xref: /freebsd/sys/netinet/ip_output.c (revision 71099ec5097cff9b4a566e5474b7f214bd539e8a)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_inet.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipsec.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mpath.h"
40 #include "opt_route.h"
41 #include "opt_sctp.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/priv.h>
49 #include <sys/proc.h>
50 #include <sys/protosw.h>
51 #include <sys/sdt.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/ucred.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_llatbl.h>
60 #include <net/netisr.h>
61 #include <net/pfil.h>
62 #include <net/route.h>
63 #include <net/flowtable.h>
64 #ifdef RADIX_MPATH
65 #include <net/radix_mpath.h>
66 #endif
67 #include <net/vnet.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/in_kdtrace.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #include <netinet/in_pcb.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip_var.h>
76 #include <netinet/ip_options.h>
77 #ifdef SCTP
78 #include <netinet/sctp.h>
79 #include <netinet/sctp_crc32.h>
80 #endif
81 
82 #ifdef IPSEC
83 #include <netinet/ip_ipsec.h>
84 #include <netipsec/ipsec.h>
85 #endif /* IPSEC*/
86 
87 #include <machine/in_cksum.h>
88 
89 #include <security/mac/mac_framework.h>
90 
91 VNET_DEFINE(u_short, ip_id);
92 
93 #ifdef MBUF_STRESS_TEST
94 static int mbuf_frag_size = 0;
95 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
96 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
97 #endif
98 
99 static void	ip_mloopback
100 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
101 
102 
103 extern int in_mcast_loop;
104 extern	struct protosw inetsw[];
105 
106 /*
107  * IP output.  The packet in mbuf chain m contains a skeletal IP
108  * header (with len, off, ttl, proto, tos, src, dst).
109  * The mbuf chain containing the packet will be freed.
110  * The mbuf opt, if present, will not be freed.
111  * If route ro is present and has ro_rt initialized, route lookup would be
112  * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
113  * then result of route lookup is stored in ro->ro_rt.
114  *
115  * In the IP forwarding case, the packet will arrive with options already
116  * inserted, so must have a NULL opt pointer.
117  */
118 int
119 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
120     struct ip_moptions *imo, struct inpcb *inp)
121 {
122 	struct ip *ip;
123 	struct ifnet *ifp = NULL;	/* keep compiler happy */
124 	struct mbuf *m0;
125 	int hlen = sizeof (struct ip);
126 	int mtu;
127 	int error = 0;
128 	struct sockaddr_in *dst;
129 	const struct sockaddr_in *gw;
130 	struct in_ifaddr *ia;
131 	int isbroadcast;
132 	uint16_t ip_len, ip_off;
133 	struct route iproute;
134 	struct rtentry *rte;	/* cache for ro->ro_rt */
135 	struct in_addr odst;
136 	struct m_tag *fwd_tag = NULL;
137 #ifdef IPSEC
138 	int no_route_but_check_spd = 0;
139 #endif
140 	M_ASSERTPKTHDR(m);
141 
142 	if (inp != NULL) {
143 		INP_LOCK_ASSERT(inp);
144 		M_SETFIB(m, inp->inp_inc.inc_fibnum);
145 		if (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
146 			m->m_pkthdr.flowid = inp->inp_flowid;
147 			m->m_flags |= M_FLOWID;
148 		}
149 	}
150 
151 	if (ro == NULL) {
152 		ro = &iproute;
153 		bzero(ro, sizeof (*ro));
154 	}
155 
156 #ifdef FLOWTABLE
157 	if (ro->ro_rt == NULL) {
158 		struct flentry *fle;
159 
160 		/*
161 		 * The flow table returns route entries valid for up to 30
162 		 * seconds; we rely on the remainder of ip_output() taking no
163 		 * longer than that long for the stability of ro_rt. The
164 		 * flow ID assignment must have happened before this point.
165 		 */
166 		fle = flowtable_lookup(AF_INET, m);
167 		if (fle != NULL)
168 			flow_to_route(fle, ro);
169 	}
170 #endif
171 
172 	if (opt) {
173 		int len = 0;
174 		m = ip_insertoptions(m, opt, &len);
175 		if (len != 0)
176 			hlen = len; /* ip->ip_hl is updated above */
177 	}
178 	ip = mtod(m, struct ip *);
179 	ip_len = ntohs(ip->ip_len);
180 	ip_off = ntohs(ip->ip_off);
181 
182 	/*
183 	 * Fill in IP header.  If we are not allowing fragmentation,
184 	 * then the ip_id field is meaningless, but we don't set it
185 	 * to zero.  Doing so causes various problems when devices along
186 	 * the path (routers, load balancers, firewalls, etc.) illegally
187 	 * disable DF on our packet.  Note that a 16-bit counter
188 	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
189 	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
190 	 * for Counting NATted Hosts", Proc. IMW'02, available at
191 	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
192 	 */
193 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
194 		ip->ip_v = IPVERSION;
195 		ip->ip_hl = hlen >> 2;
196 		ip->ip_id = ip_newid();
197 		IPSTAT_INC(ips_localout);
198 	} else {
199 		/* Header already set, fetch hlen from there */
200 		hlen = ip->ip_hl << 2;
201 	}
202 
203 	/*
204 	 * dst/gw handling:
205 	 *
206 	 * dst can be rewritten but always points to &ro->ro_dst.
207 	 * gw is readonly but can point either to dst OR rt_gateway,
208 	 * therefore we need restore gw if we're redoing lookup.
209 	 */
210 	gw = dst = (struct sockaddr_in *)&ro->ro_dst;
211 again:
212 	ia = NULL;
213 	/*
214 	 * If there is a cached route, check that it is to the same
215 	 * destination and is still up.  If not, free it and try again.
216 	 * The address family should also be checked in case of sharing
217 	 * the cache with IPv6.
218 	 */
219 	rte = ro->ro_rt;
220 	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
221 		    rte->rt_ifp == NULL ||
222 		    !RT_LINK_IS_UP(rte->rt_ifp) ||
223 			  dst->sin_family != AF_INET ||
224 			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
225 		RO_RTFREE(ro);
226 		ro->ro_lle = NULL;
227 		rte = NULL;
228 		gw = dst;
229 	}
230 	if (rte == NULL && fwd_tag == NULL) {
231 		bzero(dst, sizeof(*dst));
232 		dst->sin_family = AF_INET;
233 		dst->sin_len = sizeof(*dst);
234 		dst->sin_addr = ip->ip_dst;
235 	}
236 	/*
237 	 * If routing to interface only, short circuit routing lookup.
238 	 * The use of an all-ones broadcast address implies this; an
239 	 * interface is specified by the broadcast address of an interface,
240 	 * or the destination address of a ptp interface.
241 	 */
242 	if (flags & IP_SENDONES) {
243 		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
244 		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
245 			IPSTAT_INC(ips_noroute);
246 			error = ENETUNREACH;
247 			goto bad;
248 		}
249 		ip->ip_dst.s_addr = INADDR_BROADCAST;
250 		dst->sin_addr = ip->ip_dst;
251 		ifp = ia->ia_ifp;
252 		ip->ip_ttl = 1;
253 		isbroadcast = 1;
254 	} else if (flags & IP_ROUTETOIF) {
255 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
256 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0))) == NULL) {
257 			IPSTAT_INC(ips_noroute);
258 			error = ENETUNREACH;
259 			goto bad;
260 		}
261 		ifp = ia->ia_ifp;
262 		ip->ip_ttl = 1;
263 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
264 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
265 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
266 		/*
267 		 * Bypass the normal routing lookup for multicast
268 		 * packets if the interface is specified.
269 		 */
270 		ifp = imo->imo_multicast_ifp;
271 		IFP_TO_IA(ifp, ia);
272 		isbroadcast = 0;	/* fool gcc */
273 	} else {
274 		/*
275 		 * We want to do any cloning requested by the link layer,
276 		 * as this is probably required in all cases for correct
277 		 * operation (as it is for ARP).
278 		 */
279 		if (rte == NULL) {
280 #ifdef RADIX_MPATH
281 			rtalloc_mpath_fib(ro,
282 			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
283 			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
284 #else
285 			in_rtalloc_ign(ro, 0,
286 			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
287 #endif
288 			rte = ro->ro_rt;
289 		}
290 		if (rte == NULL ||
291 		    rte->rt_ifp == NULL ||
292 		    !RT_LINK_IS_UP(rte->rt_ifp)) {
293 #ifdef IPSEC
294 			/*
295 			 * There is no route for this packet, but it is
296 			 * possible that a matching SPD entry exists.
297 			 */
298 			no_route_but_check_spd = 1;
299 			mtu = 0; /* Silence GCC warning. */
300 			goto sendit;
301 #endif
302 			IPSTAT_INC(ips_noroute);
303 			error = EHOSTUNREACH;
304 			goto bad;
305 		}
306 		ia = ifatoia(rte->rt_ifa);
307 		ifa_ref(&ia->ia_ifa);
308 		ifp = rte->rt_ifp;
309 		rte->rt_rmx.rmx_pksent++;
310 		if (rte->rt_flags & RTF_GATEWAY)
311 			gw = (struct sockaddr_in *)rte->rt_gateway;
312 		if (rte->rt_flags & RTF_HOST)
313 			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
314 		else
315 			isbroadcast = in_broadcast(gw->sin_addr, ifp);
316 	}
317 	/*
318 	 * Calculate MTU.  If we have a route that is up, use that,
319 	 * otherwise use the interface's MTU.
320 	 */
321 	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) {
322 		/*
323 		 * This case can happen if the user changed the MTU
324 		 * of an interface after enabling IP on it.  Because
325 		 * most netifs don't keep track of routes pointing to
326 		 * them, there is no way for one to update all its
327 		 * routes when the MTU is changed.
328 		 */
329 		if (rte->rt_rmx.rmx_mtu > ifp->if_mtu)
330 			rte->rt_rmx.rmx_mtu = ifp->if_mtu;
331 		mtu = rte->rt_rmx.rmx_mtu;
332 	} else {
333 		mtu = ifp->if_mtu;
334 	}
335 	/* Catch a possible divide by zero later. */
336 	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
337 	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
338 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
339 		m->m_flags |= M_MCAST;
340 		/*
341 		 * IP destination address is multicast.  Make sure "gw"
342 		 * still points to the address in "ro".  (It may have been
343 		 * changed to point to a gateway address, above.)
344 		 */
345 		gw = dst;
346 		/*
347 		 * See if the caller provided any multicast options
348 		 */
349 		if (imo != NULL) {
350 			ip->ip_ttl = imo->imo_multicast_ttl;
351 			if (imo->imo_multicast_vif != -1)
352 				ip->ip_src.s_addr =
353 				    ip_mcast_src ?
354 				    ip_mcast_src(imo->imo_multicast_vif) :
355 				    INADDR_ANY;
356 		} else
357 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
358 		/*
359 		 * Confirm that the outgoing interface supports multicast.
360 		 */
361 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
362 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
363 				IPSTAT_INC(ips_noroute);
364 				error = ENETUNREACH;
365 				goto bad;
366 			}
367 		}
368 		/*
369 		 * If source address not specified yet, use address
370 		 * of outgoing interface.
371 		 */
372 		if (ip->ip_src.s_addr == INADDR_ANY) {
373 			/* Interface may have no addresses. */
374 			if (ia != NULL)
375 				ip->ip_src = IA_SIN(ia)->sin_addr;
376 		}
377 
378 		if ((imo == NULL && in_mcast_loop) ||
379 		    (imo && imo->imo_multicast_loop)) {
380 			/*
381 			 * Loop back multicast datagram if not expressly
382 			 * forbidden to do so, even if we are not a member
383 			 * of the group; ip_input() will filter it later,
384 			 * thus deferring a hash lookup and mutex acquisition
385 			 * at the expense of a cheap copy using m_copym().
386 			 */
387 			ip_mloopback(ifp, m, dst, hlen);
388 		} else {
389 			/*
390 			 * If we are acting as a multicast router, perform
391 			 * multicast forwarding as if the packet had just
392 			 * arrived on the interface to which we are about
393 			 * to send.  The multicast forwarding function
394 			 * recursively calls this function, using the
395 			 * IP_FORWARDING flag to prevent infinite recursion.
396 			 *
397 			 * Multicasts that are looped back by ip_mloopback(),
398 			 * above, will be forwarded by the ip_input() routine,
399 			 * if necessary.
400 			 */
401 			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
402 				/*
403 				 * If rsvp daemon is not running, do not
404 				 * set ip_moptions. This ensures that the packet
405 				 * is multicast and not just sent down one link
406 				 * as prescribed by rsvpd.
407 				 */
408 				if (!V_rsvp_on)
409 					imo = NULL;
410 				if (ip_mforward &&
411 				    ip_mforward(ip, ifp, m, imo) != 0) {
412 					m_freem(m);
413 					goto done;
414 				}
415 			}
416 		}
417 
418 		/*
419 		 * Multicasts with a time-to-live of zero may be looped-
420 		 * back, above, but must not be transmitted on a network.
421 		 * Also, multicasts addressed to the loopback interface
422 		 * are not sent -- the above call to ip_mloopback() will
423 		 * loop back a copy. ip_input() will drop the copy if
424 		 * this host does not belong to the destination group on
425 		 * the loopback interface.
426 		 */
427 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
428 			m_freem(m);
429 			goto done;
430 		}
431 
432 		goto sendit;
433 	}
434 
435 	/*
436 	 * If the source address is not specified yet, use the address
437 	 * of the outoing interface.
438 	 */
439 	if (ip->ip_src.s_addr == INADDR_ANY) {
440 		/* Interface may have no addresses. */
441 		if (ia != NULL) {
442 			ip->ip_src = IA_SIN(ia)->sin_addr;
443 		}
444 	}
445 
446 	/*
447 	 * Both in the SMP world, pre-emption world if_transmit() world,
448 	 * the following code doesn't really function as intended any further.
449 	 *
450 	 * + There can and will be multiple CPUs running this code path
451 	 *   in parallel, and we do no lock holding when checking the
452 	 *   queue depth;
453 	 * + And since other threads can be running concurrently, even if
454 	 *   we do pass this check, another thread may queue some frames
455 	 *   before this thread does and it will end up partially or fully
456 	 *   failing to send anyway;
457 	 * + if_transmit() based drivers don't necessarily set ifq_len
458 	 *   at all.
459 	 *
460 	 * This should be replaced with a method of pushing an entire list
461 	 * of fragment frames to the driver and have the driver decide
462 	 * whether it can queue or not queue the entire set.
463 	 */
464 #if 0
465 	/*
466 	 * Verify that we have any chance at all of being able to queue the
467 	 * packet or packet fragments, unless ALTQ is enabled on the given
468 	 * interface in which case packetdrop should be done by queueing.
469 	 */
470 	n = ip_len / mtu + 1; /* how many fragments ? */
471 	if (
472 #ifdef ALTQ
473 	    (!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
474 #endif /* ALTQ */
475 	    (ifp->if_snd.ifq_len + n) >= ifp->if_snd.ifq_maxlen ) {
476 		error = ENOBUFS;
477 		IPSTAT_INC(ips_odropped);
478 		ifp->if_snd.ifq_drops += n;
479 		goto bad;
480 	}
481 #endif
482 
483 	/*
484 	 * Look for broadcast address and
485 	 * verify user is allowed to send
486 	 * such a packet.
487 	 */
488 	if (isbroadcast) {
489 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
490 			error = EADDRNOTAVAIL;
491 			goto bad;
492 		}
493 		if ((flags & IP_ALLOWBROADCAST) == 0) {
494 			error = EACCES;
495 			goto bad;
496 		}
497 		/* don't allow broadcast messages to be fragmented */
498 		if (ip_len > mtu) {
499 			error = EMSGSIZE;
500 			goto bad;
501 		}
502 		m->m_flags |= M_BCAST;
503 	} else {
504 		m->m_flags &= ~M_BCAST;
505 	}
506 
507 sendit:
508 #ifdef IPSEC
509 	switch(ip_ipsec_output(&m, inp, &flags, &error)) {
510 	case 1:
511 		goto bad;
512 	case -1:
513 		goto done;
514 	case 0:
515 	default:
516 		break;	/* Continue with packet processing. */
517 	}
518 	/*
519 	 * Check if there was a route for this packet; return error if not.
520 	 */
521 	if (no_route_but_check_spd) {
522 		IPSTAT_INC(ips_noroute);
523 		error = EHOSTUNREACH;
524 		goto bad;
525 	}
526 	/* Update variables that are affected by ipsec4_output(). */
527 	ip = mtod(m, struct ip *);
528 	hlen = ip->ip_hl << 2;
529 #endif /* IPSEC */
530 
531 	/* Jump over all PFIL processing if hooks are not active. */
532 	if (!PFIL_HOOKED(&V_inet_pfil_hook))
533 		goto passout;
534 
535 	/* Run through list of hooks for output packets. */
536 	odst.s_addr = ip->ip_dst.s_addr;
537 	error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
538 	if (error != 0 || m == NULL)
539 		goto done;
540 
541 	ip = mtod(m, struct ip *);
542 
543 	/* See if destination IP address was changed by packet filter. */
544 	if (odst.s_addr != ip->ip_dst.s_addr) {
545 		m->m_flags |= M_SKIP_FIREWALL;
546 		/* If destination is now ourself drop to ip_input(). */
547 		if (in_localip(ip->ip_dst)) {
548 			m->m_flags |= M_FASTFWD_OURS;
549 			if (m->m_pkthdr.rcvif == NULL)
550 				m->m_pkthdr.rcvif = V_loif;
551 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
552 				m->m_pkthdr.csum_flags |=
553 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
554 				m->m_pkthdr.csum_data = 0xffff;
555 			}
556 			m->m_pkthdr.csum_flags |=
557 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
558 #ifdef SCTP
559 			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
560 				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
561 #endif
562 			error = netisr_queue(NETISR_IP, m);
563 			goto done;
564 		} else {
565 			if (ia != NULL)
566 				ifa_free(&ia->ia_ifa);
567 			goto again;	/* Redo the routing table lookup. */
568 		}
569 	}
570 
571 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
572 	if (m->m_flags & M_FASTFWD_OURS) {
573 		if (m->m_pkthdr.rcvif == NULL)
574 			m->m_pkthdr.rcvif = V_loif;
575 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
576 			m->m_pkthdr.csum_flags |=
577 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
578 			m->m_pkthdr.csum_data = 0xffff;
579 		}
580 #ifdef SCTP
581 		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
582 			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
583 #endif
584 		m->m_pkthdr.csum_flags |=
585 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
586 
587 		error = netisr_queue(NETISR_IP, m);
588 		goto done;
589 	}
590 	/* Or forward to some other address? */
591 	if ((m->m_flags & M_IP_NEXTHOP) &&
592 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
593 		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
594 		m->m_flags |= M_SKIP_FIREWALL;
595 		m->m_flags &= ~M_IP_NEXTHOP;
596 		m_tag_delete(m, fwd_tag);
597 		if (ia != NULL)
598 			ifa_free(&ia->ia_ifa);
599 		goto again;
600 	}
601 
602 passout:
603 	/* 127/8 must not appear on wire - RFC1122. */
604 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
605 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
606 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
607 			IPSTAT_INC(ips_badaddr);
608 			error = EADDRNOTAVAIL;
609 			goto bad;
610 		}
611 	}
612 
613 	m->m_pkthdr.csum_flags |= CSUM_IP;
614 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
615 		in_delayed_cksum(m);
616 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
617 	}
618 #ifdef SCTP
619 	if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
620 		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
621 		m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
622 	}
623 #endif
624 
625 	/*
626 	 * If small enough for interface, or the interface will take
627 	 * care of the fragmentation for us, we can just send directly.
628 	 */
629 	if (ip_len <= mtu ||
630 	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
631 	    ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
632 		ip->ip_sum = 0;
633 		if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
634 			ip->ip_sum = in_cksum(m, hlen);
635 			m->m_pkthdr.csum_flags &= ~CSUM_IP;
636 		}
637 
638 		/*
639 		 * Record statistics for this interface address.
640 		 * With CSUM_TSO the byte/packet count will be slightly
641 		 * incorrect because we count the IP+TCP headers only
642 		 * once instead of for every generated packet.
643 		 */
644 		if (!(flags & IP_FORWARDING) && ia) {
645 			if (m->m_pkthdr.csum_flags & CSUM_TSO)
646 				counter_u64_add(ia->ia_ifa.ifa_opackets,
647 				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz);
648 			else
649 				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
650 
651 			counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len);
652 		}
653 #ifdef MBUF_STRESS_TEST
654 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
655 			m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
656 #endif
657 		/*
658 		 * Reset layer specific mbuf flags
659 		 * to avoid confusing lower layers.
660 		 */
661 		m_clrprotoflags(m);
662 		IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
663 		error = (*ifp->if_output)(ifp, m,
664 		    (const struct sockaddr *)gw, ro);
665 		goto done;
666 	}
667 
668 	/* Balk when DF bit is set or the interface didn't support TSO. */
669 	if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
670 		error = EMSGSIZE;
671 		IPSTAT_INC(ips_cantfrag);
672 		goto bad;
673 	}
674 
675 	/*
676 	 * Too large for interface; fragment if possible. If successful,
677 	 * on return, m will point to a list of packets to be sent.
678 	 */
679 	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
680 	if (error)
681 		goto bad;
682 	for (; m; m = m0) {
683 		m0 = m->m_nextpkt;
684 		m->m_nextpkt = 0;
685 		if (error == 0) {
686 			/* Record statistics for this interface address. */
687 			if (ia != NULL) {
688 				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
689 				counter_u64_add(ia->ia_ifa.ifa_obytes,
690 				    m->m_pkthdr.len);
691 			}
692 			/*
693 			 * Reset layer specific mbuf flags
694 			 * to avoid confusing upper layers.
695 			 */
696 			m_clrprotoflags(m);
697 
698 			IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
699 			error = (*ifp->if_output)(ifp, m,
700 			    (const struct sockaddr *)gw, ro);
701 		} else
702 			m_freem(m);
703 	}
704 
705 	if (error == 0)
706 		IPSTAT_INC(ips_fragmented);
707 
708 done:
709 	if (ro == &iproute)
710 		RO_RTFREE(ro);
711 	if (ia != NULL)
712 		ifa_free(&ia->ia_ifa);
713 	return (error);
714 bad:
715 	m_freem(m);
716 	goto done;
717 }
718 
719 /*
720  * Create a chain of fragments which fit the given mtu. m_frag points to the
721  * mbuf to be fragmented; on return it points to the chain with the fragments.
722  * Return 0 if no error. If error, m_frag may contain a partially built
723  * chain of fragments that should be freed by the caller.
724  *
725  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
726  */
727 int
728 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
729     u_long if_hwassist_flags)
730 {
731 	int error = 0;
732 	int hlen = ip->ip_hl << 2;
733 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
734 	int off;
735 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
736 	int firstlen;
737 	struct mbuf **mnext;
738 	int nfrags;
739 	uint16_t ip_len, ip_off;
740 
741 	ip_len = ntohs(ip->ip_len);
742 	ip_off = ntohs(ip->ip_off);
743 
744 	if (ip_off & IP_DF) {	/* Fragmentation not allowed */
745 		IPSTAT_INC(ips_cantfrag);
746 		return EMSGSIZE;
747 	}
748 
749 	/*
750 	 * Must be able to put at least 8 bytes per fragment.
751 	 */
752 	if (len < 8)
753 		return EMSGSIZE;
754 
755 	/*
756 	 * If the interface will not calculate checksums on
757 	 * fragmented packets, then do it here.
758 	 */
759 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
760 		in_delayed_cksum(m0);
761 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
762 	}
763 #ifdef SCTP
764 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
765 		sctp_delayed_cksum(m0, hlen);
766 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
767 	}
768 #endif
769 	if (len > PAGE_SIZE) {
770 		/*
771 		 * Fragment large datagrams such that each segment
772 		 * contains a multiple of PAGE_SIZE amount of data,
773 		 * plus headers. This enables a receiver to perform
774 		 * page-flipping zero-copy optimizations.
775 		 *
776 		 * XXX When does this help given that sender and receiver
777 		 * could have different page sizes, and also mtu could
778 		 * be less than the receiver's page size ?
779 		 */
780 		int newlen;
781 		struct mbuf *m;
782 
783 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
784 			off += m->m_len;
785 
786 		/*
787 		 * firstlen (off - hlen) must be aligned on an
788 		 * 8-byte boundary
789 		 */
790 		if (off < hlen)
791 			goto smart_frag_failure;
792 		off = ((off - hlen) & ~7) + hlen;
793 		newlen = (~PAGE_MASK) & mtu;
794 		if ((newlen + sizeof (struct ip)) > mtu) {
795 			/* we failed, go back the default */
796 smart_frag_failure:
797 			newlen = len;
798 			off = hlen + len;
799 		}
800 		len = newlen;
801 
802 	} else {
803 		off = hlen + len;
804 	}
805 
806 	firstlen = off - hlen;
807 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
808 
809 	/*
810 	 * Loop through length of segment after first fragment,
811 	 * make new header and copy data of each part and link onto chain.
812 	 * Here, m0 is the original packet, m is the fragment being created.
813 	 * The fragments are linked off the m_nextpkt of the original
814 	 * packet, which after processing serves as the first fragment.
815 	 */
816 	for (nfrags = 1; off < ip_len; off += len, nfrags++) {
817 		struct ip *mhip;	/* ip header on the fragment */
818 		struct mbuf *m;
819 		int mhlen = sizeof (struct ip);
820 
821 		m = m_gethdr(M_NOWAIT, MT_DATA);
822 		if (m == NULL) {
823 			error = ENOBUFS;
824 			IPSTAT_INC(ips_odropped);
825 			goto done;
826 		}
827 		m->m_flags |= (m0->m_flags & M_MCAST);
828 		/*
829 		 * In the first mbuf, leave room for the link header, then
830 		 * copy the original IP header including options. The payload
831 		 * goes into an additional mbuf chain returned by m_copym().
832 		 */
833 		m->m_data += max_linkhdr;
834 		mhip = mtod(m, struct ip *);
835 		*mhip = *ip;
836 		if (hlen > sizeof (struct ip)) {
837 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
838 			mhip->ip_v = IPVERSION;
839 			mhip->ip_hl = mhlen >> 2;
840 		}
841 		m->m_len = mhlen;
842 		/* XXX do we need to add ip_off below ? */
843 		mhip->ip_off = ((off - hlen) >> 3) + ip_off;
844 		if (off + len >= ip_len)
845 			len = ip_len - off;
846 		else
847 			mhip->ip_off |= IP_MF;
848 		mhip->ip_len = htons((u_short)(len + mhlen));
849 		m->m_next = m_copym(m0, off, len, M_NOWAIT);
850 		if (m->m_next == NULL) {	/* copy failed */
851 			m_free(m);
852 			error = ENOBUFS;	/* ??? */
853 			IPSTAT_INC(ips_odropped);
854 			goto done;
855 		}
856 		m->m_pkthdr.len = mhlen + len;
857 		m->m_pkthdr.rcvif = NULL;
858 #ifdef MAC
859 		mac_netinet_fragment(m0, m);
860 #endif
861 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
862 		mhip->ip_off = htons(mhip->ip_off);
863 		mhip->ip_sum = 0;
864 		if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
865 			mhip->ip_sum = in_cksum(m, mhlen);
866 			m->m_pkthdr.csum_flags &= ~CSUM_IP;
867 		}
868 		*mnext = m;
869 		mnext = &m->m_nextpkt;
870 	}
871 	IPSTAT_ADD(ips_ofragments, nfrags);
872 
873 	/*
874 	 * Update first fragment by trimming what's been copied out
875 	 * and updating header.
876 	 */
877 	m_adj(m0, hlen + firstlen - ip_len);
878 	m0->m_pkthdr.len = hlen + firstlen;
879 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
880 	ip->ip_off = htons(ip_off | IP_MF);
881 	ip->ip_sum = 0;
882 	if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
883 		ip->ip_sum = in_cksum(m0, hlen);
884 		m0->m_pkthdr.csum_flags &= ~CSUM_IP;
885 	}
886 
887 done:
888 	*m_frag = m0;
889 	return error;
890 }
891 
892 void
893 in_delayed_cksum(struct mbuf *m)
894 {
895 	struct ip *ip;
896 	uint16_t csum, offset, ip_len;
897 
898 	ip = mtod(m, struct ip *);
899 	offset = ip->ip_hl << 2 ;
900 	ip_len = ntohs(ip->ip_len);
901 	csum = in_cksum_skip(m, ip_len, offset);
902 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
903 		csum = 0xffff;
904 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
905 
906 	if (offset + sizeof(u_short) > m->m_len) {
907 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
908 		    m->m_len, offset, ip->ip_p);
909 		/*
910 		 * XXX
911 		 * this shouldn't happen, but if it does, the
912 		 * correct behavior may be to insert the checksum
913 		 * in the appropriate next mbuf in the chain.
914 		 */
915 		return;
916 	}
917 	*(u_short *)(m->m_data + offset) = csum;
918 }
919 
920 /*
921  * IP socket option processing.
922  */
923 int
924 ip_ctloutput(struct socket *so, struct sockopt *sopt)
925 {
926 	struct	inpcb *inp = sotoinpcb(so);
927 	int	error, optval;
928 
929 	error = optval = 0;
930 	if (sopt->sopt_level != IPPROTO_IP) {
931 		error = EINVAL;
932 
933 		if (sopt->sopt_level == SOL_SOCKET &&
934 		    sopt->sopt_dir == SOPT_SET) {
935 			switch (sopt->sopt_name) {
936 			case SO_REUSEADDR:
937 				INP_WLOCK(inp);
938 				if ((so->so_options & SO_REUSEADDR) != 0)
939 					inp->inp_flags2 |= INP_REUSEADDR;
940 				else
941 					inp->inp_flags2 &= ~INP_REUSEADDR;
942 				INP_WUNLOCK(inp);
943 				error = 0;
944 				break;
945 			case SO_REUSEPORT:
946 				INP_WLOCK(inp);
947 				if ((so->so_options & SO_REUSEPORT) != 0)
948 					inp->inp_flags2 |= INP_REUSEPORT;
949 				else
950 					inp->inp_flags2 &= ~INP_REUSEPORT;
951 				INP_WUNLOCK(inp);
952 				error = 0;
953 				break;
954 			case SO_SETFIB:
955 				INP_WLOCK(inp);
956 				inp->inp_inc.inc_fibnum = so->so_fibnum;
957 				INP_WUNLOCK(inp);
958 				error = 0;
959 				break;
960 			default:
961 				break;
962 			}
963 		}
964 		return (error);
965 	}
966 
967 	switch (sopt->sopt_dir) {
968 	case SOPT_SET:
969 		switch (sopt->sopt_name) {
970 		case IP_OPTIONS:
971 #ifdef notyet
972 		case IP_RETOPTS:
973 #endif
974 		{
975 			struct mbuf *m;
976 			if (sopt->sopt_valsize > MLEN) {
977 				error = EMSGSIZE;
978 				break;
979 			}
980 			m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
981 			if (m == NULL) {
982 				error = ENOBUFS;
983 				break;
984 			}
985 			m->m_len = sopt->sopt_valsize;
986 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
987 					    m->m_len);
988 			if (error) {
989 				m_free(m);
990 				break;
991 			}
992 			INP_WLOCK(inp);
993 			error = ip_pcbopts(inp, sopt->sopt_name, m);
994 			INP_WUNLOCK(inp);
995 			return (error);
996 		}
997 
998 		case IP_BINDANY:
999 			if (sopt->sopt_td != NULL) {
1000 				error = priv_check(sopt->sopt_td,
1001 				    PRIV_NETINET_BINDANY);
1002 				if (error)
1003 					break;
1004 			}
1005 			/* FALLTHROUGH */
1006 		case IP_TOS:
1007 		case IP_TTL:
1008 		case IP_MINTTL:
1009 		case IP_RECVOPTS:
1010 		case IP_RECVRETOPTS:
1011 		case IP_RECVDSTADDR:
1012 		case IP_RECVTTL:
1013 		case IP_RECVIF:
1014 		case IP_FAITH:
1015 		case IP_ONESBCAST:
1016 		case IP_DONTFRAG:
1017 		case IP_RECVTOS:
1018 			error = sooptcopyin(sopt, &optval, sizeof optval,
1019 					    sizeof optval);
1020 			if (error)
1021 				break;
1022 
1023 			switch (sopt->sopt_name) {
1024 			case IP_TOS:
1025 				inp->inp_ip_tos = optval;
1026 				break;
1027 
1028 			case IP_TTL:
1029 				inp->inp_ip_ttl = optval;
1030 				break;
1031 
1032 			case IP_MINTTL:
1033 				if (optval >= 0 && optval <= MAXTTL)
1034 					inp->inp_ip_minttl = optval;
1035 				else
1036 					error = EINVAL;
1037 				break;
1038 
1039 #define	OPTSET(bit) do {						\
1040 	INP_WLOCK(inp);							\
1041 	if (optval)							\
1042 		inp->inp_flags |= bit;					\
1043 	else								\
1044 		inp->inp_flags &= ~bit;					\
1045 	INP_WUNLOCK(inp);						\
1046 } while (0)
1047 
1048 			case IP_RECVOPTS:
1049 				OPTSET(INP_RECVOPTS);
1050 				break;
1051 
1052 			case IP_RECVRETOPTS:
1053 				OPTSET(INP_RECVRETOPTS);
1054 				break;
1055 
1056 			case IP_RECVDSTADDR:
1057 				OPTSET(INP_RECVDSTADDR);
1058 				break;
1059 
1060 			case IP_RECVTTL:
1061 				OPTSET(INP_RECVTTL);
1062 				break;
1063 
1064 			case IP_RECVIF:
1065 				OPTSET(INP_RECVIF);
1066 				break;
1067 
1068 			case IP_FAITH:
1069 				OPTSET(INP_FAITH);
1070 				break;
1071 
1072 			case IP_ONESBCAST:
1073 				OPTSET(INP_ONESBCAST);
1074 				break;
1075 			case IP_DONTFRAG:
1076 				OPTSET(INP_DONTFRAG);
1077 				break;
1078 			case IP_BINDANY:
1079 				OPTSET(INP_BINDANY);
1080 				break;
1081 			case IP_RECVTOS:
1082 				OPTSET(INP_RECVTOS);
1083 				break;
1084 			}
1085 			break;
1086 #undef OPTSET
1087 
1088 		/*
1089 		 * Multicast socket options are processed by the in_mcast
1090 		 * module.
1091 		 */
1092 		case IP_MULTICAST_IF:
1093 		case IP_MULTICAST_VIF:
1094 		case IP_MULTICAST_TTL:
1095 		case IP_MULTICAST_LOOP:
1096 		case IP_ADD_MEMBERSHIP:
1097 		case IP_DROP_MEMBERSHIP:
1098 		case IP_ADD_SOURCE_MEMBERSHIP:
1099 		case IP_DROP_SOURCE_MEMBERSHIP:
1100 		case IP_BLOCK_SOURCE:
1101 		case IP_UNBLOCK_SOURCE:
1102 		case IP_MSFILTER:
1103 		case MCAST_JOIN_GROUP:
1104 		case MCAST_LEAVE_GROUP:
1105 		case MCAST_JOIN_SOURCE_GROUP:
1106 		case MCAST_LEAVE_SOURCE_GROUP:
1107 		case MCAST_BLOCK_SOURCE:
1108 		case MCAST_UNBLOCK_SOURCE:
1109 			error = inp_setmoptions(inp, sopt);
1110 			break;
1111 
1112 		case IP_PORTRANGE:
1113 			error = sooptcopyin(sopt, &optval, sizeof optval,
1114 					    sizeof optval);
1115 			if (error)
1116 				break;
1117 
1118 			INP_WLOCK(inp);
1119 			switch (optval) {
1120 			case IP_PORTRANGE_DEFAULT:
1121 				inp->inp_flags &= ~(INP_LOWPORT);
1122 				inp->inp_flags &= ~(INP_HIGHPORT);
1123 				break;
1124 
1125 			case IP_PORTRANGE_HIGH:
1126 				inp->inp_flags &= ~(INP_LOWPORT);
1127 				inp->inp_flags |= INP_HIGHPORT;
1128 				break;
1129 
1130 			case IP_PORTRANGE_LOW:
1131 				inp->inp_flags &= ~(INP_HIGHPORT);
1132 				inp->inp_flags |= INP_LOWPORT;
1133 				break;
1134 
1135 			default:
1136 				error = EINVAL;
1137 				break;
1138 			}
1139 			INP_WUNLOCK(inp);
1140 			break;
1141 
1142 #ifdef IPSEC
1143 		case IP_IPSEC_POLICY:
1144 		{
1145 			caddr_t req;
1146 			struct mbuf *m;
1147 
1148 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1149 				break;
1150 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1151 				break;
1152 			req = mtod(m, caddr_t);
1153 			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1154 			    m->m_len, (sopt->sopt_td != NULL) ?
1155 			    sopt->sopt_td->td_ucred : NULL);
1156 			m_freem(m);
1157 			break;
1158 		}
1159 #endif /* IPSEC */
1160 
1161 		default:
1162 			error = ENOPROTOOPT;
1163 			break;
1164 		}
1165 		break;
1166 
1167 	case SOPT_GET:
1168 		switch (sopt->sopt_name) {
1169 		case IP_OPTIONS:
1170 		case IP_RETOPTS:
1171 			if (inp->inp_options)
1172 				error = sooptcopyout(sopt,
1173 						     mtod(inp->inp_options,
1174 							  char *),
1175 						     inp->inp_options->m_len);
1176 			else
1177 				sopt->sopt_valsize = 0;
1178 			break;
1179 
1180 		case IP_TOS:
1181 		case IP_TTL:
1182 		case IP_MINTTL:
1183 		case IP_RECVOPTS:
1184 		case IP_RECVRETOPTS:
1185 		case IP_RECVDSTADDR:
1186 		case IP_RECVTTL:
1187 		case IP_RECVIF:
1188 		case IP_PORTRANGE:
1189 		case IP_FAITH:
1190 		case IP_ONESBCAST:
1191 		case IP_DONTFRAG:
1192 		case IP_BINDANY:
1193 		case IP_RECVTOS:
1194 			switch (sopt->sopt_name) {
1195 
1196 			case IP_TOS:
1197 				optval = inp->inp_ip_tos;
1198 				break;
1199 
1200 			case IP_TTL:
1201 				optval = inp->inp_ip_ttl;
1202 				break;
1203 
1204 			case IP_MINTTL:
1205 				optval = inp->inp_ip_minttl;
1206 				break;
1207 
1208 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1209 
1210 			case IP_RECVOPTS:
1211 				optval = OPTBIT(INP_RECVOPTS);
1212 				break;
1213 
1214 			case IP_RECVRETOPTS:
1215 				optval = OPTBIT(INP_RECVRETOPTS);
1216 				break;
1217 
1218 			case IP_RECVDSTADDR:
1219 				optval = OPTBIT(INP_RECVDSTADDR);
1220 				break;
1221 
1222 			case IP_RECVTTL:
1223 				optval = OPTBIT(INP_RECVTTL);
1224 				break;
1225 
1226 			case IP_RECVIF:
1227 				optval = OPTBIT(INP_RECVIF);
1228 				break;
1229 
1230 			case IP_PORTRANGE:
1231 				if (inp->inp_flags & INP_HIGHPORT)
1232 					optval = IP_PORTRANGE_HIGH;
1233 				else if (inp->inp_flags & INP_LOWPORT)
1234 					optval = IP_PORTRANGE_LOW;
1235 				else
1236 					optval = 0;
1237 				break;
1238 
1239 			case IP_FAITH:
1240 				optval = OPTBIT(INP_FAITH);
1241 				break;
1242 
1243 			case IP_ONESBCAST:
1244 				optval = OPTBIT(INP_ONESBCAST);
1245 				break;
1246 			case IP_DONTFRAG:
1247 				optval = OPTBIT(INP_DONTFRAG);
1248 				break;
1249 			case IP_BINDANY:
1250 				optval = OPTBIT(INP_BINDANY);
1251 				break;
1252 			case IP_RECVTOS:
1253 				optval = OPTBIT(INP_RECVTOS);
1254 				break;
1255 			}
1256 			error = sooptcopyout(sopt, &optval, sizeof optval);
1257 			break;
1258 
1259 		/*
1260 		 * Multicast socket options are processed by the in_mcast
1261 		 * module.
1262 		 */
1263 		case IP_MULTICAST_IF:
1264 		case IP_MULTICAST_VIF:
1265 		case IP_MULTICAST_TTL:
1266 		case IP_MULTICAST_LOOP:
1267 		case IP_MSFILTER:
1268 			error = inp_getmoptions(inp, sopt);
1269 			break;
1270 
1271 #ifdef IPSEC
1272 		case IP_IPSEC_POLICY:
1273 		{
1274 			struct mbuf *m = NULL;
1275 			caddr_t req = NULL;
1276 			size_t len = 0;
1277 
1278 			if (m != 0) {
1279 				req = mtod(m, caddr_t);
1280 				len = m->m_len;
1281 			}
1282 			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1283 			if (error == 0)
1284 				error = soopt_mcopyout(sopt, m); /* XXX */
1285 			if (error == 0)
1286 				m_freem(m);
1287 			break;
1288 		}
1289 #endif /* IPSEC */
1290 
1291 		default:
1292 			error = ENOPROTOOPT;
1293 			break;
1294 		}
1295 		break;
1296 	}
1297 	return (error);
1298 }
1299 
1300 /*
1301  * Routine called from ip_output() to loop back a copy of an IP multicast
1302  * packet to the input queue of a specified interface.  Note that this
1303  * calls the output routine of the loopback "driver", but with an interface
1304  * pointer that might NOT be a loopback interface -- evil, but easier than
1305  * replicating that code here.
1306  */
1307 static void
1308 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1309     int hlen)
1310 {
1311 	register struct ip *ip;
1312 	struct mbuf *copym;
1313 
1314 	/*
1315 	 * Make a deep copy of the packet because we're going to
1316 	 * modify the pack in order to generate checksums.
1317 	 */
1318 	copym = m_dup(m, M_NOWAIT);
1319 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1320 		copym = m_pullup(copym, hlen);
1321 	if (copym != NULL) {
1322 		/* If needed, compute the checksum and mark it as valid. */
1323 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1324 			in_delayed_cksum(copym);
1325 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1326 			copym->m_pkthdr.csum_flags |=
1327 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1328 			copym->m_pkthdr.csum_data = 0xffff;
1329 		}
1330 		/*
1331 		 * We don't bother to fragment if the IP length is greater
1332 		 * than the interface's MTU.  Can this possibly matter?
1333 		 */
1334 		ip = mtod(copym, struct ip *);
1335 		ip->ip_sum = 0;
1336 		ip->ip_sum = in_cksum(copym, hlen);
1337 #if 1 /* XXX */
1338 		if (dst->sin_family != AF_INET) {
1339 			printf("ip_mloopback: bad address family %d\n",
1340 						dst->sin_family);
1341 			dst->sin_family = AF_INET;
1342 		}
1343 #endif
1344 		if_simloop(ifp, copym, dst->sin_family, 0);
1345 	}
1346 }
1347