1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_kern_tls.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_mpath.h" 42 #include "opt_ratelimit.h" 43 #include "opt_route.h" 44 #include "opt_rss.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/kernel.h> 50 #include <sys/ktls.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mbuf.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/protosw.h> 57 #include <sys/rmlock.h> 58 #include <sys/sdt.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sysctl.h> 62 #include <sys/ucred.h> 63 64 #include <net/if.h> 65 #include <net/if_var.h> 66 #include <net/if_llatbl.h> 67 #include <net/netisr.h> 68 #include <net/pfil.h> 69 #include <net/route.h> 70 #include <net/route/nhop.h> 71 #include <net/rss_config.h> 72 #include <net/vnet.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_fib.h> 76 #include <netinet/in_kdtrace.h> 77 #include <netinet/in_systm.h> 78 #include <netinet/ip.h> 79 #include <netinet/in_fib.h> 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_rss.h> 82 #include <netinet/in_var.h> 83 #include <netinet/ip_var.h> 84 #include <netinet/ip_options.h> 85 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #ifdef SCTP 90 #include <netinet/sctp.h> 91 #include <netinet/sctp_crc32.h> 92 #endif 93 94 #include <netipsec/ipsec_support.h> 95 96 #include <machine/in_cksum.h> 97 98 #include <security/mac/mac_framework.h> 99 100 #ifdef MBUF_STRESS_TEST 101 static int mbuf_frag_size = 0; 102 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 103 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 104 #endif 105 106 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 107 108 109 extern int in_mcast_loop; 110 extern struct protosw inetsw[]; 111 112 static inline int 113 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 114 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 115 { 116 struct m_tag *fwd_tag = NULL; 117 struct mbuf *m; 118 struct in_addr odst; 119 struct ip *ip; 120 int pflags = PFIL_OUT; 121 122 if (flags & IP_FORWARDING) 123 pflags |= PFIL_FWD; 124 125 m = *mp; 126 ip = mtod(m, struct ip *); 127 128 /* Run through list of hooks for output packets. */ 129 odst.s_addr = ip->ip_dst.s_addr; 130 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { 131 case PFIL_DROPPED: 132 *error = EACCES; 133 /* FALLTHROUGH */ 134 case PFIL_CONSUMED: 135 return 1; /* Finished */ 136 case PFIL_PASS: 137 *error = 0; 138 } 139 m = *mp; 140 ip = mtod(m, struct ip *); 141 142 /* See if destination IP address was changed by packet filter. */ 143 if (odst.s_addr != ip->ip_dst.s_addr) { 144 m->m_flags |= M_SKIP_FIREWALL; 145 /* If destination is now ourself drop to ip_input(). */ 146 if (in_localip(ip->ip_dst)) { 147 m->m_flags |= M_FASTFWD_OURS; 148 if (m->m_pkthdr.rcvif == NULL) 149 m->m_pkthdr.rcvif = V_loif; 150 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 151 m->m_pkthdr.csum_flags |= 152 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 153 m->m_pkthdr.csum_data = 0xffff; 154 } 155 m->m_pkthdr.csum_flags |= 156 CSUM_IP_CHECKED | CSUM_IP_VALID; 157 #ifdef SCTP 158 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 159 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 160 #endif 161 *error = netisr_queue(NETISR_IP, m); 162 return 1; /* Finished */ 163 } 164 165 bzero(dst, sizeof(*dst)); 166 dst->sin_family = AF_INET; 167 dst->sin_len = sizeof(*dst); 168 dst->sin_addr = ip->ip_dst; 169 170 return -1; /* Reloop */ 171 } 172 /* See if fib was changed by packet filter. */ 173 if ((*fibnum) != M_GETFIB(m)) { 174 m->m_flags |= M_SKIP_FIREWALL; 175 *fibnum = M_GETFIB(m); 176 return -1; /* Reloop for FIB change */ 177 } 178 179 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 180 if (m->m_flags & M_FASTFWD_OURS) { 181 if (m->m_pkthdr.rcvif == NULL) 182 m->m_pkthdr.rcvif = V_loif; 183 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 184 m->m_pkthdr.csum_flags |= 185 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 186 m->m_pkthdr.csum_data = 0xffff; 187 } 188 #ifdef SCTP 189 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 190 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 191 #endif 192 m->m_pkthdr.csum_flags |= 193 CSUM_IP_CHECKED | CSUM_IP_VALID; 194 195 *error = netisr_queue(NETISR_IP, m); 196 return 1; /* Finished */ 197 } 198 /* Or forward to some other address? */ 199 if ((m->m_flags & M_IP_NEXTHOP) && 200 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 201 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 202 m->m_flags |= M_SKIP_FIREWALL; 203 m->m_flags &= ~M_IP_NEXTHOP; 204 m_tag_delete(m, fwd_tag); 205 206 return -1; /* Reloop for CHANGE of dst */ 207 } 208 209 return 0; 210 } 211 212 static int 213 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 214 const struct sockaddr_in *gw, struct route *ro, bool stamp_tag) 215 { 216 #ifdef KERN_TLS 217 struct ktls_session *tls = NULL; 218 #endif 219 struct m_snd_tag *mst; 220 int error; 221 222 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 223 mst = NULL; 224 225 #ifdef KERN_TLS 226 /* 227 * If this is an unencrypted TLS record, save a reference to 228 * the record. This local reference is used to call 229 * ktls_output_eagain after the mbuf has been freed (thus 230 * dropping the mbuf's reference) in if_output. 231 */ 232 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 233 tls = ktls_hold(m->m_next->m_ext_pgs.tls); 234 mst = tls->snd_tag; 235 236 /* 237 * If a TLS session doesn't have a valid tag, it must 238 * have had an earlier ifp mismatch, so drop this 239 * packet. 240 */ 241 if (mst == NULL) { 242 error = EAGAIN; 243 goto done; 244 } 245 } 246 #endif 247 #ifdef RATELIMIT 248 if (inp != NULL && mst == NULL) { 249 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 250 (inp->inp_snd_tag != NULL && 251 inp->inp_snd_tag->ifp != ifp)) 252 in_pcboutput_txrtlmt(inp, ifp, m); 253 254 if (inp->inp_snd_tag != NULL) 255 mst = inp->inp_snd_tag; 256 } 257 #endif 258 if (stamp_tag && mst != NULL) { 259 KASSERT(m->m_pkthdr.rcvif == NULL, 260 ("trying to add a send tag to a forwarded packet")); 261 if (mst->ifp != ifp) { 262 error = EAGAIN; 263 goto done; 264 } 265 266 /* stamp send tag on mbuf */ 267 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 268 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 269 } 270 271 error = (*ifp->if_output)(ifp, m, (const struct sockaddr *)gw, ro); 272 273 done: 274 /* Check for route change invalidating send tags. */ 275 #ifdef KERN_TLS 276 if (tls != NULL) { 277 if (error == EAGAIN) 278 error = ktls_output_eagain(inp, tls); 279 ktls_free(tls); 280 } 281 #endif 282 #ifdef RATELIMIT 283 if (error == EAGAIN) 284 in_pcboutput_eagain(inp); 285 #endif 286 return (error); 287 } 288 289 /* rte<>ro_flags translation */ 290 static inline void 291 rt_update_ro_flags(struct route *ro) 292 { 293 int nh_flags = ro->ro_nh->nh_flags; 294 295 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 296 297 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 298 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 299 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 300 } 301 302 /* 303 * IP output. The packet in mbuf chain m contains a skeletal IP 304 * header (with len, off, ttl, proto, tos, src, dst). 305 * The mbuf chain containing the packet will be freed. 306 * The mbuf opt, if present, will not be freed. 307 * If route ro is present and has ro_rt initialized, route lookup would be 308 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 309 * then result of route lookup is stored in ro->ro_rt. 310 * 311 * In the IP forwarding case, the packet will arrive with options already 312 * inserted, so must have a NULL opt pointer. 313 */ 314 int 315 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 316 struct ip_moptions *imo, struct inpcb *inp) 317 { 318 struct rm_priotracker in_ifa_tracker; 319 struct ip *ip; 320 struct ifnet *ifp = NULL; /* keep compiler happy */ 321 struct mbuf *m0; 322 int hlen = sizeof (struct ip); 323 int mtu; 324 int error = 0; 325 struct sockaddr_in *dst, sin; 326 const struct sockaddr_in *gw; 327 struct in_ifaddr *ia; 328 struct in_addr src; 329 int isbroadcast; 330 uint16_t ip_len, ip_off; 331 uint32_t fibnum; 332 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 333 int no_route_but_check_spd = 0; 334 #endif 335 336 M_ASSERTPKTHDR(m); 337 NET_EPOCH_ASSERT(); 338 339 if (inp != NULL) { 340 INP_LOCK_ASSERT(inp); 341 M_SETFIB(m, inp->inp_inc.inc_fibnum); 342 if ((flags & IP_NODEFAULTFLOWID) == 0) { 343 m->m_pkthdr.flowid = inp->inp_flowid; 344 M_HASHTYPE_SET(m, inp->inp_flowtype); 345 } 346 #ifdef NUMA 347 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 348 #endif 349 } 350 351 if (opt) { 352 int len = 0; 353 m = ip_insertoptions(m, opt, &len); 354 if (len != 0) 355 hlen = len; /* ip->ip_hl is updated above */ 356 } 357 ip = mtod(m, struct ip *); 358 ip_len = ntohs(ip->ip_len); 359 ip_off = ntohs(ip->ip_off); 360 361 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 362 ip->ip_v = IPVERSION; 363 ip->ip_hl = hlen >> 2; 364 ip_fillid(ip); 365 } else { 366 /* Header already set, fetch hlen from there */ 367 hlen = ip->ip_hl << 2; 368 } 369 if ((flags & IP_FORWARDING) == 0) 370 IPSTAT_INC(ips_localout); 371 372 /* 373 * dst/gw handling: 374 * 375 * gw is readonly but can point either to dst OR rt_gateway, 376 * therefore we need restore gw if we're redoing lookup. 377 */ 378 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 379 if (ro != NULL) 380 dst = (struct sockaddr_in *)&ro->ro_dst; 381 else 382 dst = &sin; 383 if (ro == NULL || ro->ro_nh == NULL) { 384 bzero(dst, sizeof(*dst)); 385 dst->sin_family = AF_INET; 386 dst->sin_len = sizeof(*dst); 387 dst->sin_addr = ip->ip_dst; 388 } 389 gw = dst; 390 again: 391 /* 392 * Validate route against routing table additions; 393 * a better/more specific route might have been added. 394 */ 395 if (inp != NULL && ro != NULL && ro->ro_nh != NULL) 396 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 397 /* 398 * If there is a cached route, 399 * check that it is to the same destination 400 * and is still up. If not, free it and try again. 401 * The address family should also be checked in case of sharing the 402 * cache with IPv6. 403 * Also check whether routing cache needs invalidation. 404 */ 405 if (ro != NULL && ro->ro_nh != NULL && 406 ((!NH_IS_VALID(ro->ro_nh)) || !RT_LINK_IS_UP(ro->ro_nh->nh_ifp) || 407 dst->sin_family != AF_INET || 408 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 409 RO_INVALIDATE_CACHE(ro); 410 ia = NULL; 411 /* 412 * If routing to interface only, short circuit routing lookup. 413 * The use of an all-ones broadcast address implies this; an 414 * interface is specified by the broadcast address of an interface, 415 * or the destination address of a ptp interface. 416 */ 417 if (flags & IP_SENDONES) { 418 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 419 M_GETFIB(m)))) == NULL && 420 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 421 M_GETFIB(m)))) == NULL) { 422 IPSTAT_INC(ips_noroute); 423 error = ENETUNREACH; 424 goto bad; 425 } 426 ip->ip_dst.s_addr = INADDR_BROADCAST; 427 dst->sin_addr = ip->ip_dst; 428 ifp = ia->ia_ifp; 429 mtu = ifp->if_mtu; 430 ip->ip_ttl = 1; 431 isbroadcast = 1; 432 src = IA_SIN(ia)->sin_addr; 433 } else if (flags & IP_ROUTETOIF) { 434 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 435 M_GETFIB(m)))) == NULL && 436 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 437 M_GETFIB(m)))) == NULL) { 438 IPSTAT_INC(ips_noroute); 439 error = ENETUNREACH; 440 goto bad; 441 } 442 ifp = ia->ia_ifp; 443 mtu = ifp->if_mtu; 444 ip->ip_ttl = 1; 445 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 446 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 447 src = IA_SIN(ia)->sin_addr; 448 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 449 imo != NULL && imo->imo_multicast_ifp != NULL) { 450 /* 451 * Bypass the normal routing lookup for multicast 452 * packets if the interface is specified. 453 */ 454 ifp = imo->imo_multicast_ifp; 455 mtu = ifp->if_mtu; 456 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 457 isbroadcast = 0; /* fool gcc */ 458 /* Interface may have no addresses. */ 459 if (ia != NULL) 460 src = IA_SIN(ia)->sin_addr; 461 else 462 src.s_addr = INADDR_ANY; 463 } else if (ro != NULL) { 464 if (ro->ro_nh == NULL) { 465 /* 466 * We want to do any cloning requested by the link 467 * layer, as this is probably required in all cases 468 * for correct operation (as it is for ARP). 469 */ 470 uint32_t flowid; 471 #ifdef RADIX_MPATH 472 flowid = ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr); 473 #else 474 flowid = m->m_pkthdr.flowid; 475 #endif 476 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 477 NHR_REF, flowid); 478 479 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh)) || 480 !RT_LINK_IS_UP(ro->ro_nh->nh_ifp)) { 481 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 482 /* 483 * There is no route for this packet, but it is 484 * possible that a matching SPD entry exists. 485 */ 486 no_route_but_check_spd = 1; 487 mtu = 0; /* Silence GCC warning. */ 488 goto sendit; 489 #endif 490 IPSTAT_INC(ips_noroute); 491 error = EHOSTUNREACH; 492 goto bad; 493 } 494 } 495 ia = ifatoia(ro->ro_nh->nh_ifa); 496 ifp = ro->ro_nh->nh_ifp; 497 counter_u64_add(ro->ro_nh->nh_pksent, 1); 498 rt_update_ro_flags(ro); 499 if (ro->ro_nh->nh_flags & NHF_GATEWAY) 500 gw = &ro->ro_nh->gw4_sa; 501 if (ro->ro_nh->nh_flags & NHF_HOST) 502 isbroadcast = (ro->ro_nh->nh_flags & NHF_BROADCAST); 503 else if (ifp->if_flags & IFF_BROADCAST) 504 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 505 else 506 isbroadcast = 0; 507 if (ro->ro_nh->nh_flags & NHF_HOST) 508 mtu = ro->ro_nh->nh_mtu; 509 else 510 mtu = ifp->if_mtu; 511 src = IA_SIN(ia)->sin_addr; 512 } else { 513 struct nhop4_extended nh; 514 515 bzero(&nh, sizeof(nh)); 516 if (fib4_lookup_nh_ext(M_GETFIB(m), ip->ip_dst, 0, 0, &nh) != 517 0) { 518 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 519 /* 520 * There is no route for this packet, but it is 521 * possible that a matching SPD entry exists. 522 */ 523 no_route_but_check_spd = 1; 524 mtu = 0; /* Silence GCC warning. */ 525 goto sendit; 526 #endif 527 IPSTAT_INC(ips_noroute); 528 error = EHOSTUNREACH; 529 goto bad; 530 } 531 ifp = nh.nh_ifp; 532 mtu = nh.nh_mtu; 533 /* 534 * We are rewriting here dst to be gw actually, contradicting 535 * comment at the beginning of the function. However, in this 536 * case we are always dealing with on stack dst. 537 * In case if pfil(9) sends us back to beginning of the 538 * function, the dst would be rewritten by ip_output_pfil(). 539 */ 540 MPASS(dst == &sin); 541 dst->sin_addr = nh.nh_addr; 542 ia = nh.nh_ia; 543 src = nh.nh_src; 544 isbroadcast = (((nh.nh_flags & (NHF_HOST | NHF_BROADCAST)) == 545 (NHF_HOST | NHF_BROADCAST)) || 546 ((ifp->if_flags & IFF_BROADCAST) && 547 in_ifaddr_broadcast(dst->sin_addr, ia))); 548 } 549 550 /* Catch a possible divide by zero later. */ 551 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 552 __func__, mtu, ro, 553 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 554 555 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 556 m->m_flags |= M_MCAST; 557 /* 558 * IP destination address is multicast. Make sure "gw" 559 * still points to the address in "ro". (It may have been 560 * changed to point to a gateway address, above.) 561 */ 562 gw = dst; 563 /* 564 * See if the caller provided any multicast options 565 */ 566 if (imo != NULL) { 567 ip->ip_ttl = imo->imo_multicast_ttl; 568 if (imo->imo_multicast_vif != -1) 569 ip->ip_src.s_addr = 570 ip_mcast_src ? 571 ip_mcast_src(imo->imo_multicast_vif) : 572 INADDR_ANY; 573 } else 574 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 575 /* 576 * Confirm that the outgoing interface supports multicast. 577 */ 578 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 579 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 580 IPSTAT_INC(ips_noroute); 581 error = ENETUNREACH; 582 goto bad; 583 } 584 } 585 /* 586 * If source address not specified yet, use address 587 * of outgoing interface. 588 */ 589 if (ip->ip_src.s_addr == INADDR_ANY) 590 ip->ip_src = src; 591 592 if ((imo == NULL && in_mcast_loop) || 593 (imo && imo->imo_multicast_loop)) { 594 /* 595 * Loop back multicast datagram if not expressly 596 * forbidden to do so, even if we are not a member 597 * of the group; ip_input() will filter it later, 598 * thus deferring a hash lookup and mutex acquisition 599 * at the expense of a cheap copy using m_copym(). 600 */ 601 ip_mloopback(ifp, m, hlen); 602 } else { 603 /* 604 * If we are acting as a multicast router, perform 605 * multicast forwarding as if the packet had just 606 * arrived on the interface to which we are about 607 * to send. The multicast forwarding function 608 * recursively calls this function, using the 609 * IP_FORWARDING flag to prevent infinite recursion. 610 * 611 * Multicasts that are looped back by ip_mloopback(), 612 * above, will be forwarded by the ip_input() routine, 613 * if necessary. 614 */ 615 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 616 /* 617 * If rsvp daemon is not running, do not 618 * set ip_moptions. This ensures that the packet 619 * is multicast and not just sent down one link 620 * as prescribed by rsvpd. 621 */ 622 if (!V_rsvp_on) 623 imo = NULL; 624 if (ip_mforward && 625 ip_mforward(ip, ifp, m, imo) != 0) { 626 m_freem(m); 627 goto done; 628 } 629 } 630 } 631 632 /* 633 * Multicasts with a time-to-live of zero may be looped- 634 * back, above, but must not be transmitted on a network. 635 * Also, multicasts addressed to the loopback interface 636 * are not sent -- the above call to ip_mloopback() will 637 * loop back a copy. ip_input() will drop the copy if 638 * this host does not belong to the destination group on 639 * the loopback interface. 640 */ 641 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 642 m_freem(m); 643 goto done; 644 } 645 646 goto sendit; 647 } 648 649 /* 650 * If the source address is not specified yet, use the address 651 * of the outoing interface. 652 */ 653 if (ip->ip_src.s_addr == INADDR_ANY) 654 ip->ip_src = src; 655 656 /* 657 * Look for broadcast address and 658 * verify user is allowed to send 659 * such a packet. 660 */ 661 if (isbroadcast) { 662 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 663 error = EADDRNOTAVAIL; 664 goto bad; 665 } 666 if ((flags & IP_ALLOWBROADCAST) == 0) { 667 error = EACCES; 668 goto bad; 669 } 670 /* don't allow broadcast messages to be fragmented */ 671 if (ip_len > mtu) { 672 error = EMSGSIZE; 673 goto bad; 674 } 675 m->m_flags |= M_BCAST; 676 } else { 677 m->m_flags &= ~M_BCAST; 678 } 679 680 sendit: 681 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 682 if (IPSEC_ENABLED(ipv4)) { 683 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 684 if (error == EINPROGRESS) 685 error = 0; 686 goto done; 687 } 688 } 689 /* 690 * Check if there was a route for this packet; return error if not. 691 */ 692 if (no_route_but_check_spd) { 693 IPSTAT_INC(ips_noroute); 694 error = EHOSTUNREACH; 695 goto bad; 696 } 697 /* Update variables that are affected by ipsec4_output(). */ 698 ip = mtod(m, struct ip *); 699 hlen = ip->ip_hl << 2; 700 #endif /* IPSEC */ 701 702 /* Jump over all PFIL processing if hooks are not active. */ 703 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 704 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 705 &error)) { 706 case 1: /* Finished */ 707 goto done; 708 709 case 0: /* Continue normally */ 710 ip = mtod(m, struct ip *); 711 break; 712 713 case -1: /* Need to try again */ 714 /* Reset everything for a new round */ 715 if (ro != NULL) { 716 RO_NHFREE(ro); 717 ro->ro_prepend = NULL; 718 } 719 gw = dst; 720 ip = mtod(m, struct ip *); 721 goto again; 722 723 } 724 } 725 726 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 727 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 728 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 729 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 730 IPSTAT_INC(ips_badaddr); 731 error = EADDRNOTAVAIL; 732 goto bad; 733 } 734 } 735 736 m->m_pkthdr.csum_flags |= CSUM_IP; 737 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 738 m = mb_unmapped_to_ext(m); 739 if (m == NULL) { 740 IPSTAT_INC(ips_odropped); 741 error = ENOBUFS; 742 goto bad; 743 } 744 in_delayed_cksum(m); 745 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 746 } else if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 747 m = mb_unmapped_to_ext(m); 748 if (m == NULL) { 749 IPSTAT_INC(ips_odropped); 750 error = ENOBUFS; 751 goto bad; 752 } 753 } 754 #ifdef SCTP 755 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 756 m = mb_unmapped_to_ext(m); 757 if (m == NULL) { 758 IPSTAT_INC(ips_odropped); 759 error = ENOBUFS; 760 goto bad; 761 } 762 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 763 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 764 } 765 #endif 766 767 /* 768 * If small enough for interface, or the interface will take 769 * care of the fragmentation for us, we can just send directly. 770 */ 771 if (ip_len <= mtu || 772 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 773 ip->ip_sum = 0; 774 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 775 ip->ip_sum = in_cksum(m, hlen); 776 m->m_pkthdr.csum_flags &= ~CSUM_IP; 777 } 778 779 /* 780 * Record statistics for this interface address. 781 * With CSUM_TSO the byte/packet count will be slightly 782 * incorrect because we count the IP+TCP headers only 783 * once instead of for every generated packet. 784 */ 785 if (!(flags & IP_FORWARDING) && ia) { 786 if (m->m_pkthdr.csum_flags & CSUM_TSO) 787 counter_u64_add(ia->ia_ifa.ifa_opackets, 788 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 789 else 790 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 791 792 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 793 } 794 #ifdef MBUF_STRESS_TEST 795 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 796 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 797 #endif 798 /* 799 * Reset layer specific mbuf flags 800 * to avoid confusing lower layers. 801 */ 802 m_clrprotoflags(m); 803 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 804 error = ip_output_send(inp, ifp, m, gw, ro, 805 (flags & IP_NO_SND_TAG_RL) ? false : true); 806 goto done; 807 } 808 809 /* Balk when DF bit is set or the interface didn't support TSO. */ 810 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 811 error = EMSGSIZE; 812 IPSTAT_INC(ips_cantfrag); 813 goto bad; 814 } 815 816 /* 817 * Too large for interface; fragment if possible. If successful, 818 * on return, m will point to a list of packets to be sent. 819 */ 820 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 821 if (error) 822 goto bad; 823 for (; m; m = m0) { 824 m0 = m->m_nextpkt; 825 m->m_nextpkt = 0; 826 if (error == 0) { 827 /* Record statistics for this interface address. */ 828 if (ia != NULL) { 829 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 830 counter_u64_add(ia->ia_ifa.ifa_obytes, 831 m->m_pkthdr.len); 832 } 833 /* 834 * Reset layer specific mbuf flags 835 * to avoid confusing upper layers. 836 */ 837 m_clrprotoflags(m); 838 839 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 840 mtod(m, struct ip *), NULL); 841 error = ip_output_send(inp, ifp, m, gw, ro, true); 842 } else 843 m_freem(m); 844 } 845 846 if (error == 0) 847 IPSTAT_INC(ips_fragmented); 848 849 done: 850 return (error); 851 bad: 852 m_freem(m); 853 goto done; 854 } 855 856 /* 857 * Create a chain of fragments which fit the given mtu. m_frag points to the 858 * mbuf to be fragmented; on return it points to the chain with the fragments. 859 * Return 0 if no error. If error, m_frag may contain a partially built 860 * chain of fragments that should be freed by the caller. 861 * 862 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 863 */ 864 int 865 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 866 u_long if_hwassist_flags) 867 { 868 int error = 0; 869 int hlen = ip->ip_hl << 2; 870 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 871 int off; 872 struct mbuf *m0 = *m_frag; /* the original packet */ 873 int firstlen; 874 struct mbuf **mnext; 875 int nfrags; 876 uint16_t ip_len, ip_off; 877 878 ip_len = ntohs(ip->ip_len); 879 ip_off = ntohs(ip->ip_off); 880 881 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 882 IPSTAT_INC(ips_cantfrag); 883 return EMSGSIZE; 884 } 885 886 /* 887 * Must be able to put at least 8 bytes per fragment. 888 */ 889 if (len < 8) 890 return EMSGSIZE; 891 892 /* 893 * If the interface will not calculate checksums on 894 * fragmented packets, then do it here. 895 */ 896 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 897 m0 = mb_unmapped_to_ext(m0); 898 if (m0 == NULL) { 899 error = ENOBUFS; 900 IPSTAT_INC(ips_odropped); 901 goto done; 902 } 903 in_delayed_cksum(m0); 904 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 905 } 906 #ifdef SCTP 907 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 908 m0 = mb_unmapped_to_ext(m0); 909 if (m0 == NULL) { 910 error = ENOBUFS; 911 IPSTAT_INC(ips_odropped); 912 goto done; 913 } 914 sctp_delayed_cksum(m0, hlen); 915 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 916 } 917 #endif 918 if (len > PAGE_SIZE) { 919 /* 920 * Fragment large datagrams such that each segment 921 * contains a multiple of PAGE_SIZE amount of data, 922 * plus headers. This enables a receiver to perform 923 * page-flipping zero-copy optimizations. 924 * 925 * XXX When does this help given that sender and receiver 926 * could have different page sizes, and also mtu could 927 * be less than the receiver's page size ? 928 */ 929 int newlen; 930 931 off = MIN(mtu, m0->m_pkthdr.len); 932 933 /* 934 * firstlen (off - hlen) must be aligned on an 935 * 8-byte boundary 936 */ 937 if (off < hlen) 938 goto smart_frag_failure; 939 off = ((off - hlen) & ~7) + hlen; 940 newlen = (~PAGE_MASK) & mtu; 941 if ((newlen + sizeof (struct ip)) > mtu) { 942 /* we failed, go back the default */ 943 smart_frag_failure: 944 newlen = len; 945 off = hlen + len; 946 } 947 len = newlen; 948 949 } else { 950 off = hlen + len; 951 } 952 953 firstlen = off - hlen; 954 mnext = &m0->m_nextpkt; /* pointer to next packet */ 955 956 /* 957 * Loop through length of segment after first fragment, 958 * make new header and copy data of each part and link onto chain. 959 * Here, m0 is the original packet, m is the fragment being created. 960 * The fragments are linked off the m_nextpkt of the original 961 * packet, which after processing serves as the first fragment. 962 */ 963 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 964 struct ip *mhip; /* ip header on the fragment */ 965 struct mbuf *m; 966 int mhlen = sizeof (struct ip); 967 968 m = m_gethdr(M_NOWAIT, MT_DATA); 969 if (m == NULL) { 970 error = ENOBUFS; 971 IPSTAT_INC(ips_odropped); 972 goto done; 973 } 974 /* 975 * Make sure the complete packet header gets copied 976 * from the originating mbuf to the newly created 977 * mbuf. This also ensures that existing firewall 978 * classification(s), VLAN tags and so on get copied 979 * to the resulting fragmented packet(s): 980 */ 981 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 982 m_free(m); 983 error = ENOBUFS; 984 IPSTAT_INC(ips_odropped); 985 goto done; 986 } 987 /* 988 * In the first mbuf, leave room for the link header, then 989 * copy the original IP header including options. The payload 990 * goes into an additional mbuf chain returned by m_copym(). 991 */ 992 m->m_data += max_linkhdr; 993 mhip = mtod(m, struct ip *); 994 *mhip = *ip; 995 if (hlen > sizeof (struct ip)) { 996 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 997 mhip->ip_v = IPVERSION; 998 mhip->ip_hl = mhlen >> 2; 999 } 1000 m->m_len = mhlen; 1001 /* XXX do we need to add ip_off below ? */ 1002 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 1003 if (off + len >= ip_len) 1004 len = ip_len - off; 1005 else 1006 mhip->ip_off |= IP_MF; 1007 mhip->ip_len = htons((u_short)(len + mhlen)); 1008 m->m_next = m_copym(m0, off, len, M_NOWAIT); 1009 if (m->m_next == NULL) { /* copy failed */ 1010 m_free(m); 1011 error = ENOBUFS; /* ??? */ 1012 IPSTAT_INC(ips_odropped); 1013 goto done; 1014 } 1015 m->m_pkthdr.len = mhlen + len; 1016 #ifdef MAC 1017 mac_netinet_fragment(m0, m); 1018 #endif 1019 mhip->ip_off = htons(mhip->ip_off); 1020 mhip->ip_sum = 0; 1021 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1022 mhip->ip_sum = in_cksum(m, mhlen); 1023 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1024 } 1025 *mnext = m; 1026 mnext = &m->m_nextpkt; 1027 } 1028 IPSTAT_ADD(ips_ofragments, nfrags); 1029 1030 /* 1031 * Update first fragment by trimming what's been copied out 1032 * and updating header. 1033 */ 1034 m_adj(m0, hlen + firstlen - ip_len); 1035 m0->m_pkthdr.len = hlen + firstlen; 1036 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1037 ip->ip_off = htons(ip_off | IP_MF); 1038 ip->ip_sum = 0; 1039 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1040 ip->ip_sum = in_cksum(m0, hlen); 1041 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1042 } 1043 1044 done: 1045 *m_frag = m0; 1046 return error; 1047 } 1048 1049 void 1050 in_delayed_cksum(struct mbuf *m) 1051 { 1052 struct ip *ip; 1053 struct udphdr *uh; 1054 uint16_t cklen, csum, offset; 1055 1056 ip = mtod(m, struct ip *); 1057 offset = ip->ip_hl << 2 ; 1058 1059 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1060 /* if udp header is not in the first mbuf copy udplen */ 1061 if (offset + sizeof(struct udphdr) > m->m_len) { 1062 m_copydata(m, offset + offsetof(struct udphdr, 1063 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1064 cklen = ntohs(cklen); 1065 } else { 1066 uh = (struct udphdr *)mtodo(m, offset); 1067 cklen = ntohs(uh->uh_ulen); 1068 } 1069 csum = in_cksum_skip(m, cklen + offset, offset); 1070 if (csum == 0) 1071 csum = 0xffff; 1072 } else { 1073 cklen = ntohs(ip->ip_len); 1074 csum = in_cksum_skip(m, cklen, offset); 1075 } 1076 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1077 1078 if (offset + sizeof(csum) > m->m_len) 1079 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1080 else 1081 *(u_short *)mtodo(m, offset) = csum; 1082 } 1083 1084 /* 1085 * IP socket option processing. 1086 */ 1087 int 1088 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1089 { 1090 struct inpcb *inp = sotoinpcb(so); 1091 int error, optval; 1092 #ifdef RSS 1093 uint32_t rss_bucket; 1094 int retval; 1095 #endif 1096 1097 error = optval = 0; 1098 if (sopt->sopt_level != IPPROTO_IP) { 1099 error = EINVAL; 1100 1101 if (sopt->sopt_level == SOL_SOCKET && 1102 sopt->sopt_dir == SOPT_SET) { 1103 switch (sopt->sopt_name) { 1104 case SO_REUSEADDR: 1105 INP_WLOCK(inp); 1106 if ((so->so_options & SO_REUSEADDR) != 0) 1107 inp->inp_flags2 |= INP_REUSEADDR; 1108 else 1109 inp->inp_flags2 &= ~INP_REUSEADDR; 1110 INP_WUNLOCK(inp); 1111 error = 0; 1112 break; 1113 case SO_REUSEPORT: 1114 INP_WLOCK(inp); 1115 if ((so->so_options & SO_REUSEPORT) != 0) 1116 inp->inp_flags2 |= INP_REUSEPORT; 1117 else 1118 inp->inp_flags2 &= ~INP_REUSEPORT; 1119 INP_WUNLOCK(inp); 1120 error = 0; 1121 break; 1122 case SO_REUSEPORT_LB: 1123 INP_WLOCK(inp); 1124 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1125 inp->inp_flags2 |= INP_REUSEPORT_LB; 1126 else 1127 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1128 INP_WUNLOCK(inp); 1129 error = 0; 1130 break; 1131 case SO_SETFIB: 1132 INP_WLOCK(inp); 1133 inp->inp_inc.inc_fibnum = so->so_fibnum; 1134 INP_WUNLOCK(inp); 1135 error = 0; 1136 break; 1137 case SO_MAX_PACING_RATE: 1138 #ifdef RATELIMIT 1139 INP_WLOCK(inp); 1140 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1141 INP_WUNLOCK(inp); 1142 error = 0; 1143 #else 1144 error = EOPNOTSUPP; 1145 #endif 1146 break; 1147 default: 1148 break; 1149 } 1150 } 1151 return (error); 1152 } 1153 1154 switch (sopt->sopt_dir) { 1155 case SOPT_SET: 1156 switch (sopt->sopt_name) { 1157 case IP_OPTIONS: 1158 #ifdef notyet 1159 case IP_RETOPTS: 1160 #endif 1161 { 1162 struct mbuf *m; 1163 if (sopt->sopt_valsize > MLEN) { 1164 error = EMSGSIZE; 1165 break; 1166 } 1167 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1168 if (m == NULL) { 1169 error = ENOBUFS; 1170 break; 1171 } 1172 m->m_len = sopt->sopt_valsize; 1173 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1174 m->m_len); 1175 if (error) { 1176 m_free(m); 1177 break; 1178 } 1179 INP_WLOCK(inp); 1180 error = ip_pcbopts(inp, sopt->sopt_name, m); 1181 INP_WUNLOCK(inp); 1182 return (error); 1183 } 1184 1185 case IP_BINDANY: 1186 if (sopt->sopt_td != NULL) { 1187 error = priv_check(sopt->sopt_td, 1188 PRIV_NETINET_BINDANY); 1189 if (error) 1190 break; 1191 } 1192 /* FALLTHROUGH */ 1193 case IP_BINDMULTI: 1194 #ifdef RSS 1195 case IP_RSS_LISTEN_BUCKET: 1196 #endif 1197 case IP_TOS: 1198 case IP_TTL: 1199 case IP_MINTTL: 1200 case IP_RECVOPTS: 1201 case IP_RECVRETOPTS: 1202 case IP_ORIGDSTADDR: 1203 case IP_RECVDSTADDR: 1204 case IP_RECVTTL: 1205 case IP_RECVIF: 1206 case IP_ONESBCAST: 1207 case IP_DONTFRAG: 1208 case IP_RECVTOS: 1209 case IP_RECVFLOWID: 1210 #ifdef RSS 1211 case IP_RECVRSSBUCKETID: 1212 #endif 1213 error = sooptcopyin(sopt, &optval, sizeof optval, 1214 sizeof optval); 1215 if (error) 1216 break; 1217 1218 switch (sopt->sopt_name) { 1219 case IP_TOS: 1220 inp->inp_ip_tos = optval; 1221 break; 1222 1223 case IP_TTL: 1224 inp->inp_ip_ttl = optval; 1225 break; 1226 1227 case IP_MINTTL: 1228 if (optval >= 0 && optval <= MAXTTL) 1229 inp->inp_ip_minttl = optval; 1230 else 1231 error = EINVAL; 1232 break; 1233 1234 #define OPTSET(bit) do { \ 1235 INP_WLOCK(inp); \ 1236 if (optval) \ 1237 inp->inp_flags |= bit; \ 1238 else \ 1239 inp->inp_flags &= ~bit; \ 1240 INP_WUNLOCK(inp); \ 1241 } while (0) 1242 1243 #define OPTSET2(bit, val) do { \ 1244 INP_WLOCK(inp); \ 1245 if (val) \ 1246 inp->inp_flags2 |= bit; \ 1247 else \ 1248 inp->inp_flags2 &= ~bit; \ 1249 INP_WUNLOCK(inp); \ 1250 } while (0) 1251 1252 case IP_RECVOPTS: 1253 OPTSET(INP_RECVOPTS); 1254 break; 1255 1256 case IP_RECVRETOPTS: 1257 OPTSET(INP_RECVRETOPTS); 1258 break; 1259 1260 case IP_RECVDSTADDR: 1261 OPTSET(INP_RECVDSTADDR); 1262 break; 1263 1264 case IP_ORIGDSTADDR: 1265 OPTSET2(INP_ORIGDSTADDR, optval); 1266 break; 1267 1268 case IP_RECVTTL: 1269 OPTSET(INP_RECVTTL); 1270 break; 1271 1272 case IP_RECVIF: 1273 OPTSET(INP_RECVIF); 1274 break; 1275 1276 case IP_ONESBCAST: 1277 OPTSET(INP_ONESBCAST); 1278 break; 1279 case IP_DONTFRAG: 1280 OPTSET(INP_DONTFRAG); 1281 break; 1282 case IP_BINDANY: 1283 OPTSET(INP_BINDANY); 1284 break; 1285 case IP_RECVTOS: 1286 OPTSET(INP_RECVTOS); 1287 break; 1288 case IP_BINDMULTI: 1289 OPTSET2(INP_BINDMULTI, optval); 1290 break; 1291 case IP_RECVFLOWID: 1292 OPTSET2(INP_RECVFLOWID, optval); 1293 break; 1294 #ifdef RSS 1295 case IP_RSS_LISTEN_BUCKET: 1296 if ((optval >= 0) && 1297 (optval < rss_getnumbuckets())) { 1298 inp->inp_rss_listen_bucket = optval; 1299 OPTSET2(INP_RSS_BUCKET_SET, 1); 1300 } else { 1301 error = EINVAL; 1302 } 1303 break; 1304 case IP_RECVRSSBUCKETID: 1305 OPTSET2(INP_RECVRSSBUCKETID, optval); 1306 break; 1307 #endif 1308 } 1309 break; 1310 #undef OPTSET 1311 #undef OPTSET2 1312 1313 /* 1314 * Multicast socket options are processed by the in_mcast 1315 * module. 1316 */ 1317 case IP_MULTICAST_IF: 1318 case IP_MULTICAST_VIF: 1319 case IP_MULTICAST_TTL: 1320 case IP_MULTICAST_LOOP: 1321 case IP_ADD_MEMBERSHIP: 1322 case IP_DROP_MEMBERSHIP: 1323 case IP_ADD_SOURCE_MEMBERSHIP: 1324 case IP_DROP_SOURCE_MEMBERSHIP: 1325 case IP_BLOCK_SOURCE: 1326 case IP_UNBLOCK_SOURCE: 1327 case IP_MSFILTER: 1328 case MCAST_JOIN_GROUP: 1329 case MCAST_LEAVE_GROUP: 1330 case MCAST_JOIN_SOURCE_GROUP: 1331 case MCAST_LEAVE_SOURCE_GROUP: 1332 case MCAST_BLOCK_SOURCE: 1333 case MCAST_UNBLOCK_SOURCE: 1334 error = inp_setmoptions(inp, sopt); 1335 break; 1336 1337 case IP_PORTRANGE: 1338 error = sooptcopyin(sopt, &optval, sizeof optval, 1339 sizeof optval); 1340 if (error) 1341 break; 1342 1343 INP_WLOCK(inp); 1344 switch (optval) { 1345 case IP_PORTRANGE_DEFAULT: 1346 inp->inp_flags &= ~(INP_LOWPORT); 1347 inp->inp_flags &= ~(INP_HIGHPORT); 1348 break; 1349 1350 case IP_PORTRANGE_HIGH: 1351 inp->inp_flags &= ~(INP_LOWPORT); 1352 inp->inp_flags |= INP_HIGHPORT; 1353 break; 1354 1355 case IP_PORTRANGE_LOW: 1356 inp->inp_flags &= ~(INP_HIGHPORT); 1357 inp->inp_flags |= INP_LOWPORT; 1358 break; 1359 1360 default: 1361 error = EINVAL; 1362 break; 1363 } 1364 INP_WUNLOCK(inp); 1365 break; 1366 1367 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1368 case IP_IPSEC_POLICY: 1369 if (IPSEC_ENABLED(ipv4)) { 1370 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1371 break; 1372 } 1373 /* FALLTHROUGH */ 1374 #endif /* IPSEC */ 1375 1376 default: 1377 error = ENOPROTOOPT; 1378 break; 1379 } 1380 break; 1381 1382 case SOPT_GET: 1383 switch (sopt->sopt_name) { 1384 case IP_OPTIONS: 1385 case IP_RETOPTS: 1386 INP_RLOCK(inp); 1387 if (inp->inp_options) { 1388 struct mbuf *options; 1389 1390 options = m_copym(inp->inp_options, 0, 1391 M_COPYALL, M_NOWAIT); 1392 INP_RUNLOCK(inp); 1393 if (options != NULL) { 1394 error = sooptcopyout(sopt, 1395 mtod(options, char *), 1396 options->m_len); 1397 m_freem(options); 1398 } else 1399 error = ENOMEM; 1400 } else { 1401 INP_RUNLOCK(inp); 1402 sopt->sopt_valsize = 0; 1403 } 1404 break; 1405 1406 case IP_TOS: 1407 case IP_TTL: 1408 case IP_MINTTL: 1409 case IP_RECVOPTS: 1410 case IP_RECVRETOPTS: 1411 case IP_ORIGDSTADDR: 1412 case IP_RECVDSTADDR: 1413 case IP_RECVTTL: 1414 case IP_RECVIF: 1415 case IP_PORTRANGE: 1416 case IP_ONESBCAST: 1417 case IP_DONTFRAG: 1418 case IP_BINDANY: 1419 case IP_RECVTOS: 1420 case IP_BINDMULTI: 1421 case IP_FLOWID: 1422 case IP_FLOWTYPE: 1423 case IP_RECVFLOWID: 1424 #ifdef RSS 1425 case IP_RSSBUCKETID: 1426 case IP_RECVRSSBUCKETID: 1427 #endif 1428 switch (sopt->sopt_name) { 1429 1430 case IP_TOS: 1431 optval = inp->inp_ip_tos; 1432 break; 1433 1434 case IP_TTL: 1435 optval = inp->inp_ip_ttl; 1436 break; 1437 1438 case IP_MINTTL: 1439 optval = inp->inp_ip_minttl; 1440 break; 1441 1442 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1443 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1444 1445 case IP_RECVOPTS: 1446 optval = OPTBIT(INP_RECVOPTS); 1447 break; 1448 1449 case IP_RECVRETOPTS: 1450 optval = OPTBIT(INP_RECVRETOPTS); 1451 break; 1452 1453 case IP_RECVDSTADDR: 1454 optval = OPTBIT(INP_RECVDSTADDR); 1455 break; 1456 1457 case IP_ORIGDSTADDR: 1458 optval = OPTBIT2(INP_ORIGDSTADDR); 1459 break; 1460 1461 case IP_RECVTTL: 1462 optval = OPTBIT(INP_RECVTTL); 1463 break; 1464 1465 case IP_RECVIF: 1466 optval = OPTBIT(INP_RECVIF); 1467 break; 1468 1469 case IP_PORTRANGE: 1470 if (inp->inp_flags & INP_HIGHPORT) 1471 optval = IP_PORTRANGE_HIGH; 1472 else if (inp->inp_flags & INP_LOWPORT) 1473 optval = IP_PORTRANGE_LOW; 1474 else 1475 optval = 0; 1476 break; 1477 1478 case IP_ONESBCAST: 1479 optval = OPTBIT(INP_ONESBCAST); 1480 break; 1481 case IP_DONTFRAG: 1482 optval = OPTBIT(INP_DONTFRAG); 1483 break; 1484 case IP_BINDANY: 1485 optval = OPTBIT(INP_BINDANY); 1486 break; 1487 case IP_RECVTOS: 1488 optval = OPTBIT(INP_RECVTOS); 1489 break; 1490 case IP_FLOWID: 1491 optval = inp->inp_flowid; 1492 break; 1493 case IP_FLOWTYPE: 1494 optval = inp->inp_flowtype; 1495 break; 1496 case IP_RECVFLOWID: 1497 optval = OPTBIT2(INP_RECVFLOWID); 1498 break; 1499 #ifdef RSS 1500 case IP_RSSBUCKETID: 1501 retval = rss_hash2bucket(inp->inp_flowid, 1502 inp->inp_flowtype, 1503 &rss_bucket); 1504 if (retval == 0) 1505 optval = rss_bucket; 1506 else 1507 error = EINVAL; 1508 break; 1509 case IP_RECVRSSBUCKETID: 1510 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1511 break; 1512 #endif 1513 case IP_BINDMULTI: 1514 optval = OPTBIT2(INP_BINDMULTI); 1515 break; 1516 } 1517 error = sooptcopyout(sopt, &optval, sizeof optval); 1518 break; 1519 1520 /* 1521 * Multicast socket options are processed by the in_mcast 1522 * module. 1523 */ 1524 case IP_MULTICAST_IF: 1525 case IP_MULTICAST_VIF: 1526 case IP_MULTICAST_TTL: 1527 case IP_MULTICAST_LOOP: 1528 case IP_MSFILTER: 1529 error = inp_getmoptions(inp, sopt); 1530 break; 1531 1532 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1533 case IP_IPSEC_POLICY: 1534 if (IPSEC_ENABLED(ipv4)) { 1535 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1536 break; 1537 } 1538 /* FALLTHROUGH */ 1539 #endif /* IPSEC */ 1540 1541 default: 1542 error = ENOPROTOOPT; 1543 break; 1544 } 1545 break; 1546 } 1547 return (error); 1548 } 1549 1550 /* 1551 * Routine called from ip_output() to loop back a copy of an IP multicast 1552 * packet to the input queue of a specified interface. Note that this 1553 * calls the output routine of the loopback "driver", but with an interface 1554 * pointer that might NOT be a loopback interface -- evil, but easier than 1555 * replicating that code here. 1556 */ 1557 static void 1558 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1559 { 1560 struct ip *ip; 1561 struct mbuf *copym; 1562 1563 /* 1564 * Make a deep copy of the packet because we're going to 1565 * modify the pack in order to generate checksums. 1566 */ 1567 copym = m_dup(m, M_NOWAIT); 1568 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1569 copym = m_pullup(copym, hlen); 1570 if (copym != NULL) { 1571 /* If needed, compute the checksum and mark it as valid. */ 1572 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1573 in_delayed_cksum(copym); 1574 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1575 copym->m_pkthdr.csum_flags |= 1576 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1577 copym->m_pkthdr.csum_data = 0xffff; 1578 } 1579 /* 1580 * We don't bother to fragment if the IP length is greater 1581 * than the interface's MTU. Can this possibly matter? 1582 */ 1583 ip = mtod(copym, struct ip *); 1584 ip->ip_sum = 0; 1585 ip->ip_sum = in_cksum(copym, hlen); 1586 if_simloop(ifp, copym, AF_INET, 0); 1587 } 1588 } 1589