1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_ratelimit.h" 37 #include "opt_ipsec.h" 38 #include "opt_mbuf_stress_test.h" 39 #include "opt_mpath.h" 40 #include "opt_route.h" 41 #include "opt_sctp.h" 42 #include "opt_rss.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mbuf.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/protosw.h> 53 #include <sys/rmlock.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/ucred.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_llatbl.h> 63 #include <net/netisr.h> 64 #include <net/pfil.h> 65 #include <net/route.h> 66 #include <net/flowtable.h> 67 #ifdef RADIX_MPATH 68 #include <net/radix_mpath.h> 69 #endif 70 #include <net/rss_config.h> 71 #include <net/vnet.h> 72 73 #include <netinet/in.h> 74 #include <netinet/in_kdtrace.h> 75 #include <netinet/in_systm.h> 76 #include <netinet/ip.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_rss.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/ip_options.h> 82 #ifdef SCTP 83 #include <netinet/sctp.h> 84 #include <netinet/sctp_crc32.h> 85 #endif 86 87 #ifdef IPSEC 88 #include <netinet/ip_ipsec.h> 89 #include <netipsec/ipsec.h> 90 #endif /* IPSEC*/ 91 92 #include <machine/in_cksum.h> 93 94 #include <security/mac/mac_framework.h> 95 96 #ifdef MBUF_STRESS_TEST 97 static int mbuf_frag_size = 0; 98 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 99 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 100 #endif 101 102 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 103 104 105 extern int in_mcast_loop; 106 extern struct protosw inetsw[]; 107 108 static inline int 109 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp, 110 struct sockaddr_in *dst, int *fibnum, int *error) 111 { 112 struct m_tag *fwd_tag = NULL; 113 struct mbuf *m; 114 struct in_addr odst; 115 struct ip *ip; 116 117 m = *mp; 118 ip = mtod(m, struct ip *); 119 120 /* Run through list of hooks for output packets. */ 121 odst.s_addr = ip->ip_dst.s_addr; 122 *error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, PFIL_OUT, inp); 123 m = *mp; 124 if ((*error) != 0 || m == NULL) 125 return 1; /* Finished */ 126 127 ip = mtod(m, struct ip *); 128 129 /* See if destination IP address was changed by packet filter. */ 130 if (odst.s_addr != ip->ip_dst.s_addr) { 131 m->m_flags |= M_SKIP_FIREWALL; 132 /* If destination is now ourself drop to ip_input(). */ 133 if (in_localip(ip->ip_dst)) { 134 m->m_flags |= M_FASTFWD_OURS; 135 if (m->m_pkthdr.rcvif == NULL) 136 m->m_pkthdr.rcvif = V_loif; 137 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 138 m->m_pkthdr.csum_flags |= 139 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 140 m->m_pkthdr.csum_data = 0xffff; 141 } 142 m->m_pkthdr.csum_flags |= 143 CSUM_IP_CHECKED | CSUM_IP_VALID; 144 #ifdef SCTP 145 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 146 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 147 #endif 148 *error = netisr_queue(NETISR_IP, m); 149 return 1; /* Finished */ 150 } 151 152 bzero(dst, sizeof(*dst)); 153 dst->sin_family = AF_INET; 154 dst->sin_len = sizeof(*dst); 155 dst->sin_addr = ip->ip_dst; 156 157 return -1; /* Reloop */ 158 } 159 /* See if fib was changed by packet filter. */ 160 if ((*fibnum) != M_GETFIB(m)) { 161 m->m_flags |= M_SKIP_FIREWALL; 162 *fibnum = M_GETFIB(m); 163 return -1; /* Reloop for FIB change */ 164 } 165 166 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 167 if (m->m_flags & M_FASTFWD_OURS) { 168 if (m->m_pkthdr.rcvif == NULL) 169 m->m_pkthdr.rcvif = V_loif; 170 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 171 m->m_pkthdr.csum_flags |= 172 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 173 m->m_pkthdr.csum_data = 0xffff; 174 } 175 #ifdef SCTP 176 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 177 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 178 #endif 179 m->m_pkthdr.csum_flags |= 180 CSUM_IP_CHECKED | CSUM_IP_VALID; 181 182 *error = netisr_queue(NETISR_IP, m); 183 return 1; /* Finished */ 184 } 185 /* Or forward to some other address? */ 186 if ((m->m_flags & M_IP_NEXTHOP) && 187 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 188 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 189 m->m_flags |= M_SKIP_FIREWALL; 190 m->m_flags &= ~M_IP_NEXTHOP; 191 m_tag_delete(m, fwd_tag); 192 193 return -1; /* Reloop for CHANGE of dst */ 194 } 195 196 return 0; 197 } 198 199 /* 200 * IP output. The packet in mbuf chain m contains a skeletal IP 201 * header (with len, off, ttl, proto, tos, src, dst). 202 * The mbuf chain containing the packet will be freed. 203 * The mbuf opt, if present, will not be freed. 204 * If route ro is present and has ro_rt initialized, route lookup would be 205 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 206 * then result of route lookup is stored in ro->ro_rt. 207 * 208 * In the IP forwarding case, the packet will arrive with options already 209 * inserted, so must have a NULL opt pointer. 210 */ 211 int 212 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 213 struct ip_moptions *imo, struct inpcb *inp) 214 { 215 struct rm_priotracker in_ifa_tracker; 216 struct ip *ip; 217 struct ifnet *ifp = NULL; /* keep compiler happy */ 218 struct mbuf *m0; 219 int hlen = sizeof (struct ip); 220 int mtu; 221 int error = 0; 222 struct sockaddr_in *dst; 223 const struct sockaddr_in *gw; 224 struct in_ifaddr *ia; 225 int isbroadcast; 226 uint16_t ip_len, ip_off; 227 struct route iproute; 228 struct rtentry *rte; /* cache for ro->ro_rt */ 229 uint32_t fibnum; 230 int have_ia_ref; 231 #ifdef IPSEC 232 int no_route_but_check_spd = 0; 233 #endif 234 M_ASSERTPKTHDR(m); 235 236 if (inp != NULL) { 237 INP_LOCK_ASSERT(inp); 238 M_SETFIB(m, inp->inp_inc.inc_fibnum); 239 if ((flags & IP_NODEFAULTFLOWID) == 0) { 240 m->m_pkthdr.flowid = inp->inp_flowid; 241 M_HASHTYPE_SET(m, inp->inp_flowtype); 242 } 243 } 244 245 if (ro == NULL) { 246 ro = &iproute; 247 bzero(ro, sizeof (*ro)); 248 } else 249 ro->ro_flags |= RT_LLE_CACHE; 250 251 #ifdef FLOWTABLE 252 if (ro->ro_rt == NULL) 253 (void )flowtable_lookup(AF_INET, m, ro); 254 #endif 255 256 if (opt) { 257 int len = 0; 258 m = ip_insertoptions(m, opt, &len); 259 if (len != 0) 260 hlen = len; /* ip->ip_hl is updated above */ 261 } 262 ip = mtod(m, struct ip *); 263 ip_len = ntohs(ip->ip_len); 264 ip_off = ntohs(ip->ip_off); 265 266 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 267 ip->ip_v = IPVERSION; 268 ip->ip_hl = hlen >> 2; 269 ip_fillid(ip); 270 IPSTAT_INC(ips_localout); 271 } else { 272 /* Header already set, fetch hlen from there */ 273 hlen = ip->ip_hl << 2; 274 } 275 276 /* 277 * dst/gw handling: 278 * 279 * dst can be rewritten but always points to &ro->ro_dst. 280 * gw is readonly but can point either to dst OR rt_gateway, 281 * therefore we need restore gw if we're redoing lookup. 282 */ 283 gw = dst = (struct sockaddr_in *)&ro->ro_dst; 284 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 285 rte = ro->ro_rt; 286 if (rte == NULL) { 287 bzero(dst, sizeof(*dst)); 288 dst->sin_family = AF_INET; 289 dst->sin_len = sizeof(*dst); 290 dst->sin_addr = ip->ip_dst; 291 } 292 again: 293 /* 294 * Validate route against routing table additions; 295 * a better/more specific route might have been added. 296 */ 297 if (inp) 298 RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 299 /* 300 * If there is a cached route, 301 * check that it is to the same destination 302 * and is still up. If not, free it and try again. 303 * The address family should also be checked in case of sharing the 304 * cache with IPv6. 305 * Also check whether routing cache needs invalidation. 306 */ 307 rte = ro->ro_rt; 308 if (rte && ((rte->rt_flags & RTF_UP) == 0 || 309 rte->rt_ifp == NULL || 310 !RT_LINK_IS_UP(rte->rt_ifp) || 311 dst->sin_family != AF_INET || 312 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) { 313 RTFREE(rte); 314 rte = ro->ro_rt = (struct rtentry *)NULL; 315 if (ro->ro_lle) 316 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 317 ro->ro_lle = (struct llentry *)NULL; 318 } 319 ia = NULL; 320 have_ia_ref = 0; 321 /* 322 * If routing to interface only, short circuit routing lookup. 323 * The use of an all-ones broadcast address implies this; an 324 * interface is specified by the broadcast address of an interface, 325 * or the destination address of a ptp interface. 326 */ 327 if (flags & IP_SENDONES) { 328 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 329 M_GETFIB(m)))) == NULL && 330 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 331 M_GETFIB(m)))) == NULL) { 332 IPSTAT_INC(ips_noroute); 333 error = ENETUNREACH; 334 goto bad; 335 } 336 have_ia_ref = 1; 337 ip->ip_dst.s_addr = INADDR_BROADCAST; 338 dst->sin_addr = ip->ip_dst; 339 ifp = ia->ia_ifp; 340 ip->ip_ttl = 1; 341 isbroadcast = 1; 342 } else if (flags & IP_ROUTETOIF) { 343 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 344 M_GETFIB(m)))) == NULL && 345 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 346 M_GETFIB(m)))) == NULL) { 347 IPSTAT_INC(ips_noroute); 348 error = ENETUNREACH; 349 goto bad; 350 } 351 have_ia_ref = 1; 352 ifp = ia->ia_ifp; 353 ip->ip_ttl = 1; 354 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 355 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 356 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 357 imo != NULL && imo->imo_multicast_ifp != NULL) { 358 /* 359 * Bypass the normal routing lookup for multicast 360 * packets if the interface is specified. 361 */ 362 ifp = imo->imo_multicast_ifp; 363 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 364 if (ia) 365 have_ia_ref = 1; 366 isbroadcast = 0; /* fool gcc */ 367 } else { 368 /* 369 * We want to do any cloning requested by the link layer, 370 * as this is probably required in all cases for correct 371 * operation (as it is for ARP). 372 */ 373 if (rte == NULL) { 374 #ifdef RADIX_MPATH 375 rtalloc_mpath_fib(ro, 376 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 377 fibnum); 378 #else 379 in_rtalloc_ign(ro, 0, fibnum); 380 #endif 381 rte = ro->ro_rt; 382 } 383 if (rte == NULL || 384 (rte->rt_flags & RTF_UP) == 0 || 385 rte->rt_ifp == NULL || 386 !RT_LINK_IS_UP(rte->rt_ifp)) { 387 #ifdef IPSEC 388 /* 389 * There is no route for this packet, but it is 390 * possible that a matching SPD entry exists. 391 */ 392 no_route_but_check_spd = 1; 393 mtu = 0; /* Silence GCC warning. */ 394 goto sendit; 395 #endif 396 IPSTAT_INC(ips_noroute); 397 error = EHOSTUNREACH; 398 goto bad; 399 } 400 ia = ifatoia(rte->rt_ifa); 401 ifp = rte->rt_ifp; 402 counter_u64_add(rte->rt_pksent, 1); 403 rt_update_ro_flags(ro); 404 if (rte->rt_flags & RTF_GATEWAY) 405 gw = (struct sockaddr_in *)rte->rt_gateway; 406 if (rte->rt_flags & RTF_HOST) 407 isbroadcast = (rte->rt_flags & RTF_BROADCAST); 408 else if (ifp->if_flags & IFF_BROADCAST) 409 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 410 else 411 isbroadcast = 0; 412 } 413 414 /* 415 * Calculate MTU. If we have a route that is up, use that, 416 * otherwise use the interface's MTU. 417 */ 418 if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) 419 mtu = rte->rt_mtu; 420 else 421 mtu = ifp->if_mtu; 422 /* Catch a possible divide by zero later. */ 423 KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p", 424 __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp)); 425 426 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 427 m->m_flags |= M_MCAST; 428 /* 429 * IP destination address is multicast. Make sure "gw" 430 * still points to the address in "ro". (It may have been 431 * changed to point to a gateway address, above.) 432 */ 433 gw = dst; 434 /* 435 * See if the caller provided any multicast options 436 */ 437 if (imo != NULL) { 438 ip->ip_ttl = imo->imo_multicast_ttl; 439 if (imo->imo_multicast_vif != -1) 440 ip->ip_src.s_addr = 441 ip_mcast_src ? 442 ip_mcast_src(imo->imo_multicast_vif) : 443 INADDR_ANY; 444 } else 445 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 446 /* 447 * Confirm that the outgoing interface supports multicast. 448 */ 449 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 450 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 451 IPSTAT_INC(ips_noroute); 452 error = ENETUNREACH; 453 goto bad; 454 } 455 } 456 /* 457 * If source address not specified yet, use address 458 * of outgoing interface. 459 */ 460 if (ip->ip_src.s_addr == INADDR_ANY) { 461 /* Interface may have no addresses. */ 462 if (ia != NULL) 463 ip->ip_src = IA_SIN(ia)->sin_addr; 464 } 465 466 if ((imo == NULL && in_mcast_loop) || 467 (imo && imo->imo_multicast_loop)) { 468 /* 469 * Loop back multicast datagram if not expressly 470 * forbidden to do so, even if we are not a member 471 * of the group; ip_input() will filter it later, 472 * thus deferring a hash lookup and mutex acquisition 473 * at the expense of a cheap copy using m_copym(). 474 */ 475 ip_mloopback(ifp, m, hlen); 476 } else { 477 /* 478 * If we are acting as a multicast router, perform 479 * multicast forwarding as if the packet had just 480 * arrived on the interface to which we are about 481 * to send. The multicast forwarding function 482 * recursively calls this function, using the 483 * IP_FORWARDING flag to prevent infinite recursion. 484 * 485 * Multicasts that are looped back by ip_mloopback(), 486 * above, will be forwarded by the ip_input() routine, 487 * if necessary. 488 */ 489 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 490 /* 491 * If rsvp daemon is not running, do not 492 * set ip_moptions. This ensures that the packet 493 * is multicast and not just sent down one link 494 * as prescribed by rsvpd. 495 */ 496 if (!V_rsvp_on) 497 imo = NULL; 498 if (ip_mforward && 499 ip_mforward(ip, ifp, m, imo) != 0) { 500 m_freem(m); 501 goto done; 502 } 503 } 504 } 505 506 /* 507 * Multicasts with a time-to-live of zero may be looped- 508 * back, above, but must not be transmitted on a network. 509 * Also, multicasts addressed to the loopback interface 510 * are not sent -- the above call to ip_mloopback() will 511 * loop back a copy. ip_input() will drop the copy if 512 * this host does not belong to the destination group on 513 * the loopback interface. 514 */ 515 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 516 m_freem(m); 517 goto done; 518 } 519 520 goto sendit; 521 } 522 523 /* 524 * If the source address is not specified yet, use the address 525 * of the outoing interface. 526 */ 527 if (ip->ip_src.s_addr == INADDR_ANY) { 528 /* Interface may have no addresses. */ 529 if (ia != NULL) { 530 ip->ip_src = IA_SIN(ia)->sin_addr; 531 } 532 } 533 534 /* 535 * Look for broadcast address and 536 * verify user is allowed to send 537 * such a packet. 538 */ 539 if (isbroadcast) { 540 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 541 error = EADDRNOTAVAIL; 542 goto bad; 543 } 544 if ((flags & IP_ALLOWBROADCAST) == 0) { 545 error = EACCES; 546 goto bad; 547 } 548 /* don't allow broadcast messages to be fragmented */ 549 if (ip_len > mtu) { 550 error = EMSGSIZE; 551 goto bad; 552 } 553 m->m_flags |= M_BCAST; 554 } else { 555 m->m_flags &= ~M_BCAST; 556 } 557 558 sendit: 559 #ifdef IPSEC 560 switch(ip_ipsec_output(&m, inp, &error)) { 561 case 1: 562 goto bad; 563 case -1: 564 goto done; 565 case 0: 566 default: 567 break; /* Continue with packet processing. */ 568 } 569 /* 570 * Check if there was a route for this packet; return error if not. 571 */ 572 if (no_route_but_check_spd) { 573 IPSTAT_INC(ips_noroute); 574 error = EHOSTUNREACH; 575 goto bad; 576 } 577 /* Update variables that are affected by ipsec4_output(). */ 578 ip = mtod(m, struct ip *); 579 hlen = ip->ip_hl << 2; 580 #endif /* IPSEC */ 581 582 /* Jump over all PFIL processing if hooks are not active. */ 583 if (PFIL_HOOKED(&V_inet_pfil_hook)) { 584 switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) { 585 case 1: /* Finished */ 586 goto done; 587 588 case 0: /* Continue normally */ 589 ip = mtod(m, struct ip *); 590 break; 591 592 case -1: /* Need to try again */ 593 /* Reset everything for a new round */ 594 RO_RTFREE(ro); 595 if (have_ia_ref) 596 ifa_free(&ia->ia_ifa); 597 ro->ro_prepend = NULL; 598 rte = NULL; 599 gw = dst; 600 ip = mtod(m, struct ip *); 601 goto again; 602 603 } 604 } 605 606 /* 127/8 must not appear on wire - RFC1122. */ 607 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 608 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 609 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 610 IPSTAT_INC(ips_badaddr); 611 error = EADDRNOTAVAIL; 612 goto bad; 613 } 614 } 615 616 m->m_pkthdr.csum_flags |= CSUM_IP; 617 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 618 in_delayed_cksum(m); 619 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 620 } 621 #ifdef SCTP 622 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 623 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 624 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 625 } 626 #endif 627 628 /* 629 * If small enough for interface, or the interface will take 630 * care of the fragmentation for us, we can just send directly. 631 */ 632 if (ip_len <= mtu || 633 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 634 ip->ip_sum = 0; 635 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 636 ip->ip_sum = in_cksum(m, hlen); 637 m->m_pkthdr.csum_flags &= ~CSUM_IP; 638 } 639 640 /* 641 * Record statistics for this interface address. 642 * With CSUM_TSO the byte/packet count will be slightly 643 * incorrect because we count the IP+TCP headers only 644 * once instead of for every generated packet. 645 */ 646 if (!(flags & IP_FORWARDING) && ia) { 647 if (m->m_pkthdr.csum_flags & CSUM_TSO) 648 counter_u64_add(ia->ia_ifa.ifa_opackets, 649 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 650 else 651 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 652 653 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 654 } 655 #ifdef MBUF_STRESS_TEST 656 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 657 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 658 #endif 659 /* 660 * Reset layer specific mbuf flags 661 * to avoid confusing lower layers. 662 */ 663 m_clrprotoflags(m); 664 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 665 #ifdef RATELIMIT 666 if (inp != NULL) { 667 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 668 in_pcboutput_txrtlmt(inp, ifp, m); 669 /* stamp send tag on mbuf */ 670 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 671 } else { 672 m->m_pkthdr.snd_tag = NULL; 673 } 674 #endif 675 error = (*ifp->if_output)(ifp, m, 676 (const struct sockaddr *)gw, ro); 677 #ifdef RATELIMIT 678 /* check for route change */ 679 if (error == EAGAIN) 680 in_pcboutput_eagain(inp); 681 #endif 682 goto done; 683 } 684 685 /* Balk when DF bit is set or the interface didn't support TSO. */ 686 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 687 error = EMSGSIZE; 688 IPSTAT_INC(ips_cantfrag); 689 goto bad; 690 } 691 692 /* 693 * Too large for interface; fragment if possible. If successful, 694 * on return, m will point to a list of packets to be sent. 695 */ 696 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 697 if (error) 698 goto bad; 699 for (; m; m = m0) { 700 m0 = m->m_nextpkt; 701 m->m_nextpkt = 0; 702 if (error == 0) { 703 /* Record statistics for this interface address. */ 704 if (ia != NULL) { 705 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 706 counter_u64_add(ia->ia_ifa.ifa_obytes, 707 m->m_pkthdr.len); 708 } 709 /* 710 * Reset layer specific mbuf flags 711 * to avoid confusing upper layers. 712 */ 713 m_clrprotoflags(m); 714 715 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 716 mtod(m, struct ip *), NULL); 717 #ifdef RATELIMIT 718 if (inp != NULL) { 719 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 720 in_pcboutput_txrtlmt(inp, ifp, m); 721 /* stamp send tag on mbuf */ 722 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 723 } else { 724 m->m_pkthdr.snd_tag = NULL; 725 } 726 #endif 727 error = (*ifp->if_output)(ifp, m, 728 (const struct sockaddr *)gw, ro); 729 #ifdef RATELIMIT 730 /* check for route change */ 731 if (error == EAGAIN) 732 in_pcboutput_eagain(inp); 733 #endif 734 } else 735 m_freem(m); 736 } 737 738 if (error == 0) 739 IPSTAT_INC(ips_fragmented); 740 741 done: 742 if (ro == &iproute) 743 RO_RTFREE(ro); 744 else if (rte == NULL) 745 /* 746 * If the caller supplied a route but somehow the reference 747 * to it has been released need to prevent the caller 748 * calling RTFREE on it again. 749 */ 750 ro->ro_rt = NULL; 751 if (have_ia_ref) 752 ifa_free(&ia->ia_ifa); 753 return (error); 754 bad: 755 m_freem(m); 756 goto done; 757 } 758 759 /* 760 * Create a chain of fragments which fit the given mtu. m_frag points to the 761 * mbuf to be fragmented; on return it points to the chain with the fragments. 762 * Return 0 if no error. If error, m_frag may contain a partially built 763 * chain of fragments that should be freed by the caller. 764 * 765 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 766 */ 767 int 768 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 769 u_long if_hwassist_flags) 770 { 771 int error = 0; 772 int hlen = ip->ip_hl << 2; 773 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 774 int off; 775 struct mbuf *m0 = *m_frag; /* the original packet */ 776 int firstlen; 777 struct mbuf **mnext; 778 int nfrags; 779 uint16_t ip_len, ip_off; 780 781 ip_len = ntohs(ip->ip_len); 782 ip_off = ntohs(ip->ip_off); 783 784 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 785 IPSTAT_INC(ips_cantfrag); 786 return EMSGSIZE; 787 } 788 789 /* 790 * Must be able to put at least 8 bytes per fragment. 791 */ 792 if (len < 8) 793 return EMSGSIZE; 794 795 /* 796 * If the interface will not calculate checksums on 797 * fragmented packets, then do it here. 798 */ 799 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 800 in_delayed_cksum(m0); 801 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 802 } 803 #ifdef SCTP 804 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 805 sctp_delayed_cksum(m0, hlen); 806 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 807 } 808 #endif 809 if (len > PAGE_SIZE) { 810 /* 811 * Fragment large datagrams such that each segment 812 * contains a multiple of PAGE_SIZE amount of data, 813 * plus headers. This enables a receiver to perform 814 * page-flipping zero-copy optimizations. 815 * 816 * XXX When does this help given that sender and receiver 817 * could have different page sizes, and also mtu could 818 * be less than the receiver's page size ? 819 */ 820 int newlen; 821 822 off = MIN(mtu, m0->m_pkthdr.len); 823 824 /* 825 * firstlen (off - hlen) must be aligned on an 826 * 8-byte boundary 827 */ 828 if (off < hlen) 829 goto smart_frag_failure; 830 off = ((off - hlen) & ~7) + hlen; 831 newlen = (~PAGE_MASK) & mtu; 832 if ((newlen + sizeof (struct ip)) > mtu) { 833 /* we failed, go back the default */ 834 smart_frag_failure: 835 newlen = len; 836 off = hlen + len; 837 } 838 len = newlen; 839 840 } else { 841 off = hlen + len; 842 } 843 844 firstlen = off - hlen; 845 mnext = &m0->m_nextpkt; /* pointer to next packet */ 846 847 /* 848 * Loop through length of segment after first fragment, 849 * make new header and copy data of each part and link onto chain. 850 * Here, m0 is the original packet, m is the fragment being created. 851 * The fragments are linked off the m_nextpkt of the original 852 * packet, which after processing serves as the first fragment. 853 */ 854 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 855 struct ip *mhip; /* ip header on the fragment */ 856 struct mbuf *m; 857 int mhlen = sizeof (struct ip); 858 859 m = m_gethdr(M_NOWAIT, MT_DATA); 860 if (m == NULL) { 861 error = ENOBUFS; 862 IPSTAT_INC(ips_odropped); 863 goto done; 864 } 865 /* 866 * Make sure the complete packet header gets copied 867 * from the originating mbuf to the newly created 868 * mbuf. This also ensures that existing firewall 869 * classification(s), VLAN tags and so on get copied 870 * to the resulting fragmented packet(s): 871 */ 872 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 873 m_free(m); 874 error = ENOBUFS; 875 IPSTAT_INC(ips_odropped); 876 goto done; 877 } 878 /* 879 * In the first mbuf, leave room for the link header, then 880 * copy the original IP header including options. The payload 881 * goes into an additional mbuf chain returned by m_copym(). 882 */ 883 m->m_data += max_linkhdr; 884 mhip = mtod(m, struct ip *); 885 *mhip = *ip; 886 if (hlen > sizeof (struct ip)) { 887 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 888 mhip->ip_v = IPVERSION; 889 mhip->ip_hl = mhlen >> 2; 890 } 891 m->m_len = mhlen; 892 /* XXX do we need to add ip_off below ? */ 893 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 894 if (off + len >= ip_len) 895 len = ip_len - off; 896 else 897 mhip->ip_off |= IP_MF; 898 mhip->ip_len = htons((u_short)(len + mhlen)); 899 m->m_next = m_copym(m0, off, len, M_NOWAIT); 900 if (m->m_next == NULL) { /* copy failed */ 901 m_free(m); 902 error = ENOBUFS; /* ??? */ 903 IPSTAT_INC(ips_odropped); 904 goto done; 905 } 906 m->m_pkthdr.len = mhlen + len; 907 #ifdef MAC 908 mac_netinet_fragment(m0, m); 909 #endif 910 mhip->ip_off = htons(mhip->ip_off); 911 mhip->ip_sum = 0; 912 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 913 mhip->ip_sum = in_cksum(m, mhlen); 914 m->m_pkthdr.csum_flags &= ~CSUM_IP; 915 } 916 *mnext = m; 917 mnext = &m->m_nextpkt; 918 } 919 IPSTAT_ADD(ips_ofragments, nfrags); 920 921 /* 922 * Update first fragment by trimming what's been copied out 923 * and updating header. 924 */ 925 m_adj(m0, hlen + firstlen - ip_len); 926 m0->m_pkthdr.len = hlen + firstlen; 927 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 928 ip->ip_off = htons(ip_off | IP_MF); 929 ip->ip_sum = 0; 930 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 931 ip->ip_sum = in_cksum(m0, hlen); 932 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 933 } 934 935 done: 936 *m_frag = m0; 937 return error; 938 } 939 940 void 941 in_delayed_cksum(struct mbuf *m) 942 { 943 struct ip *ip; 944 uint16_t csum, offset, ip_len; 945 946 ip = mtod(m, struct ip *); 947 offset = ip->ip_hl << 2 ; 948 ip_len = ntohs(ip->ip_len); 949 csum = in_cksum_skip(m, ip_len, offset); 950 if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0) 951 csum = 0xffff; 952 offset += m->m_pkthdr.csum_data; /* checksum offset */ 953 954 /* find the mbuf in the chain where the checksum starts*/ 955 while ((m != NULL) && (offset >= m->m_len)) { 956 offset -= m->m_len; 957 m = m->m_next; 958 } 959 KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain.")); 960 KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs.")); 961 *(u_short *)(m->m_data + offset) = csum; 962 } 963 964 /* 965 * IP socket option processing. 966 */ 967 int 968 ip_ctloutput(struct socket *so, struct sockopt *sopt) 969 { 970 struct inpcb *inp = sotoinpcb(so); 971 int error, optval; 972 #ifdef RSS 973 uint32_t rss_bucket; 974 int retval; 975 #endif 976 977 error = optval = 0; 978 if (sopt->sopt_level != IPPROTO_IP) { 979 error = EINVAL; 980 981 if (sopt->sopt_level == SOL_SOCKET && 982 sopt->sopt_dir == SOPT_SET) { 983 switch (sopt->sopt_name) { 984 case SO_REUSEADDR: 985 INP_WLOCK(inp); 986 if ((so->so_options & SO_REUSEADDR) != 0) 987 inp->inp_flags2 |= INP_REUSEADDR; 988 else 989 inp->inp_flags2 &= ~INP_REUSEADDR; 990 INP_WUNLOCK(inp); 991 error = 0; 992 break; 993 case SO_REUSEPORT: 994 INP_WLOCK(inp); 995 if ((so->so_options & SO_REUSEPORT) != 0) 996 inp->inp_flags2 |= INP_REUSEPORT; 997 else 998 inp->inp_flags2 &= ~INP_REUSEPORT; 999 INP_WUNLOCK(inp); 1000 error = 0; 1001 break; 1002 case SO_SETFIB: 1003 INP_WLOCK(inp); 1004 inp->inp_inc.inc_fibnum = so->so_fibnum; 1005 INP_WUNLOCK(inp); 1006 error = 0; 1007 break; 1008 case SO_MAX_PACING_RATE: 1009 #ifdef RATELIMIT 1010 INP_WLOCK(inp); 1011 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1012 INP_WUNLOCK(inp); 1013 error = 0; 1014 #else 1015 error = EOPNOTSUPP; 1016 #endif 1017 break; 1018 default: 1019 break; 1020 } 1021 } 1022 return (error); 1023 } 1024 1025 switch (sopt->sopt_dir) { 1026 case SOPT_SET: 1027 switch (sopt->sopt_name) { 1028 case IP_OPTIONS: 1029 #ifdef notyet 1030 case IP_RETOPTS: 1031 #endif 1032 { 1033 struct mbuf *m; 1034 if (sopt->sopt_valsize > MLEN) { 1035 error = EMSGSIZE; 1036 break; 1037 } 1038 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1039 if (m == NULL) { 1040 error = ENOBUFS; 1041 break; 1042 } 1043 m->m_len = sopt->sopt_valsize; 1044 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1045 m->m_len); 1046 if (error) { 1047 m_free(m); 1048 break; 1049 } 1050 INP_WLOCK(inp); 1051 error = ip_pcbopts(inp, sopt->sopt_name, m); 1052 INP_WUNLOCK(inp); 1053 return (error); 1054 } 1055 1056 case IP_BINDANY: 1057 if (sopt->sopt_td != NULL) { 1058 error = priv_check(sopt->sopt_td, 1059 PRIV_NETINET_BINDANY); 1060 if (error) 1061 break; 1062 } 1063 /* FALLTHROUGH */ 1064 case IP_BINDMULTI: 1065 #ifdef RSS 1066 case IP_RSS_LISTEN_BUCKET: 1067 #endif 1068 case IP_TOS: 1069 case IP_TTL: 1070 case IP_MINTTL: 1071 case IP_RECVOPTS: 1072 case IP_RECVRETOPTS: 1073 case IP_RECVDSTADDR: 1074 case IP_RECVTTL: 1075 case IP_RECVIF: 1076 case IP_ONESBCAST: 1077 case IP_DONTFRAG: 1078 case IP_RECVTOS: 1079 case IP_RECVFLOWID: 1080 #ifdef RSS 1081 case IP_RECVRSSBUCKETID: 1082 #endif 1083 error = sooptcopyin(sopt, &optval, sizeof optval, 1084 sizeof optval); 1085 if (error) 1086 break; 1087 1088 switch (sopt->sopt_name) { 1089 case IP_TOS: 1090 inp->inp_ip_tos = optval; 1091 break; 1092 1093 case IP_TTL: 1094 inp->inp_ip_ttl = optval; 1095 break; 1096 1097 case IP_MINTTL: 1098 if (optval >= 0 && optval <= MAXTTL) 1099 inp->inp_ip_minttl = optval; 1100 else 1101 error = EINVAL; 1102 break; 1103 1104 #define OPTSET(bit) do { \ 1105 INP_WLOCK(inp); \ 1106 if (optval) \ 1107 inp->inp_flags |= bit; \ 1108 else \ 1109 inp->inp_flags &= ~bit; \ 1110 INP_WUNLOCK(inp); \ 1111 } while (0) 1112 1113 #define OPTSET2(bit, val) do { \ 1114 INP_WLOCK(inp); \ 1115 if (val) \ 1116 inp->inp_flags2 |= bit; \ 1117 else \ 1118 inp->inp_flags2 &= ~bit; \ 1119 INP_WUNLOCK(inp); \ 1120 } while (0) 1121 1122 case IP_RECVOPTS: 1123 OPTSET(INP_RECVOPTS); 1124 break; 1125 1126 case IP_RECVRETOPTS: 1127 OPTSET(INP_RECVRETOPTS); 1128 break; 1129 1130 case IP_RECVDSTADDR: 1131 OPTSET(INP_RECVDSTADDR); 1132 break; 1133 1134 case IP_RECVTTL: 1135 OPTSET(INP_RECVTTL); 1136 break; 1137 1138 case IP_RECVIF: 1139 OPTSET(INP_RECVIF); 1140 break; 1141 1142 case IP_ONESBCAST: 1143 OPTSET(INP_ONESBCAST); 1144 break; 1145 case IP_DONTFRAG: 1146 OPTSET(INP_DONTFRAG); 1147 break; 1148 case IP_BINDANY: 1149 OPTSET(INP_BINDANY); 1150 break; 1151 case IP_RECVTOS: 1152 OPTSET(INP_RECVTOS); 1153 break; 1154 case IP_BINDMULTI: 1155 OPTSET2(INP_BINDMULTI, optval); 1156 break; 1157 case IP_RECVFLOWID: 1158 OPTSET2(INP_RECVFLOWID, optval); 1159 break; 1160 #ifdef RSS 1161 case IP_RSS_LISTEN_BUCKET: 1162 if ((optval >= 0) && 1163 (optval < rss_getnumbuckets())) { 1164 inp->inp_rss_listen_bucket = optval; 1165 OPTSET2(INP_RSS_BUCKET_SET, 1); 1166 } else { 1167 error = EINVAL; 1168 } 1169 break; 1170 case IP_RECVRSSBUCKETID: 1171 OPTSET2(INP_RECVRSSBUCKETID, optval); 1172 break; 1173 #endif 1174 } 1175 break; 1176 #undef OPTSET 1177 #undef OPTSET2 1178 1179 /* 1180 * Multicast socket options are processed by the in_mcast 1181 * module. 1182 */ 1183 case IP_MULTICAST_IF: 1184 case IP_MULTICAST_VIF: 1185 case IP_MULTICAST_TTL: 1186 case IP_MULTICAST_LOOP: 1187 case IP_ADD_MEMBERSHIP: 1188 case IP_DROP_MEMBERSHIP: 1189 case IP_ADD_SOURCE_MEMBERSHIP: 1190 case IP_DROP_SOURCE_MEMBERSHIP: 1191 case IP_BLOCK_SOURCE: 1192 case IP_UNBLOCK_SOURCE: 1193 case IP_MSFILTER: 1194 case MCAST_JOIN_GROUP: 1195 case MCAST_LEAVE_GROUP: 1196 case MCAST_JOIN_SOURCE_GROUP: 1197 case MCAST_LEAVE_SOURCE_GROUP: 1198 case MCAST_BLOCK_SOURCE: 1199 case MCAST_UNBLOCK_SOURCE: 1200 error = inp_setmoptions(inp, sopt); 1201 break; 1202 1203 case IP_PORTRANGE: 1204 error = sooptcopyin(sopt, &optval, sizeof optval, 1205 sizeof optval); 1206 if (error) 1207 break; 1208 1209 INP_WLOCK(inp); 1210 switch (optval) { 1211 case IP_PORTRANGE_DEFAULT: 1212 inp->inp_flags &= ~(INP_LOWPORT); 1213 inp->inp_flags &= ~(INP_HIGHPORT); 1214 break; 1215 1216 case IP_PORTRANGE_HIGH: 1217 inp->inp_flags &= ~(INP_LOWPORT); 1218 inp->inp_flags |= INP_HIGHPORT; 1219 break; 1220 1221 case IP_PORTRANGE_LOW: 1222 inp->inp_flags &= ~(INP_HIGHPORT); 1223 inp->inp_flags |= INP_LOWPORT; 1224 break; 1225 1226 default: 1227 error = EINVAL; 1228 break; 1229 } 1230 INP_WUNLOCK(inp); 1231 break; 1232 1233 #ifdef IPSEC 1234 case IP_IPSEC_POLICY: 1235 { 1236 caddr_t req; 1237 struct mbuf *m; 1238 1239 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1240 break; 1241 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1242 break; 1243 req = mtod(m, caddr_t); 1244 error = ipsec_set_policy(inp, sopt->sopt_name, req, 1245 m->m_len, (sopt->sopt_td != NULL) ? 1246 sopt->sopt_td->td_ucred : NULL); 1247 m_freem(m); 1248 break; 1249 } 1250 #endif /* IPSEC */ 1251 1252 default: 1253 error = ENOPROTOOPT; 1254 break; 1255 } 1256 break; 1257 1258 case SOPT_GET: 1259 switch (sopt->sopt_name) { 1260 case IP_OPTIONS: 1261 case IP_RETOPTS: 1262 if (inp->inp_options) 1263 error = sooptcopyout(sopt, 1264 mtod(inp->inp_options, 1265 char *), 1266 inp->inp_options->m_len); 1267 else 1268 sopt->sopt_valsize = 0; 1269 break; 1270 1271 case IP_TOS: 1272 case IP_TTL: 1273 case IP_MINTTL: 1274 case IP_RECVOPTS: 1275 case IP_RECVRETOPTS: 1276 case IP_RECVDSTADDR: 1277 case IP_RECVTTL: 1278 case IP_RECVIF: 1279 case IP_PORTRANGE: 1280 case IP_ONESBCAST: 1281 case IP_DONTFRAG: 1282 case IP_BINDANY: 1283 case IP_RECVTOS: 1284 case IP_BINDMULTI: 1285 case IP_FLOWID: 1286 case IP_FLOWTYPE: 1287 case IP_RECVFLOWID: 1288 #ifdef RSS 1289 case IP_RSSBUCKETID: 1290 case IP_RECVRSSBUCKETID: 1291 #endif 1292 switch (sopt->sopt_name) { 1293 1294 case IP_TOS: 1295 optval = inp->inp_ip_tos; 1296 break; 1297 1298 case IP_TTL: 1299 optval = inp->inp_ip_ttl; 1300 break; 1301 1302 case IP_MINTTL: 1303 optval = inp->inp_ip_minttl; 1304 break; 1305 1306 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1307 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1308 1309 case IP_RECVOPTS: 1310 optval = OPTBIT(INP_RECVOPTS); 1311 break; 1312 1313 case IP_RECVRETOPTS: 1314 optval = OPTBIT(INP_RECVRETOPTS); 1315 break; 1316 1317 case IP_RECVDSTADDR: 1318 optval = OPTBIT(INP_RECVDSTADDR); 1319 break; 1320 1321 case IP_RECVTTL: 1322 optval = OPTBIT(INP_RECVTTL); 1323 break; 1324 1325 case IP_RECVIF: 1326 optval = OPTBIT(INP_RECVIF); 1327 break; 1328 1329 case IP_PORTRANGE: 1330 if (inp->inp_flags & INP_HIGHPORT) 1331 optval = IP_PORTRANGE_HIGH; 1332 else if (inp->inp_flags & INP_LOWPORT) 1333 optval = IP_PORTRANGE_LOW; 1334 else 1335 optval = 0; 1336 break; 1337 1338 case IP_ONESBCAST: 1339 optval = OPTBIT(INP_ONESBCAST); 1340 break; 1341 case IP_DONTFRAG: 1342 optval = OPTBIT(INP_DONTFRAG); 1343 break; 1344 case IP_BINDANY: 1345 optval = OPTBIT(INP_BINDANY); 1346 break; 1347 case IP_RECVTOS: 1348 optval = OPTBIT(INP_RECVTOS); 1349 break; 1350 case IP_FLOWID: 1351 optval = inp->inp_flowid; 1352 break; 1353 case IP_FLOWTYPE: 1354 optval = inp->inp_flowtype; 1355 break; 1356 case IP_RECVFLOWID: 1357 optval = OPTBIT2(INP_RECVFLOWID); 1358 break; 1359 #ifdef RSS 1360 case IP_RSSBUCKETID: 1361 retval = rss_hash2bucket(inp->inp_flowid, 1362 inp->inp_flowtype, 1363 &rss_bucket); 1364 if (retval == 0) 1365 optval = rss_bucket; 1366 else 1367 error = EINVAL; 1368 break; 1369 case IP_RECVRSSBUCKETID: 1370 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1371 break; 1372 #endif 1373 case IP_BINDMULTI: 1374 optval = OPTBIT2(INP_BINDMULTI); 1375 break; 1376 } 1377 error = sooptcopyout(sopt, &optval, sizeof optval); 1378 break; 1379 1380 /* 1381 * Multicast socket options are processed by the in_mcast 1382 * module. 1383 */ 1384 case IP_MULTICAST_IF: 1385 case IP_MULTICAST_VIF: 1386 case IP_MULTICAST_TTL: 1387 case IP_MULTICAST_LOOP: 1388 case IP_MSFILTER: 1389 error = inp_getmoptions(inp, sopt); 1390 break; 1391 1392 #ifdef IPSEC 1393 case IP_IPSEC_POLICY: 1394 { 1395 struct mbuf *m = NULL; 1396 caddr_t req = NULL; 1397 size_t len = 0; 1398 1399 if (m != NULL) { 1400 req = mtod(m, caddr_t); 1401 len = m->m_len; 1402 } 1403 error = ipsec_get_policy(sotoinpcb(so), req, len, &m); 1404 if (error == 0) 1405 error = soopt_mcopyout(sopt, m); /* XXX */ 1406 if (error == 0) 1407 m_freem(m); 1408 break; 1409 } 1410 #endif /* IPSEC */ 1411 1412 default: 1413 error = ENOPROTOOPT; 1414 break; 1415 } 1416 break; 1417 } 1418 return (error); 1419 } 1420 1421 /* 1422 * Routine called from ip_output() to loop back a copy of an IP multicast 1423 * packet to the input queue of a specified interface. Note that this 1424 * calls the output routine of the loopback "driver", but with an interface 1425 * pointer that might NOT be a loopback interface -- evil, but easier than 1426 * replicating that code here. 1427 */ 1428 static void 1429 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1430 { 1431 struct ip *ip; 1432 struct mbuf *copym; 1433 1434 /* 1435 * Make a deep copy of the packet because we're going to 1436 * modify the pack in order to generate checksums. 1437 */ 1438 copym = m_dup(m, M_NOWAIT); 1439 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1440 copym = m_pullup(copym, hlen); 1441 if (copym != NULL) { 1442 /* If needed, compute the checksum and mark it as valid. */ 1443 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1444 in_delayed_cksum(copym); 1445 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1446 copym->m_pkthdr.csum_flags |= 1447 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1448 copym->m_pkthdr.csum_data = 0xffff; 1449 } 1450 /* 1451 * We don't bother to fragment if the IP length is greater 1452 * than the interface's MTU. Can this possibly matter? 1453 */ 1454 ip = mtod(copym, struct ip *); 1455 ip->ip_sum = 0; 1456 ip->ip_sum = in_cksum(copym, hlen); 1457 if_simloop(ifp, copym, AF_INET, 0); 1458 } 1459 } 1460