_mcast_loop) || 590 (imo && imo->imo_multicast_loop)) { 591 /* 592 * Loop back multicast datagram if not expressly 593 * forbidden to do so, even if we are not a member 594 * of the group; ip_input() will filter it later, 595 * thus deferring a hash lookup and mutex acquisition 596 * at the expense of a cheap copy using m_copym(). 597 */ 598 ip_mloopback(ifp, m, hlen); 599 } else { 600 /* 601 * If we are acting as a multicast router, perform 602 * multicast forwarding as if the packet had just 603 * arrived on the interface to which we are about 604 * to send. The multicast forwarding function 605 * recursively calls this function, using the 606 * IP_FORWARDING flag to prevent infinite recursion. 607 * 608 * Multicasts that are looped back by ip_mloopback(), 609 * above, will be forwarded by the ip_input() routine, 610 * if necessary. 611 */ 612 MROUTER_RLOCK(); 613 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 614 /* 615 * If rsvp daemon is not running, do not 616 * set ip_moptions. This ensures that the packet 617 * is multicast and not just sent down one link 618 * as prescribed by rsvpd. 619 */ 620 if (!V_rsvp_on) 621 imo = NULL; 622 if (ip_mforward && 623 ip_mforward(ip, ifp, m, imo) != 0) { 624 MROUTER_RUNLOCK(); 625 m_freem(m); 626 goto done; 627 } 628 } 629 MROUTER_RUNLOCK(); 630 } 631 632 /* 633 * Multicasts with a time-to-live of zero may be looped- 634 * back, above, but must not be transmitted on a network. 635 * Also, multicasts addressed to the loopback interface 636 * are not sent -- the above call to ip_mloopback() will 637 * loop back a copy. ip_input() will drop the copy if 638 * this host does not belong to the destination group on 639 * the loopback interface. 640 */ 641 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 642 m_freem(m); 643 goto done; 644 } 645 646 goto sendit; 647 } 648 649 /* 650 * If the source address is not specified yet, use the address 651 * of the outoing interface. 652 */ 653 if (ip->ip_src.s_addr == INADDR_ANY) 654 ip->ip_src = src; 655 656 /* 657 * Look for broadcast address and 658 * verify user is allowed to send 659 * such a packet. 660 */ 661 if (isbroadcast) { 662 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 663 error = EADDRNOTAVAIL; 664 goto bad; 665 } 666 if ((flags & IP_ALLOWBROADCAST) == 0) { 667 error = EACCES; 668 goto bad; 669 } 670 /* don't allow broadcast messages to be fragmented */ 671 if (ip_len > mtu) { 672 error = EMSGSIZE; 673 goto bad; 674 } 675 m->m_flags |= M_BCAST; 676 } else { 677 m->m_flags &= ~M_BCAST; 678 } 679 680 sendit: 681 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 682 if (IPSEC_ENABLED(ipv4)) { 683 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 684 if (error == EINPROGRESS) 685 error = 0; 686 goto done; 687 } 688 } 689 /* 690 * Check if there was a route for this packet; return error if not. 691 */ 692 if (no_route_but_check_spd) { 693 IPSTAT_INC(ips_noroute); 694 error = EHOSTUNREACH; 695 goto bad; 696 } 697 /* Update variables that are affected by ipsec4_output(). */ 698 ip = mtod(m, struct ip *); 699 hlen = ip->ip_hl << 2; 700 #endif /* IPSEC */ 701 702 /* Jump over all PFIL processing if hooks are not active. */ 703 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 704 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 705 &error)) { 706 case 1: /* Finished */ 707 goto done; 708 709 case 0: /* Continue normally */ 710 ip = mtod(m, struct ip *); 711 break; 712 713 case -1: /* Need to try again */ 714 /* Reset everything for a new round */ 715 if (ro != NULL) { 716 RO_NHFREE(ro); 717 ro->ro_prepend = NULL; 718 } 719 gw = (const struct sockaddr *)dst; 720 ip = mtod(m, struct ip *); 721 goto again; 722 } 723 } 724 725 if (vlan_pcp > -1) 726 EVL_APPLY_PRI(m, vlan_pcp); 727 728 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 729 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 730 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 731 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 732 IPSTAT_INC(ips_badaddr); 733 error = EADDRNOTAVAIL; 734 goto bad; 735 } 736 } 737 738 /* Ensure the packet data is mapped if the interface requires it. */ 739 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 740 m = mb_unmapped_to_ext(m); 741 if (m == NULL) { 742 IPSTAT_INC(ips_odropped); 743 error = ENOBUFS; 744 goto bad; 745 } 746 } 747 748 m->m_pkthdr.csum_flags |= CSUM_IP; 749 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 750 in_delayed_cksum(m); 751 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 752 } 753 #if defined(SCTP) || defined(SCTP_SUPPORT) 754 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 755 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 756 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 757 } 758 #endif 759 760 /* 761 * If small enough for interface, or the interface will take 762 * care of the fragmentation for us, we can just send directly. 763 * Note that if_vxlan could have requested TSO even though the outer 764 * frame is UDP. It is correct to not fragment such datagrams and 765 * instead just pass them on to the driver. 766 */ 767 if (ip_len <= mtu || 768 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 769 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 770 ip->ip_sum = 0; 771 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 772 ip->ip_sum = in_cksum(m, hlen); 773 m->m_pkthdr.csum_flags &= ~CSUM_IP; 774 } 775 776 /* 777 * Record statistics for this interface address. 778 * With CSUM_TSO the byte/packet count will be slightly 779 * incorrect because we count the IP+TCP headers only 780 * once instead of for every generated packet. 781 */ 782 if (!(flags & IP_FORWARDING) && ia) { 783 if (m->m_pkthdr.csum_flags & 784 (CSUM_TSO | CSUM_INNER_TSO)) 785 counter_u64_add(ia->ia_ifa.ifa_opackets, 786 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 787 else 788 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 789 790 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 791 } 792 #ifdef MBUF_STRESS_TEST 793 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 794 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 795 #endif 796 /* 797 * Reset layer specific mbuf flags 798 * to avoid confusing lower layers. 799 */ 800 m_clrprotoflags(m); 801 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 802 error = ip_output_send(inp, ifp, m, gw, ro, 803 (flags & IP_NO_SND_TAG_RL) ? false : true); 804 goto done; 805 } 806 807 /* Balk when DF bit is set or the interface didn't support TSO. */ 808 if ((ip_off & IP_DF) || 809 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 810 error = EMSGSIZE; 811 IPSTAT_INC(ips_cantfrag); 812 goto bad; 813 } 814 815 /* 816 * Too large for interface; fragment if possible. If successful, 817 * on return, m will point to a list of packets to be sent. 818 */ 819 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 820 if (error) 821 goto bad; 822 for (; m; m = m0) { 823 m0 = m->m_nextpkt; 824 m->m_nextpkt = 0; 825 if (error == 0) { 826 /* Record statistics for this interface address. */ 827 if (ia != NULL) { 828 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 829 counter_u64_add(ia->ia_ifa.ifa_obytes, 830 m->m_pkthdr.len); 831 } 832 /* 833 * Reset layer specific mbuf flags 834 * to avoid confusing upper layers. 835 */ 836 m_clrprotoflags(m); 837 838 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 839 mtod(m, struct ip *), NULL); 840 error = ip_output_send(inp, ifp, m, gw, ro, true); 841 } else 842 m_freem(m); 843 } 844 845 if (error == 0) 846 IPSTAT_INC(ips_fragmented); 847 848 done: 849 return (error); 850 bad: 851 m_freem(m); 852 goto done; 853 } 854 855 /* 856 * Create a chain of fragments which fit the given mtu. m_frag points to the 857 * mbuf to be fragmented; on return it points to the chain with the fragments. 858 * Return 0 if no error. If error, m_frag may contain a partially built 859 * chain of fragments that should be freed by the caller. 860 * 861 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 862 */ 863 int 864 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 865 u_long if_hwassist_flags) 866 { 867 int error = 0; 868 int hlen = ip->ip_hl << 2; 869 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 870 int off; 871 struct mbuf *m0 = *m_frag; /* the original packet */ 872 int firstlen; 873 struct mbuf **mnext; 874 int nfrags; 875 uint16_t ip_len, ip_off; 876 877 ip_len = ntohs(ip->ip_len); 878 ip_off = ntohs(ip->ip_off); 879 880 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 881 IPSTAT_INC(ips_cantfrag); 882 return EMSGSIZE; 883 } 884 885 /* 886 * Must be able to put at least 8 bytes per fragment. 887 */ 888 if (len < 8) 889 return EMSGSIZE; 890 891 /* 892 * If the interface will not calculate checksums on 893 * fragmented packets, then do it here. 894 */ 895 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 896 in_delayed_cksum(m0); 897 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 898 } 899 #if defined(SCTP) || defined(SCTP_SUPPORT) 900 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 901 sctp_delayed_cksum(m0, hlen); 902 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 903 } 904 #endif 905 if (len > PAGE_SIZE) { 906 /* 907 * Fragment large datagrams such that each segment 908 * contains a multiple of PAGE_SIZE amount of data, 909 * plus headers. This enables a receiver to perform 910 * page-flipping zero-copy optimizations. 911 * 912 * XXX When does this help given that sender and receiver 913 * could have different page sizes, and also mtu could 914 * be less than the receiver's page size ? 915 */ 916 int newlen; 917 918 off = MIN(mtu, m0->m_pkthdr.len); 919 920 /* 921 * firstlen (off - hlen) must be aligned on an 922 * 8-byte boundary 923 */ 924 if (off < hlen) 925 goto smart_frag_failure; 926 off = ((off - hlen) & ~7) + hlen; 927 newlen = (~PAGE_MASK) & mtu; 928 if ((newlen + sizeof (struct ip)) > mtu) { 929 /* we failed, go back the default */ 930 smart_frag_failure: 931 newlen = len; 932 off = hlen + len; 933 } 934 len = newlen; 935 936 } else { 937 off = hlen + len; 938 } 939 940 firstlen = off - hlen; 941 mnext = &m0->m_nextpkt; /* pointer to next packet */ 942 943 /* 944 * Loop through length of segment after first fragment, 945 * make new header and copy data of each part and link onto chain. 946 * Here, m0 is the original packet, m is the fragment being created. 947 * The fragments are linked off the m_nextpkt of the original 948 * packet, which after processing serves as the first fragment. 949 */ 950 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 951 struct ip *mhip; /* ip header on the fragment */ 952 struct mbuf *m; 953 int mhlen = sizeof (struct ip); 954 955 m = m_gethdr(M_NOWAIT, MT_DATA); 956 if (m == NULL) { 957 error = ENOBUFS; 958 IPSTAT_INC(ips_odropped); 959 goto done; 960 } 961 /* 962 * Make sure the complete packet header gets copied 963 * from the originating mbuf to the newly created 964 * mbuf. This also ensures that existing firewall 965 * classification(s), VLAN tags and so on get copied 966 * to the resulting fragmented packet(s): 967 */ 968 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 969 m_free(m); 970 error = ENOBUFS; 971 IPSTAT_INC(ips_odropped); 972 goto done; 973 } 974 /* 975 * In the first mbuf, leave room for the link header, then 976 * copy the original IP header including options. The payload 977 * goes into an additional mbuf chain returned by m_copym(). 978 */ 979 m->m_data += max_linkhdr; 980 mhip = mtod(m, struct ip *); 981 *mhip = *ip; 982 if (hlen > sizeof (struct ip)) { 983 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 984 mhip->ip_v = IPVERSION; 985 mhip->ip_hl = mhlen >> 2; 986 } 987 m->m_len = mhlen; 988 /* XXX do we need to add ip_off below ? */ 989 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 990 if (off + len >= ip_len) 991 len = ip_len - off; 992 else 993 mhip->ip_off |= IP_MF; 994 mhip->ip_len = htons((u_short)(len + mhlen)); 995 m->m_next = m_copym(m0, off, len, M_NOWAIT); 996 if (m->m_next == NULL) { /* copy failed */ 997 m_free(m); 998 error = ENOBUFS; /* ??? */ 999 IPSTAT_INC(ips_odropped); 1000 goto done; 1001 } 1002 m->m_pkthdr.len = mhlen + len; 1003 #ifdef MAC 1004 mac_netinet_fragment(m0, m); 1005 #endif 1006 mhip->ip_off = htons(mhip->ip_off); 1007 mhip->ip_sum = 0; 1008 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1009 mhip->ip_sum = in_cksum(m, mhlen); 1010 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1011 } 1012 *mnext = m; 1013 mnext = &m->m_nextpkt; 1014 } 1015 IPSTAT_ADD(ips_ofragments, nfrags); 1016 1017 /* 1018 * Update first fragment by trimming what's been copied out 1019 * and updating header. 1020 */ 1021 m_adj(m0, hlen + firstlen - ip_len); 1022 m0->m_pkthdr.len = hlen + firstlen; 1023 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1024 ip->ip_off = htons(ip_off | IP_MF); 1025 ip->ip_sum = 0; 1026 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1027 ip->ip_sum = in_cksum(m0, hlen); 1028 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1029 } 1030 1031 done: 1032 *m_frag = m0; 1033 return error; 1034 } 1035 1036 void 1037 in_delayed_cksum(struct mbuf *m) 1038 { 1039 struct ip *ip; 1040 struct udphdr *uh; 1041 uint16_t cklen, csum, offset; 1042 1043 ip = mtod(m, struct ip *); 1044 offset = ip->ip_hl << 2 ; 1045 1046 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1047 /* if udp header is not in the first mbuf copy udplen */ 1048 if (offset + sizeof(struct udphdr) > m->m_len) { 1049 m_copydata(m, offset + offsetof(struct udphdr, 1050 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1051 cklen = ntohs(cklen); 1052 } else { 1053 uh = (struct udphdr *)mtodo(m, offset); 1054 cklen = ntohs(uh->uh_ulen); 1055 } 1056 csum = in_cksum_skip(m, cklen + offset, offset); 1057 if (csum == 0) 1058 csum = 0xffff; 1059 } else { 1060 cklen = ntohs(ip->ip_len); 1061 csum = in_cksum_skip(m, cklen, offset); 1062 } 1063 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1064 1065 if (offset + sizeof(csum) > m->m_len) 1066 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1067 else 1068 *(u_short *)mtodo(m, offset) = csum; 1069 } 1070 1071 /* 1072 * IP socket option processing. 1073 */ 1074 int 1075 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1076 { 1077 struct inpcb *inp = sotoinpcb(so); 1078 int error, optval; 1079 #ifdef RSS 1080 uint32_t rss_bucket; 1081 int retval; 1082 #endif 1083 1084 error = optval = 0; 1085 if (sopt->sopt_level != IPPROTO_IP) { 1086 error = EINVAL; 1087 1088 if (sopt->sopt_level == SOL_SOCKET && 1089 sopt->sopt_dir == SOPT_SET) { 1090 switch (sopt->sopt_name) { 1091 case SO_REUSEADDR: 1092 INP_WLOCK(inp); 1093 if ((so->so_options & SO_REUSEADDR) != 0) 1094 inp->inp_flags2 |= INP_REUSEADDR; 1095 else 1096 inp->inp_flags2 &= ~INP_REUSEADDR; 1097 INP_WUNLOCK(inp); 1098 error = 0; 1099 break; 1100 case SO_REUSEPORT: 1101 INP_WLOCK(inp); 1102 if ((so->so_options & SO_REUSEPORT) != 0) 1103 inp->inp_flags2 |= INP_REUSEPORT; 1104 else 1105 inp->inp_flags2 &= ~INP_REUSEPORT; 1106 INP_WUNLOCK(inp); 1107 error = 0; 1108 break; 1109 case SO_REUSEPORT_LB: 1110 INP_WLOCK(inp); 1111 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1112 inp->inp_flags2 |= INP_REUSEPORT_LB; 1113 else 1114 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1115 INP_WUNLOCK(inp); 1116 error = 0; 1117 break; 1118 case SO_SETFIB: 1119 INP_WLOCK(inp); 1120 inp->inp_inc.inc_fibnum = so->so_fibnum; 1121 INP_WUNLOCK(inp); 1122 error = 0; 1123 break; 1124 case SO_MAX_PACING_RATE: 1125 #ifdef RATELIMIT 1126 INP_WLOCK(inp); 1127 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1128 INP_WUNLOCK(inp); 1129 error = 0; 1130 #else 1131 error = EOPNOTSUPP; 1132 #endif 1133 break; 1134 default: 1135 break; 1136 } 1137 } 1138 return (error); 1139 } 1140 1141 switch (sopt->sopt_dir) { 1142 case SOPT_SET: 1143 switch (sopt->sopt_name) { 1144 case IP_OPTIONS: 1145 #ifdef notyet 1146 case IP_RETOPTS: 1147 #endif 1148 { 1149 struct mbuf *m; 1150 if (sopt->sopt_valsize > MLEN) { 1151 error = EMSGSIZE; 1152 break; 1153 } 1154 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1155 if (m == NULL) { 1156 error = ENOBUFS; 1157 break; 1158 } 1159 m->m_len = sopt->sopt_valsize; 1160 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1161 m->m_len); 1162 if (error) { 1163 m_free(m); 1164 break; 1165 } 1166 INP_WLOCK(inp); 1167 error = ip_pcbopts(inp, sopt->sopt_name, m); 1168 INP_WUNLOCK(inp); 1169 return (error); 1170 } 1171 1172 case IP_BINDANY: 1173 if (sopt->sopt_td != NULL) { 1174 error = priv_check(sopt->sopt_td, 1175 PRIV_NETINET_BINDANY); 1176 if (error) 1177 break; 1178 } 1179 /* FALLTHROUGH */ 1180 case IP_BINDMULTI: 1181 #ifdef RSS 1182 case IP_RSS_LISTEN_BUCKET: 1183 #endif 1184 case IP_TOS: 1185 case IP_TTL: 1186 case IP_MINTTL: 1187 case IP_RECVOPTS: 1188 case IP_RECVRETOPTS: 1189 case IP_ORIGDSTADDR: 1190 case IP_RECVDSTADDR: 1191 case IP_RECVTTL: 1192 case IP_RECVIF: 1193 case IP_ONESBCAST: 1194 case IP_DONTFRAG: 1195 case IP_RECVTOS: 1196 case IP_RECVFLOWID: 1197 #ifdef RSS 1198 case IP_RECVRSSBUCKETID: 1199 #endif 1200 case IP_VLAN_PCP: 1201 error = sooptcopyin(sopt, &optval, sizeof optval, 1202 sizeof optval); 1203 if (error) 1204 break; 1205 1206 switch (sopt->sopt_name) { 1207 case IP_TOS: 1208 inp->inp_ip_tos = optval; 1209 break; 1210 1211 case IP_TTL: 1212 inp->inp_ip_ttl = optval; 1213 break; 1214 1215 case IP_MINTTL: 1216 if (optval >= 0 && optval <= MAXTTL) 1217 inp->inp_ip_minttl = optval; 1218 else 1219 error = EINVAL; 1220 break; 1221 1222 #define OPTSET(bit) do { \ 1223 INP_WLOCK(inp); \ 1224 if (optval) \ 1225 inp->inp_flags |= bit; \ 1226 else \ 1227 inp->inp_flags &= ~bit; \ 1228 INP_WUNLOCK(inp); \ 1229 } while (0) 1230 1231 #define OPTSET2(bit, val) do { \ 1232 INP_WLOCK(inp); \ 1233 if (val) \ 1234 inp->inp_flags2 |= bit; \ 1235 else \ 1236 inp->inp_flags2 &= ~bit; \ 1237 INP_WUNLOCK(inp); \ 1238 } while (0) 1239 1240 case IP_RECVOPTS: 1241 OPTSET(INP_RECVOPTS); 1242 break; 1243 1244 case IP_RECVRETOPTS: 1245 OPTSET(INP_RECVRETOPTS); 1246 break; 1247 1248 case IP_RECVDSTADDR: 1249 OPTSET(INP_RECVDSTADDR); 1250 break; 1251 1252 case IP_ORIGDSTADDR: 1253 OPTSET2(INP_ORIGDSTADDR, optval); 1254 break; 1255 1256 case IP_RECVTTL: 1257 OPTSET(INP_RECVTTL); 1258 break; 1259 1260 case IP_RECVIF: 1261 OPTSET(INP_RECVIF); 1262 break; 1263 1264 case IP_ONESBCAST: 1265 OPTSET(INP_ONESBCAST); 1266 break; 1267 case IP_DONTFRAG: 1268 OPTSET(INP_DONTFRAG); 1269 break; 1270 case IP_BINDANY: 1271 OPTSET(INP_BINDANY); 1272 break; 1273 case IP_RECVTOS: 1274 OPTSET(INP_RECVTOS); 1275 break; 1276 case IP_BINDMULTI: 1277 OPTSET2(INP_BINDMULTI, optval); 1278 break; 1279 case IP_RECVFLOWID: 1280 OPTSET2(INP_RECVFLOWID, optval); 1281 break; 1282 #ifdef RSS 1283 case IP_RSS_LISTEN_BUCKET: 1284 if ((optval >= 0) && 1285 (optval < rss_getnumbuckets())) { 1286 inp->inp_rss_listen_bucket = optval; 1287 OPTSET2(INP_RSS_BUCKET_SET, 1); 1288 } else { 1289 error = EINVAL; 1290 } 1291 break; 1292 case IP_RECVRSSBUCKETID: 1293 OPTSET2(INP_RECVRSSBUCKETID, optval); 1294 break; 1295 #endif 1296 case IP_VLAN_PCP: 1297 if ((optval >= -1) && (optval <= 1298 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1299 if (optval == -1) { 1300 INP_WLOCK(inp); 1301 inp->inp_flags2 &= 1302 ~(INP_2PCP_SET | 1303 INP_2PCP_MASK); 1304 INP_WUNLOCK(inp); 1305 } else { 1306 INP_WLOCK(inp); 1307 inp->inp_flags2 |= 1308 INP_2PCP_SET; 1309 inp->inp_flags2 &= 1310 ~INP_2PCP_MASK; 1311 inp->inp_flags2 |= 1312 optval << INP_2PCP_SHIFT; 1313 INP_WUNLOCK(inp); 1314 } 1315 } else 1316 error = EINVAL; 1317 break; 1318 } 1319 break; 1320 #undef OPTSET 1321 #undef OPTSET2 1322 1323 /* 1324 * Multicast socket options are processed by the in_mcast 1325 * module. 1326 */ 1327 case IP_MULTICAST_IF: 1328 case IP_MULTICAST_VIF: 1329 case IP_MULTICAST_TTL: 1330 case IP_MULTICAST_LOOP: 1331 case IP_ADD_MEMBERSHIP: 1332 case IP_DROP_MEMBERSHIP: 1333 case IP_ADD_SOURCE_MEMBERSHIP: 1334 case IP_DROP_SOURCE_MEMBERSHIP: 1335 case IP_BLOCK_SOURCE: 1336 case IP_UNBLOCK_SOURCE: 1337 case IP_MSFILTER: 1338 case MCAST_JOIN_GROUP: 1339 case MCAST_LEAVE_GROUP: 1340 case MCAST_JOIN_SOURCE_GROUP: 1341 case MCAST_LEAVE_SOURCE_GROUP: 1342 case MCAST_BLOCK_SOURCE: 1343 case MCAST_UNBLOCK_SOURCE: 1344 error = inp_setmoptions(inp, sopt); 1345 break; 1346 1347 case IP_PORTRANGE: 1348 error = sooptcopyin(sopt, &optval, sizeof optval, 1349 sizeof optval); 1350 if (error) 1351 break; 1352 1353 INP_WLOCK(inp); 1354 switch (optval) { 1355 case IP_PORTRANGE_DEFAULT: 1356 inp->inp_flags &= ~(INP_LOWPORT); 1357 inp->inp_flags &= ~(INP_HIGHPORT); 1358 break; 1359 1360 case IP_PORTRANGE_HIGH: 1361 inp->inp_flags &= ~(INP_LOWPORT); 1362 inp->inp_flags |= INP_HIGHPORT; 1363 break; 1364 1365 case IP_PORTRANGE_LOW: 1366 inp->inp_flags &= ~(INP_HIGHPORT); 1367 inp->inp_flags |= INP_LOWPORT; 1368 break; 1369 1370 default: 1371 error = EINVAL; 1372 break; 1373 } 1374 INP_WUNLOCK(inp); 1375 break; 1376 1377 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1378 case IP_IPSEC_POLICY: 1379 if (IPSEC_ENABLED(ipv4)) { 1380 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1381 break; 1382 } 1383 /* FALLTHROUGH */ 1384 #endif /* IPSEC */ 1385 1386 default: 1387 error = ENOPROTOOPT; 1388 break; 1389 } 1390 break; 1391 1392 case SOPT_GET: 1393 switch (sopt->sopt_name) { 1394 case IP_OPTIONS: 1395 case IP_RETOPTS: 1396 INP_RLOCK(inp); 1397 if (inp->inp_options) { 1398 struct mbuf *options; 1399 1400 options = m_copym(inp->inp_options, 0, 1401 M_COPYALL, M_NOWAIT); 1402 INP_RUNLOCK(inp); 1403 if (options != NULL) { 1404 error = sooptcopyout(sopt, 1405 mtod(options, char *), 1406 options->m_len); 1407 m_freem(options); 1408 } else 1409 error = ENOMEM; 1410 } else { 1411 INP_RUNLOCK(inp); 1412 sopt->sopt_valsize = 0; 1413 } 1414 break; 1415 1416 case IP_TOS: 1417 case IP_TTL: 1418 case IP_MINTTL: 1419 case IP_RECVOPTS: 1420 case IP_RECVRETOPTS: 1421 case IP_ORIGDSTADDR: 1422 case IP_RECVDSTADDR: 1423 case IP_RECVTTL: 1424 case IP_RECVIF: 1425 case IP_PORTRANGE: 1426 case IP_ONESBCAST: 1427 case IP_DONTFRAG: 1428 case IP_BINDANY: 1429 case IP_RECVTOS: 1430 case IP_BINDMULTI: 1431 case IP_FLOWID: 1432 case IP_FLOWTYPE: 1433 case IP_RECVFLOWID: 1434 #ifdef RSS 1435 case IP_RSSBUCKETID: 1436 case IP_RECVRSSBUCKETID: 1437 #endif 1438 case IP_VLAN_PCP: 1439 switch (sopt->sopt_name) { 1440 case IP_TOS: 1441 optval = inp->inp_ip_tos; 1442 break; 1443 1444 case IP_TTL: 1445 optval = inp->inp_ip_ttl; 1446 break; 1447 1448 case IP_MINTTL: 1449 optval = inp->inp_ip_minttl; 1450 break; 1451 1452 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1453 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1454 1455 case IP_RECVOPTS: 1456 optval = OPTBIT(INP_RECVOPTS); 1457 break; 1458 1459 case IP_RECVRETOPTS: 1460 optval = OPTBIT(INP_RECVRETOPTS); 1461 break; 1462 1463 case IP_RECVDSTADDR: 1464 optval = OPTBIT(INP_RECVDSTADDR); 1465 break; 1466 1467 case IP_ORIGDSTADDR: 1468 optval = OPTBIT2(INP_ORIGDSTADDR); 1469 break; 1470 1471 case IP_RECVTTL: 1472 optval = OPTBIT(INP_RECVTTL); 1473 break; 1474 1475 case IP_RECVIF: 1476 optval = OPTBIT(INP_RECVIF); 1477 break; 1478 1479 case IP_PORTRANGE: 1480 if (inp->inp_flags & INP_HIGHPORT) 1481 optval = IP_PORTRANGE_HIGH; 1482 else if (inp->inp_flags & INP_LOWPORT) 1483 optval = IP_PORTRANGE_LOW; 1484 else 1485 optval = 0; 1486 break; 1487 1488 case IP_ONESBCAST: 1489 optval = OPTBIT(INP_ONESBCAST); 1490 break; 1491 case IP_DONTFRAG: 1492 optval = OPTBIT(INP_DONTFRAG); 1493 break; 1494 case IP_BINDANY: 1495 optval = OPTBIT(INP_BINDANY); 1496 break; 1497 case IP_RECVTOS: 1498 optval = OPTBIT(INP_RECVTOS); 1499 break; 1500 case IP_FLOWID: 1501 optval = inp->inp_flowid; 1502 break; 1503 case IP_FLOWTYPE: 1504 optval = inp->inp_flowtype; 1505 break; 1506 case IP_RECVFLOWID: 1507 optval = OPTBIT2(INP_RECVFLOWID); 1508 break; 1509 #ifdef RSS 1510 case IP_RSSBUCKETID: 1511 retval = rss_hash2bucket(inp->inp_flowid, 1512 inp->inp_flowtype, 1513 &rss_bucket); 1514 if (retval == 0) 1515 optval = rss_bucket; 1516 else 1517 error = EINVAL; 1518 break; 1519 case IP_RECVRSSBUCKETID: 1520 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1521 break; 1522 #endif 1523 case IP_BINDMULTI: 1524 optval = OPTBIT2(INP_BINDMULTI); 1525 break; 1526 case IP_VLAN_PCP: 1527 if (OPTBIT2(INP_2PCP_SET)) { 1528 optval = (inp->inp_flags2 & 1529 INP_2PCP_MASK) >> INP_2PCP_SHIFT; 1530 } else { 1531 optval = -1; 1532 } 1533 break; 1534 } 1535 error = sooptcopyout(sopt, &optval, sizeof optval); 1536 break; 1537 1538 /* 1539 * Multicast socket options are processed by the in_mcast 1540 * module. 1541 */ 1542 case IP_MULTICAST_IF: 1543 case IP_MULTICAST_VIF: 1544 case IP_MULTICAST_TTL: 1545 case IP_MULTICAST_LOOP: 1546 case IP_MSFILTER: 1547 error = inp_getmoptions(inp, sopt); 1548 break; 1549 1550 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1551 case IP_IPSEC_POLICY: 1552 if (IPSEC_ENABLED(ipv4)) { 1553 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1554 break; 1555 } 1556 /* FALLTHROUGH */ 1557 #endif /* IPSEC */ 1558 1559 default: 1560 error = ENOPROTOOPT; 1561 break; 1562 } 1563 break; 1564 } 1565 return (error); 1566 } 1567 1568 /* 1569 * Routine called from ip_output() to loop back a copy of an IP multicast 1570 * packet to the input queue of a specified interface. Note that this 1571 * calls the output routine of the loopback "driver", but with an interface 1572 * pointer that might NOT be a loopback interface -- evil, but easier than 1573 * replicating that code here. 1574 */ 1575 static void 1576 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1577 { 1578 struct ip *ip; 1579 struct mbuf *copym; 1580 1581 /* 1582 * Make a deep copy of the packet because we're going to 1583 * modify the pack in order to generate checksums. 1584 */ 1585 copym = m_dup(m, M_NOWAIT); 1586 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1587 copym = m_pullup(copym, hlen); 1588 if (copym != NULL) { 1589 /* If needed, compute the checksum and mark it as valid. */ 1590 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1591 in_delayed_cksum(copym); 1592 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1593 copym->m_pkthdr.csum_flags |= 1594 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1595 copym->m_pkthdr.csum_data = 0xffff; 1596 } 1597 /* 1598 * We don't bother to fragment if the IP length is greater 1599 * than the interface's MTU. Can this possibly matter? 1600 */ 1601 ip = mtod(copym, struct ip *); 1602 ip->ip_sum = 0; 1603 ip->ip_sum = in_cksum(copym, hlen); 1604 if_simloop(ifp, copym, AF_INET, 0); 1605 } 1606 } 1607