1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include "opt_inet.h" 33 #include "opt_ipsec.h" 34 #include "opt_kern_tls.h" 35 #include "opt_mbuf_stress_test.h" 36 #include "opt_ratelimit.h" 37 #include "opt_route.h" 38 #include "opt_rss.h" 39 #include "opt_sctp.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/ktls.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/protosw.h> 51 #include <sys/sdt.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/ucred.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_private.h> 60 #include <net/if_vlan_var.h> 61 #include <net/if_llatbl.h> 62 #include <net/ethernet.h> 63 #include <net/netisr.h> 64 #include <net/pfil.h> 65 #include <net/route.h> 66 #include <net/route/nhop.h> 67 #include <net/rss_config.h> 68 #include <net/vnet.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_fib.h> 72 #include <netinet/in_kdtrace.h> 73 #include <netinet/in_systm.h> 74 #include <netinet/ip.h> 75 #include <netinet/in_fib.h> 76 #include <netinet/in_pcb.h> 77 #include <netinet/in_rss.h> 78 #include <netinet/in_var.h> 79 #include <netinet/ip_var.h> 80 #include <netinet/ip_options.h> 81 82 #include <netinet/udp.h> 83 #include <netinet/udp_var.h> 84 85 #if defined(SCTP) || defined(SCTP_SUPPORT) 86 #include <netinet/sctp.h> 87 #include <netinet/sctp_crc32.h> 88 #endif 89 90 #include <netipsec/ipsec_support.h> 91 92 #include <machine/in_cksum.h> 93 94 #include <security/mac/mac_framework.h> 95 96 #ifdef MBUF_STRESS_TEST 97 static int mbuf_frag_size = 0; 98 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 99 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 100 #endif 101 102 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 103 104 extern int in_mcast_loop; 105 106 static inline int 107 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 108 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 109 { 110 struct m_tag *fwd_tag = NULL; 111 struct mbuf *m; 112 struct in_addr odst; 113 struct ip *ip; 114 int ret; 115 116 m = *mp; 117 ip = mtod(m, struct ip *); 118 119 /* Run through list of hooks for output packets. */ 120 odst.s_addr = ip->ip_dst.s_addr; 121 if (flags & IP_FORWARDING) 122 ret = pfil_mbuf_fwd(V_inet_pfil_head, mp, ifp, inp); 123 else 124 ret = pfil_mbuf_out(V_inet_pfil_head, mp, ifp, inp); 125 126 switch (ret) { 127 case PFIL_DROPPED: 128 *error = EACCES; 129 /* FALLTHROUGH */ 130 case PFIL_CONSUMED: 131 return 1; /* Finished */ 132 case PFIL_PASS: 133 *error = 0; 134 } 135 m = *mp; 136 ip = mtod(m, struct ip *); 137 138 /* See if destination IP address was changed by packet filter. */ 139 if (odst.s_addr != ip->ip_dst.s_addr) { 140 m->m_flags |= M_SKIP_FIREWALL; 141 /* If destination is now ourself drop to ip_input(). */ 142 if (in_localip(ip->ip_dst)) { 143 m->m_flags |= M_FASTFWD_OURS; 144 if (m->m_pkthdr.rcvif == NULL) 145 m->m_pkthdr.rcvif = V_loif; 146 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 147 m->m_pkthdr.csum_flags |= 148 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 149 m->m_pkthdr.csum_data = 0xffff; 150 } 151 m->m_pkthdr.csum_flags |= 152 CSUM_IP_CHECKED | CSUM_IP_VALID; 153 #if defined(SCTP) || defined(SCTP_SUPPORT) 154 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 155 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 156 #endif 157 *error = netisr_queue(NETISR_IP, m); 158 return 1; /* Finished */ 159 } 160 161 bzero(dst, sizeof(*dst)); 162 dst->sin_family = AF_INET; 163 dst->sin_len = sizeof(*dst); 164 dst->sin_addr = ip->ip_dst; 165 166 return -1; /* Reloop */ 167 } 168 /* See if fib was changed by packet filter. */ 169 if ((*fibnum) != M_GETFIB(m)) { 170 m->m_flags |= M_SKIP_FIREWALL; 171 *fibnum = M_GETFIB(m); 172 return -1; /* Reloop for FIB change */ 173 } 174 175 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 176 if (m->m_flags & M_FASTFWD_OURS) { 177 if (m->m_pkthdr.rcvif == NULL) 178 m->m_pkthdr.rcvif = V_loif; 179 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 180 m->m_pkthdr.csum_flags |= 181 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 182 m->m_pkthdr.csum_data = 0xffff; 183 } 184 #if defined(SCTP) || defined(SCTP_SUPPORT) 185 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 186 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 187 #endif 188 m->m_pkthdr.csum_flags |= 189 CSUM_IP_CHECKED | CSUM_IP_VALID; 190 191 *error = netisr_queue(NETISR_IP, m); 192 return 1; /* Finished */ 193 } 194 /* Or forward to some other address? */ 195 if ((m->m_flags & M_IP_NEXTHOP) && 196 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 197 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 198 m->m_flags |= M_SKIP_FIREWALL; 199 m->m_flags &= ~M_IP_NEXTHOP; 200 m_tag_delete(m, fwd_tag); 201 202 return -1; /* Reloop for CHANGE of dst */ 203 } 204 205 return 0; 206 } 207 208 static int 209 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 210 const struct sockaddr *gw, struct route *ro, bool stamp_tag) 211 { 212 #ifdef KERN_TLS 213 struct ktls_session *tls = NULL; 214 #endif 215 struct m_snd_tag *mst; 216 int error; 217 218 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 219 mst = NULL; 220 221 #ifdef KERN_TLS 222 /* 223 * If this is an unencrypted TLS record, save a reference to 224 * the record. This local reference is used to call 225 * ktls_output_eagain after the mbuf has been freed (thus 226 * dropping the mbuf's reference) in if_output. 227 */ 228 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 229 tls = ktls_hold(m->m_next->m_epg_tls); 230 mst = tls->snd_tag; 231 232 /* 233 * If a TLS session doesn't have a valid tag, it must 234 * have had an earlier ifp mismatch, so drop this 235 * packet. 236 */ 237 if (mst == NULL) { 238 m_freem(m); 239 error = EAGAIN; 240 goto done; 241 } 242 /* 243 * Always stamp tags that include NIC ktls. 244 */ 245 stamp_tag = true; 246 } 247 #endif 248 #ifdef RATELIMIT 249 if (inp != NULL && mst == NULL) { 250 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 251 (inp->inp_snd_tag != NULL && 252 inp->inp_snd_tag->ifp != ifp)) 253 in_pcboutput_txrtlmt(inp, ifp, m); 254 255 if (inp->inp_snd_tag != NULL) 256 mst = inp->inp_snd_tag; 257 } 258 #endif 259 if (stamp_tag && mst != NULL) { 260 KASSERT(m->m_pkthdr.rcvif == NULL, 261 ("trying to add a send tag to a forwarded packet")); 262 if (mst->ifp != ifp) { 263 m_freem(m); 264 error = EAGAIN; 265 goto done; 266 } 267 268 /* stamp send tag on mbuf */ 269 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 270 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 271 } 272 273 error = (*ifp->if_output)(ifp, m, gw, ro); 274 275 done: 276 /* Check for route change invalidating send tags. */ 277 #ifdef KERN_TLS 278 if (tls != NULL) { 279 if (error == EAGAIN) 280 error = ktls_output_eagain(inp, tls); 281 ktls_free(tls); 282 } 283 #endif 284 #ifdef RATELIMIT 285 if (error == EAGAIN) 286 in_pcboutput_eagain(inp); 287 #endif 288 return (error); 289 } 290 291 /* rte<>ro_flags translation */ 292 static inline void 293 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh) 294 { 295 int nh_flags = nh->nh_flags; 296 297 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 298 299 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 300 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 301 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 302 } 303 304 /* 305 * IP output. The packet in mbuf chain m contains a skeletal IP 306 * header (with len, off, ttl, proto, tos, src, dst). 307 * The mbuf chain containing the packet will be freed. 308 * The mbuf opt, if present, will not be freed. 309 * If route ro is present and has ro_rt initialized, route lookup would be 310 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 311 * then result of route lookup is stored in ro->ro_rt. 312 * 313 * In the IP forwarding case, the packet will arrive with options already 314 * inserted, so must have a NULL opt pointer. 315 */ 316 int 317 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 318 struct ip_moptions *imo, struct inpcb *inp) 319 { 320 struct ip *ip; 321 struct ifnet *ifp = NULL; /* keep compiler happy */ 322 struct mbuf *m0; 323 int hlen = sizeof (struct ip); 324 int mtu = 0; 325 int error = 0; 326 int vlan_pcp = -1; 327 struct sockaddr_in *dst; 328 const struct sockaddr *gw; 329 struct in_ifaddr *ia = NULL; 330 struct in_addr src; 331 bool isbroadcast; 332 uint16_t ip_len, ip_off; 333 struct route iproute; 334 uint32_t fibnum; 335 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 336 int no_route_but_check_spd = 0; 337 #endif 338 339 M_ASSERTPKTHDR(m); 340 NET_EPOCH_ASSERT(); 341 342 if (inp != NULL) { 343 INP_LOCK_ASSERT(inp); 344 M_SETFIB(m, inp->inp_inc.inc_fibnum); 345 if ((flags & IP_NODEFAULTFLOWID) == 0) { 346 m->m_pkthdr.flowid = inp->inp_flowid; 347 M_HASHTYPE_SET(m, inp->inp_flowtype); 348 } 349 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 350 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 351 INP_2PCP_SHIFT; 352 #ifdef NUMA 353 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 354 #endif 355 } 356 357 if (opt) { 358 int len = 0; 359 m = ip_insertoptions(m, opt, &len); 360 if (len != 0) 361 hlen = len; /* ip->ip_hl is updated above */ 362 } 363 ip = mtod(m, struct ip *); 364 ip_len = ntohs(ip->ip_len); 365 ip_off = ntohs(ip->ip_off); 366 367 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 368 ip->ip_v = IPVERSION; 369 ip->ip_hl = hlen >> 2; 370 ip_fillid(ip, V_ip_random_id); 371 } else { 372 /* Header already set, fetch hlen from there */ 373 hlen = ip->ip_hl << 2; 374 } 375 if ((flags & IP_FORWARDING) == 0) 376 IPSTAT_INC(ips_localout); 377 378 /* 379 * dst/gw handling: 380 * 381 * gw is readonly but can point either to dst OR rt_gateway, 382 * therefore we need restore gw if we're redoing lookup. 383 */ 384 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 385 if (ro == NULL) { 386 ro = &iproute; 387 bzero(ro, sizeof (*ro)); 388 } 389 dst = (struct sockaddr_in *)&ro->ro_dst; 390 if (ro->ro_nh == NULL) { 391 dst->sin_family = AF_INET; 392 dst->sin_len = sizeof(*dst); 393 dst->sin_addr = ip->ip_dst; 394 } 395 gw = (const struct sockaddr *)dst; 396 again: 397 /* 398 * Validate route against routing table additions; 399 * a better/more specific route might have been added. 400 */ 401 if (inp != NULL && ro->ro_nh != NULL) 402 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 403 /* 404 * If there is a cached route, 405 * check that it is to the same destination 406 * and is still up. If not, free it and try again. 407 * The address family should also be checked in case of sharing the 408 * cache with IPv6. 409 * Also check whether routing cache needs invalidation. 410 */ 411 if (ro->ro_nh != NULL && 412 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 413 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 414 RO_INVALIDATE_CACHE(ro); 415 ia = NULL; 416 /* 417 * If routing to interface only, short circuit routing lookup. 418 * The use of an all-ones broadcast address implies this; an 419 * interface is specified by the broadcast address of an interface, 420 * or the destination address of a ptp interface. 421 */ 422 if (flags & IP_SENDONES) { 423 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 424 M_GETFIB(m)))) == NULL && 425 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 426 M_GETFIB(m)))) == NULL) { 427 IPSTAT_INC(ips_noroute); 428 error = ENETUNREACH; 429 goto bad; 430 } 431 ip->ip_dst.s_addr = INADDR_BROADCAST; 432 dst->sin_addr = ip->ip_dst; 433 ifp = ia->ia_ifp; 434 mtu = ifp->if_mtu; 435 ip->ip_ttl = 1; 436 isbroadcast = true; 437 src = IA_SIN(ia)->sin_addr; 438 } else if (flags & IP_ROUTETOIF) { 439 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 440 M_GETFIB(m)))) == NULL && 441 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 442 M_GETFIB(m)))) == NULL) { 443 IPSTAT_INC(ips_noroute); 444 error = ENETUNREACH; 445 goto bad; 446 } 447 ifp = ia->ia_ifp; 448 mtu = ifp->if_mtu; 449 ip->ip_ttl = 1; 450 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 451 (in_broadcast(ip->ip_dst) || 452 in_ifaddr_broadcast(dst->sin_addr, ia)) : 0; 453 src = IA_SIN(ia)->sin_addr; 454 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 455 imo != NULL && imo->imo_multicast_ifp != NULL) { 456 /* 457 * Bypass the normal routing lookup for multicast 458 * packets if the interface is specified. 459 */ 460 ifp = imo->imo_multicast_ifp; 461 mtu = ifp->if_mtu; 462 IFP_TO_IA(ifp, ia); 463 isbroadcast = false; 464 /* Interface may have no addresses. */ 465 if (ia != NULL) 466 src = IA_SIN(ia)->sin_addr; 467 else 468 src.s_addr = INADDR_ANY; 469 } else if (ro != &iproute) { 470 if (ro->ro_nh == NULL) { 471 /* 472 * We want to do any cloning requested by the link 473 * layer, as this is probably required in all cases 474 * for correct operation (as it is for ARP). 475 */ 476 uint32_t flowid; 477 flowid = m->m_pkthdr.flowid; 478 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 479 NHR_REF, flowid); 480 481 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 482 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 483 /* 484 * There is no route for this packet, but it is 485 * possible that a matching SPD entry exists. 486 */ 487 no_route_but_check_spd = 1; 488 goto sendit; 489 #endif 490 IPSTAT_INC(ips_noroute); 491 error = EHOSTUNREACH; 492 goto bad; 493 } 494 } 495 struct nhop_object *nh = ro->ro_nh; 496 497 ia = ifatoia(nh->nh_ifa); 498 ifp = nh->nh_ifp; 499 counter_u64_add(nh->nh_pksent, 1); 500 rt_update_ro_flags(ro, nh); 501 if (nh->nh_flags & NHF_GATEWAY) 502 gw = &nh->gw_sa; 503 if (nh->nh_flags & NHF_HOST) 504 isbroadcast = (nh->nh_flags & NHF_BROADCAST); 505 else if ((ifp->if_flags & IFF_BROADCAST) && 506 (gw->sa_family == AF_INET)) 507 isbroadcast = in_broadcast(ip->ip_dst) || 508 in_ifaddr_broadcast( 509 ((const struct sockaddr_in *)gw)->sin_addr, ia); 510 else 511 isbroadcast = false; 512 mtu = nh->nh_mtu; 513 src = IA_SIN(ia)->sin_addr; 514 } else { 515 struct nhop_object *nh; 516 517 nh = fib4_lookup(M_GETFIB(m), dst->sin_addr, 0, NHR_NONE, 518 m->m_pkthdr.flowid); 519 if (nh == NULL) { 520 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 521 /* 522 * There is no route for this packet, but it is 523 * possible that a matching SPD entry exists. 524 */ 525 no_route_but_check_spd = 1; 526 goto sendit; 527 #endif 528 IPSTAT_INC(ips_noroute); 529 error = EHOSTUNREACH; 530 goto bad; 531 } 532 ifp = nh->nh_ifp; 533 mtu = nh->nh_mtu; 534 rt_update_ro_flags(ro, nh); 535 if (nh->nh_flags & NHF_GATEWAY) 536 gw = &nh->gw_sa; 537 ia = ifatoia(nh->nh_ifa); 538 src = IA_SIN(ia)->sin_addr; 539 isbroadcast = ((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 540 (NHF_HOST | NHF_BROADCAST)) || 541 ((ifp->if_flags & IFF_BROADCAST) && 542 (gw->sa_family == AF_INET) && 543 (in_broadcast(ip->ip_dst) || in_ifaddr_broadcast( 544 ((const struct sockaddr_in *)gw)->sin_addr, ia))); 545 } 546 547 /* Catch a possible divide by zero later. */ 548 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 549 __func__, mtu, ro, 550 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 551 552 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 553 m->m_flags |= M_MCAST; 554 /* 555 * IP destination address is multicast. Make sure "gw" 556 * still points to the address in "ro". (It may have been 557 * changed to point to a gateway address, above.) 558 */ 559 gw = (const struct sockaddr *)dst; 560 /* 561 * See if the caller provided any multicast options 562 */ 563 if (imo != NULL) { 564 ip->ip_ttl = imo->imo_multicast_ttl; 565 if (imo->imo_multicast_vif != -1) 566 ip->ip_src.s_addr = 567 ip_mcast_src ? 568 ip_mcast_src(imo->imo_multicast_vif) : 569 INADDR_ANY; 570 } else 571 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 572 /* 573 * Confirm that the outgoing interface supports multicast. 574 */ 575 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 576 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 577 IPSTAT_INC(ips_noroute); 578 error = ENETUNREACH; 579 goto bad; 580 } 581 } 582 /* 583 * If source address not specified yet, use address 584 * of outgoing interface. 585 */ 586 if (ip->ip_src.s_addr == INADDR_ANY) 587 ip->ip_src = src; 588 589 if ((imo == NULL && in_mcast_loop) || 590 (imo && imo->imo_multicast_loop)) { 591 /* 592 * Loop back multicast datagram if not expressly 593 * forbidden to do so, even if we are not a member 594 * of the group; ip_input() will filter it later, 595 * thus deferring a hash lookup and mutex acquisition 596 * at the expense of a cheap copy using m_copym(). 597 */ 598 ip_mloopback(ifp, m, hlen); 599 } else { 600 /* 601 * If we are acting as a multicast router, perform 602 * multicast forwarding as if the packet had just 603 * arrived on the interface to which we are about 604 * to send. The multicast forwarding function 605 * recursively calls this function, using the 606 * IP_FORWARDING flag to prevent infinite recursion. 607 * 608 * Multicasts that are looped back by ip_mloopback(), 609 * above, will be forwarded by the ip_input() routine, 610 * if necessary. 611 */ 612 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 613 /* 614 * If rsvp daemon is not running, do not 615 * set ip_moptions. This ensures that the packet 616 * is multicast and not just sent down one link 617 * as prescribed by rsvpd. 618 */ 619 if (!V_rsvp_on) 620 imo = NULL; 621 if (ip_mforward && 622 ip_mforward(ip, ifp, m, imo) != 0) { 623 m_freem(m); 624 goto done; 625 } 626 } 627 } 628 629 /* 630 * Multicasts with a time-to-live of zero may be looped- 631 * back, above, but must not be transmitted on a network. 632 * Also, multicasts addressed to the loopback interface 633 * are not sent -- the above call to ip_mloopback() will 634 * loop back a copy. ip_input() will drop the copy if 635 * this host does not belong to the destination group on 636 * the loopback interface. 637 */ 638 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 639 m_freem(m); 640 goto done; 641 } 642 643 goto sendit; 644 } 645 646 /* 647 * If the source address is not specified yet, use the address 648 * of the outoing interface. 649 */ 650 if (ip->ip_src.s_addr == INADDR_ANY) 651 ip->ip_src = src; 652 653 /* 654 * Look for broadcast address and 655 * verify user is allowed to send 656 * such a packet. 657 */ 658 if (isbroadcast) { 659 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 660 error = EADDRNOTAVAIL; 661 goto bad; 662 } 663 if ((flags & IP_ALLOWBROADCAST) == 0) { 664 error = EACCES; 665 goto bad; 666 } 667 /* don't allow broadcast messages to be fragmented */ 668 if (ip_len > mtu) { 669 error = EMSGSIZE; 670 goto bad; 671 } 672 m->m_flags |= M_BCAST; 673 } else { 674 m->m_flags &= ~M_BCAST; 675 } 676 677 sendit: 678 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 679 if (IPSEC_ENABLED(ipv4)) { 680 struct ip ip_hdr; 681 682 if ((error = IPSEC_OUTPUT(ipv4, ifp, m, inp, mtu)) != 0) { 683 if (error == EINPROGRESS) 684 error = 0; 685 goto done; 686 } 687 688 /* Update variables that are affected by ipsec4_output(). */ 689 m_copydata(m, 0, sizeof(ip_hdr), (char *)&ip_hdr); 690 hlen = ip_hdr.ip_hl << 2; 691 } 692 693 /* 694 * Check if there was a route for this packet; return error if not. 695 */ 696 if (no_route_but_check_spd) { 697 IPSTAT_INC(ips_noroute); 698 error = EHOSTUNREACH; 699 goto bad; 700 } 701 #endif /* IPSEC */ 702 703 /* Jump over all PFIL processing if hooks are not active. */ 704 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 705 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 706 &error)) { 707 case 1: /* Finished */ 708 goto done; 709 710 case 0: /* Continue normally */ 711 ip = mtod(m, struct ip *); 712 ip_len = ntohs(ip->ip_len); 713 break; 714 715 case -1: /* Need to try again */ 716 /* Reset everything for a new round */ 717 if (ro != NULL) { 718 RO_NHFREE(ro); 719 ro->ro_prepend = NULL; 720 } 721 gw = (const struct sockaddr *)dst; 722 ip = mtod(m, struct ip *); 723 goto again; 724 } 725 } 726 727 if (vlan_pcp > -1) 728 EVL_APPLY_PRI(m, vlan_pcp); 729 730 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 731 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 732 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 733 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 734 IPSTAT_INC(ips_badaddr); 735 error = EADDRNOTAVAIL; 736 goto bad; 737 } 738 } 739 740 /* Ensure the packet data is mapped if the interface requires it. */ 741 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 742 struct mbuf *m1; 743 744 error = mb_unmapped_to_ext(m, &m1); 745 if (error != 0) { 746 if (error == EINVAL) { 747 if_printf(ifp, "TLS packet\n"); 748 /* XXXKIB */ 749 } else if (error == ENOMEM) { 750 error = ENOBUFS; 751 } 752 IPSTAT_INC(ips_odropped); 753 goto done; 754 } else { 755 m = m1; 756 } 757 } 758 759 m->m_pkthdr.csum_flags |= CSUM_IP; 760 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 761 in_delayed_cksum(m); 762 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 763 } 764 #if defined(SCTP) || defined(SCTP_SUPPORT) 765 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 766 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 767 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 768 } 769 #endif 770 771 /* 772 * If small enough for interface, or the interface will take 773 * care of the fragmentation for us, we can just send directly. 774 * Note that if_vxlan could have requested TSO even though the outer 775 * frame is UDP. It is correct to not fragment such datagrams and 776 * instead just pass them on to the driver. 777 */ 778 if (ip_len <= mtu || 779 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 780 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 781 ip->ip_sum = 0; 782 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 783 ip->ip_sum = in_cksum(m, hlen); 784 m->m_pkthdr.csum_flags &= ~CSUM_IP; 785 } 786 787 /* 788 * Record statistics for this interface address. 789 * With CSUM_TSO the byte/packet count will be slightly 790 * incorrect because we count the IP+TCP headers only 791 * once instead of for every generated packet. 792 */ 793 if (!(flags & IP_FORWARDING) && ia) { 794 if (m->m_pkthdr.csum_flags & 795 (CSUM_TSO | CSUM_INNER_TSO)) 796 counter_u64_add(ia->ia_ifa.ifa_opackets, 797 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 798 else 799 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 800 801 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 802 } 803 #ifdef MBUF_STRESS_TEST 804 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 805 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 806 #endif 807 /* 808 * Reset layer specific mbuf flags 809 * to avoid confusing lower layers. 810 */ 811 m_clrprotoflags(m); 812 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 813 error = ip_output_send(inp, ifp, m, gw, ro, 814 (flags & IP_NO_SND_TAG_RL) ? false : true); 815 goto done; 816 } 817 818 /* Balk when DF bit is set or the interface didn't support TSO. */ 819 if ((ip_off & IP_DF) || 820 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 821 error = EMSGSIZE; 822 IPSTAT_INC(ips_cantfrag); 823 goto bad; 824 } 825 826 /* 827 * Too large for interface; fragment if possible. If successful, 828 * on return, m will point to a list of packets to be sent. 829 */ 830 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 831 if (error) 832 goto bad; 833 for (; m; m = m0) { 834 m0 = m->m_nextpkt; 835 m->m_nextpkt = 0; 836 if (error == 0) { 837 /* Record statistics for this interface address. */ 838 if (ia != NULL) { 839 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 840 counter_u64_add(ia->ia_ifa.ifa_obytes, 841 m->m_pkthdr.len); 842 } 843 /* 844 * Reset layer specific mbuf flags 845 * to avoid confusing upper layers. 846 */ 847 m_clrprotoflags(m); 848 849 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 850 mtod(m, struct ip *), NULL); 851 error = ip_output_send(inp, ifp, m, gw, ro, true); 852 } else 853 m_freem(m); 854 } 855 856 if (error == 0) 857 IPSTAT_INC(ips_fragmented); 858 859 done: 860 return (error); 861 bad: 862 m_freem(m); 863 goto done; 864 } 865 866 /* 867 * Create a chain of fragments which fit the given mtu. m_frag points to the 868 * mbuf to be fragmented; on return it points to the chain with the fragments. 869 * Return 0 if no error. If error, m_frag may contain a partially built 870 * chain of fragments that should be freed by the caller. 871 * 872 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 873 */ 874 int 875 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 876 u_long if_hwassist_flags) 877 { 878 int error = 0; 879 int hlen = ip->ip_hl << 2; 880 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 881 int off; 882 struct mbuf *m0 = *m_frag; /* the original packet */ 883 int firstlen; 884 struct mbuf **mnext; 885 int nfrags; 886 uint16_t ip_len, ip_off; 887 888 ip_len = ntohs(ip->ip_len); 889 ip_off = ntohs(ip->ip_off); 890 891 /* 892 * Packet shall not have "Don't Fragment" flag and have at least 8 893 * bytes of payload. 894 */ 895 if (__predict_false((ip_off & IP_DF) || len < 8)) { 896 IPSTAT_INC(ips_cantfrag); 897 return (EMSGSIZE); 898 } 899 900 /* 901 * If the interface will not calculate checksums on 902 * fragmented packets, then do it here. 903 */ 904 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 905 in_delayed_cksum(m0); 906 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 907 } 908 #if defined(SCTP) || defined(SCTP_SUPPORT) 909 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 910 sctp_delayed_cksum(m0, hlen); 911 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 912 } 913 #endif 914 if (len > PAGE_SIZE) { 915 /* 916 * Fragment large datagrams such that each segment 917 * contains a multiple of PAGE_SIZE amount of data, 918 * plus headers. This enables a receiver to perform 919 * page-flipping zero-copy optimizations. 920 * 921 * XXX When does this help given that sender and receiver 922 * could have different page sizes, and also mtu could 923 * be less than the receiver's page size ? 924 */ 925 int newlen; 926 927 off = MIN(mtu, m0->m_pkthdr.len); 928 929 /* 930 * firstlen (off - hlen) must be aligned on an 931 * 8-byte boundary 932 */ 933 if (off < hlen) 934 goto smart_frag_failure; 935 off = ((off - hlen) & ~7) + hlen; 936 newlen = (~PAGE_MASK) & mtu; 937 if ((newlen + sizeof (struct ip)) > mtu) { 938 /* we failed, go back the default */ 939 smart_frag_failure: 940 newlen = len; 941 off = hlen + len; 942 } 943 len = newlen; 944 945 } else { 946 off = hlen + len; 947 } 948 949 firstlen = off - hlen; 950 mnext = &m0->m_nextpkt; /* pointer to next packet */ 951 952 /* 953 * Loop through length of segment after first fragment, 954 * make new header and copy data of each part and link onto chain. 955 * Here, m0 is the original packet, m is the fragment being created. 956 * The fragments are linked off the m_nextpkt of the original 957 * packet, which after processing serves as the first fragment. 958 */ 959 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 960 struct ip *mhip; /* ip header on the fragment */ 961 struct mbuf *m; 962 int mhlen = sizeof (struct ip); 963 964 m = m_gethdr(M_NOWAIT, MT_DATA); 965 if (m == NULL) { 966 error = ENOBUFS; 967 IPSTAT_INC(ips_odropped); 968 goto done; 969 } 970 /* 971 * Make sure the complete packet header gets copied 972 * from the originating mbuf to the newly created 973 * mbuf. This also ensures that existing firewall 974 * classification(s), VLAN tags and so on get copied 975 * to the resulting fragmented packet(s): 976 */ 977 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 978 m_free(m); 979 error = ENOBUFS; 980 IPSTAT_INC(ips_odropped); 981 goto done; 982 } 983 /* 984 * In the first mbuf, leave room for the link header, then 985 * copy the original IP header including options. The payload 986 * goes into an additional mbuf chain returned by m_copym(). 987 */ 988 m->m_data += max_linkhdr; 989 mhip = mtod(m, struct ip *); 990 *mhip = *ip; 991 if (hlen > sizeof (struct ip)) { 992 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 993 mhip->ip_v = IPVERSION; 994 mhip->ip_hl = mhlen >> 2; 995 } 996 m->m_len = mhlen; 997 /* XXX do we need to add ip_off below ? */ 998 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 999 if (off + len >= ip_len) 1000 len = ip_len - off; 1001 else 1002 mhip->ip_off |= IP_MF; 1003 mhip->ip_len = htons((u_short)(len + mhlen)); 1004 m->m_next = m_copym(m0, off, len, M_NOWAIT); 1005 if (m->m_next == NULL) { /* copy failed */ 1006 m_free(m); 1007 error = ENOBUFS; /* ??? */ 1008 IPSTAT_INC(ips_odropped); 1009 goto done; 1010 } 1011 m->m_pkthdr.len = mhlen + len; 1012 #ifdef MAC 1013 mac_netinet_fragment(m0, m); 1014 #endif 1015 mhip->ip_off = htons(mhip->ip_off); 1016 mhip->ip_sum = 0; 1017 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1018 mhip->ip_sum = in_cksum(m, mhlen); 1019 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1020 } 1021 *mnext = m; 1022 mnext = &m->m_nextpkt; 1023 } 1024 IPSTAT_ADD(ips_ofragments, nfrags); 1025 1026 /* 1027 * Update first fragment by trimming what's been copied out 1028 * and updating header. 1029 */ 1030 m_adj(m0, hlen + firstlen - ip_len); 1031 m0->m_pkthdr.len = hlen + firstlen; 1032 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1033 ip->ip_off = htons(ip_off | IP_MF); 1034 ip->ip_sum = 0; 1035 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1036 ip->ip_sum = in_cksum(m0, hlen); 1037 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1038 } 1039 1040 done: 1041 *m_frag = m0; 1042 return error; 1043 } 1044 1045 void 1046 in_delayed_cksum_o(struct mbuf *m, uint16_t iph_offset) 1047 { 1048 struct ip *ip; 1049 struct udphdr *uh; 1050 uint16_t cklen, csum, offset; 1051 1052 ip = (struct ip *)mtodo(m, iph_offset); 1053 offset = iph_offset + (ip->ip_hl << 2); 1054 1055 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1056 /* if udp header is not in the first mbuf copy udplen */ 1057 if (offset + sizeof(struct udphdr) > m->m_len) { 1058 m_copydata(m, offset + offsetof(struct udphdr, 1059 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1060 cklen = ntohs(cklen); 1061 } else { 1062 uh = (struct udphdr *)mtodo(m, offset); 1063 cklen = ntohs(uh->uh_ulen); 1064 } 1065 csum = in_cksum_skip(m, cklen + offset, offset); 1066 if (csum == 0) 1067 csum = 0xffff; 1068 } else { 1069 cklen = ntohs(ip->ip_len) - (ip->ip_hl << 2); 1070 csum = in_cksum_skip(m, cklen + offset, offset); 1071 } 1072 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1073 1074 if (offset + sizeof(csum) > m->m_len) 1075 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1076 else 1077 *(u_short *)mtodo(m, offset) = csum; 1078 } 1079 1080 void 1081 in_delayed_cksum(struct mbuf *m) 1082 { 1083 1084 in_delayed_cksum_o(m, 0); 1085 } 1086 1087 /* 1088 * IP socket option processing. 1089 */ 1090 int 1091 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1092 { 1093 struct inpcb *inp = sotoinpcb(so); 1094 int error, optval; 1095 #ifdef RSS 1096 uint32_t rss_bucket; 1097 int retval; 1098 #endif 1099 1100 error = optval = 0; 1101 if (sopt->sopt_level != IPPROTO_IP) { 1102 error = EINVAL; 1103 1104 if (sopt->sopt_level == SOL_SOCKET && 1105 sopt->sopt_dir == SOPT_SET) { 1106 switch (sopt->sopt_name) { 1107 case SO_SETFIB: 1108 error = sooptcopyin(sopt, &optval, 1109 sizeof(optval), sizeof(optval)); 1110 if (error != 0) 1111 break; 1112 1113 INP_WLOCK(inp); 1114 if ((inp->inp_flags & INP_BOUNDFIB) != 0 && 1115 optval != so->so_fibnum) { 1116 INP_WUNLOCK(inp); 1117 error = EISCONN; 1118 break; 1119 } 1120 error = sosetfib(inp->inp_socket, optval); 1121 if (error == 0) 1122 inp->inp_inc.inc_fibnum = optval; 1123 INP_WUNLOCK(inp); 1124 break; 1125 case SO_MAX_PACING_RATE: 1126 #ifdef RATELIMIT 1127 INP_WLOCK(inp); 1128 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1129 INP_WUNLOCK(inp); 1130 error = 0; 1131 #else 1132 error = EOPNOTSUPP; 1133 #endif 1134 break; 1135 default: 1136 break; 1137 } 1138 } 1139 return (error); 1140 } 1141 1142 switch (sopt->sopt_dir) { 1143 case SOPT_SET: 1144 switch (sopt->sopt_name) { 1145 case IP_OPTIONS: 1146 #ifdef notyet 1147 case IP_RETOPTS: 1148 #endif 1149 { 1150 struct mbuf *m; 1151 if (sopt->sopt_valsize > MLEN) { 1152 error = EMSGSIZE; 1153 break; 1154 } 1155 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1156 if (m == NULL) { 1157 error = ENOBUFS; 1158 break; 1159 } 1160 m->m_len = sopt->sopt_valsize; 1161 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1162 m->m_len); 1163 if (error) { 1164 m_free(m); 1165 break; 1166 } 1167 INP_WLOCK(inp); 1168 error = ip_pcbopts(inp, sopt->sopt_name, m); 1169 INP_WUNLOCK(inp); 1170 return (error); 1171 } 1172 1173 case IP_BINDANY: 1174 if (sopt->sopt_td != NULL) { 1175 error = priv_check(sopt->sopt_td, 1176 PRIV_NETINET_BINDANY); 1177 if (error) 1178 break; 1179 } 1180 /* FALLTHROUGH */ 1181 case IP_TOS: 1182 case IP_TTL: 1183 case IP_MINTTL: 1184 case IP_RECVOPTS: 1185 case IP_RECVRETOPTS: 1186 case IP_ORIGDSTADDR: 1187 case IP_RECVDSTADDR: 1188 case IP_RECVTTL: 1189 case IP_RECVIF: 1190 case IP_ONESBCAST: 1191 case IP_DONTFRAG: 1192 case IP_RECVTOS: 1193 case IP_RECVFLOWID: 1194 #ifdef RSS 1195 case IP_RECVRSSBUCKETID: 1196 #endif 1197 case IP_VLAN_PCP: 1198 error = sooptcopyin(sopt, &optval, sizeof optval, 1199 sizeof optval); 1200 if (error) 1201 break; 1202 1203 switch (sopt->sopt_name) { 1204 case IP_TOS: 1205 inp->inp_ip_tos = optval; 1206 break; 1207 1208 case IP_TTL: 1209 inp->inp_ip_ttl = optval; 1210 break; 1211 1212 case IP_MINTTL: 1213 if (optval >= 0 && optval <= MAXTTL) 1214 inp->inp_ip_minttl = optval; 1215 else 1216 error = EINVAL; 1217 break; 1218 1219 #define OPTSET(bit) do { \ 1220 INP_WLOCK(inp); \ 1221 if (optval) \ 1222 inp->inp_flags |= bit; \ 1223 else \ 1224 inp->inp_flags &= ~bit; \ 1225 INP_WUNLOCK(inp); \ 1226 } while (0) 1227 1228 #define OPTSET2(bit, val) do { \ 1229 INP_WLOCK(inp); \ 1230 if (val) \ 1231 inp->inp_flags2 |= bit; \ 1232 else \ 1233 inp->inp_flags2 &= ~bit; \ 1234 INP_WUNLOCK(inp); \ 1235 } while (0) 1236 1237 case IP_RECVOPTS: 1238 OPTSET(INP_RECVOPTS); 1239 break; 1240 1241 case IP_RECVRETOPTS: 1242 OPTSET(INP_RECVRETOPTS); 1243 break; 1244 1245 case IP_RECVDSTADDR: 1246 OPTSET(INP_RECVDSTADDR); 1247 break; 1248 1249 case IP_ORIGDSTADDR: 1250 OPTSET2(INP_ORIGDSTADDR, optval); 1251 break; 1252 1253 case IP_RECVTTL: 1254 OPTSET(INP_RECVTTL); 1255 break; 1256 1257 case IP_RECVIF: 1258 OPTSET(INP_RECVIF); 1259 break; 1260 1261 case IP_ONESBCAST: 1262 OPTSET(INP_ONESBCAST); 1263 break; 1264 case IP_DONTFRAG: 1265 OPTSET(INP_DONTFRAG); 1266 break; 1267 case IP_BINDANY: 1268 OPTSET(INP_BINDANY); 1269 break; 1270 case IP_RECVTOS: 1271 OPTSET(INP_RECVTOS); 1272 break; 1273 case IP_RECVFLOWID: 1274 OPTSET2(INP_RECVFLOWID, optval); 1275 break; 1276 #ifdef RSS 1277 case IP_RECVRSSBUCKETID: 1278 OPTSET2(INP_RECVRSSBUCKETID, optval); 1279 break; 1280 #endif 1281 case IP_VLAN_PCP: 1282 if ((optval >= -1) && (optval <= 1283 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1284 if (optval == -1) { 1285 INP_WLOCK(inp); 1286 inp->inp_flags2 &= 1287 ~(INP_2PCP_SET | 1288 INP_2PCP_MASK); 1289 INP_WUNLOCK(inp); 1290 } else { 1291 INP_WLOCK(inp); 1292 inp->inp_flags2 |= 1293 INP_2PCP_SET; 1294 inp->inp_flags2 &= 1295 ~INP_2PCP_MASK; 1296 inp->inp_flags2 |= 1297 optval << INP_2PCP_SHIFT; 1298 INP_WUNLOCK(inp); 1299 } 1300 } else 1301 error = EINVAL; 1302 break; 1303 } 1304 break; 1305 #undef OPTSET 1306 #undef OPTSET2 1307 1308 /* 1309 * Multicast socket options are processed by the in_mcast 1310 * module. 1311 */ 1312 case IP_MULTICAST_IF: 1313 case IP_MULTICAST_VIF: 1314 case IP_MULTICAST_TTL: 1315 case IP_MULTICAST_LOOP: 1316 case IP_ADD_MEMBERSHIP: 1317 case IP_DROP_MEMBERSHIP: 1318 case IP_ADD_SOURCE_MEMBERSHIP: 1319 case IP_DROP_SOURCE_MEMBERSHIP: 1320 case IP_BLOCK_SOURCE: 1321 case IP_UNBLOCK_SOURCE: 1322 case IP_MSFILTER: 1323 case MCAST_JOIN_GROUP: 1324 case MCAST_LEAVE_GROUP: 1325 case MCAST_JOIN_SOURCE_GROUP: 1326 case MCAST_LEAVE_SOURCE_GROUP: 1327 case MCAST_BLOCK_SOURCE: 1328 case MCAST_UNBLOCK_SOURCE: 1329 error = inp_setmoptions(inp, sopt); 1330 break; 1331 1332 case IP_PORTRANGE: 1333 error = sooptcopyin(sopt, &optval, sizeof optval, 1334 sizeof optval); 1335 if (error) 1336 break; 1337 1338 INP_WLOCK(inp); 1339 switch (optval) { 1340 case IP_PORTRANGE_DEFAULT: 1341 inp->inp_flags &= ~(INP_LOWPORT); 1342 inp->inp_flags &= ~(INP_HIGHPORT); 1343 break; 1344 1345 case IP_PORTRANGE_HIGH: 1346 inp->inp_flags &= ~(INP_LOWPORT); 1347 inp->inp_flags |= INP_HIGHPORT; 1348 break; 1349 1350 case IP_PORTRANGE_LOW: 1351 inp->inp_flags &= ~(INP_HIGHPORT); 1352 inp->inp_flags |= INP_LOWPORT; 1353 break; 1354 1355 default: 1356 error = EINVAL; 1357 break; 1358 } 1359 INP_WUNLOCK(inp); 1360 break; 1361 1362 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1363 case IP_IPSEC_POLICY: 1364 if (IPSEC_ENABLED(ipv4)) { 1365 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1366 break; 1367 } 1368 /* FALLTHROUGH */ 1369 #endif /* IPSEC */ 1370 1371 default: 1372 error = ENOPROTOOPT; 1373 break; 1374 } 1375 break; 1376 1377 case SOPT_GET: 1378 switch (sopt->sopt_name) { 1379 case IP_OPTIONS: 1380 case IP_RETOPTS: 1381 INP_RLOCK(inp); 1382 if (inp->inp_options) { 1383 struct mbuf *options; 1384 1385 options = m_copym(inp->inp_options, 0, 1386 M_COPYALL, M_NOWAIT); 1387 INP_RUNLOCK(inp); 1388 if (options != NULL) { 1389 error = sooptcopyout(sopt, 1390 mtod(options, char *), 1391 options->m_len); 1392 m_freem(options); 1393 } else 1394 error = ENOMEM; 1395 } else { 1396 INP_RUNLOCK(inp); 1397 sopt->sopt_valsize = 0; 1398 } 1399 break; 1400 1401 case IP_TOS: 1402 case IP_TTL: 1403 case IP_MINTTL: 1404 case IP_RECVOPTS: 1405 case IP_RECVRETOPTS: 1406 case IP_ORIGDSTADDR: 1407 case IP_RECVDSTADDR: 1408 case IP_RECVTTL: 1409 case IP_RECVIF: 1410 case IP_PORTRANGE: 1411 case IP_ONESBCAST: 1412 case IP_DONTFRAG: 1413 case IP_BINDANY: 1414 case IP_RECVTOS: 1415 case IP_FLOWID: 1416 case IP_FLOWTYPE: 1417 case IP_RECVFLOWID: 1418 #ifdef RSS 1419 case IP_RSSBUCKETID: 1420 case IP_RECVRSSBUCKETID: 1421 #endif 1422 case IP_VLAN_PCP: 1423 switch (sopt->sopt_name) { 1424 case IP_TOS: 1425 optval = inp->inp_ip_tos; 1426 break; 1427 1428 case IP_TTL: 1429 optval = inp->inp_ip_ttl; 1430 break; 1431 1432 case IP_MINTTL: 1433 optval = inp->inp_ip_minttl; 1434 break; 1435 1436 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1437 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1438 1439 case IP_RECVOPTS: 1440 optval = OPTBIT(INP_RECVOPTS); 1441 break; 1442 1443 case IP_RECVRETOPTS: 1444 optval = OPTBIT(INP_RECVRETOPTS); 1445 break; 1446 1447 case IP_RECVDSTADDR: 1448 optval = OPTBIT(INP_RECVDSTADDR); 1449 break; 1450 1451 case IP_ORIGDSTADDR: 1452 optval = OPTBIT2(INP_ORIGDSTADDR); 1453 break; 1454 1455 case IP_RECVTTL: 1456 optval = OPTBIT(INP_RECVTTL); 1457 break; 1458 1459 case IP_RECVIF: 1460 optval = OPTBIT(INP_RECVIF); 1461 break; 1462 1463 case IP_PORTRANGE: 1464 if (inp->inp_flags & INP_HIGHPORT) 1465 optval = IP_PORTRANGE_HIGH; 1466 else if (inp->inp_flags & INP_LOWPORT) 1467 optval = IP_PORTRANGE_LOW; 1468 else 1469 optval = 0; 1470 break; 1471 1472 case IP_ONESBCAST: 1473 optval = OPTBIT(INP_ONESBCAST); 1474 break; 1475 case IP_DONTFRAG: 1476 optval = OPTBIT(INP_DONTFRAG); 1477 break; 1478 case IP_BINDANY: 1479 optval = OPTBIT(INP_BINDANY); 1480 break; 1481 case IP_RECVTOS: 1482 optval = OPTBIT(INP_RECVTOS); 1483 break; 1484 case IP_FLOWID: 1485 optval = inp->inp_flowid; 1486 break; 1487 case IP_FLOWTYPE: 1488 optval = inp->inp_flowtype; 1489 break; 1490 case IP_RECVFLOWID: 1491 optval = OPTBIT2(INP_RECVFLOWID); 1492 break; 1493 #ifdef RSS 1494 case IP_RSSBUCKETID: 1495 retval = rss_hash2bucket(inp->inp_flowid, 1496 inp->inp_flowtype, 1497 &rss_bucket); 1498 if (retval == 0) 1499 optval = rss_bucket; 1500 else 1501 error = EINVAL; 1502 break; 1503 case IP_RECVRSSBUCKETID: 1504 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1505 break; 1506 #endif 1507 case IP_VLAN_PCP: 1508 if (OPTBIT2(INP_2PCP_SET)) { 1509 optval = (inp->inp_flags2 & 1510 INP_2PCP_MASK) >> INP_2PCP_SHIFT; 1511 } else { 1512 optval = -1; 1513 } 1514 break; 1515 } 1516 error = sooptcopyout(sopt, &optval, sizeof optval); 1517 break; 1518 1519 /* 1520 * Multicast socket options are processed by the in_mcast 1521 * module. 1522 */ 1523 case IP_MULTICAST_IF: 1524 case IP_MULTICAST_VIF: 1525 case IP_MULTICAST_TTL: 1526 case IP_MULTICAST_LOOP: 1527 case IP_MSFILTER: 1528 error = inp_getmoptions(inp, sopt); 1529 break; 1530 1531 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1532 case IP_IPSEC_POLICY: 1533 if (IPSEC_ENABLED(ipv4)) { 1534 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1535 break; 1536 } 1537 /* FALLTHROUGH */ 1538 #endif /* IPSEC */ 1539 1540 default: 1541 error = ENOPROTOOPT; 1542 break; 1543 } 1544 break; 1545 } 1546 return (error); 1547 } 1548 1549 /* 1550 * Routine called from ip_output() to loop back a copy of an IP multicast 1551 * packet to the input queue of a specified interface. Note that this 1552 * calls the output routine of the loopback "driver", but with an interface 1553 * pointer that might NOT be a loopback interface -- evil, but easier than 1554 * replicating that code here. 1555 */ 1556 static void 1557 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1558 { 1559 struct ip *ip; 1560 struct mbuf *copym; 1561 1562 /* 1563 * Make a deep copy of the packet because we're going to 1564 * modify the pack in order to generate checksums. 1565 */ 1566 copym = m_dup(m, M_NOWAIT); 1567 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1568 copym = m_pullup(copym, hlen); 1569 if (copym != NULL) { 1570 /* If needed, compute the checksum and mark it as valid. */ 1571 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1572 in_delayed_cksum(copym); 1573 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1574 copym->m_pkthdr.csum_flags |= 1575 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1576 copym->m_pkthdr.csum_data = 0xffff; 1577 } 1578 /* 1579 * We don't bother to fragment if the IP length is greater 1580 * than the interface's MTU. Can this possibly matter? 1581 */ 1582 ip = mtod(copym, struct ip *); 1583 ip->ip_sum = 0; 1584 ip->ip_sum = in_cksum(copym, hlen); 1585 if_simloop(ifp, copym, AF_INET, 0); 1586 } 1587 } 1588