xref: /freebsd/sys/netinet/ip_output.c (revision 7aa383846770374466b1dcb2cefd71bde9acf463)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ipfw.h"
36 #include "opt_ipsec.h"
37 #include "opt_route.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mpath.h"
40 #include "opt_sctp.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/priv.h>
48 #include <sys/proc.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/ucred.h>
54 
55 #include <net/if.h>
56 #include <net/if_llatbl.h>
57 #include <net/netisr.h>
58 #include <net/pfil.h>
59 #include <net/route.h>
60 #include <net/flowtable.h>
61 #ifdef RADIX_MPATH
62 #include <net/radix_mpath.h>
63 #endif
64 #include <net/vnet.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_pcb.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip_var.h>
72 #include <netinet/ip_options.h>
73 #ifdef SCTP
74 #include <netinet/sctp.h>
75 #include <netinet/sctp_crc32.h>
76 #endif
77 
78 #ifdef IPSEC
79 #include <netinet/ip_ipsec.h>
80 #include <netipsec/ipsec.h>
81 #endif /* IPSEC*/
82 
83 #include <machine/in_cksum.h>
84 
85 #include <security/mac/mac_framework.h>
86 
87 VNET_DEFINE(u_short, ip_id);
88 
89 #ifdef MBUF_STRESS_TEST
90 int mbuf_frag_size = 0;
91 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
92 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
93 #endif
94 
95 static void	ip_mloopback
96 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
97 
98 
99 extern int in_mcast_loop;
100 extern	struct protosw inetsw[];
101 
102 /*
103  * IP output.  The packet in mbuf chain m contains a skeletal IP
104  * header (with len, off, ttl, proto, tos, src, dst).
105  * ip_len and ip_off are in host format.
106  * The mbuf chain containing the packet will be freed.
107  * The mbuf opt, if present, will not be freed.
108  * In the IP forwarding case, the packet will arrive with options already
109  * inserted, so must have a NULL opt pointer.
110  */
111 int
112 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
113     struct ip_moptions *imo, struct inpcb *inp)
114 {
115 	struct ip *ip;
116 	struct ifnet *ifp = NULL;	/* keep compiler happy */
117 	struct mbuf *m0;
118 	int hlen = sizeof (struct ip);
119 	int mtu;
120 	int n;	/* scratchpad */
121 	int error = 0;
122 	int nortfree = 0;
123 	struct sockaddr_in *dst;
124 	struct in_ifaddr *ia = NULL;
125 	int isbroadcast, sw_csum;
126 	struct route iproute;
127 	struct rtentry *rte;	/* cache for ro->ro_rt */
128 	struct in_addr odst;
129 #ifdef IPFIREWALL_FORWARD
130 	struct m_tag *fwd_tag = NULL;
131 #endif
132 #ifdef IPSEC
133 	int no_route_but_check_spd = 0;
134 #endif
135 	M_ASSERTPKTHDR(m);
136 
137 	if (inp != NULL) {
138 		INP_LOCK_ASSERT(inp);
139 		M_SETFIB(m, inp->inp_inc.inc_fibnum);
140 		if (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
141 			m->m_pkthdr.flowid = inp->inp_flowid;
142 			m->m_flags |= M_FLOWID;
143 		}
144 	}
145 
146 	if (ro == NULL) {
147 		ro = &iproute;
148 		bzero(ro, sizeof (*ro));
149 
150 #ifdef FLOWTABLE
151 		{
152 			struct flentry *fle;
153 
154 			/*
155 			 * The flow table returns route entries valid for up to 30
156 			 * seconds; we rely on the remainder of ip_output() taking no
157 			 * longer than that long for the stability of ro_rt.  The
158 			 * flow ID assignment must have happened before this point.
159 			 */
160 			if ((fle = flowtable_lookup_mbuf(V_ip_ft, m, AF_INET)) != NULL) {
161 				flow_to_route(fle, ro);
162 				nortfree = 1;
163 			}
164 		}
165 #endif
166 	}
167 
168 	if (opt) {
169 		int len = 0;
170 		m = ip_insertoptions(m, opt, &len);
171 		if (len != 0)
172 			hlen = len; /* ip->ip_hl is updated above */
173 	}
174 	ip = mtod(m, struct ip *);
175 
176 	/*
177 	 * Fill in IP header.  If we are not allowing fragmentation,
178 	 * then the ip_id field is meaningless, but we don't set it
179 	 * to zero.  Doing so causes various problems when devices along
180 	 * the path (routers, load balancers, firewalls, etc.) illegally
181 	 * disable DF on our packet.  Note that a 16-bit counter
182 	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
183 	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
184 	 * for Counting NATted Hosts", Proc. IMW'02, available at
185 	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
186 	 */
187 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
188 		ip->ip_v = IPVERSION;
189 		ip->ip_hl = hlen >> 2;
190 		ip->ip_id = ip_newid();
191 		IPSTAT_INC(ips_localout);
192 	} else {
193 		/* Header already set, fetch hlen from there */
194 		hlen = ip->ip_hl << 2;
195 	}
196 
197 	dst = (struct sockaddr_in *)&ro->ro_dst;
198 again:
199 	/*
200 	 * If there is a cached route,
201 	 * check that it is to the same destination
202 	 * and is still up.  If not, free it and try again.
203 	 * The address family should also be checked in case of sharing the
204 	 * cache with IPv6.
205 	 */
206 	rte = ro->ro_rt;
207 	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
208 		    rte->rt_ifp == NULL ||
209 		    !RT_LINK_IS_UP(rte->rt_ifp) ||
210 			  dst->sin_family != AF_INET ||
211 			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
212 		if (!nortfree)
213 			RTFREE(rte);
214 		rte = ro->ro_rt = (struct rtentry *)NULL;
215 		ro->ro_lle = (struct llentry *)NULL;
216 	}
217 #ifdef IPFIREWALL_FORWARD
218 	if (rte == NULL && fwd_tag == NULL) {
219 #else
220 	if (rte == NULL) {
221 #endif
222 		bzero(dst, sizeof(*dst));
223 		dst->sin_family = AF_INET;
224 		dst->sin_len = sizeof(*dst);
225 		dst->sin_addr = ip->ip_dst;
226 	}
227 	/*
228 	 * If routing to interface only, short circuit routing lookup.
229 	 * The use of an all-ones broadcast address implies this; an
230 	 * interface is specified by the broadcast address of an interface,
231 	 * or the destination address of a ptp interface.
232 	 */
233 	if (flags & IP_SENDONES) {
234 		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
235 		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
236 			IPSTAT_INC(ips_noroute);
237 			error = ENETUNREACH;
238 			goto bad;
239 		}
240 		ip->ip_dst.s_addr = INADDR_BROADCAST;
241 		dst->sin_addr = ip->ip_dst;
242 		ifp = ia->ia_ifp;
243 		ip->ip_ttl = 1;
244 		isbroadcast = 1;
245 	} else if (flags & IP_ROUTETOIF) {
246 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
247 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0))) == NULL) {
248 			IPSTAT_INC(ips_noroute);
249 			error = ENETUNREACH;
250 			goto bad;
251 		}
252 		ifp = ia->ia_ifp;
253 		ip->ip_ttl = 1;
254 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
255 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
256 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
257 		/*
258 		 * Bypass the normal routing lookup for multicast
259 		 * packets if the interface is specified.
260 		 */
261 		ifp = imo->imo_multicast_ifp;
262 		IFP_TO_IA(ifp, ia);
263 		isbroadcast = 0;	/* fool gcc */
264 	} else {
265 		/*
266 		 * We want to do any cloning requested by the link layer,
267 		 * as this is probably required in all cases for correct
268 		 * operation (as it is for ARP).
269 		 */
270 		if (rte == NULL) {
271 #ifdef RADIX_MPATH
272 			rtalloc_mpath_fib(ro,
273 			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
274 			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
275 #else
276 			in_rtalloc_ign(ro, 0,
277 			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
278 #endif
279 			rte = ro->ro_rt;
280 		}
281 		if (rte == NULL ||
282 		    rte->rt_ifp == NULL ||
283 		    !RT_LINK_IS_UP(rte->rt_ifp)) {
284 #ifdef IPSEC
285 			/*
286 			 * There is no route for this packet, but it is
287 			 * possible that a matching SPD entry exists.
288 			 */
289 			no_route_but_check_spd = 1;
290 			mtu = 0; /* Silence GCC warning. */
291 			goto sendit;
292 #endif
293 			IPSTAT_INC(ips_noroute);
294 			error = EHOSTUNREACH;
295 			goto bad;
296 		}
297 		ia = ifatoia(rte->rt_ifa);
298 		ifa_ref(&ia->ia_ifa);
299 		ifp = rte->rt_ifp;
300 		rte->rt_rmx.rmx_pksent++;
301 		if (rte->rt_flags & RTF_GATEWAY)
302 			dst = (struct sockaddr_in *)rte->rt_gateway;
303 		if (rte->rt_flags & RTF_HOST)
304 			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
305 		else
306 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
307 	}
308 	/*
309 	 * Calculate MTU.  If we have a route that is up, use that,
310 	 * otherwise use the interface's MTU.
311 	 */
312 	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) {
313 		/*
314 		 * This case can happen if the user changed the MTU
315 		 * of an interface after enabling IP on it.  Because
316 		 * most netifs don't keep track of routes pointing to
317 		 * them, there is no way for one to update all its
318 		 * routes when the MTU is changed.
319 		 */
320 		if (rte->rt_rmx.rmx_mtu > ifp->if_mtu)
321 			rte->rt_rmx.rmx_mtu = ifp->if_mtu;
322 		mtu = rte->rt_rmx.rmx_mtu;
323 	} else {
324 		mtu = ifp->if_mtu;
325 	}
326 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
327 		m->m_flags |= M_MCAST;
328 		/*
329 		 * IP destination address is multicast.  Make sure "dst"
330 		 * still points to the address in "ro".  (It may have been
331 		 * changed to point to a gateway address, above.)
332 		 */
333 		dst = (struct sockaddr_in *)&ro->ro_dst;
334 		/*
335 		 * See if the caller provided any multicast options
336 		 */
337 		if (imo != NULL) {
338 			ip->ip_ttl = imo->imo_multicast_ttl;
339 			if (imo->imo_multicast_vif != -1)
340 				ip->ip_src.s_addr =
341 				    ip_mcast_src ?
342 				    ip_mcast_src(imo->imo_multicast_vif) :
343 				    INADDR_ANY;
344 		} else
345 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
346 		/*
347 		 * Confirm that the outgoing interface supports multicast.
348 		 */
349 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
350 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
351 				IPSTAT_INC(ips_noroute);
352 				error = ENETUNREACH;
353 				goto bad;
354 			}
355 		}
356 		/*
357 		 * If source address not specified yet, use address
358 		 * of outgoing interface.
359 		 */
360 		if (ip->ip_src.s_addr == INADDR_ANY) {
361 			/* Interface may have no addresses. */
362 			if (ia != NULL)
363 				ip->ip_src = IA_SIN(ia)->sin_addr;
364 		}
365 
366 		if ((imo == NULL && in_mcast_loop) ||
367 		    (imo && imo->imo_multicast_loop)) {
368 			/*
369 			 * Loop back multicast datagram if not expressly
370 			 * forbidden to do so, even if we are not a member
371 			 * of the group; ip_input() will filter it later,
372 			 * thus deferring a hash lookup and mutex acquisition
373 			 * at the expense of a cheap copy using m_copym().
374 			 */
375 			ip_mloopback(ifp, m, dst, hlen);
376 		} else {
377 			/*
378 			 * If we are acting as a multicast router, perform
379 			 * multicast forwarding as if the packet had just
380 			 * arrived on the interface to which we are about
381 			 * to send.  The multicast forwarding function
382 			 * recursively calls this function, using the
383 			 * IP_FORWARDING flag to prevent infinite recursion.
384 			 *
385 			 * Multicasts that are looped back by ip_mloopback(),
386 			 * above, will be forwarded by the ip_input() routine,
387 			 * if necessary.
388 			 */
389 			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
390 				/*
391 				 * If rsvp daemon is not running, do not
392 				 * set ip_moptions. This ensures that the packet
393 				 * is multicast and not just sent down one link
394 				 * as prescribed by rsvpd.
395 				 */
396 				if (!V_rsvp_on)
397 					imo = NULL;
398 				if (ip_mforward &&
399 				    ip_mforward(ip, ifp, m, imo) != 0) {
400 					m_freem(m);
401 					goto done;
402 				}
403 			}
404 		}
405 
406 		/*
407 		 * Multicasts with a time-to-live of zero may be looped-
408 		 * back, above, but must not be transmitted on a network.
409 		 * Also, multicasts addressed to the loopback interface
410 		 * are not sent -- the above call to ip_mloopback() will
411 		 * loop back a copy. ip_input() will drop the copy if
412 		 * this host does not belong to the destination group on
413 		 * the loopback interface.
414 		 */
415 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
416 			m_freem(m);
417 			goto done;
418 		}
419 
420 		goto sendit;
421 	}
422 
423 	/*
424 	 * If the source address is not specified yet, use the address
425 	 * of the outoing interface.
426 	 */
427 	if (ip->ip_src.s_addr == INADDR_ANY) {
428 		/* Interface may have no addresses. */
429 		if (ia != NULL) {
430 			ip->ip_src = IA_SIN(ia)->sin_addr;
431 		}
432 	}
433 
434 	/*
435 	 * Verify that we have any chance at all of being able to queue the
436 	 * packet or packet fragments, unless ALTQ is enabled on the given
437 	 * interface in which case packetdrop should be done by queueing.
438 	 */
439 	n = ip->ip_len / mtu + 1; /* how many fragments ? */
440 	if (
441 #ifdef ALTQ
442 	    (!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
443 #endif /* ALTQ */
444 	    (ifp->if_snd.ifq_len + n) >= ifp->if_snd.ifq_maxlen ) {
445 		error = ENOBUFS;
446 		IPSTAT_INC(ips_odropped);
447 		ifp->if_snd.ifq_drops += n;
448 		goto bad;
449 	}
450 
451 	/*
452 	 * Look for broadcast address and
453 	 * verify user is allowed to send
454 	 * such a packet.
455 	 */
456 	if (isbroadcast) {
457 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
458 			error = EADDRNOTAVAIL;
459 			goto bad;
460 		}
461 		if ((flags & IP_ALLOWBROADCAST) == 0) {
462 			error = EACCES;
463 			goto bad;
464 		}
465 		/* don't allow broadcast messages to be fragmented */
466 		if (ip->ip_len > mtu) {
467 			error = EMSGSIZE;
468 			goto bad;
469 		}
470 		m->m_flags |= M_BCAST;
471 	} else {
472 		m->m_flags &= ~M_BCAST;
473 	}
474 
475 sendit:
476 #ifdef IPSEC
477 	switch(ip_ipsec_output(&m, inp, &flags, &error)) {
478 	case 1:
479 		goto bad;
480 	case -1:
481 		goto done;
482 	case 0:
483 	default:
484 		break;	/* Continue with packet processing. */
485 	}
486 	/*
487 	 * Check if there was a route for this packet; return error if not.
488 	 */
489 	if (no_route_but_check_spd) {
490 		IPSTAT_INC(ips_noroute);
491 		error = EHOSTUNREACH;
492 		goto bad;
493 	}
494 	/* Update variables that are affected by ipsec4_output(). */
495 	ip = mtod(m, struct ip *);
496 	hlen = ip->ip_hl << 2;
497 #endif /* IPSEC */
498 
499 	/* Jump over all PFIL processing if hooks are not active. */
500 	if (!PFIL_HOOKED(&V_inet_pfil_hook))
501 		goto passout;
502 
503 	/* Run through list of hooks for output packets. */
504 	odst.s_addr = ip->ip_dst.s_addr;
505 	error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
506 	if (error != 0 || m == NULL)
507 		goto done;
508 
509 	ip = mtod(m, struct ip *);
510 
511 	/* See if destination IP address was changed by packet filter. */
512 	if (odst.s_addr != ip->ip_dst.s_addr) {
513 		m->m_flags |= M_SKIP_FIREWALL;
514 		/* If destination is now ourself drop to ip_input(). */
515 		if (in_localip(ip->ip_dst)) {
516 			m->m_flags |= M_FASTFWD_OURS;
517 			if (m->m_pkthdr.rcvif == NULL)
518 				m->m_pkthdr.rcvif = V_loif;
519 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
520 				m->m_pkthdr.csum_flags |=
521 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
522 				m->m_pkthdr.csum_data = 0xffff;
523 			}
524 			m->m_pkthdr.csum_flags |=
525 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
526 #ifdef SCTP
527 			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
528 				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
529 #endif
530 			error = netisr_queue(NETISR_IP, m);
531 			goto done;
532 		} else
533 			goto again;	/* Redo the routing table lookup. */
534 	}
535 
536 #ifdef IPFIREWALL_FORWARD
537 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
538 	if (m->m_flags & M_FASTFWD_OURS) {
539 		if (m->m_pkthdr.rcvif == NULL)
540 			m->m_pkthdr.rcvif = V_loif;
541 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
542 			m->m_pkthdr.csum_flags |=
543 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
544 			m->m_pkthdr.csum_data = 0xffff;
545 		}
546 #ifdef SCTP
547 		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
548 			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
549 #endif
550 		m->m_pkthdr.csum_flags |=
551 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
552 
553 		error = netisr_queue(NETISR_IP, m);
554 		goto done;
555 	}
556 	/* Or forward to some other address? */
557 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
558 	if (fwd_tag) {
559 		dst = (struct sockaddr_in *)&ro->ro_dst;
560 		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
561 		m->m_flags |= M_SKIP_FIREWALL;
562 		m_tag_delete(m, fwd_tag);
563 		goto again;
564 	}
565 #endif /* IPFIREWALL_FORWARD */
566 
567 passout:
568 	/* 127/8 must not appear on wire - RFC1122. */
569 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
570 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
571 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
572 			IPSTAT_INC(ips_badaddr);
573 			error = EADDRNOTAVAIL;
574 			goto bad;
575 		}
576 	}
577 
578 	m->m_pkthdr.csum_flags |= CSUM_IP;
579 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
580 	if (sw_csum & CSUM_DELAY_DATA) {
581 		in_delayed_cksum(m);
582 		sw_csum &= ~CSUM_DELAY_DATA;
583 	}
584 #ifdef SCTP
585 	if (sw_csum & CSUM_SCTP) {
586 		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
587 		sw_csum &= ~CSUM_SCTP;
588 	}
589 #endif
590 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
591 
592 	/*
593 	 * If small enough for interface, or the interface will take
594 	 * care of the fragmentation for us, we can just send directly.
595 	 */
596 	if (ip->ip_len <= mtu ||
597 	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
598 	    ((ip->ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
599 		ip->ip_len = htons(ip->ip_len);
600 		ip->ip_off = htons(ip->ip_off);
601 		ip->ip_sum = 0;
602 		if (sw_csum & CSUM_DELAY_IP)
603 			ip->ip_sum = in_cksum(m, hlen);
604 
605 		/*
606 		 * Record statistics for this interface address.
607 		 * With CSUM_TSO the byte/packet count will be slightly
608 		 * incorrect because we count the IP+TCP headers only
609 		 * once instead of for every generated packet.
610 		 */
611 		if (!(flags & IP_FORWARDING) && ia) {
612 			if (m->m_pkthdr.csum_flags & CSUM_TSO)
613 				ia->ia_ifa.if_opackets +=
614 				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
615 			else
616 				ia->ia_ifa.if_opackets++;
617 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
618 		}
619 #ifdef MBUF_STRESS_TEST
620 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
621 			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
622 #endif
623 		/*
624 		 * Reset layer specific mbuf flags
625 		 * to avoid confusing lower layers.
626 		 */
627 		m->m_flags &= ~(M_PROTOFLAGS);
628 		error = (*ifp->if_output)(ifp, m,
629 		    		(struct sockaddr *)dst, ro);
630 		goto done;
631 	}
632 
633 	/* Balk when DF bit is set or the interface didn't support TSO. */
634 	if ((ip->ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
635 		error = EMSGSIZE;
636 		IPSTAT_INC(ips_cantfrag);
637 		goto bad;
638 	}
639 
640 	/*
641 	 * Too large for interface; fragment if possible. If successful,
642 	 * on return, m will point to a list of packets to be sent.
643 	 */
644 	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist, sw_csum);
645 	if (error)
646 		goto bad;
647 	for (; m; m = m0) {
648 		m0 = m->m_nextpkt;
649 		m->m_nextpkt = 0;
650 		if (error == 0) {
651 			/* Record statistics for this interface address. */
652 			if (ia != NULL) {
653 				ia->ia_ifa.if_opackets++;
654 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
655 			}
656 			/*
657 			 * Reset layer specific mbuf flags
658 			 * to avoid confusing upper layers.
659 			 */
660 			m->m_flags &= ~(M_PROTOFLAGS);
661 
662 			error = (*ifp->if_output)(ifp, m,
663 			    (struct sockaddr *)dst, ro);
664 		} else
665 			m_freem(m);
666 	}
667 
668 	if (error == 0)
669 		IPSTAT_INC(ips_fragmented);
670 
671 done:
672 	if (ro == &iproute && ro->ro_rt && !nortfree) {
673 		RTFREE(ro->ro_rt);
674 	}
675 	if (ia != NULL)
676 		ifa_free(&ia->ia_ifa);
677 	return (error);
678 bad:
679 	m_freem(m);
680 	goto done;
681 }
682 
683 /*
684  * Create a chain of fragments which fit the given mtu. m_frag points to the
685  * mbuf to be fragmented; on return it points to the chain with the fragments.
686  * Return 0 if no error. If error, m_frag may contain a partially built
687  * chain of fragments that should be freed by the caller.
688  *
689  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
690  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
691  */
692 int
693 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
694     u_long if_hwassist_flags, int sw_csum)
695 {
696 	int error = 0;
697 	int hlen = ip->ip_hl << 2;
698 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
699 	int off;
700 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
701 	int firstlen;
702 	struct mbuf **mnext;
703 	int nfrags;
704 
705 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
706 		IPSTAT_INC(ips_cantfrag);
707 		return EMSGSIZE;
708 	}
709 
710 	/*
711 	 * Must be able to put at least 8 bytes per fragment.
712 	 */
713 	if (len < 8)
714 		return EMSGSIZE;
715 
716 	/*
717 	 * If the interface will not calculate checksums on
718 	 * fragmented packets, then do it here.
719 	 */
720 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
721 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
722 		in_delayed_cksum(m0);
723 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
724 	}
725 #ifdef SCTP
726 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP &&
727 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
728 		sctp_delayed_cksum(m0, hlen);
729 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
730 	}
731 #endif
732 	if (len > PAGE_SIZE) {
733 		/*
734 		 * Fragment large datagrams such that each segment
735 		 * contains a multiple of PAGE_SIZE amount of data,
736 		 * plus headers. This enables a receiver to perform
737 		 * page-flipping zero-copy optimizations.
738 		 *
739 		 * XXX When does this help given that sender and receiver
740 		 * could have different page sizes, and also mtu could
741 		 * be less than the receiver's page size ?
742 		 */
743 		int newlen;
744 		struct mbuf *m;
745 
746 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
747 			off += m->m_len;
748 
749 		/*
750 		 * firstlen (off - hlen) must be aligned on an
751 		 * 8-byte boundary
752 		 */
753 		if (off < hlen)
754 			goto smart_frag_failure;
755 		off = ((off - hlen) & ~7) + hlen;
756 		newlen = (~PAGE_MASK) & mtu;
757 		if ((newlen + sizeof (struct ip)) > mtu) {
758 			/* we failed, go back the default */
759 smart_frag_failure:
760 			newlen = len;
761 			off = hlen + len;
762 		}
763 		len = newlen;
764 
765 	} else {
766 		off = hlen + len;
767 	}
768 
769 	firstlen = off - hlen;
770 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
771 
772 	/*
773 	 * Loop through length of segment after first fragment,
774 	 * make new header and copy data of each part and link onto chain.
775 	 * Here, m0 is the original packet, m is the fragment being created.
776 	 * The fragments are linked off the m_nextpkt of the original
777 	 * packet, which after processing serves as the first fragment.
778 	 */
779 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
780 		struct ip *mhip;	/* ip header on the fragment */
781 		struct mbuf *m;
782 		int mhlen = sizeof (struct ip);
783 
784 		MGETHDR(m, M_DONTWAIT, MT_DATA);
785 		if (m == NULL) {
786 			error = ENOBUFS;
787 			IPSTAT_INC(ips_odropped);
788 			goto done;
789 		}
790 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
791 		/*
792 		 * In the first mbuf, leave room for the link header, then
793 		 * copy the original IP header including options. The payload
794 		 * goes into an additional mbuf chain returned by m_copym().
795 		 */
796 		m->m_data += max_linkhdr;
797 		mhip = mtod(m, struct ip *);
798 		*mhip = *ip;
799 		if (hlen > sizeof (struct ip)) {
800 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
801 			mhip->ip_v = IPVERSION;
802 			mhip->ip_hl = mhlen >> 2;
803 		}
804 		m->m_len = mhlen;
805 		/* XXX do we need to add ip->ip_off below ? */
806 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
807 		if (off + len >= ip->ip_len) {	/* last fragment */
808 			len = ip->ip_len - off;
809 			m->m_flags |= M_LASTFRAG;
810 		} else
811 			mhip->ip_off |= IP_MF;
812 		mhip->ip_len = htons((u_short)(len + mhlen));
813 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
814 		if (m->m_next == NULL) {	/* copy failed */
815 			m_free(m);
816 			error = ENOBUFS;	/* ??? */
817 			IPSTAT_INC(ips_odropped);
818 			goto done;
819 		}
820 		m->m_pkthdr.len = mhlen + len;
821 		m->m_pkthdr.rcvif = NULL;
822 #ifdef MAC
823 		mac_netinet_fragment(m0, m);
824 #endif
825 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
826 		mhip->ip_off = htons(mhip->ip_off);
827 		mhip->ip_sum = 0;
828 		if (sw_csum & CSUM_DELAY_IP)
829 			mhip->ip_sum = in_cksum(m, mhlen);
830 		*mnext = m;
831 		mnext = &m->m_nextpkt;
832 	}
833 	IPSTAT_ADD(ips_ofragments, nfrags);
834 
835 	/* set first marker for fragment chain */
836 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
837 	m0->m_pkthdr.csum_data = nfrags;
838 
839 	/*
840 	 * Update first fragment by trimming what's been copied out
841 	 * and updating header.
842 	 */
843 	m_adj(m0, hlen + firstlen - ip->ip_len);
844 	m0->m_pkthdr.len = hlen + firstlen;
845 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
846 	ip->ip_off |= IP_MF;
847 	ip->ip_off = htons(ip->ip_off);
848 	ip->ip_sum = 0;
849 	if (sw_csum & CSUM_DELAY_IP)
850 		ip->ip_sum = in_cksum(m0, hlen);
851 
852 done:
853 	*m_frag = m0;
854 	return error;
855 }
856 
857 void
858 in_delayed_cksum(struct mbuf *m)
859 {
860 	struct ip *ip;
861 	u_short csum, offset;
862 
863 	ip = mtod(m, struct ip *);
864 	offset = ip->ip_hl << 2 ;
865 	csum = in_cksum_skip(m, ip->ip_len, offset);
866 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
867 		csum = 0xffff;
868 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
869 
870 	if (offset + sizeof(u_short) > m->m_len) {
871 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
872 		    m->m_len, offset, ip->ip_p);
873 		/*
874 		 * XXX
875 		 * this shouldn't happen, but if it does, the
876 		 * correct behavior may be to insert the checksum
877 		 * in the appropriate next mbuf in the chain.
878 		 */
879 		return;
880 	}
881 	*(u_short *)(m->m_data + offset) = csum;
882 }
883 
884 /*
885  * IP socket option processing.
886  */
887 int
888 ip_ctloutput(struct socket *so, struct sockopt *sopt)
889 {
890 	struct	inpcb *inp = sotoinpcb(so);
891 	int	error, optval;
892 
893 	error = optval = 0;
894 	if (sopt->sopt_level != IPPROTO_IP) {
895 		if ((sopt->sopt_level == SOL_SOCKET) &&
896 		    (sopt->sopt_name == SO_SETFIB)) {
897 			inp->inp_inc.inc_fibnum = so->so_fibnum;
898 			return (0);
899 		}
900 		return (EINVAL);
901 	}
902 
903 	switch (sopt->sopt_dir) {
904 	case SOPT_SET:
905 		switch (sopt->sopt_name) {
906 		case IP_OPTIONS:
907 #ifdef notyet
908 		case IP_RETOPTS:
909 #endif
910 		{
911 			struct mbuf *m;
912 			if (sopt->sopt_valsize > MLEN) {
913 				error = EMSGSIZE;
914 				break;
915 			}
916 			MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
917 			if (m == NULL) {
918 				error = ENOBUFS;
919 				break;
920 			}
921 			m->m_len = sopt->sopt_valsize;
922 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
923 					    m->m_len);
924 			if (error) {
925 				m_free(m);
926 				break;
927 			}
928 			INP_WLOCK(inp);
929 			error = ip_pcbopts(inp, sopt->sopt_name, m);
930 			INP_WUNLOCK(inp);
931 			return (error);
932 		}
933 
934 		case IP_BINDANY:
935 			if (sopt->sopt_td != NULL) {
936 				error = priv_check(sopt->sopt_td,
937 				    PRIV_NETINET_BINDANY);
938 				if (error)
939 					break;
940 			}
941 			/* FALLTHROUGH */
942 		case IP_TOS:
943 		case IP_TTL:
944 		case IP_MINTTL:
945 		case IP_RECVOPTS:
946 		case IP_RECVRETOPTS:
947 		case IP_RECVDSTADDR:
948 		case IP_RECVTTL:
949 		case IP_RECVIF:
950 		case IP_FAITH:
951 		case IP_ONESBCAST:
952 		case IP_DONTFRAG:
953 			error = sooptcopyin(sopt, &optval, sizeof optval,
954 					    sizeof optval);
955 			if (error)
956 				break;
957 
958 			switch (sopt->sopt_name) {
959 			case IP_TOS:
960 				inp->inp_ip_tos = optval;
961 				break;
962 
963 			case IP_TTL:
964 				inp->inp_ip_ttl = optval;
965 				break;
966 
967 			case IP_MINTTL:
968 				if (optval >= 0 && optval <= MAXTTL)
969 					inp->inp_ip_minttl = optval;
970 				else
971 					error = EINVAL;
972 				break;
973 
974 #define	OPTSET(bit) do {						\
975 	INP_WLOCK(inp);							\
976 	if (optval)							\
977 		inp->inp_flags |= bit;					\
978 	else								\
979 		inp->inp_flags &= ~bit;					\
980 	INP_WUNLOCK(inp);						\
981 } while (0)
982 
983 			case IP_RECVOPTS:
984 				OPTSET(INP_RECVOPTS);
985 				break;
986 
987 			case IP_RECVRETOPTS:
988 				OPTSET(INP_RECVRETOPTS);
989 				break;
990 
991 			case IP_RECVDSTADDR:
992 				OPTSET(INP_RECVDSTADDR);
993 				break;
994 
995 			case IP_RECVTTL:
996 				OPTSET(INP_RECVTTL);
997 				break;
998 
999 			case IP_RECVIF:
1000 				OPTSET(INP_RECVIF);
1001 				break;
1002 
1003 			case IP_FAITH:
1004 				OPTSET(INP_FAITH);
1005 				break;
1006 
1007 			case IP_ONESBCAST:
1008 				OPTSET(INP_ONESBCAST);
1009 				break;
1010 			case IP_DONTFRAG:
1011 				OPTSET(INP_DONTFRAG);
1012 				break;
1013 			case IP_BINDANY:
1014 				OPTSET(INP_BINDANY);
1015 				break;
1016 			}
1017 			break;
1018 #undef OPTSET
1019 
1020 		/*
1021 		 * Multicast socket options are processed by the in_mcast
1022 		 * module.
1023 		 */
1024 		case IP_MULTICAST_IF:
1025 		case IP_MULTICAST_VIF:
1026 		case IP_MULTICAST_TTL:
1027 		case IP_MULTICAST_LOOP:
1028 		case IP_ADD_MEMBERSHIP:
1029 		case IP_DROP_MEMBERSHIP:
1030 		case IP_ADD_SOURCE_MEMBERSHIP:
1031 		case IP_DROP_SOURCE_MEMBERSHIP:
1032 		case IP_BLOCK_SOURCE:
1033 		case IP_UNBLOCK_SOURCE:
1034 		case IP_MSFILTER:
1035 		case MCAST_JOIN_GROUP:
1036 		case MCAST_LEAVE_GROUP:
1037 		case MCAST_JOIN_SOURCE_GROUP:
1038 		case MCAST_LEAVE_SOURCE_GROUP:
1039 		case MCAST_BLOCK_SOURCE:
1040 		case MCAST_UNBLOCK_SOURCE:
1041 			error = inp_setmoptions(inp, sopt);
1042 			break;
1043 
1044 		case IP_PORTRANGE:
1045 			error = sooptcopyin(sopt, &optval, sizeof optval,
1046 					    sizeof optval);
1047 			if (error)
1048 				break;
1049 
1050 			INP_WLOCK(inp);
1051 			switch (optval) {
1052 			case IP_PORTRANGE_DEFAULT:
1053 				inp->inp_flags &= ~(INP_LOWPORT);
1054 				inp->inp_flags &= ~(INP_HIGHPORT);
1055 				break;
1056 
1057 			case IP_PORTRANGE_HIGH:
1058 				inp->inp_flags &= ~(INP_LOWPORT);
1059 				inp->inp_flags |= INP_HIGHPORT;
1060 				break;
1061 
1062 			case IP_PORTRANGE_LOW:
1063 				inp->inp_flags &= ~(INP_HIGHPORT);
1064 				inp->inp_flags |= INP_LOWPORT;
1065 				break;
1066 
1067 			default:
1068 				error = EINVAL;
1069 				break;
1070 			}
1071 			INP_WUNLOCK(inp);
1072 			break;
1073 
1074 #ifdef IPSEC
1075 		case IP_IPSEC_POLICY:
1076 		{
1077 			caddr_t req;
1078 			struct mbuf *m;
1079 
1080 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1081 				break;
1082 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1083 				break;
1084 			req = mtod(m, caddr_t);
1085 			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1086 			    m->m_len, (sopt->sopt_td != NULL) ?
1087 			    sopt->sopt_td->td_ucred : NULL);
1088 			m_freem(m);
1089 			break;
1090 		}
1091 #endif /* IPSEC */
1092 
1093 		default:
1094 			error = ENOPROTOOPT;
1095 			break;
1096 		}
1097 		break;
1098 
1099 	case SOPT_GET:
1100 		switch (sopt->sopt_name) {
1101 		case IP_OPTIONS:
1102 		case IP_RETOPTS:
1103 			if (inp->inp_options)
1104 				error = sooptcopyout(sopt,
1105 						     mtod(inp->inp_options,
1106 							  char *),
1107 						     inp->inp_options->m_len);
1108 			else
1109 				sopt->sopt_valsize = 0;
1110 			break;
1111 
1112 		case IP_TOS:
1113 		case IP_TTL:
1114 		case IP_MINTTL:
1115 		case IP_RECVOPTS:
1116 		case IP_RECVRETOPTS:
1117 		case IP_RECVDSTADDR:
1118 		case IP_RECVTTL:
1119 		case IP_RECVIF:
1120 		case IP_PORTRANGE:
1121 		case IP_FAITH:
1122 		case IP_ONESBCAST:
1123 		case IP_DONTFRAG:
1124 			switch (sopt->sopt_name) {
1125 
1126 			case IP_TOS:
1127 				optval = inp->inp_ip_tos;
1128 				break;
1129 
1130 			case IP_TTL:
1131 				optval = inp->inp_ip_ttl;
1132 				break;
1133 
1134 			case IP_MINTTL:
1135 				optval = inp->inp_ip_minttl;
1136 				break;
1137 
1138 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1139 
1140 			case IP_RECVOPTS:
1141 				optval = OPTBIT(INP_RECVOPTS);
1142 				break;
1143 
1144 			case IP_RECVRETOPTS:
1145 				optval = OPTBIT(INP_RECVRETOPTS);
1146 				break;
1147 
1148 			case IP_RECVDSTADDR:
1149 				optval = OPTBIT(INP_RECVDSTADDR);
1150 				break;
1151 
1152 			case IP_RECVTTL:
1153 				optval = OPTBIT(INP_RECVTTL);
1154 				break;
1155 
1156 			case IP_RECVIF:
1157 				optval = OPTBIT(INP_RECVIF);
1158 				break;
1159 
1160 			case IP_PORTRANGE:
1161 				if (inp->inp_flags & INP_HIGHPORT)
1162 					optval = IP_PORTRANGE_HIGH;
1163 				else if (inp->inp_flags & INP_LOWPORT)
1164 					optval = IP_PORTRANGE_LOW;
1165 				else
1166 					optval = 0;
1167 				break;
1168 
1169 			case IP_FAITH:
1170 				optval = OPTBIT(INP_FAITH);
1171 				break;
1172 
1173 			case IP_ONESBCAST:
1174 				optval = OPTBIT(INP_ONESBCAST);
1175 				break;
1176 			case IP_DONTFRAG:
1177 				optval = OPTBIT(INP_DONTFRAG);
1178 				break;
1179 			}
1180 			error = sooptcopyout(sopt, &optval, sizeof optval);
1181 			break;
1182 
1183 		/*
1184 		 * Multicast socket options are processed by the in_mcast
1185 		 * module.
1186 		 */
1187 		case IP_MULTICAST_IF:
1188 		case IP_MULTICAST_VIF:
1189 		case IP_MULTICAST_TTL:
1190 		case IP_MULTICAST_LOOP:
1191 		case IP_MSFILTER:
1192 			error = inp_getmoptions(inp, sopt);
1193 			break;
1194 
1195 #ifdef IPSEC
1196 		case IP_IPSEC_POLICY:
1197 		{
1198 			struct mbuf *m = NULL;
1199 			caddr_t req = NULL;
1200 			size_t len = 0;
1201 
1202 			if (m != 0) {
1203 				req = mtod(m, caddr_t);
1204 				len = m->m_len;
1205 			}
1206 			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1207 			if (error == 0)
1208 				error = soopt_mcopyout(sopt, m); /* XXX */
1209 			if (error == 0)
1210 				m_freem(m);
1211 			break;
1212 		}
1213 #endif /* IPSEC */
1214 
1215 		default:
1216 			error = ENOPROTOOPT;
1217 			break;
1218 		}
1219 		break;
1220 	}
1221 	return (error);
1222 }
1223 
1224 /*
1225  * Routine called from ip_output() to loop back a copy of an IP multicast
1226  * packet to the input queue of a specified interface.  Note that this
1227  * calls the output routine of the loopback "driver", but with an interface
1228  * pointer that might NOT be a loopback interface -- evil, but easier than
1229  * replicating that code here.
1230  */
1231 static void
1232 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1233     int hlen)
1234 {
1235 	register struct ip *ip;
1236 	struct mbuf *copym;
1237 
1238 	/*
1239 	 * Make a deep copy of the packet because we're going to
1240 	 * modify the pack in order to generate checksums.
1241 	 */
1242 	copym = m_dup(m, M_DONTWAIT);
1243 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1244 		copym = m_pullup(copym, hlen);
1245 	if (copym != NULL) {
1246 		/* If needed, compute the checksum and mark it as valid. */
1247 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1248 			in_delayed_cksum(copym);
1249 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1250 			copym->m_pkthdr.csum_flags |=
1251 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1252 			copym->m_pkthdr.csum_data = 0xffff;
1253 		}
1254 		/*
1255 		 * We don't bother to fragment if the IP length is greater
1256 		 * than the interface's MTU.  Can this possibly matter?
1257 		 */
1258 		ip = mtod(copym, struct ip *);
1259 		ip->ip_len = htons(ip->ip_len);
1260 		ip->ip_off = htons(ip->ip_off);
1261 		ip->ip_sum = 0;
1262 		ip->ip_sum = in_cksum(copym, hlen);
1263 #if 1 /* XXX */
1264 		if (dst->sin_family != AF_INET) {
1265 			printf("ip_mloopback: bad address family %d\n",
1266 						dst->sin_family);
1267 			dst->sin_family = AF_INET;
1268 		}
1269 #endif
1270 		if_simloop(ifp, copym, dst->sin_family, 0);
1271 	}
1272 }
1273