xref: /freebsd/sys/netinet/ip_output.c (revision 7a0a89d2cb29ee2c383600fa59e42d714a6dcbcb)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ipfw.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mpath.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/sysctl.h>
52 #include <sys/ucred.h>
53 #include <sys/vimage.h>
54 
55 #include <net/if.h>
56 #include <net/netisr.h>
57 #include <net/pfil.h>
58 #include <net/route.h>
59 #ifdef RADIX_MPATH
60 #include <net/radix_mpath.h>
61 #endif
62 #include <net/vnet.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip_var.h>
70 #include <netinet/ip_options.h>
71 #include <netinet/vinet.h>
72 
73 #ifdef IPSEC
74 #include <netinet/ip_ipsec.h>
75 #include <netipsec/ipsec.h>
76 #endif /* IPSEC*/
77 
78 #include <machine/in_cksum.h>
79 
80 #include <security/mac/mac_framework.h>
81 
82 #define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
83 				x, (ntohl(a.s_addr)>>24)&0xFF,\
84 				  (ntohl(a.s_addr)>>16)&0xFF,\
85 				  (ntohl(a.s_addr)>>8)&0xFF,\
86 				  (ntohl(a.s_addr))&0xFF, y);
87 
88 #ifdef VIMAGE_GLOBALS
89 u_short ip_id;
90 #endif
91 
92 #ifdef MBUF_STRESS_TEST
93 int mbuf_frag_size = 0;
94 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
95 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
96 #endif
97 
98 static void	ip_mloopback
99 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
100 
101 
102 extern	struct protosw inetsw[];
103 
104 /*
105  * IP output.  The packet in mbuf chain m contains a skeletal IP
106  * header (with len, off, ttl, proto, tos, src, dst).
107  * The mbuf chain containing the packet will be freed.
108  * The mbuf opt, if present, will not be freed.
109  * In the IP forwarding case, the packet will arrive with options already
110  * inserted, so must have a NULL opt pointer.
111  */
112 int
113 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
114     struct ip_moptions *imo, struct inpcb *inp)
115 {
116 	INIT_VNET_NET(curvnet);
117 	INIT_VNET_INET(curvnet);
118 	struct ip *ip;
119 	struct ifnet *ifp = NULL;	/* keep compiler happy */
120 	struct mbuf *m0;
121 	int hlen = sizeof (struct ip);
122 	int mtu;
123 	int len, error = 0;
124 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
125 	struct in_ifaddr *ia = NULL;
126 	int isbroadcast, sw_csum;
127 	struct route iproute;
128 	struct in_addr odst;
129 #ifdef IPFIREWALL_FORWARD
130 	struct m_tag *fwd_tag = NULL;
131 #endif
132 	M_ASSERTPKTHDR(m);
133 
134 	if (ro == NULL) {
135 		ro = &iproute;
136 		bzero(ro, sizeof (*ro));
137 	}
138 
139 	if (inp != NULL) {
140 		M_SETFIB(m, inp->inp_inc.inc_fibnum);
141 		INP_LOCK_ASSERT(inp);
142 	}
143 
144 	if (opt) {
145 		len = 0;
146 		m = ip_insertoptions(m, opt, &len);
147 		if (len != 0)
148 			hlen = len;
149 	}
150 	ip = mtod(m, struct ip *);
151 
152 	/*
153 	 * Fill in IP header.  If we are not allowing fragmentation,
154 	 * then the ip_id field is meaningless, but we don't set it
155 	 * to zero.  Doing so causes various problems when devices along
156 	 * the path (routers, load balancers, firewalls, etc.) illegally
157 	 * disable DF on our packet.  Note that a 16-bit counter
158 	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
159 	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
160 	 * for Counting NATted Hosts", Proc. IMW'02, available at
161 	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
162 	 */
163 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
164 		ip->ip_v = IPVERSION;
165 		ip->ip_hl = hlen >> 2;
166 		ip->ip_id = ip_newid();
167 		V_ipstat.ips_localout++;
168 	} else {
169 		hlen = ip->ip_hl << 2;
170 	}
171 
172 	dst = (struct sockaddr_in *)&ro->ro_dst;
173 again:
174 	/*
175 	 * If there is a cached route,
176 	 * check that it is to the same destination
177 	 * and is still up.  If not, free it and try again.
178 	 * The address family should also be checked in case of sharing the
179 	 * cache with IPv6.
180 	 */
181 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
182 			  dst->sin_family != AF_INET ||
183 			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
184 		RTFREE(ro->ro_rt);
185 		ro->ro_rt = (struct rtentry *)NULL;
186 	}
187 #ifdef IPFIREWALL_FORWARD
188 	if (ro->ro_rt == NULL && fwd_tag == NULL) {
189 #else
190 	if (ro->ro_rt == NULL) {
191 #endif
192 		bzero(dst, sizeof(*dst));
193 		dst->sin_family = AF_INET;
194 		dst->sin_len = sizeof(*dst);
195 		dst->sin_addr = ip->ip_dst;
196 	}
197 	/*
198 	 * If routing to interface only, short circuit routing lookup.
199 	 * The use of an all-ones broadcast address implies this; an
200 	 * interface is specified by the broadcast address of an interface,
201 	 * or the destination address of a ptp interface.
202 	 */
203 	if (flags & IP_SENDONES) {
204 		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
205 		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
206 			V_ipstat.ips_noroute++;
207 			error = ENETUNREACH;
208 			goto bad;
209 		}
210 		ip->ip_dst.s_addr = INADDR_BROADCAST;
211 		dst->sin_addr = ip->ip_dst;
212 		ifp = ia->ia_ifp;
213 		ip->ip_ttl = 1;
214 		isbroadcast = 1;
215 	} else if (flags & IP_ROUTETOIF) {
216 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
217 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
218 			V_ipstat.ips_noroute++;
219 			error = ENETUNREACH;
220 			goto bad;
221 		}
222 		ifp = ia->ia_ifp;
223 		ip->ip_ttl = 1;
224 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
225 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
226 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
227 		/*
228 		 * Bypass the normal routing lookup for multicast
229 		 * packets if the interface is specified.
230 		 */
231 		ifp = imo->imo_multicast_ifp;
232 		IFP_TO_IA(ifp, ia);
233 		isbroadcast = 0;	/* fool gcc */
234 	} else {
235 		/*
236 		 * We want to do any cloning requested by the link layer,
237 		 * as this is probably required in all cases for correct
238 		 * operation (as it is for ARP).
239 		 */
240 		if (ro->ro_rt == NULL)
241 #ifdef RADIX_MPATH
242 			rtalloc_mpath_fib(ro,
243 			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
244 			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
245 #else
246 			in_rtalloc_ign(ro, 0,
247 			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
248 #endif
249 		if (ro->ro_rt == NULL) {
250 			V_ipstat.ips_noroute++;
251 			error = EHOSTUNREACH;
252 			goto bad;
253 		}
254 		ia = ifatoia(ro->ro_rt->rt_ifa);
255 		ifp = ro->ro_rt->rt_ifp;
256 		ro->ro_rt->rt_rmx.rmx_pksent++;
257 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
258 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
259 		if (ro->ro_rt->rt_flags & RTF_HOST)
260 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
261 		else
262 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
263 	}
264 	/*
265 	 * Calculate MTU.  If we have a route that is up, use that,
266 	 * otherwise use the interface's MTU.
267 	 */
268 	if (ro->ro_rt != NULL && (ro->ro_rt->rt_flags & (RTF_UP|RTF_HOST))) {
269 		/*
270 		 * This case can happen if the user changed the MTU
271 		 * of an interface after enabling IP on it.  Because
272 		 * most netifs don't keep track of routes pointing to
273 		 * them, there is no way for one to update all its
274 		 * routes when the MTU is changed.
275 		 */
276 		if (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)
277 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
278 		mtu = ro->ro_rt->rt_rmx.rmx_mtu;
279 	} else {
280 		mtu = ifp->if_mtu;
281 	}
282 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
283 		struct in_multi *inm;
284 
285 		m->m_flags |= M_MCAST;
286 		/*
287 		 * IP destination address is multicast.  Make sure "dst"
288 		 * still points to the address in "ro".  (It may have been
289 		 * changed to point to a gateway address, above.)
290 		 */
291 		dst = (struct sockaddr_in *)&ro->ro_dst;
292 		/*
293 		 * See if the caller provided any multicast options
294 		 */
295 		if (imo != NULL) {
296 			ip->ip_ttl = imo->imo_multicast_ttl;
297 			if (imo->imo_multicast_vif != -1)
298 				ip->ip_src.s_addr =
299 				    ip_mcast_src ?
300 				    ip_mcast_src(imo->imo_multicast_vif) :
301 				    INADDR_ANY;
302 		} else
303 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
304 		/*
305 		 * Confirm that the outgoing interface supports multicast.
306 		 */
307 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
308 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
309 				V_ipstat.ips_noroute++;
310 				error = ENETUNREACH;
311 				goto bad;
312 			}
313 		}
314 		/*
315 		 * If source address not specified yet, use address
316 		 * of outgoing interface.
317 		 */
318 		if (ip->ip_src.s_addr == INADDR_ANY) {
319 			/* Interface may have no addresses. */
320 			if (ia != NULL)
321 				ip->ip_src = IA_SIN(ia)->sin_addr;
322 		}
323 
324 		IN_MULTI_LOCK();
325 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
326 		if (inm != NULL &&
327 		   (imo == NULL || imo->imo_multicast_loop)) {
328 			IN_MULTI_UNLOCK();
329 			/*
330 			 * If we belong to the destination multicast group
331 			 * on the outgoing interface, and the caller did not
332 			 * forbid loopback, loop back a copy.
333 			 */
334 			ip_mloopback(ifp, m, dst, hlen);
335 		}
336 		else {
337 			IN_MULTI_UNLOCK();
338 			/*
339 			 * If we are acting as a multicast router, perform
340 			 * multicast forwarding as if the packet had just
341 			 * arrived on the interface to which we are about
342 			 * to send.  The multicast forwarding function
343 			 * recursively calls this function, using the
344 			 * IP_FORWARDING flag to prevent infinite recursion.
345 			 *
346 			 * Multicasts that are looped back by ip_mloopback(),
347 			 * above, will be forwarded by the ip_input() routine,
348 			 * if necessary.
349 			 */
350 			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
351 				/*
352 				 * If rsvp daemon is not running, do not
353 				 * set ip_moptions. This ensures that the packet
354 				 * is multicast and not just sent down one link
355 				 * as prescribed by rsvpd.
356 				 */
357 				if (!V_rsvp_on)
358 					imo = NULL;
359 				if (ip_mforward &&
360 				    ip_mforward(ip, ifp, m, imo) != 0) {
361 					m_freem(m);
362 					goto done;
363 				}
364 			}
365 		}
366 
367 		/*
368 		 * Multicasts with a time-to-live of zero may be looped-
369 		 * back, above, but must not be transmitted on a network.
370 		 * Also, multicasts addressed to the loopback interface
371 		 * are not sent -- the above call to ip_mloopback() will
372 		 * loop back a copy if this host actually belongs to the
373 		 * destination group on the loopback interface.
374 		 */
375 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
376 			m_freem(m);
377 			goto done;
378 		}
379 
380 		goto sendit;
381 	}
382 
383 	/*
384 	 * If the source address is not specified yet, use the address
385 	 * of the outoing interface.
386 	 */
387 	if (ip->ip_src.s_addr == INADDR_ANY) {
388 		/* Interface may have no addresses. */
389 		if (ia != NULL) {
390 			ip->ip_src = IA_SIN(ia)->sin_addr;
391 		}
392 	}
393 
394 	/*
395 	 * Verify that we have any chance at all of being able to queue the
396 	 * packet or packet fragments, unless ALTQ is enabled on the given
397 	 * interface in which case packetdrop should be done by queueing.
398 	 */
399 #ifdef ALTQ
400 	if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
401 	    ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
402 	    ifp->if_snd.ifq_maxlen))
403 #else
404 	if ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
405 	    ifp->if_snd.ifq_maxlen)
406 #endif /* ALTQ */
407 	{
408 		error = ENOBUFS;
409 		V_ipstat.ips_odropped++;
410 		ifp->if_snd.ifq_drops += (ip->ip_len / ifp->if_mtu + 1);
411 		goto bad;
412 	}
413 
414 	/*
415 	 * Look for broadcast address and
416 	 * verify user is allowed to send
417 	 * such a packet.
418 	 */
419 	if (isbroadcast) {
420 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
421 			error = EADDRNOTAVAIL;
422 			goto bad;
423 		}
424 		if ((flags & IP_ALLOWBROADCAST) == 0) {
425 			error = EACCES;
426 			goto bad;
427 		}
428 		/* don't allow broadcast messages to be fragmented */
429 		if (ip->ip_len > mtu) {
430 			error = EMSGSIZE;
431 			goto bad;
432 		}
433 		m->m_flags |= M_BCAST;
434 	} else {
435 		m->m_flags &= ~M_BCAST;
436 	}
437 
438 sendit:
439 #ifdef IPSEC
440 	switch(ip_ipsec_output(&m, inp, &flags, &error, &ro, &iproute, &dst, &ia, &ifp)) {
441 	case 1:
442 		goto bad;
443 	case -1:
444 		goto done;
445 	case 0:
446 	default:
447 		break;	/* Continue with packet processing. */
448 	}
449 	/* Update variables that are affected by ipsec4_output(). */
450 	ip = mtod(m, struct ip *);
451 	hlen = ip->ip_hl << 2;
452 #endif /* IPSEC */
453 
454 	/* Jump over all PFIL processing if hooks are not active. */
455 	if (!PFIL_HOOKED(&inet_pfil_hook))
456 		goto passout;
457 
458 	/* Run through list of hooks for output packets. */
459 	odst.s_addr = ip->ip_dst.s_addr;
460 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
461 	if (error != 0 || m == NULL)
462 		goto done;
463 
464 	ip = mtod(m, struct ip *);
465 
466 	/* See if destination IP address was changed by packet filter. */
467 	if (odst.s_addr != ip->ip_dst.s_addr) {
468 		m->m_flags |= M_SKIP_FIREWALL;
469 		/* If destination is now ourself drop to ip_input(). */
470 		if (in_localip(ip->ip_dst)) {
471 			m->m_flags |= M_FASTFWD_OURS;
472 			if (m->m_pkthdr.rcvif == NULL)
473 				m->m_pkthdr.rcvif = V_loif;
474 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
475 				m->m_pkthdr.csum_flags |=
476 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
477 				m->m_pkthdr.csum_data = 0xffff;
478 			}
479 			m->m_pkthdr.csum_flags |=
480 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
481 
482 			error = netisr_queue(NETISR_IP, m);
483 			goto done;
484 		} else
485 			goto again;	/* Redo the routing table lookup. */
486 	}
487 
488 #ifdef IPFIREWALL_FORWARD
489 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
490 	if (m->m_flags & M_FASTFWD_OURS) {
491 		if (m->m_pkthdr.rcvif == NULL)
492 			m->m_pkthdr.rcvif = V_loif;
493 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
494 			m->m_pkthdr.csum_flags |=
495 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
496 			m->m_pkthdr.csum_data = 0xffff;
497 		}
498 		m->m_pkthdr.csum_flags |=
499 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
500 
501 		error = netisr_queue(NETISR_IP, m);
502 		goto done;
503 	}
504 	/* Or forward to some other address? */
505 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
506 	if (fwd_tag) {
507 		dst = (struct sockaddr_in *)&ro->ro_dst;
508 		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
509 		m->m_flags |= M_SKIP_FIREWALL;
510 		m_tag_delete(m, fwd_tag);
511 		goto again;
512 	}
513 #endif /* IPFIREWALL_FORWARD */
514 
515 passout:
516 	/* 127/8 must not appear on wire - RFC1122. */
517 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
518 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
519 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
520 			V_ipstat.ips_badaddr++;
521 			error = EADDRNOTAVAIL;
522 			goto bad;
523 		}
524 	}
525 
526 	m->m_pkthdr.csum_flags |= CSUM_IP;
527 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
528 	if (sw_csum & CSUM_DELAY_DATA) {
529 		in_delayed_cksum(m);
530 		sw_csum &= ~CSUM_DELAY_DATA;
531 	}
532 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
533 
534 	/*
535 	 * If small enough for interface, or the interface will take
536 	 * care of the fragmentation for us, we can just send directly.
537 	 */
538 	if (ip->ip_len <= mtu ||
539 	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
540 	    ((ip->ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
541 		ip->ip_len = htons(ip->ip_len);
542 		ip->ip_off = htons(ip->ip_off);
543 		ip->ip_sum = 0;
544 		if (sw_csum & CSUM_DELAY_IP)
545 			ip->ip_sum = in_cksum(m, hlen);
546 
547 		/*
548 		 * Record statistics for this interface address.
549 		 * With CSUM_TSO the byte/packet count will be slightly
550 		 * incorrect because we count the IP+TCP headers only
551 		 * once instead of for every generated packet.
552 		 */
553 		if (!(flags & IP_FORWARDING) && ia) {
554 			if (m->m_pkthdr.csum_flags & CSUM_TSO)
555 				ia->ia_ifa.if_opackets +=
556 				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
557 			else
558 				ia->ia_ifa.if_opackets++;
559 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
560 		}
561 #ifdef MBUF_STRESS_TEST
562 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
563 			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
564 #endif
565 		/*
566 		 * Reset layer specific mbuf flags
567 		 * to avoid confusing lower layers.
568 		 */
569 		m->m_flags &= ~(M_PROTOFLAGS);
570 		error = (*ifp->if_output)(ifp, m,
571 				(struct sockaddr *)dst, ro->ro_rt);
572 		goto done;
573 	}
574 
575 	/* Balk when DF bit is set or the interface didn't support TSO. */
576 	if ((ip->ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
577 		error = EMSGSIZE;
578 		V_ipstat.ips_cantfrag++;
579 		goto bad;
580 	}
581 
582 	/*
583 	 * Too large for interface; fragment if possible. If successful,
584 	 * on return, m will point to a list of packets to be sent.
585 	 */
586 	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist, sw_csum);
587 	if (error)
588 		goto bad;
589 	for (; m; m = m0) {
590 		m0 = m->m_nextpkt;
591 		m->m_nextpkt = 0;
592 		if (error == 0) {
593 			/* Record statistics for this interface address. */
594 			if (ia != NULL) {
595 				ia->ia_ifa.if_opackets++;
596 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
597 			}
598 			/*
599 			 * Reset layer specific mbuf flags
600 			 * to avoid confusing upper layers.
601 			 */
602 			m->m_flags &= ~(M_PROTOFLAGS);
603 
604 			error = (*ifp->if_output)(ifp, m,
605 			    (struct sockaddr *)dst, ro->ro_rt);
606 		} else
607 			m_freem(m);
608 	}
609 
610 	if (error == 0)
611 		V_ipstat.ips_fragmented++;
612 
613 done:
614 	if (ro == &iproute && ro->ro_rt) {
615 		RTFREE(ro->ro_rt);
616 	}
617 	return (error);
618 bad:
619 	m_freem(m);
620 	goto done;
621 }
622 
623 /*
624  * Create a chain of fragments which fit the given mtu. m_frag points to the
625  * mbuf to be fragmented; on return it points to the chain with the fragments.
626  * Return 0 if no error. If error, m_frag may contain a partially built
627  * chain of fragments that should be freed by the caller.
628  *
629  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
630  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
631  */
632 int
633 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
634     u_long if_hwassist_flags, int sw_csum)
635 {
636 	INIT_VNET_INET(curvnet);
637 	int error = 0;
638 	int hlen = ip->ip_hl << 2;
639 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
640 	int off;
641 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
642 	int firstlen;
643 	struct mbuf **mnext;
644 	int nfrags;
645 
646 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
647 		V_ipstat.ips_cantfrag++;
648 		return EMSGSIZE;
649 	}
650 
651 	/*
652 	 * Must be able to put at least 8 bytes per fragment.
653 	 */
654 	if (len < 8)
655 		return EMSGSIZE;
656 
657 	/*
658 	 * If the interface will not calculate checksums on
659 	 * fragmented packets, then do it here.
660 	 */
661 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
662 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
663 		in_delayed_cksum(m0);
664 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
665 	}
666 
667 	if (len > PAGE_SIZE) {
668 		/*
669 		 * Fragment large datagrams such that each segment
670 		 * contains a multiple of PAGE_SIZE amount of data,
671 		 * plus headers. This enables a receiver to perform
672 		 * page-flipping zero-copy optimizations.
673 		 *
674 		 * XXX When does this help given that sender and receiver
675 		 * could have different page sizes, and also mtu could
676 		 * be less than the receiver's page size ?
677 		 */
678 		int newlen;
679 		struct mbuf *m;
680 
681 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
682 			off += m->m_len;
683 
684 		/*
685 		 * firstlen (off - hlen) must be aligned on an
686 		 * 8-byte boundary
687 		 */
688 		if (off < hlen)
689 			goto smart_frag_failure;
690 		off = ((off - hlen) & ~7) + hlen;
691 		newlen = (~PAGE_MASK) & mtu;
692 		if ((newlen + sizeof (struct ip)) > mtu) {
693 			/* we failed, go back the default */
694 smart_frag_failure:
695 			newlen = len;
696 			off = hlen + len;
697 		}
698 		len = newlen;
699 
700 	} else {
701 		off = hlen + len;
702 	}
703 
704 	firstlen = off - hlen;
705 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
706 
707 	/*
708 	 * Loop through length of segment after first fragment,
709 	 * make new header and copy data of each part and link onto chain.
710 	 * Here, m0 is the original packet, m is the fragment being created.
711 	 * The fragments are linked off the m_nextpkt of the original
712 	 * packet, which after processing serves as the first fragment.
713 	 */
714 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
715 		struct ip *mhip;	/* ip header on the fragment */
716 		struct mbuf *m;
717 		int mhlen = sizeof (struct ip);
718 
719 		MGETHDR(m, M_DONTWAIT, MT_DATA);
720 		if (m == NULL) {
721 			error = ENOBUFS;
722 			V_ipstat.ips_odropped++;
723 			goto done;
724 		}
725 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
726 		/*
727 		 * In the first mbuf, leave room for the link header, then
728 		 * copy the original IP header including options. The payload
729 		 * goes into an additional mbuf chain returned by m_copy().
730 		 */
731 		m->m_data += max_linkhdr;
732 		mhip = mtod(m, struct ip *);
733 		*mhip = *ip;
734 		if (hlen > sizeof (struct ip)) {
735 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
736 			mhip->ip_v = IPVERSION;
737 			mhip->ip_hl = mhlen >> 2;
738 		}
739 		m->m_len = mhlen;
740 		/* XXX do we need to add ip->ip_off below ? */
741 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
742 		if (off + len >= ip->ip_len) {	/* last fragment */
743 			len = ip->ip_len - off;
744 			m->m_flags |= M_LASTFRAG;
745 		} else
746 			mhip->ip_off |= IP_MF;
747 		mhip->ip_len = htons((u_short)(len + mhlen));
748 		m->m_next = m_copy(m0, off, len);
749 		if (m->m_next == NULL) {	/* copy failed */
750 			m_free(m);
751 			error = ENOBUFS;	/* ??? */
752 			V_ipstat.ips_odropped++;
753 			goto done;
754 		}
755 		m->m_pkthdr.len = mhlen + len;
756 		m->m_pkthdr.rcvif = NULL;
757 #ifdef MAC
758 		mac_netinet_fragment(m0, m);
759 #endif
760 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
761 		mhip->ip_off = htons(mhip->ip_off);
762 		mhip->ip_sum = 0;
763 		if (sw_csum & CSUM_DELAY_IP)
764 			mhip->ip_sum = in_cksum(m, mhlen);
765 		*mnext = m;
766 		mnext = &m->m_nextpkt;
767 	}
768 	V_ipstat.ips_ofragments += nfrags;
769 
770 	/* set first marker for fragment chain */
771 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
772 	m0->m_pkthdr.csum_data = nfrags;
773 
774 	/*
775 	 * Update first fragment by trimming what's been copied out
776 	 * and updating header.
777 	 */
778 	m_adj(m0, hlen + firstlen - ip->ip_len);
779 	m0->m_pkthdr.len = hlen + firstlen;
780 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
781 	ip->ip_off |= IP_MF;
782 	ip->ip_off = htons(ip->ip_off);
783 	ip->ip_sum = 0;
784 	if (sw_csum & CSUM_DELAY_IP)
785 		ip->ip_sum = in_cksum(m0, hlen);
786 
787 done:
788 	*m_frag = m0;
789 	return error;
790 }
791 
792 void
793 in_delayed_cksum(struct mbuf *m)
794 {
795 	struct ip *ip;
796 	u_short csum, offset;
797 
798 	ip = mtod(m, struct ip *);
799 	offset = ip->ip_hl << 2 ;
800 	csum = in_cksum_skip(m, ip->ip_len, offset);
801 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
802 		csum = 0xffff;
803 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
804 
805 	if (offset + sizeof(u_short) > m->m_len) {
806 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
807 		    m->m_len, offset, ip->ip_p);
808 		/*
809 		 * XXX
810 		 * this shouldn't happen, but if it does, the
811 		 * correct behavior may be to insert the checksum
812 		 * in the appropriate next mbuf in the chain.
813 		 */
814 		return;
815 	}
816 	*(u_short *)(m->m_data + offset) = csum;
817 }
818 
819 /*
820  * IP socket option processing.
821  */
822 int
823 ip_ctloutput(struct socket *so, struct sockopt *sopt)
824 {
825 	struct	inpcb *inp = sotoinpcb(so);
826 	int	error, optval;
827 
828 	error = optval = 0;
829 	if (sopt->sopt_level != IPPROTO_IP) {
830 		if ((sopt->sopt_level == SOL_SOCKET) &&
831 		    (sopt->sopt_name == SO_SETFIB)) {
832 			inp->inp_inc.inc_fibnum = so->so_fibnum;
833 			return (0);
834 		}
835 		return (EINVAL);
836 	}
837 
838 	switch (sopt->sopt_dir) {
839 	case SOPT_SET:
840 		switch (sopt->sopt_name) {
841 		case IP_OPTIONS:
842 #ifdef notyet
843 		case IP_RETOPTS:
844 #endif
845 		{
846 			struct mbuf *m;
847 			if (sopt->sopt_valsize > MLEN) {
848 				error = EMSGSIZE;
849 				break;
850 			}
851 			MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
852 			if (m == NULL) {
853 				error = ENOBUFS;
854 				break;
855 			}
856 			m->m_len = sopt->sopt_valsize;
857 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
858 					    m->m_len);
859 			if (error) {
860 				m_free(m);
861 				break;
862 			}
863 			INP_WLOCK(inp);
864 			error = ip_pcbopts(inp, sopt->sopt_name, m);
865 			INP_WUNLOCK(inp);
866 			return (error);
867 		}
868 
869 		case IP_TOS:
870 		case IP_TTL:
871 		case IP_MINTTL:
872 		case IP_RECVOPTS:
873 		case IP_RECVRETOPTS:
874 		case IP_RECVDSTADDR:
875 		case IP_RECVTTL:
876 		case IP_RECVIF:
877 		case IP_FAITH:
878 		case IP_ONESBCAST:
879 		case IP_DONTFRAG:
880 			error = sooptcopyin(sopt, &optval, sizeof optval,
881 					    sizeof optval);
882 			if (error)
883 				break;
884 
885 			switch (sopt->sopt_name) {
886 			case IP_TOS:
887 				inp->inp_ip_tos = optval;
888 				break;
889 
890 			case IP_TTL:
891 				inp->inp_ip_ttl = optval;
892 				break;
893 
894 			case IP_MINTTL:
895 				if (optval > 0 && optval <= MAXTTL)
896 					inp->inp_ip_minttl = optval;
897 				else
898 					error = EINVAL;
899 				break;
900 
901 #define	OPTSET(bit) do {						\
902 	INP_WLOCK(inp);							\
903 	if (optval)							\
904 		inp->inp_flags |= bit;					\
905 	else								\
906 		inp->inp_flags &= ~bit;					\
907 	INP_WUNLOCK(inp);						\
908 } while (0)
909 
910 			case IP_RECVOPTS:
911 				OPTSET(INP_RECVOPTS);
912 				break;
913 
914 			case IP_RECVRETOPTS:
915 				OPTSET(INP_RECVRETOPTS);
916 				break;
917 
918 			case IP_RECVDSTADDR:
919 				OPTSET(INP_RECVDSTADDR);
920 				break;
921 
922 			case IP_RECVTTL:
923 				OPTSET(INP_RECVTTL);
924 				break;
925 
926 			case IP_RECVIF:
927 				OPTSET(INP_RECVIF);
928 				break;
929 
930 			case IP_FAITH:
931 				OPTSET(INP_FAITH);
932 				break;
933 
934 			case IP_ONESBCAST:
935 				OPTSET(INP_ONESBCAST);
936 				break;
937 			case IP_DONTFRAG:
938 				OPTSET(INP_DONTFRAG);
939 				break;
940 			}
941 			break;
942 #undef OPTSET
943 
944 		/*
945 		 * Multicast socket options are processed by the in_mcast
946 		 * module.
947 		 */
948 		case IP_MULTICAST_IF:
949 		case IP_MULTICAST_VIF:
950 		case IP_MULTICAST_TTL:
951 		case IP_MULTICAST_LOOP:
952 		case IP_ADD_MEMBERSHIP:
953 		case IP_DROP_MEMBERSHIP:
954 		case IP_ADD_SOURCE_MEMBERSHIP:
955 		case IP_DROP_SOURCE_MEMBERSHIP:
956 		case IP_BLOCK_SOURCE:
957 		case IP_UNBLOCK_SOURCE:
958 		case IP_MSFILTER:
959 		case MCAST_JOIN_GROUP:
960 		case MCAST_LEAVE_GROUP:
961 		case MCAST_JOIN_SOURCE_GROUP:
962 		case MCAST_LEAVE_SOURCE_GROUP:
963 		case MCAST_BLOCK_SOURCE:
964 		case MCAST_UNBLOCK_SOURCE:
965 			error = inp_setmoptions(inp, sopt);
966 			break;
967 
968 		case IP_PORTRANGE:
969 			error = sooptcopyin(sopt, &optval, sizeof optval,
970 					    sizeof optval);
971 			if (error)
972 				break;
973 
974 			INP_WLOCK(inp);
975 			switch (optval) {
976 			case IP_PORTRANGE_DEFAULT:
977 				inp->inp_flags &= ~(INP_LOWPORT);
978 				inp->inp_flags &= ~(INP_HIGHPORT);
979 				break;
980 
981 			case IP_PORTRANGE_HIGH:
982 				inp->inp_flags &= ~(INP_LOWPORT);
983 				inp->inp_flags |= INP_HIGHPORT;
984 				break;
985 
986 			case IP_PORTRANGE_LOW:
987 				inp->inp_flags &= ~(INP_HIGHPORT);
988 				inp->inp_flags |= INP_LOWPORT;
989 				break;
990 
991 			default:
992 				error = EINVAL;
993 				break;
994 			}
995 			INP_WUNLOCK(inp);
996 			break;
997 
998 #ifdef IPSEC
999 		case IP_IPSEC_POLICY:
1000 		{
1001 			caddr_t req;
1002 			struct mbuf *m;
1003 
1004 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1005 				break;
1006 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1007 				break;
1008 			req = mtod(m, caddr_t);
1009 			error = ipsec4_set_policy(inp, sopt->sopt_name, req,
1010 			    m->m_len, (sopt->sopt_td != NULL) ?
1011 			    sopt->sopt_td->td_ucred : NULL);
1012 			m_freem(m);
1013 			break;
1014 		}
1015 #endif /* IPSEC */
1016 
1017 		default:
1018 			error = ENOPROTOOPT;
1019 			break;
1020 		}
1021 		break;
1022 
1023 	case SOPT_GET:
1024 		switch (sopt->sopt_name) {
1025 		case IP_OPTIONS:
1026 		case IP_RETOPTS:
1027 			if (inp->inp_options)
1028 				error = sooptcopyout(sopt,
1029 						     mtod(inp->inp_options,
1030 							  char *),
1031 						     inp->inp_options->m_len);
1032 			else
1033 				sopt->sopt_valsize = 0;
1034 			break;
1035 
1036 		case IP_TOS:
1037 		case IP_TTL:
1038 		case IP_MINTTL:
1039 		case IP_RECVOPTS:
1040 		case IP_RECVRETOPTS:
1041 		case IP_RECVDSTADDR:
1042 		case IP_RECVTTL:
1043 		case IP_RECVIF:
1044 		case IP_PORTRANGE:
1045 		case IP_FAITH:
1046 		case IP_ONESBCAST:
1047 		case IP_DONTFRAG:
1048 			switch (sopt->sopt_name) {
1049 
1050 			case IP_TOS:
1051 				optval = inp->inp_ip_tos;
1052 				break;
1053 
1054 			case IP_TTL:
1055 				optval = inp->inp_ip_ttl;
1056 				break;
1057 
1058 			case IP_MINTTL:
1059 				optval = inp->inp_ip_minttl;
1060 				break;
1061 
1062 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1063 
1064 			case IP_RECVOPTS:
1065 				optval = OPTBIT(INP_RECVOPTS);
1066 				break;
1067 
1068 			case IP_RECVRETOPTS:
1069 				optval = OPTBIT(INP_RECVRETOPTS);
1070 				break;
1071 
1072 			case IP_RECVDSTADDR:
1073 				optval = OPTBIT(INP_RECVDSTADDR);
1074 				break;
1075 
1076 			case IP_RECVTTL:
1077 				optval = OPTBIT(INP_RECVTTL);
1078 				break;
1079 
1080 			case IP_RECVIF:
1081 				optval = OPTBIT(INP_RECVIF);
1082 				break;
1083 
1084 			case IP_PORTRANGE:
1085 				if (inp->inp_flags & INP_HIGHPORT)
1086 					optval = IP_PORTRANGE_HIGH;
1087 				else if (inp->inp_flags & INP_LOWPORT)
1088 					optval = IP_PORTRANGE_LOW;
1089 				else
1090 					optval = 0;
1091 				break;
1092 
1093 			case IP_FAITH:
1094 				optval = OPTBIT(INP_FAITH);
1095 				break;
1096 
1097 			case IP_ONESBCAST:
1098 				optval = OPTBIT(INP_ONESBCAST);
1099 				break;
1100 			case IP_DONTFRAG:
1101 				optval = OPTBIT(INP_DONTFRAG);
1102 				break;
1103 			}
1104 			error = sooptcopyout(sopt, &optval, sizeof optval);
1105 			break;
1106 
1107 		/*
1108 		 * Multicast socket options are processed by the in_mcast
1109 		 * module.
1110 		 */
1111 		case IP_MULTICAST_IF:
1112 		case IP_MULTICAST_VIF:
1113 		case IP_MULTICAST_TTL:
1114 		case IP_MULTICAST_LOOP:
1115 		case IP_MSFILTER:
1116 			error = inp_getmoptions(inp, sopt);
1117 			break;
1118 
1119 #ifdef IPSEC
1120 		case IP_IPSEC_POLICY:
1121 		{
1122 			struct mbuf *m = NULL;
1123 			caddr_t req = NULL;
1124 			size_t len = 0;
1125 
1126 			if (m != 0) {
1127 				req = mtod(m, caddr_t);
1128 				len = m->m_len;
1129 			}
1130 			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1131 			if (error == 0)
1132 				error = soopt_mcopyout(sopt, m); /* XXX */
1133 			if (error == 0)
1134 				m_freem(m);
1135 			break;
1136 		}
1137 #endif /* IPSEC */
1138 
1139 		default:
1140 			error = ENOPROTOOPT;
1141 			break;
1142 		}
1143 		break;
1144 	}
1145 	return (error);
1146 }
1147 
1148 /*
1149  * Routine called from ip_output() to loop back a copy of an IP multicast
1150  * packet to the input queue of a specified interface.  Note that this
1151  * calls the output routine of the loopback "driver", but with an interface
1152  * pointer that might NOT be a loopback interface -- evil, but easier than
1153  * replicating that code here.
1154  */
1155 static void
1156 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1157     int hlen)
1158 {
1159 	register struct ip *ip;
1160 	struct mbuf *copym;
1161 
1162 	/*
1163 	 * Make a deep copy of the packet because we're going to
1164 	 * modify the pack in order to generate checksums.
1165 	 */
1166 	copym = m_dup(m, M_DONTWAIT);
1167 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1168 		copym = m_pullup(copym, hlen);
1169 	if (copym != NULL) {
1170 		/* If needed, compute the checksum and mark it as valid. */
1171 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1172 			in_delayed_cksum(copym);
1173 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1174 			copym->m_pkthdr.csum_flags |=
1175 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1176 			copym->m_pkthdr.csum_data = 0xffff;
1177 		}
1178 		/*
1179 		 * We don't bother to fragment if the IP length is greater
1180 		 * than the interface's MTU.  Can this possibly matter?
1181 		 */
1182 		ip = mtod(copym, struct ip *);
1183 		ip->ip_len = htons(ip->ip_len);
1184 		ip->ip_off = htons(ip->ip_off);
1185 		ip->ip_sum = 0;
1186 		ip->ip_sum = in_cksum(copym, hlen);
1187 #if 1 /* XXX */
1188 		if (dst->sin_family != AF_INET) {
1189 			printf("ip_mloopback: bad address family %d\n",
1190 						dst->sin_family);
1191 			dst->sin_family = AF_INET;
1192 		}
1193 #endif
1194 		if_simloop(ifp, copym, dst->sin_family, 0);
1195 	}
1196 }
1197