1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_kern_tls.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_mpath.h" 42 #include "opt_ratelimit.h" 43 #include "opt_route.h" 44 #include "opt_rss.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/kernel.h> 50 #include <sys/ktls.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mbuf.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/protosw.h> 57 #include <sys/rmlock.h> 58 #include <sys/sdt.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sysctl.h> 62 #include <sys/ucred.h> 63 64 #include <net/if.h> 65 #include <net/if_var.h> 66 #include <net/if_llatbl.h> 67 #include <net/netisr.h> 68 #include <net/pfil.h> 69 #include <net/route.h> 70 #include <net/route/nhop.h> 71 #include <net/rss_config.h> 72 #include <net/vnet.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_fib.h> 76 #include <netinet/in_kdtrace.h> 77 #include <netinet/in_systm.h> 78 #include <netinet/ip.h> 79 #include <netinet/in_fib.h> 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_rss.h> 82 #include <netinet/in_var.h> 83 #include <netinet/ip_var.h> 84 #include <netinet/ip_options.h> 85 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #if defined(SCTP) || defined(SCTP_SUPPORT) 90 #include <netinet/sctp.h> 91 #include <netinet/sctp_crc32.h> 92 #endif 93 94 #include <netipsec/ipsec_support.h> 95 96 #include <machine/in_cksum.h> 97 98 #include <security/mac/mac_framework.h> 99 100 #ifdef MBUF_STRESS_TEST 101 static int mbuf_frag_size = 0; 102 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 103 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 104 #endif 105 106 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 107 108 109 extern int in_mcast_loop; 110 extern struct protosw inetsw[]; 111 112 static inline int 113 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 114 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 115 { 116 struct m_tag *fwd_tag = NULL; 117 struct mbuf *m; 118 struct in_addr odst; 119 struct ip *ip; 120 int pflags = PFIL_OUT; 121 122 if (flags & IP_FORWARDING) 123 pflags |= PFIL_FWD; 124 125 m = *mp; 126 ip = mtod(m, struct ip *); 127 128 /* Run through list of hooks for output packets. */ 129 odst.s_addr = ip->ip_dst.s_addr; 130 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { 131 case PFIL_DROPPED: 132 *error = EACCES; 133 /* FALLTHROUGH */ 134 case PFIL_CONSUMED: 135 return 1; /* Finished */ 136 case PFIL_PASS: 137 *error = 0; 138 } 139 m = *mp; 140 ip = mtod(m, struct ip *); 141 142 /* See if destination IP address was changed by packet filter. */ 143 if (odst.s_addr != ip->ip_dst.s_addr) { 144 m->m_flags |= M_SKIP_FIREWALL; 145 /* If destination is now ourself drop to ip_input(). */ 146 if (in_localip(ip->ip_dst)) { 147 m->m_flags |= M_FASTFWD_OURS; 148 if (m->m_pkthdr.rcvif == NULL) 149 m->m_pkthdr.rcvif = V_loif; 150 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 151 m->m_pkthdr.csum_flags |= 152 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 153 m->m_pkthdr.csum_data = 0xffff; 154 } 155 m->m_pkthdr.csum_flags |= 156 CSUM_IP_CHECKED | CSUM_IP_VALID; 157 #if defined(SCTP) || defined(SCTP_SUPPORT) 158 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 159 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 160 #endif 161 *error = netisr_queue(NETISR_IP, m); 162 return 1; /* Finished */ 163 } 164 165 bzero(dst, sizeof(*dst)); 166 dst->sin_family = AF_INET; 167 dst->sin_len = sizeof(*dst); 168 dst->sin_addr = ip->ip_dst; 169 170 return -1; /* Reloop */ 171 } 172 /* See if fib was changed by packet filter. */ 173 if ((*fibnum) != M_GETFIB(m)) { 174 m->m_flags |= M_SKIP_FIREWALL; 175 *fibnum = M_GETFIB(m); 176 return -1; /* Reloop for FIB change */ 177 } 178 179 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 180 if (m->m_flags & M_FASTFWD_OURS) { 181 if (m->m_pkthdr.rcvif == NULL) 182 m->m_pkthdr.rcvif = V_loif; 183 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 184 m->m_pkthdr.csum_flags |= 185 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 186 m->m_pkthdr.csum_data = 0xffff; 187 } 188 #if defined(SCTP) || defined(SCTP_SUPPORT) 189 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 190 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 191 #endif 192 m->m_pkthdr.csum_flags |= 193 CSUM_IP_CHECKED | CSUM_IP_VALID; 194 195 *error = netisr_queue(NETISR_IP, m); 196 return 1; /* Finished */ 197 } 198 /* Or forward to some other address? */ 199 if ((m->m_flags & M_IP_NEXTHOP) && 200 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 201 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 202 m->m_flags |= M_SKIP_FIREWALL; 203 m->m_flags &= ~M_IP_NEXTHOP; 204 m_tag_delete(m, fwd_tag); 205 206 return -1; /* Reloop for CHANGE of dst */ 207 } 208 209 return 0; 210 } 211 212 static int 213 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 214 const struct sockaddr_in *gw, struct route *ro, bool stamp_tag) 215 { 216 #ifdef KERN_TLS 217 struct ktls_session *tls = NULL; 218 #endif 219 struct m_snd_tag *mst; 220 int error; 221 222 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 223 mst = NULL; 224 225 #ifdef KERN_TLS 226 /* 227 * If this is an unencrypted TLS record, save a reference to 228 * the record. This local reference is used to call 229 * ktls_output_eagain after the mbuf has been freed (thus 230 * dropping the mbuf's reference) in if_output. 231 */ 232 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 233 tls = ktls_hold(m->m_next->m_epg_tls); 234 mst = tls->snd_tag; 235 236 /* 237 * If a TLS session doesn't have a valid tag, it must 238 * have had an earlier ifp mismatch, so drop this 239 * packet. 240 */ 241 if (mst == NULL) { 242 error = EAGAIN; 243 goto done; 244 } 245 /* 246 * Always stamp tags that include NIC ktls. 247 */ 248 stamp_tag = true; 249 } 250 #endif 251 #ifdef RATELIMIT 252 if (inp != NULL && mst == NULL) { 253 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 254 (inp->inp_snd_tag != NULL && 255 inp->inp_snd_tag->ifp != ifp)) 256 in_pcboutput_txrtlmt(inp, ifp, m); 257 258 if (inp->inp_snd_tag != NULL) 259 mst = inp->inp_snd_tag; 260 } 261 #endif 262 if (stamp_tag && mst != NULL) { 263 KASSERT(m->m_pkthdr.rcvif == NULL, 264 ("trying to add a send tag to a forwarded packet")); 265 if (mst->ifp != ifp) { 266 error = EAGAIN; 267 goto done; 268 } 269 270 /* stamp send tag on mbuf */ 271 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 272 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 273 } 274 275 error = (*ifp->if_output)(ifp, m, (const struct sockaddr *)gw, ro); 276 277 done: 278 /* Check for route change invalidating send tags. */ 279 #ifdef KERN_TLS 280 if (tls != NULL) { 281 if (error == EAGAIN) 282 error = ktls_output_eagain(inp, tls); 283 ktls_free(tls); 284 } 285 #endif 286 #ifdef RATELIMIT 287 if (error == EAGAIN) 288 in_pcboutput_eagain(inp); 289 #endif 290 return (error); 291 } 292 293 /* rte<>ro_flags translation */ 294 static inline void 295 rt_update_ro_flags(struct route *ro) 296 { 297 int nh_flags = ro->ro_nh->nh_flags; 298 299 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 300 301 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 302 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 303 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 304 } 305 306 /* 307 * IP output. The packet in mbuf chain m contains a skeletal IP 308 * header (with len, off, ttl, proto, tos, src, dst). 309 * The mbuf chain containing the packet will be freed. 310 * The mbuf opt, if present, will not be freed. 311 * If route ro is present and has ro_rt initialized, route lookup would be 312 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 313 * then result of route lookup is stored in ro->ro_rt. 314 * 315 * In the IP forwarding case, the packet will arrive with options already 316 * inserted, so must have a NULL opt pointer. 317 */ 318 int 319 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 320 struct ip_moptions *imo, struct inpcb *inp) 321 { 322 struct rm_priotracker in_ifa_tracker; 323 struct ip *ip; 324 struct ifnet *ifp = NULL; /* keep compiler happy */ 325 struct mbuf *m0; 326 int hlen = sizeof (struct ip); 327 int mtu; 328 int error = 0; 329 struct sockaddr_in *dst, sin; 330 const struct sockaddr_in *gw; 331 struct in_ifaddr *ia; 332 struct in_addr src; 333 int isbroadcast; 334 uint16_t ip_len, ip_off; 335 uint32_t fibnum; 336 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 337 int no_route_but_check_spd = 0; 338 #endif 339 340 M_ASSERTPKTHDR(m); 341 NET_EPOCH_ASSERT(); 342 343 if (inp != NULL) { 344 INP_LOCK_ASSERT(inp); 345 M_SETFIB(m, inp->inp_inc.inc_fibnum); 346 if ((flags & IP_NODEFAULTFLOWID) == 0) { 347 m->m_pkthdr.flowid = inp->inp_flowid; 348 M_HASHTYPE_SET(m, inp->inp_flowtype); 349 } 350 #ifdef NUMA 351 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 352 #endif 353 } 354 355 if (opt) { 356 int len = 0; 357 m = ip_insertoptions(m, opt, &len); 358 if (len != 0) 359 hlen = len; /* ip->ip_hl is updated above */ 360 } 361 ip = mtod(m, struct ip *); 362 ip_len = ntohs(ip->ip_len); 363 ip_off = ntohs(ip->ip_off); 364 365 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 366 ip->ip_v = IPVERSION; 367 ip->ip_hl = hlen >> 2; 368 ip_fillid(ip); 369 } else { 370 /* Header already set, fetch hlen from there */ 371 hlen = ip->ip_hl << 2; 372 } 373 if ((flags & IP_FORWARDING) == 0) 374 IPSTAT_INC(ips_localout); 375 376 /* 377 * dst/gw handling: 378 * 379 * gw is readonly but can point either to dst OR rt_gateway, 380 * therefore we need restore gw if we're redoing lookup. 381 */ 382 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 383 if (ro != NULL) 384 dst = (struct sockaddr_in *)&ro->ro_dst; 385 else 386 dst = &sin; 387 if (ro == NULL || ro->ro_nh == NULL) { 388 bzero(dst, sizeof(*dst)); 389 dst->sin_family = AF_INET; 390 dst->sin_len = sizeof(*dst); 391 dst->sin_addr = ip->ip_dst; 392 } 393 gw = dst; 394 again: 395 /* 396 * Validate route against routing table additions; 397 * a better/more specific route might have been added. 398 */ 399 if (inp != NULL && ro != NULL && ro->ro_nh != NULL) 400 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 401 /* 402 * If there is a cached route, 403 * check that it is to the same destination 404 * and is still up. If not, free it and try again. 405 * The address family should also be checked in case of sharing the 406 * cache with IPv6. 407 * Also check whether routing cache needs invalidation. 408 */ 409 if (ro != NULL && ro->ro_nh != NULL && 410 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 411 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 412 RO_INVALIDATE_CACHE(ro); 413 ia = NULL; 414 /* 415 * If routing to interface only, short circuit routing lookup. 416 * The use of an all-ones broadcast address implies this; an 417 * interface is specified by the broadcast address of an interface, 418 * or the destination address of a ptp interface. 419 */ 420 if (flags & IP_SENDONES) { 421 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 422 M_GETFIB(m)))) == NULL && 423 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 424 M_GETFIB(m)))) == NULL) { 425 IPSTAT_INC(ips_noroute); 426 error = ENETUNREACH; 427 goto bad; 428 } 429 ip->ip_dst.s_addr = INADDR_BROADCAST; 430 dst->sin_addr = ip->ip_dst; 431 ifp = ia->ia_ifp; 432 mtu = ifp->if_mtu; 433 ip->ip_ttl = 1; 434 isbroadcast = 1; 435 src = IA_SIN(ia)->sin_addr; 436 } else if (flags & IP_ROUTETOIF) { 437 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 438 M_GETFIB(m)))) == NULL && 439 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 440 M_GETFIB(m)))) == NULL) { 441 IPSTAT_INC(ips_noroute); 442 error = ENETUNREACH; 443 goto bad; 444 } 445 ifp = ia->ia_ifp; 446 mtu = ifp->if_mtu; 447 ip->ip_ttl = 1; 448 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 449 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 450 src = IA_SIN(ia)->sin_addr; 451 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 452 imo != NULL && imo->imo_multicast_ifp != NULL) { 453 /* 454 * Bypass the normal routing lookup for multicast 455 * packets if the interface is specified. 456 */ 457 ifp = imo->imo_multicast_ifp; 458 mtu = ifp->if_mtu; 459 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 460 isbroadcast = 0; /* fool gcc */ 461 /* Interface may have no addresses. */ 462 if (ia != NULL) 463 src = IA_SIN(ia)->sin_addr; 464 else 465 src.s_addr = INADDR_ANY; 466 } else if (ro != NULL) { 467 if (ro->ro_nh == NULL) { 468 /* 469 * We want to do any cloning requested by the link 470 * layer, as this is probably required in all cases 471 * for correct operation (as it is for ARP). 472 */ 473 uint32_t flowid; 474 #ifdef RADIX_MPATH 475 flowid = ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr); 476 #else 477 flowid = m->m_pkthdr.flowid; 478 #endif 479 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 480 NHR_REF, flowid); 481 482 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 483 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 484 /* 485 * There is no route for this packet, but it is 486 * possible that a matching SPD entry exists. 487 */ 488 no_route_but_check_spd = 1; 489 mtu = 0; /* Silence GCC warning. */ 490 goto sendit; 491 #endif 492 IPSTAT_INC(ips_noroute); 493 error = EHOSTUNREACH; 494 goto bad; 495 } 496 } 497 ia = ifatoia(ro->ro_nh->nh_ifa); 498 ifp = ro->ro_nh->nh_ifp; 499 counter_u64_add(ro->ro_nh->nh_pksent, 1); 500 rt_update_ro_flags(ro); 501 if (ro->ro_nh->nh_flags & NHF_GATEWAY) 502 gw = &ro->ro_nh->gw4_sa; 503 if (ro->ro_nh->nh_flags & NHF_HOST) 504 isbroadcast = (ro->ro_nh->nh_flags & NHF_BROADCAST); 505 else if (ifp->if_flags & IFF_BROADCAST) 506 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 507 else 508 isbroadcast = 0; 509 if (ro->ro_nh->nh_flags & NHF_HOST) 510 mtu = ro->ro_nh->nh_mtu; 511 else 512 mtu = ifp->if_mtu; 513 src = IA_SIN(ia)->sin_addr; 514 } else { 515 struct nhop_object *nh; 516 517 nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_NONE, 0); 518 if (nh == NULL) { 519 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 520 /* 521 * There is no route for this packet, but it is 522 * possible that a matching SPD entry exists. 523 */ 524 no_route_but_check_spd = 1; 525 mtu = 0; /* Silence GCC warning. */ 526 goto sendit; 527 #endif 528 IPSTAT_INC(ips_noroute); 529 error = EHOSTUNREACH; 530 goto bad; 531 } 532 ifp = nh->nh_ifp; 533 mtu = nh->nh_mtu; 534 /* 535 * We are rewriting here dst to be gw actually, contradicting 536 * comment at the beginning of the function. However, in this 537 * case we are always dealing with on stack dst. 538 * In case if pfil(9) sends us back to beginning of the 539 * function, the dst would be rewritten by ip_output_pfil(). 540 */ 541 MPASS(dst == &sin); 542 if (nh->nh_flags & NHF_GATEWAY) 543 dst->sin_addr = nh->gw4_sa.sin_addr; 544 ia = ifatoia(nh->nh_ifa); 545 src = IA_SIN(ia)->sin_addr; 546 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 547 (NHF_HOST | NHF_BROADCAST)) || 548 ((ifp->if_flags & IFF_BROADCAST) && 549 in_ifaddr_broadcast(dst->sin_addr, ia))); 550 } 551 552 /* Catch a possible divide by zero later. */ 553 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 554 __func__, mtu, ro, 555 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 556 557 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 558 m->m_flags |= M_MCAST; 559 /* 560 * IP destination address is multicast. Make sure "gw" 561 * still points to the address in "ro". (It may have been 562 * changed to point to a gateway address, above.) 563 */ 564 gw = dst; 565 /* 566 * See if the caller provided any multicast options 567 */ 568 if (imo != NULL) { 569 ip->ip_ttl = imo->imo_multicast_ttl; 570 if (imo->imo_multicast_vif != -1) 571 ip->ip_src.s_addr = 572 ip_mcast_src ? 573 ip_mcast_src(imo->imo_multicast_vif) : 574 INADDR_ANY; 575 } else 576 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 577 /* 578 * Confirm that the outgoing interface supports multicast. 579 */ 580 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 581 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 582 IPSTAT_INC(ips_noroute); 583 error = ENETUNREACH; 584 goto bad; 585 } 586 } 587 /* 588 * If source address not specified yet, use address 589 * of outgoing interface. 590 */ 591 if (ip->ip_src.s_addr == INADDR_ANY) 592 ip->ip_src = src; 593 594 if ((imo == NULL && in_mcast_loop) || 595 (imo && imo->imo_multicast_loop)) { 596 /* 597 * Loop back multicast datagram if not expressly 598 * forbidden to do so, even if we are not a member 599 * of the group; ip_input() will filter it later, 600 * thus deferring a hash lookup and mutex acquisition 601 * at the expense of a cheap copy using m_copym(). 602 */ 603 ip_mloopback(ifp, m, hlen); 604 } else { 605 /* 606 * If we are acting as a multicast router, perform 607 * multicast forwarding as if the packet had just 608 * arrived on the interface to which we are about 609 * to send. The multicast forwarding function 610 * recursively calls this function, using the 611 * IP_FORWARDING flag to prevent infinite recursion. 612 * 613 * Multicasts that are looped back by ip_mloopback(), 614 * above, will be forwarded by the ip_input() routine, 615 * if necessary. 616 */ 617 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 618 /* 619 * If rsvp daemon is not running, do not 620 * set ip_moptions. This ensures that the packet 621 * is multicast and not just sent down one link 622 * as prescribed by rsvpd. 623 */ 624 if (!V_rsvp_on) 625 imo = NULL; 626 if (ip_mforward && 627 ip_mforward(ip, ifp, m, imo) != 0) { 628 m_freem(m); 629 goto done; 630 } 631 } 632 } 633 634 /* 635 * Multicasts with a time-to-live of zero may be looped- 636 * back, above, but must not be transmitted on a network. 637 * Also, multicasts addressed to the loopback interface 638 * are not sent -- the above call to ip_mloopback() will 639 * loop back a copy. ip_input() will drop the copy if 640 * this host does not belong to the destination group on 641 * the loopback interface. 642 */ 643 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 644 m_freem(m); 645 goto done; 646 } 647 648 goto sendit; 649 } 650 651 /* 652 * If the source address is not specified yet, use the address 653 * of the outoing interface. 654 */ 655 if (ip->ip_src.s_addr == INADDR_ANY) 656 ip->ip_src = src; 657 658 /* 659 * Look for broadcast address and 660 * verify user is allowed to send 661 * such a packet. 662 */ 663 if (isbroadcast) { 664 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 665 error = EADDRNOTAVAIL; 666 goto bad; 667 } 668 if ((flags & IP_ALLOWBROADCAST) == 0) { 669 error = EACCES; 670 goto bad; 671 } 672 /* don't allow broadcast messages to be fragmented */ 673 if (ip_len > mtu) { 674 error = EMSGSIZE; 675 goto bad; 676 } 677 m->m_flags |= M_BCAST; 678 } else { 679 m->m_flags &= ~M_BCAST; 680 } 681 682 sendit: 683 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 684 if (IPSEC_ENABLED(ipv4)) { 685 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 686 if (error == EINPROGRESS) 687 error = 0; 688 goto done; 689 } 690 } 691 /* 692 * Check if there was a route for this packet; return error if not. 693 */ 694 if (no_route_but_check_spd) { 695 IPSTAT_INC(ips_noroute); 696 error = EHOSTUNREACH; 697 goto bad; 698 } 699 /* Update variables that are affected by ipsec4_output(). */ 700 ip = mtod(m, struct ip *); 701 hlen = ip->ip_hl << 2; 702 #endif /* IPSEC */ 703 704 /* Jump over all PFIL processing if hooks are not active. */ 705 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 706 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 707 &error)) { 708 case 1: /* Finished */ 709 goto done; 710 711 case 0: /* Continue normally */ 712 ip = mtod(m, struct ip *); 713 break; 714 715 case -1: /* Need to try again */ 716 /* Reset everything for a new round */ 717 if (ro != NULL) { 718 RO_NHFREE(ro); 719 ro->ro_prepend = NULL; 720 } 721 gw = dst; 722 ip = mtod(m, struct ip *); 723 goto again; 724 725 } 726 } 727 728 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 729 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 730 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 731 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 732 IPSTAT_INC(ips_badaddr); 733 error = EADDRNOTAVAIL; 734 goto bad; 735 } 736 } 737 738 m->m_pkthdr.csum_flags |= CSUM_IP; 739 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 740 m = mb_unmapped_to_ext(m); 741 if (m == NULL) { 742 IPSTAT_INC(ips_odropped); 743 error = ENOBUFS; 744 goto bad; 745 } 746 in_delayed_cksum(m); 747 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 748 } else if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 749 m = mb_unmapped_to_ext(m); 750 if (m == NULL) { 751 IPSTAT_INC(ips_odropped); 752 error = ENOBUFS; 753 goto bad; 754 } 755 } 756 #if defined(SCTP) || defined(SCTP_SUPPORT) 757 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 758 m = mb_unmapped_to_ext(m); 759 if (m == NULL) { 760 IPSTAT_INC(ips_odropped); 761 error = ENOBUFS; 762 goto bad; 763 } 764 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 765 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 766 } 767 #endif 768 769 /* 770 * If small enough for interface, or the interface will take 771 * care of the fragmentation for us, we can just send directly. 772 */ 773 if (ip_len <= mtu || 774 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 775 ip->ip_sum = 0; 776 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 777 ip->ip_sum = in_cksum(m, hlen); 778 m->m_pkthdr.csum_flags &= ~CSUM_IP; 779 } 780 781 /* 782 * Record statistics for this interface address. 783 * With CSUM_TSO the byte/packet count will be slightly 784 * incorrect because we count the IP+TCP headers only 785 * once instead of for every generated packet. 786 */ 787 if (!(flags & IP_FORWARDING) && ia) { 788 if (m->m_pkthdr.csum_flags & CSUM_TSO) 789 counter_u64_add(ia->ia_ifa.ifa_opackets, 790 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 791 else 792 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 793 794 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 795 } 796 #ifdef MBUF_STRESS_TEST 797 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 798 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 799 #endif 800 /* 801 * Reset layer specific mbuf flags 802 * to avoid confusing lower layers. 803 */ 804 m_clrprotoflags(m); 805 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 806 error = ip_output_send(inp, ifp, m, gw, ro, 807 (flags & IP_NO_SND_TAG_RL) ? false : true); 808 goto done; 809 } 810 811 /* Balk when DF bit is set or the interface didn't support TSO. */ 812 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 813 error = EMSGSIZE; 814 IPSTAT_INC(ips_cantfrag); 815 goto bad; 816 } 817 818 /* 819 * Too large for interface; fragment if possible. If successful, 820 * on return, m will point to a list of packets to be sent. 821 */ 822 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 823 if (error) 824 goto bad; 825 for (; m; m = m0) { 826 m0 = m->m_nextpkt; 827 m->m_nextpkt = 0; 828 if (error == 0) { 829 /* Record statistics for this interface address. */ 830 if (ia != NULL) { 831 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 832 counter_u64_add(ia->ia_ifa.ifa_obytes, 833 m->m_pkthdr.len); 834 } 835 /* 836 * Reset layer specific mbuf flags 837 * to avoid confusing upper layers. 838 */ 839 m_clrprotoflags(m); 840 841 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 842 mtod(m, struct ip *), NULL); 843 error = ip_output_send(inp, ifp, m, gw, ro, true); 844 } else 845 m_freem(m); 846 } 847 848 if (error == 0) 849 IPSTAT_INC(ips_fragmented); 850 851 done: 852 return (error); 853 bad: 854 m_freem(m); 855 goto done; 856 } 857 858 /* 859 * Create a chain of fragments which fit the given mtu. m_frag points to the 860 * mbuf to be fragmented; on return it points to the chain with the fragments. 861 * Return 0 if no error. If error, m_frag may contain a partially built 862 * chain of fragments that should be freed by the caller. 863 * 864 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 865 */ 866 int 867 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 868 u_long if_hwassist_flags) 869 { 870 int error = 0; 871 int hlen = ip->ip_hl << 2; 872 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 873 int off; 874 struct mbuf *m0 = *m_frag; /* the original packet */ 875 int firstlen; 876 struct mbuf **mnext; 877 int nfrags; 878 uint16_t ip_len, ip_off; 879 880 ip_len = ntohs(ip->ip_len); 881 ip_off = ntohs(ip->ip_off); 882 883 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 884 IPSTAT_INC(ips_cantfrag); 885 return EMSGSIZE; 886 } 887 888 /* 889 * Must be able to put at least 8 bytes per fragment. 890 */ 891 if (len < 8) 892 return EMSGSIZE; 893 894 /* 895 * If the interface will not calculate checksums on 896 * fragmented packets, then do it here. 897 */ 898 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 899 m0 = mb_unmapped_to_ext(m0); 900 if (m0 == NULL) { 901 error = ENOBUFS; 902 IPSTAT_INC(ips_odropped); 903 goto done; 904 } 905 in_delayed_cksum(m0); 906 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 907 } 908 #if defined(SCTP) || defined(SCTP_SUPPORT) 909 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 910 m0 = mb_unmapped_to_ext(m0); 911 if (m0 == NULL) { 912 error = ENOBUFS; 913 IPSTAT_INC(ips_odropped); 914 goto done; 915 } 916 sctp_delayed_cksum(m0, hlen); 917 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 918 } 919 #endif 920 if (len > PAGE_SIZE) { 921 /* 922 * Fragment large datagrams such that each segment 923 * contains a multiple of PAGE_SIZE amount of data, 924 * plus headers. This enables a receiver to perform 925 * page-flipping zero-copy optimizations. 926 * 927 * XXX When does this help given that sender and receiver 928 * could have different page sizes, and also mtu could 929 * be less than the receiver's page size ? 930 */ 931 int newlen; 932 933 off = MIN(mtu, m0->m_pkthdr.len); 934 935 /* 936 * firstlen (off - hlen) must be aligned on an 937 * 8-byte boundary 938 */ 939 if (off < hlen) 940 goto smart_frag_failure; 941 off = ((off - hlen) & ~7) + hlen; 942 newlen = (~PAGE_MASK) & mtu; 943 if ((newlen + sizeof (struct ip)) > mtu) { 944 /* we failed, go back the default */ 945 smart_frag_failure: 946 newlen = len; 947 off = hlen + len; 948 } 949 len = newlen; 950 951 } else { 952 off = hlen + len; 953 } 954 955 firstlen = off - hlen; 956 mnext = &m0->m_nextpkt; /* pointer to next packet */ 957 958 /* 959 * Loop through length of segment after first fragment, 960 * make new header and copy data of each part and link onto chain. 961 * Here, m0 is the original packet, m is the fragment being created. 962 * The fragments are linked off the m_nextpkt of the original 963 * packet, which after processing serves as the first fragment. 964 */ 965 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 966 struct ip *mhip; /* ip header on the fragment */ 967 struct mbuf *m; 968 int mhlen = sizeof (struct ip); 969 970 m = m_gethdr(M_NOWAIT, MT_DATA); 971 if (m == NULL) { 972 error = ENOBUFS; 973 IPSTAT_INC(ips_odropped); 974 goto done; 975 } 976 /* 977 * Make sure the complete packet header gets copied 978 * from the originating mbuf to the newly created 979 * mbuf. This also ensures that existing firewall 980 * classification(s), VLAN tags and so on get copied 981 * to the resulting fragmented packet(s): 982 */ 983 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 984 m_free(m); 985 error = ENOBUFS; 986 IPSTAT_INC(ips_odropped); 987 goto done; 988 } 989 /* 990 * In the first mbuf, leave room for the link header, then 991 * copy the original IP header including options. The payload 992 * goes into an additional mbuf chain returned by m_copym(). 993 */ 994 m->m_data += max_linkhdr; 995 mhip = mtod(m, struct ip *); 996 *mhip = *ip; 997 if (hlen > sizeof (struct ip)) { 998 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 999 mhip->ip_v = IPVERSION; 1000 mhip->ip_hl = mhlen >> 2; 1001 } 1002 m->m_len = mhlen; 1003 /* XXX do we need to add ip_off below ? */ 1004 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 1005 if (off + len >= ip_len) 1006 len = ip_len - off; 1007 else 1008 mhip->ip_off |= IP_MF; 1009 mhip->ip_len = htons((u_short)(len + mhlen)); 1010 m->m_next = m_copym(m0, off, len, M_NOWAIT); 1011 if (m->m_next == NULL) { /* copy failed */ 1012 m_free(m); 1013 error = ENOBUFS; /* ??? */ 1014 IPSTAT_INC(ips_odropped); 1015 goto done; 1016 } 1017 m->m_pkthdr.len = mhlen + len; 1018 #ifdef MAC 1019 mac_netinet_fragment(m0, m); 1020 #endif 1021 mhip->ip_off = htons(mhip->ip_off); 1022 mhip->ip_sum = 0; 1023 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1024 mhip->ip_sum = in_cksum(m, mhlen); 1025 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1026 } 1027 *mnext = m; 1028 mnext = &m->m_nextpkt; 1029 } 1030 IPSTAT_ADD(ips_ofragments, nfrags); 1031 1032 /* 1033 * Update first fragment by trimming what's been copied out 1034 * and updating header. 1035 */ 1036 m_adj(m0, hlen + firstlen - ip_len); 1037 m0->m_pkthdr.len = hlen + firstlen; 1038 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1039 ip->ip_off = htons(ip_off | IP_MF); 1040 ip->ip_sum = 0; 1041 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1042 ip->ip_sum = in_cksum(m0, hlen); 1043 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1044 } 1045 1046 done: 1047 *m_frag = m0; 1048 return error; 1049 } 1050 1051 void 1052 in_delayed_cksum(struct mbuf *m) 1053 { 1054 struct ip *ip; 1055 struct udphdr *uh; 1056 uint16_t cklen, csum, offset; 1057 1058 ip = mtod(m, struct ip *); 1059 offset = ip->ip_hl << 2 ; 1060 1061 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1062 /* if udp header is not in the first mbuf copy udplen */ 1063 if (offset + sizeof(struct udphdr) > m->m_len) { 1064 m_copydata(m, offset + offsetof(struct udphdr, 1065 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1066 cklen = ntohs(cklen); 1067 } else { 1068 uh = (struct udphdr *)mtodo(m, offset); 1069 cklen = ntohs(uh->uh_ulen); 1070 } 1071 csum = in_cksum_skip(m, cklen + offset, offset); 1072 if (csum == 0) 1073 csum = 0xffff; 1074 } else { 1075 cklen = ntohs(ip->ip_len); 1076 csum = in_cksum_skip(m, cklen, offset); 1077 } 1078 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1079 1080 if (offset + sizeof(csum) > m->m_len) 1081 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1082 else 1083 *(u_short *)mtodo(m, offset) = csum; 1084 } 1085 1086 /* 1087 * IP socket option processing. 1088 */ 1089 int 1090 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1091 { 1092 struct inpcb *inp = sotoinpcb(so); 1093 int error, optval; 1094 #ifdef RSS 1095 uint32_t rss_bucket; 1096 int retval; 1097 #endif 1098 1099 error = optval = 0; 1100 if (sopt->sopt_level != IPPROTO_IP) { 1101 error = EINVAL; 1102 1103 if (sopt->sopt_level == SOL_SOCKET && 1104 sopt->sopt_dir == SOPT_SET) { 1105 switch (sopt->sopt_name) { 1106 case SO_REUSEADDR: 1107 INP_WLOCK(inp); 1108 if ((so->so_options & SO_REUSEADDR) != 0) 1109 inp->inp_flags2 |= INP_REUSEADDR; 1110 else 1111 inp->inp_flags2 &= ~INP_REUSEADDR; 1112 INP_WUNLOCK(inp); 1113 error = 0; 1114 break; 1115 case SO_REUSEPORT: 1116 INP_WLOCK(inp); 1117 if ((so->so_options & SO_REUSEPORT) != 0) 1118 inp->inp_flags2 |= INP_REUSEPORT; 1119 else 1120 inp->inp_flags2 &= ~INP_REUSEPORT; 1121 INP_WUNLOCK(inp); 1122 error = 0; 1123 break; 1124 case SO_REUSEPORT_LB: 1125 INP_WLOCK(inp); 1126 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1127 inp->inp_flags2 |= INP_REUSEPORT_LB; 1128 else 1129 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1130 INP_WUNLOCK(inp); 1131 error = 0; 1132 break; 1133 case SO_SETFIB: 1134 INP_WLOCK(inp); 1135 inp->inp_inc.inc_fibnum = so->so_fibnum; 1136 INP_WUNLOCK(inp); 1137 error = 0; 1138 break; 1139 case SO_MAX_PACING_RATE: 1140 #ifdef RATELIMIT 1141 INP_WLOCK(inp); 1142 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1143 INP_WUNLOCK(inp); 1144 error = 0; 1145 #else 1146 error = EOPNOTSUPP; 1147 #endif 1148 break; 1149 default: 1150 break; 1151 } 1152 } 1153 return (error); 1154 } 1155 1156 switch (sopt->sopt_dir) { 1157 case SOPT_SET: 1158 switch (sopt->sopt_name) { 1159 case IP_OPTIONS: 1160 #ifdef notyet 1161 case IP_RETOPTS: 1162 #endif 1163 { 1164 struct mbuf *m; 1165 if (sopt->sopt_valsize > MLEN) { 1166 error = EMSGSIZE; 1167 break; 1168 } 1169 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1170 if (m == NULL) { 1171 error = ENOBUFS; 1172 break; 1173 } 1174 m->m_len = sopt->sopt_valsize; 1175 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1176 m->m_len); 1177 if (error) { 1178 m_free(m); 1179 break; 1180 } 1181 INP_WLOCK(inp); 1182 error = ip_pcbopts(inp, sopt->sopt_name, m); 1183 INP_WUNLOCK(inp); 1184 return (error); 1185 } 1186 1187 case IP_BINDANY: 1188 if (sopt->sopt_td != NULL) { 1189 error = priv_check(sopt->sopt_td, 1190 PRIV_NETINET_BINDANY); 1191 if (error) 1192 break; 1193 } 1194 /* FALLTHROUGH */ 1195 case IP_BINDMULTI: 1196 #ifdef RSS 1197 case IP_RSS_LISTEN_BUCKET: 1198 #endif 1199 case IP_TOS: 1200 case IP_TTL: 1201 case IP_MINTTL: 1202 case IP_RECVOPTS: 1203 case IP_RECVRETOPTS: 1204 case IP_ORIGDSTADDR: 1205 case IP_RECVDSTADDR: 1206 case IP_RECVTTL: 1207 case IP_RECVIF: 1208 case IP_ONESBCAST: 1209 case IP_DONTFRAG: 1210 case IP_RECVTOS: 1211 case IP_RECVFLOWID: 1212 #ifdef RSS 1213 case IP_RECVRSSBUCKETID: 1214 #endif 1215 error = sooptcopyin(sopt, &optval, sizeof optval, 1216 sizeof optval); 1217 if (error) 1218 break; 1219 1220 switch (sopt->sopt_name) { 1221 case IP_TOS: 1222 inp->inp_ip_tos = optval; 1223 break; 1224 1225 case IP_TTL: 1226 inp->inp_ip_ttl = optval; 1227 break; 1228 1229 case IP_MINTTL: 1230 if (optval >= 0 && optval <= MAXTTL) 1231 inp->inp_ip_minttl = optval; 1232 else 1233 error = EINVAL; 1234 break; 1235 1236 #define OPTSET(bit) do { \ 1237 INP_WLOCK(inp); \ 1238 if (optval) \ 1239 inp->inp_flags |= bit; \ 1240 else \ 1241 inp->inp_flags &= ~bit; \ 1242 INP_WUNLOCK(inp); \ 1243 } while (0) 1244 1245 #define OPTSET2(bit, val) do { \ 1246 INP_WLOCK(inp); \ 1247 if (val) \ 1248 inp->inp_flags2 |= bit; \ 1249 else \ 1250 inp->inp_flags2 &= ~bit; \ 1251 INP_WUNLOCK(inp); \ 1252 } while (0) 1253 1254 case IP_RECVOPTS: 1255 OPTSET(INP_RECVOPTS); 1256 break; 1257 1258 case IP_RECVRETOPTS: 1259 OPTSET(INP_RECVRETOPTS); 1260 break; 1261 1262 case IP_RECVDSTADDR: 1263 OPTSET(INP_RECVDSTADDR); 1264 break; 1265 1266 case IP_ORIGDSTADDR: 1267 OPTSET2(INP_ORIGDSTADDR, optval); 1268 break; 1269 1270 case IP_RECVTTL: 1271 OPTSET(INP_RECVTTL); 1272 break; 1273 1274 case IP_RECVIF: 1275 OPTSET(INP_RECVIF); 1276 break; 1277 1278 case IP_ONESBCAST: 1279 OPTSET(INP_ONESBCAST); 1280 break; 1281 case IP_DONTFRAG: 1282 OPTSET(INP_DONTFRAG); 1283 break; 1284 case IP_BINDANY: 1285 OPTSET(INP_BINDANY); 1286 break; 1287 case IP_RECVTOS: 1288 OPTSET(INP_RECVTOS); 1289 break; 1290 case IP_BINDMULTI: 1291 OPTSET2(INP_BINDMULTI, optval); 1292 break; 1293 case IP_RECVFLOWID: 1294 OPTSET2(INP_RECVFLOWID, optval); 1295 break; 1296 #ifdef RSS 1297 case IP_RSS_LISTEN_BUCKET: 1298 if ((optval >= 0) && 1299 (optval < rss_getnumbuckets())) { 1300 inp->inp_rss_listen_bucket = optval; 1301 OPTSET2(INP_RSS_BUCKET_SET, 1); 1302 } else { 1303 error = EINVAL; 1304 } 1305 break; 1306 case IP_RECVRSSBUCKETID: 1307 OPTSET2(INP_RECVRSSBUCKETID, optval); 1308 break; 1309 #endif 1310 } 1311 break; 1312 #undef OPTSET 1313 #undef OPTSET2 1314 1315 /* 1316 * Multicast socket options are processed by the in_mcast 1317 * module. 1318 */ 1319 case IP_MULTICAST_IF: 1320 case IP_MULTICAST_VIF: 1321 case IP_MULTICAST_TTL: 1322 case IP_MULTICAST_LOOP: 1323 case IP_ADD_MEMBERSHIP: 1324 case IP_DROP_MEMBERSHIP: 1325 case IP_ADD_SOURCE_MEMBERSHIP: 1326 case IP_DROP_SOURCE_MEMBERSHIP: 1327 case IP_BLOCK_SOURCE: 1328 case IP_UNBLOCK_SOURCE: 1329 case IP_MSFILTER: 1330 case MCAST_JOIN_GROUP: 1331 case MCAST_LEAVE_GROUP: 1332 case MCAST_JOIN_SOURCE_GROUP: 1333 case MCAST_LEAVE_SOURCE_GROUP: 1334 case MCAST_BLOCK_SOURCE: 1335 case MCAST_UNBLOCK_SOURCE: 1336 error = inp_setmoptions(inp, sopt); 1337 break; 1338 1339 case IP_PORTRANGE: 1340 error = sooptcopyin(sopt, &optval, sizeof optval, 1341 sizeof optval); 1342 if (error) 1343 break; 1344 1345 INP_WLOCK(inp); 1346 switch (optval) { 1347 case IP_PORTRANGE_DEFAULT: 1348 inp->inp_flags &= ~(INP_LOWPORT); 1349 inp->inp_flags &= ~(INP_HIGHPORT); 1350 break; 1351 1352 case IP_PORTRANGE_HIGH: 1353 inp->inp_flags &= ~(INP_LOWPORT); 1354 inp->inp_flags |= INP_HIGHPORT; 1355 break; 1356 1357 case IP_PORTRANGE_LOW: 1358 inp->inp_flags &= ~(INP_HIGHPORT); 1359 inp->inp_flags |= INP_LOWPORT; 1360 break; 1361 1362 default: 1363 error = EINVAL; 1364 break; 1365 } 1366 INP_WUNLOCK(inp); 1367 break; 1368 1369 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1370 case IP_IPSEC_POLICY: 1371 if (IPSEC_ENABLED(ipv4)) { 1372 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1373 break; 1374 } 1375 /* FALLTHROUGH */ 1376 #endif /* IPSEC */ 1377 1378 default: 1379 error = ENOPROTOOPT; 1380 break; 1381 } 1382 break; 1383 1384 case SOPT_GET: 1385 switch (sopt->sopt_name) { 1386 case IP_OPTIONS: 1387 case IP_RETOPTS: 1388 INP_RLOCK(inp); 1389 if (inp->inp_options) { 1390 struct mbuf *options; 1391 1392 options = m_copym(inp->inp_options, 0, 1393 M_COPYALL, M_NOWAIT); 1394 INP_RUNLOCK(inp); 1395 if (options != NULL) { 1396 error = sooptcopyout(sopt, 1397 mtod(options, char *), 1398 options->m_len); 1399 m_freem(options); 1400 } else 1401 error = ENOMEM; 1402 } else { 1403 INP_RUNLOCK(inp); 1404 sopt->sopt_valsize = 0; 1405 } 1406 break; 1407 1408 case IP_TOS: 1409 case IP_TTL: 1410 case IP_MINTTL: 1411 case IP_RECVOPTS: 1412 case IP_RECVRETOPTS: 1413 case IP_ORIGDSTADDR: 1414 case IP_RECVDSTADDR: 1415 case IP_RECVTTL: 1416 case IP_RECVIF: 1417 case IP_PORTRANGE: 1418 case IP_ONESBCAST: 1419 case IP_DONTFRAG: 1420 case IP_BINDANY: 1421 case IP_RECVTOS: 1422 case IP_BINDMULTI: 1423 case IP_FLOWID: 1424 case IP_FLOWTYPE: 1425 case IP_RECVFLOWID: 1426 #ifdef RSS 1427 case IP_RSSBUCKETID: 1428 case IP_RECVRSSBUCKETID: 1429 #endif 1430 switch (sopt->sopt_name) { 1431 1432 case IP_TOS: 1433 optval = inp->inp_ip_tos; 1434 break; 1435 1436 case IP_TTL: 1437 optval = inp->inp_ip_ttl; 1438 break; 1439 1440 case IP_MINTTL: 1441 optval = inp->inp_ip_minttl; 1442 break; 1443 1444 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1445 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1446 1447 case IP_RECVOPTS: 1448 optval = OPTBIT(INP_RECVOPTS); 1449 break; 1450 1451 case IP_RECVRETOPTS: 1452 optval = OPTBIT(INP_RECVRETOPTS); 1453 break; 1454 1455 case IP_RECVDSTADDR: 1456 optval = OPTBIT(INP_RECVDSTADDR); 1457 break; 1458 1459 case IP_ORIGDSTADDR: 1460 optval = OPTBIT2(INP_ORIGDSTADDR); 1461 break; 1462 1463 case IP_RECVTTL: 1464 optval = OPTBIT(INP_RECVTTL); 1465 break; 1466 1467 case IP_RECVIF: 1468 optval = OPTBIT(INP_RECVIF); 1469 break; 1470 1471 case IP_PORTRANGE: 1472 if (inp->inp_flags & INP_HIGHPORT) 1473 optval = IP_PORTRANGE_HIGH; 1474 else if (inp->inp_flags & INP_LOWPORT) 1475 optval = IP_PORTRANGE_LOW; 1476 else 1477 optval = 0; 1478 break; 1479 1480 case IP_ONESBCAST: 1481 optval = OPTBIT(INP_ONESBCAST); 1482 break; 1483 case IP_DONTFRAG: 1484 optval = OPTBIT(INP_DONTFRAG); 1485 break; 1486 case IP_BINDANY: 1487 optval = OPTBIT(INP_BINDANY); 1488 break; 1489 case IP_RECVTOS: 1490 optval = OPTBIT(INP_RECVTOS); 1491 break; 1492 case IP_FLOWID: 1493 optval = inp->inp_flowid; 1494 break; 1495 case IP_FLOWTYPE: 1496 optval = inp->inp_flowtype; 1497 break; 1498 case IP_RECVFLOWID: 1499 optval = OPTBIT2(INP_RECVFLOWID); 1500 break; 1501 #ifdef RSS 1502 case IP_RSSBUCKETID: 1503 retval = rss_hash2bucket(inp->inp_flowid, 1504 inp->inp_flowtype, 1505 &rss_bucket); 1506 if (retval == 0) 1507 optval = rss_bucket; 1508 else 1509 error = EINVAL; 1510 break; 1511 case IP_RECVRSSBUCKETID: 1512 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1513 break; 1514 #endif 1515 case IP_BINDMULTI: 1516 optval = OPTBIT2(INP_BINDMULTI); 1517 break; 1518 } 1519 error = sooptcopyout(sopt, &optval, sizeof optval); 1520 break; 1521 1522 /* 1523 * Multicast socket options are processed by the in_mcast 1524 * module. 1525 */ 1526 case IP_MULTICAST_IF: 1527 case IP_MULTICAST_VIF: 1528 case IP_MULTICAST_TTL: 1529 case IP_MULTICAST_LOOP: 1530 case IP_MSFILTER: 1531 error = inp_getmoptions(inp, sopt); 1532 break; 1533 1534 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1535 case IP_IPSEC_POLICY: 1536 if (IPSEC_ENABLED(ipv4)) { 1537 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1538 break; 1539 } 1540 /* FALLTHROUGH */ 1541 #endif /* IPSEC */ 1542 1543 default: 1544 error = ENOPROTOOPT; 1545 break; 1546 } 1547 break; 1548 } 1549 return (error); 1550 } 1551 1552 /* 1553 * Routine called from ip_output() to loop back a copy of an IP multicast 1554 * packet to the input queue of a specified interface. Note that this 1555 * calls the output routine of the loopback "driver", but with an interface 1556 * pointer that might NOT be a loopback interface -- evil, but easier than 1557 * replicating that code here. 1558 */ 1559 static void 1560 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1561 { 1562 struct ip *ip; 1563 struct mbuf *copym; 1564 1565 /* 1566 * Make a deep copy of the packet because we're going to 1567 * modify the pack in order to generate checksums. 1568 */ 1569 copym = m_dup(m, M_NOWAIT); 1570 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1571 copym = m_pullup(copym, hlen); 1572 if (copym != NULL) { 1573 /* If needed, compute the checksum and mark it as valid. */ 1574 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1575 in_delayed_cksum(copym); 1576 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1577 copym->m_pkthdr.csum_flags |= 1578 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1579 copym->m_pkthdr.csum_data = 0xffff; 1580 } 1581 /* 1582 * We don't bother to fragment if the IP length is greater 1583 * than the interface's MTU. Can this possibly matter? 1584 */ 1585 ip = mtod(copym, struct ip *); 1586 ip->ip_sum = 0; 1587 ip->ip_sum = in_cksum(copym, hlen); 1588 if_simloop(ifp, copym, AF_INET, 0); 1589 } 1590 } 1591