1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_mbuf_stress_test.h" 40 #include "opt_mpath.h" 41 #include "opt_ratelimit.h" 42 #include "opt_route.h" 43 #include "opt_rss.h" 44 #include "opt_sctp.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/malloc.h> 51 #include <sys/mbuf.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/protosw.h> 55 #include <sys/rmlock.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sysctl.h> 60 #include <sys/ucred.h> 61 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_llatbl.h> 65 #include <net/netisr.h> 66 #include <net/pfil.h> 67 #include <net/route.h> 68 #ifdef RADIX_MPATH 69 #include <net/radix_mpath.h> 70 #endif 71 #include <net/rss_config.h> 72 #include <net/vnet.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_fib.h> 76 #include <netinet/in_kdtrace.h> 77 #include <netinet/in_systm.h> 78 #include <netinet/ip.h> 79 #include <netinet/in_pcb.h> 80 #include <netinet/in_rss.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip_var.h> 83 #include <netinet/ip_options.h> 84 85 #include <netinet/udp.h> 86 #include <netinet/udp_var.h> 87 88 #ifdef SCTP 89 #include <netinet/sctp.h> 90 #include <netinet/sctp_crc32.h> 91 #endif 92 93 #include <netipsec/ipsec_support.h> 94 95 #include <machine/in_cksum.h> 96 97 #include <security/mac/mac_framework.h> 98 99 #ifdef MBUF_STRESS_TEST 100 static int mbuf_frag_size = 0; 101 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 102 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 103 #endif 104 105 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 106 107 108 extern int in_mcast_loop; 109 extern struct protosw inetsw[]; 110 111 static inline int 112 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 113 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 114 { 115 struct m_tag *fwd_tag = NULL; 116 struct mbuf *m; 117 struct in_addr odst; 118 struct ip *ip; 119 int pflags = PFIL_OUT; 120 121 if (flags & IP_FORWARDING) 122 pflags |= PFIL_FWD; 123 124 m = *mp; 125 ip = mtod(m, struct ip *); 126 127 /* Run through list of hooks for output packets. */ 128 odst.s_addr = ip->ip_dst.s_addr; 129 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { 130 case PFIL_DROPPED: 131 *error = EPERM; 132 /* FALLTHROUGH */ 133 case PFIL_CONSUMED: 134 return 1; /* Finished */ 135 case PFIL_PASS: 136 *error = 0; 137 } 138 m = *mp; 139 ip = mtod(m, struct ip *); 140 141 /* See if destination IP address was changed by packet filter. */ 142 if (odst.s_addr != ip->ip_dst.s_addr) { 143 m->m_flags |= M_SKIP_FIREWALL; 144 /* If destination is now ourself drop to ip_input(). */ 145 if (in_localip(ip->ip_dst)) { 146 m->m_flags |= M_FASTFWD_OURS; 147 if (m->m_pkthdr.rcvif == NULL) 148 m->m_pkthdr.rcvif = V_loif; 149 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 150 m->m_pkthdr.csum_flags |= 151 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 152 m->m_pkthdr.csum_data = 0xffff; 153 } 154 m->m_pkthdr.csum_flags |= 155 CSUM_IP_CHECKED | CSUM_IP_VALID; 156 #ifdef SCTP 157 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 158 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 159 #endif 160 *error = netisr_queue(NETISR_IP, m); 161 return 1; /* Finished */ 162 } 163 164 bzero(dst, sizeof(*dst)); 165 dst->sin_family = AF_INET; 166 dst->sin_len = sizeof(*dst); 167 dst->sin_addr = ip->ip_dst; 168 169 return -1; /* Reloop */ 170 } 171 /* See if fib was changed by packet filter. */ 172 if ((*fibnum) != M_GETFIB(m)) { 173 m->m_flags |= M_SKIP_FIREWALL; 174 *fibnum = M_GETFIB(m); 175 return -1; /* Reloop for FIB change */ 176 } 177 178 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 179 if (m->m_flags & M_FASTFWD_OURS) { 180 if (m->m_pkthdr.rcvif == NULL) 181 m->m_pkthdr.rcvif = V_loif; 182 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 183 m->m_pkthdr.csum_flags |= 184 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 185 m->m_pkthdr.csum_data = 0xffff; 186 } 187 #ifdef SCTP 188 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 189 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 190 #endif 191 m->m_pkthdr.csum_flags |= 192 CSUM_IP_CHECKED | CSUM_IP_VALID; 193 194 *error = netisr_queue(NETISR_IP, m); 195 return 1; /* Finished */ 196 } 197 /* Or forward to some other address? */ 198 if ((m->m_flags & M_IP_NEXTHOP) && 199 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 200 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 201 m->m_flags |= M_SKIP_FIREWALL; 202 m->m_flags &= ~M_IP_NEXTHOP; 203 m_tag_delete(m, fwd_tag); 204 205 return -1; /* Reloop for CHANGE of dst */ 206 } 207 208 return 0; 209 } 210 211 static int 212 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 213 const struct sockaddr_in *gw, struct route *ro) 214 { 215 struct m_snd_tag *mst; 216 int error; 217 218 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 219 mst = NULL; 220 221 #ifdef RATELIMIT 222 if (inp != NULL) { 223 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 224 (inp->inp_snd_tag != NULL && 225 inp->inp_snd_tag->ifp != ifp)) 226 in_pcboutput_txrtlmt(inp, ifp, m); 227 228 if (inp->inp_snd_tag != NULL) 229 mst = inp->inp_snd_tag; 230 } 231 #endif 232 if (mst != NULL) { 233 KASSERT(m->m_pkthdr.rcvif == NULL, 234 ("trying to add a send tag to a forwarded packet")); 235 if (mst->ifp != ifp) { 236 error = EAGAIN; 237 goto done; 238 } 239 240 /* stamp send tag on mbuf */ 241 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 242 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 243 } 244 245 error = (*ifp->if_output)(ifp, m, (const struct sockaddr *)gw, ro); 246 247 done: 248 /* Check for route change invalidating send tags. */ 249 #ifdef RATELIMIT 250 if (error == EAGAIN) 251 in_pcboutput_eagain(inp); 252 #endif 253 return (error); 254 } 255 256 /* 257 * IP output. The packet in mbuf chain m contains a skeletal IP 258 * header (with len, off, ttl, proto, tos, src, dst). 259 * The mbuf chain containing the packet will be freed. 260 * The mbuf opt, if present, will not be freed. 261 * If route ro is present and has ro_rt initialized, route lookup would be 262 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 263 * then result of route lookup is stored in ro->ro_rt. 264 * 265 * In the IP forwarding case, the packet will arrive with options already 266 * inserted, so must have a NULL opt pointer. 267 */ 268 int 269 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 270 struct ip_moptions *imo, struct inpcb *inp) 271 { 272 struct rm_priotracker in_ifa_tracker; 273 struct epoch_tracker et; 274 struct ip *ip; 275 struct ifnet *ifp = NULL; /* keep compiler happy */ 276 struct mbuf *m0; 277 int hlen = sizeof (struct ip); 278 int mtu; 279 int error = 0; 280 struct sockaddr_in *dst, sin; 281 const struct sockaddr_in *gw; 282 struct in_ifaddr *ia; 283 struct in_addr src; 284 int isbroadcast; 285 uint16_t ip_len, ip_off; 286 uint32_t fibnum; 287 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 288 int no_route_but_check_spd = 0; 289 #endif 290 291 M_ASSERTPKTHDR(m); 292 293 if (inp != NULL) { 294 INP_LOCK_ASSERT(inp); 295 M_SETFIB(m, inp->inp_inc.inc_fibnum); 296 if ((flags & IP_NODEFAULTFLOWID) == 0) { 297 m->m_pkthdr.flowid = inp->inp_flowid; 298 M_HASHTYPE_SET(m, inp->inp_flowtype); 299 } 300 #ifdef NUMA 301 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 302 #endif 303 } 304 305 if (opt) { 306 int len = 0; 307 m = ip_insertoptions(m, opt, &len); 308 if (len != 0) 309 hlen = len; /* ip->ip_hl is updated above */ 310 } 311 ip = mtod(m, struct ip *); 312 ip_len = ntohs(ip->ip_len); 313 ip_off = ntohs(ip->ip_off); 314 315 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 316 ip->ip_v = IPVERSION; 317 ip->ip_hl = hlen >> 2; 318 ip_fillid(ip); 319 } else { 320 /* Header already set, fetch hlen from there */ 321 hlen = ip->ip_hl << 2; 322 } 323 if ((flags & IP_FORWARDING) == 0) 324 IPSTAT_INC(ips_localout); 325 326 /* 327 * dst/gw handling: 328 * 329 * gw is readonly but can point either to dst OR rt_gateway, 330 * therefore we need restore gw if we're redoing lookup. 331 */ 332 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 333 if (ro != NULL) 334 dst = (struct sockaddr_in *)&ro->ro_dst; 335 else 336 dst = &sin; 337 if (ro == NULL || ro->ro_rt == NULL) { 338 bzero(dst, sizeof(*dst)); 339 dst->sin_family = AF_INET; 340 dst->sin_len = sizeof(*dst); 341 dst->sin_addr = ip->ip_dst; 342 } 343 gw = dst; 344 NET_EPOCH_ENTER(et); 345 again: 346 /* 347 * Validate route against routing table additions; 348 * a better/more specific route might have been added. 349 */ 350 if (inp != NULL && ro != NULL && ro->ro_rt != NULL) 351 RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 352 /* 353 * If there is a cached route, 354 * check that it is to the same destination 355 * and is still up. If not, free it and try again. 356 * The address family should also be checked in case of sharing the 357 * cache with IPv6. 358 * Also check whether routing cache needs invalidation. 359 */ 360 if (ro != NULL && ro->ro_rt != NULL && 361 ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 362 ro->ro_rt->rt_ifp == NULL || !RT_LINK_IS_UP(ro->ro_rt->rt_ifp) || 363 dst->sin_family != AF_INET || 364 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 365 RO_INVALIDATE_CACHE(ro); 366 ia = NULL; 367 /* 368 * If routing to interface only, short circuit routing lookup. 369 * The use of an all-ones broadcast address implies this; an 370 * interface is specified by the broadcast address of an interface, 371 * or the destination address of a ptp interface. 372 */ 373 if (flags & IP_SENDONES) { 374 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 375 M_GETFIB(m)))) == NULL && 376 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 377 M_GETFIB(m)))) == NULL) { 378 IPSTAT_INC(ips_noroute); 379 error = ENETUNREACH; 380 goto bad; 381 } 382 ip->ip_dst.s_addr = INADDR_BROADCAST; 383 dst->sin_addr = ip->ip_dst; 384 ifp = ia->ia_ifp; 385 mtu = ifp->if_mtu; 386 ip->ip_ttl = 1; 387 isbroadcast = 1; 388 src = IA_SIN(ia)->sin_addr; 389 } else if (flags & IP_ROUTETOIF) { 390 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 391 M_GETFIB(m)))) == NULL && 392 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 393 M_GETFIB(m)))) == NULL) { 394 IPSTAT_INC(ips_noroute); 395 error = ENETUNREACH; 396 goto bad; 397 } 398 ifp = ia->ia_ifp; 399 mtu = ifp->if_mtu; 400 ip->ip_ttl = 1; 401 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 402 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 403 src = IA_SIN(ia)->sin_addr; 404 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 405 imo != NULL && imo->imo_multicast_ifp != NULL) { 406 /* 407 * Bypass the normal routing lookup for multicast 408 * packets if the interface is specified. 409 */ 410 ifp = imo->imo_multicast_ifp; 411 mtu = ifp->if_mtu; 412 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 413 isbroadcast = 0; /* fool gcc */ 414 /* Interface may have no addresses. */ 415 if (ia != NULL) 416 src = IA_SIN(ia)->sin_addr; 417 else 418 src.s_addr = INADDR_ANY; 419 } else if (ro != NULL) { 420 if (ro->ro_rt == NULL) { 421 /* 422 * We want to do any cloning requested by the link 423 * layer, as this is probably required in all cases 424 * for correct operation (as it is for ARP). 425 */ 426 #ifdef RADIX_MPATH 427 rtalloc_mpath_fib(ro, 428 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 429 fibnum); 430 #else 431 in_rtalloc_ign(ro, 0, fibnum); 432 #endif 433 if (ro->ro_rt == NULL || 434 (ro->ro_rt->rt_flags & RTF_UP) == 0 || 435 ro->ro_rt->rt_ifp == NULL || 436 !RT_LINK_IS_UP(ro->ro_rt->rt_ifp)) { 437 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 438 /* 439 * There is no route for this packet, but it is 440 * possible that a matching SPD entry exists. 441 */ 442 no_route_but_check_spd = 1; 443 mtu = 0; /* Silence GCC warning. */ 444 goto sendit; 445 #endif 446 IPSTAT_INC(ips_noroute); 447 error = EHOSTUNREACH; 448 goto bad; 449 } 450 } 451 ia = ifatoia(ro->ro_rt->rt_ifa); 452 ifp = ro->ro_rt->rt_ifp; 453 counter_u64_add(ro->ro_rt->rt_pksent, 1); 454 rt_update_ro_flags(ro); 455 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 456 gw = (struct sockaddr_in *)ro->ro_rt->rt_gateway; 457 if (ro->ro_rt->rt_flags & RTF_HOST) 458 isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST); 459 else if (ifp->if_flags & IFF_BROADCAST) 460 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 461 else 462 isbroadcast = 0; 463 if (ro->ro_rt->rt_flags & RTF_HOST) 464 mtu = ro->ro_rt->rt_mtu; 465 else 466 mtu = ifp->if_mtu; 467 src = IA_SIN(ia)->sin_addr; 468 } else { 469 struct nhop4_extended nh; 470 471 bzero(&nh, sizeof(nh)); 472 if (fib4_lookup_nh_ext(M_GETFIB(m), ip->ip_dst, 0, 0, &nh) != 473 0) { 474 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 475 /* 476 * There is no route for this packet, but it is 477 * possible that a matching SPD entry exists. 478 */ 479 no_route_but_check_spd = 1; 480 mtu = 0; /* Silence GCC warning. */ 481 goto sendit; 482 #endif 483 IPSTAT_INC(ips_noroute); 484 error = EHOSTUNREACH; 485 goto bad; 486 } 487 ifp = nh.nh_ifp; 488 mtu = nh.nh_mtu; 489 /* 490 * We are rewriting here dst to be gw actually, contradicting 491 * comment at the beginning of the function. However, in this 492 * case we are always dealing with on stack dst. 493 * In case if pfil(9) sends us back to beginning of the 494 * function, the dst would be rewritten by ip_output_pfil(). 495 */ 496 MPASS(dst == &sin); 497 dst->sin_addr = nh.nh_addr; 498 ia = nh.nh_ia; 499 src = nh.nh_src; 500 isbroadcast = (((nh.nh_flags & (NHF_HOST | NHF_BROADCAST)) == 501 (NHF_HOST | NHF_BROADCAST)) || 502 ((ifp->if_flags & IFF_BROADCAST) && 503 in_ifaddr_broadcast(dst->sin_addr, ia))); 504 } 505 506 /* Catch a possible divide by zero later. */ 507 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (rt_flags=0x%08x) ifp=%p", 508 __func__, mtu, ro, 509 (ro != NULL && ro->ro_rt != NULL) ? ro->ro_rt->rt_flags : 0, ifp)); 510 511 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 512 m->m_flags |= M_MCAST; 513 /* 514 * IP destination address is multicast. Make sure "gw" 515 * still points to the address in "ro". (It may have been 516 * changed to point to a gateway address, above.) 517 */ 518 gw = dst; 519 /* 520 * See if the caller provided any multicast options 521 */ 522 if (imo != NULL) { 523 ip->ip_ttl = imo->imo_multicast_ttl; 524 if (imo->imo_multicast_vif != -1) 525 ip->ip_src.s_addr = 526 ip_mcast_src ? 527 ip_mcast_src(imo->imo_multicast_vif) : 528 INADDR_ANY; 529 } else 530 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 531 /* 532 * Confirm that the outgoing interface supports multicast. 533 */ 534 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 535 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 536 IPSTAT_INC(ips_noroute); 537 error = ENETUNREACH; 538 goto bad; 539 } 540 } 541 /* 542 * If source address not specified yet, use address 543 * of outgoing interface. 544 */ 545 if (ip->ip_src.s_addr == INADDR_ANY) 546 ip->ip_src = src; 547 548 if ((imo == NULL && in_mcast_loop) || 549 (imo && imo->imo_multicast_loop)) { 550 /* 551 * Loop back multicast datagram if not expressly 552 * forbidden to do so, even if we are not a member 553 * of the group; ip_input() will filter it later, 554 * thus deferring a hash lookup and mutex acquisition 555 * at the expense of a cheap copy using m_copym(). 556 */ 557 ip_mloopback(ifp, m, hlen); 558 } else { 559 /* 560 * If we are acting as a multicast router, perform 561 * multicast forwarding as if the packet had just 562 * arrived on the interface to which we are about 563 * to send. The multicast forwarding function 564 * recursively calls this function, using the 565 * IP_FORWARDING flag to prevent infinite recursion. 566 * 567 * Multicasts that are looped back by ip_mloopback(), 568 * above, will be forwarded by the ip_input() routine, 569 * if necessary. 570 */ 571 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 572 /* 573 * If rsvp daemon is not running, do not 574 * set ip_moptions. This ensures that the packet 575 * is multicast and not just sent down one link 576 * as prescribed by rsvpd. 577 */ 578 if (!V_rsvp_on) 579 imo = NULL; 580 if (ip_mforward && 581 ip_mforward(ip, ifp, m, imo) != 0) { 582 m_freem(m); 583 goto done; 584 } 585 } 586 } 587 588 /* 589 * Multicasts with a time-to-live of zero may be looped- 590 * back, above, but must not be transmitted on a network. 591 * Also, multicasts addressed to the loopback interface 592 * are not sent -- the above call to ip_mloopback() will 593 * loop back a copy. ip_input() will drop the copy if 594 * this host does not belong to the destination group on 595 * the loopback interface. 596 */ 597 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 598 m_freem(m); 599 goto done; 600 } 601 602 goto sendit; 603 } 604 605 /* 606 * If the source address is not specified yet, use the address 607 * of the outoing interface. 608 */ 609 if (ip->ip_src.s_addr == INADDR_ANY) 610 ip->ip_src = src; 611 612 /* 613 * Look for broadcast address and 614 * verify user is allowed to send 615 * such a packet. 616 */ 617 if (isbroadcast) { 618 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 619 error = EADDRNOTAVAIL; 620 goto bad; 621 } 622 if ((flags & IP_ALLOWBROADCAST) == 0) { 623 error = EACCES; 624 goto bad; 625 } 626 /* don't allow broadcast messages to be fragmented */ 627 if (ip_len > mtu) { 628 error = EMSGSIZE; 629 goto bad; 630 } 631 m->m_flags |= M_BCAST; 632 } else { 633 m->m_flags &= ~M_BCAST; 634 } 635 636 sendit: 637 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 638 if (IPSEC_ENABLED(ipv4)) { 639 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 640 if (error == EINPROGRESS) 641 error = 0; 642 goto done; 643 } 644 } 645 /* 646 * Check if there was a route for this packet; return error if not. 647 */ 648 if (no_route_but_check_spd) { 649 IPSTAT_INC(ips_noroute); 650 error = EHOSTUNREACH; 651 goto bad; 652 } 653 /* Update variables that are affected by ipsec4_output(). */ 654 ip = mtod(m, struct ip *); 655 hlen = ip->ip_hl << 2; 656 #endif /* IPSEC */ 657 658 /* Jump over all PFIL processing if hooks are not active. */ 659 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 660 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 661 &error)) { 662 case 1: /* Finished */ 663 goto done; 664 665 case 0: /* Continue normally */ 666 ip = mtod(m, struct ip *); 667 break; 668 669 case -1: /* Need to try again */ 670 /* Reset everything for a new round */ 671 if (ro != NULL) { 672 RO_RTFREE(ro); 673 ro->ro_prepend = NULL; 674 } 675 gw = dst; 676 ip = mtod(m, struct ip *); 677 goto again; 678 679 } 680 } 681 682 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 683 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 684 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 685 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 686 IPSTAT_INC(ips_badaddr); 687 error = EADDRNOTAVAIL; 688 goto bad; 689 } 690 } 691 692 m->m_pkthdr.csum_flags |= CSUM_IP; 693 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 694 m = mb_unmapped_to_ext(m); 695 if (m == NULL) { 696 IPSTAT_INC(ips_odropped); 697 error = ENOBUFS; 698 goto bad; 699 } 700 in_delayed_cksum(m); 701 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 702 } else if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 703 m = mb_unmapped_to_ext(m); 704 if (m == NULL) { 705 IPSTAT_INC(ips_odropped); 706 error = ENOBUFS; 707 goto bad; 708 } 709 } 710 #ifdef SCTP 711 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 712 m = mb_unmapped_to_ext(m); 713 if (m == NULL) { 714 IPSTAT_INC(ips_odropped); 715 error = ENOBUFS; 716 goto bad; 717 } 718 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 719 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 720 } 721 #endif 722 723 /* 724 * If small enough for interface, or the interface will take 725 * care of the fragmentation for us, we can just send directly. 726 */ 727 if (ip_len <= mtu || 728 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 729 ip->ip_sum = 0; 730 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 731 ip->ip_sum = in_cksum(m, hlen); 732 m->m_pkthdr.csum_flags &= ~CSUM_IP; 733 } 734 735 /* 736 * Record statistics for this interface address. 737 * With CSUM_TSO the byte/packet count will be slightly 738 * incorrect because we count the IP+TCP headers only 739 * once instead of for every generated packet. 740 */ 741 if (!(flags & IP_FORWARDING) && ia) { 742 if (m->m_pkthdr.csum_flags & CSUM_TSO) 743 counter_u64_add(ia->ia_ifa.ifa_opackets, 744 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 745 else 746 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 747 748 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 749 } 750 #ifdef MBUF_STRESS_TEST 751 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 752 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 753 #endif 754 /* 755 * Reset layer specific mbuf flags 756 * to avoid confusing lower layers. 757 */ 758 m_clrprotoflags(m); 759 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 760 error = ip_output_send(inp, ifp, m, gw, ro); 761 goto done; 762 } 763 764 /* Balk when DF bit is set or the interface didn't support TSO. */ 765 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 766 error = EMSGSIZE; 767 IPSTAT_INC(ips_cantfrag); 768 goto bad; 769 } 770 771 /* 772 * Too large for interface; fragment if possible. If successful, 773 * on return, m will point to a list of packets to be sent. 774 */ 775 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 776 if (error) 777 goto bad; 778 for (; m; m = m0) { 779 m0 = m->m_nextpkt; 780 m->m_nextpkt = 0; 781 if (error == 0) { 782 /* Record statistics for this interface address. */ 783 if (ia != NULL) { 784 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 785 counter_u64_add(ia->ia_ifa.ifa_obytes, 786 m->m_pkthdr.len); 787 } 788 /* 789 * Reset layer specific mbuf flags 790 * to avoid confusing upper layers. 791 */ 792 m_clrprotoflags(m); 793 794 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 795 mtod(m, struct ip *), NULL); 796 error = ip_output_send(inp, ifp, m, gw, ro); 797 } else 798 m_freem(m); 799 } 800 801 if (error == 0) 802 IPSTAT_INC(ips_fragmented); 803 804 done: 805 NET_EPOCH_EXIT(et); 806 return (error); 807 bad: 808 m_freem(m); 809 goto done; 810 } 811 812 /* 813 * Create a chain of fragments which fit the given mtu. m_frag points to the 814 * mbuf to be fragmented; on return it points to the chain with the fragments. 815 * Return 0 if no error. If error, m_frag may contain a partially built 816 * chain of fragments that should be freed by the caller. 817 * 818 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 819 */ 820 int 821 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 822 u_long if_hwassist_flags) 823 { 824 int error = 0; 825 int hlen = ip->ip_hl << 2; 826 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 827 int off; 828 struct mbuf *m0 = *m_frag; /* the original packet */ 829 int firstlen; 830 struct mbuf **mnext; 831 int nfrags; 832 uint16_t ip_len, ip_off; 833 834 ip_len = ntohs(ip->ip_len); 835 ip_off = ntohs(ip->ip_off); 836 837 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 838 IPSTAT_INC(ips_cantfrag); 839 return EMSGSIZE; 840 } 841 842 /* 843 * Must be able to put at least 8 bytes per fragment. 844 */ 845 if (len < 8) 846 return EMSGSIZE; 847 848 /* 849 * If the interface will not calculate checksums on 850 * fragmented packets, then do it here. 851 */ 852 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 853 m0 = mb_unmapped_to_ext(m0); 854 if (m0 == NULL) { 855 error = ENOBUFS; 856 IPSTAT_INC(ips_odropped); 857 goto done; 858 } 859 in_delayed_cksum(m0); 860 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 861 } 862 #ifdef SCTP 863 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 864 m0 = mb_unmapped_to_ext(m0); 865 if (m0 == NULL) { 866 error = ENOBUFS; 867 IPSTAT_INC(ips_odropped); 868 goto done; 869 } 870 sctp_delayed_cksum(m0, hlen); 871 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 872 } 873 #endif 874 if (len > PAGE_SIZE) { 875 /* 876 * Fragment large datagrams such that each segment 877 * contains a multiple of PAGE_SIZE amount of data, 878 * plus headers. This enables a receiver to perform 879 * page-flipping zero-copy optimizations. 880 * 881 * XXX When does this help given that sender and receiver 882 * could have different page sizes, and also mtu could 883 * be less than the receiver's page size ? 884 */ 885 int newlen; 886 887 off = MIN(mtu, m0->m_pkthdr.len); 888 889 /* 890 * firstlen (off - hlen) must be aligned on an 891 * 8-byte boundary 892 */ 893 if (off < hlen) 894 goto smart_frag_failure; 895 off = ((off - hlen) & ~7) + hlen; 896 newlen = (~PAGE_MASK) & mtu; 897 if ((newlen + sizeof (struct ip)) > mtu) { 898 /* we failed, go back the default */ 899 smart_frag_failure: 900 newlen = len; 901 off = hlen + len; 902 } 903 len = newlen; 904 905 } else { 906 off = hlen + len; 907 } 908 909 firstlen = off - hlen; 910 mnext = &m0->m_nextpkt; /* pointer to next packet */ 911 912 /* 913 * Loop through length of segment after first fragment, 914 * make new header and copy data of each part and link onto chain. 915 * Here, m0 is the original packet, m is the fragment being created. 916 * The fragments are linked off the m_nextpkt of the original 917 * packet, which after processing serves as the first fragment. 918 */ 919 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 920 struct ip *mhip; /* ip header on the fragment */ 921 struct mbuf *m; 922 int mhlen = sizeof (struct ip); 923 924 m = m_gethdr(M_NOWAIT, MT_DATA); 925 if (m == NULL) { 926 error = ENOBUFS; 927 IPSTAT_INC(ips_odropped); 928 goto done; 929 } 930 /* 931 * Make sure the complete packet header gets copied 932 * from the originating mbuf to the newly created 933 * mbuf. This also ensures that existing firewall 934 * classification(s), VLAN tags and so on get copied 935 * to the resulting fragmented packet(s): 936 */ 937 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 938 m_free(m); 939 error = ENOBUFS; 940 IPSTAT_INC(ips_odropped); 941 goto done; 942 } 943 /* 944 * In the first mbuf, leave room for the link header, then 945 * copy the original IP header including options. The payload 946 * goes into an additional mbuf chain returned by m_copym(). 947 */ 948 m->m_data += max_linkhdr; 949 mhip = mtod(m, struct ip *); 950 *mhip = *ip; 951 if (hlen > sizeof (struct ip)) { 952 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 953 mhip->ip_v = IPVERSION; 954 mhip->ip_hl = mhlen >> 2; 955 } 956 m->m_len = mhlen; 957 /* XXX do we need to add ip_off below ? */ 958 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 959 if (off + len >= ip_len) 960 len = ip_len - off; 961 else 962 mhip->ip_off |= IP_MF; 963 mhip->ip_len = htons((u_short)(len + mhlen)); 964 m->m_next = m_copym(m0, off, len, M_NOWAIT); 965 if (m->m_next == NULL) { /* copy failed */ 966 m_free(m); 967 error = ENOBUFS; /* ??? */ 968 IPSTAT_INC(ips_odropped); 969 goto done; 970 } 971 m->m_pkthdr.len = mhlen + len; 972 #ifdef MAC 973 mac_netinet_fragment(m0, m); 974 #endif 975 mhip->ip_off = htons(mhip->ip_off); 976 mhip->ip_sum = 0; 977 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 978 mhip->ip_sum = in_cksum(m, mhlen); 979 m->m_pkthdr.csum_flags &= ~CSUM_IP; 980 } 981 *mnext = m; 982 mnext = &m->m_nextpkt; 983 } 984 IPSTAT_ADD(ips_ofragments, nfrags); 985 986 /* 987 * Update first fragment by trimming what's been copied out 988 * and updating header. 989 */ 990 m_adj(m0, hlen + firstlen - ip_len); 991 m0->m_pkthdr.len = hlen + firstlen; 992 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 993 ip->ip_off = htons(ip_off | IP_MF); 994 ip->ip_sum = 0; 995 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 996 ip->ip_sum = in_cksum(m0, hlen); 997 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 998 } 999 1000 done: 1001 *m_frag = m0; 1002 return error; 1003 } 1004 1005 void 1006 in_delayed_cksum(struct mbuf *m) 1007 { 1008 struct ip *ip; 1009 struct udphdr *uh; 1010 uint16_t cklen, csum, offset; 1011 1012 ip = mtod(m, struct ip *); 1013 offset = ip->ip_hl << 2 ; 1014 1015 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1016 /* if udp header is not in the first mbuf copy udplen */ 1017 if (offset + sizeof(struct udphdr) > m->m_len) { 1018 m_copydata(m, offset + offsetof(struct udphdr, 1019 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1020 cklen = ntohs(cklen); 1021 } else { 1022 uh = (struct udphdr *)mtodo(m, offset); 1023 cklen = ntohs(uh->uh_ulen); 1024 } 1025 csum = in_cksum_skip(m, cklen + offset, offset); 1026 if (csum == 0) 1027 csum = 0xffff; 1028 } else { 1029 cklen = ntohs(ip->ip_len); 1030 csum = in_cksum_skip(m, cklen, offset); 1031 } 1032 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1033 1034 if (offset + sizeof(csum) > m->m_len) 1035 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1036 else 1037 *(u_short *)mtodo(m, offset) = csum; 1038 } 1039 1040 /* 1041 * IP socket option processing. 1042 */ 1043 int 1044 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1045 { 1046 struct inpcb *inp = sotoinpcb(so); 1047 int error, optval; 1048 #ifdef RSS 1049 uint32_t rss_bucket; 1050 int retval; 1051 #endif 1052 1053 error = optval = 0; 1054 if (sopt->sopt_level != IPPROTO_IP) { 1055 error = EINVAL; 1056 1057 if (sopt->sopt_level == SOL_SOCKET && 1058 sopt->sopt_dir == SOPT_SET) { 1059 switch (sopt->sopt_name) { 1060 case SO_REUSEADDR: 1061 INP_WLOCK(inp); 1062 if ((so->so_options & SO_REUSEADDR) != 0) 1063 inp->inp_flags2 |= INP_REUSEADDR; 1064 else 1065 inp->inp_flags2 &= ~INP_REUSEADDR; 1066 INP_WUNLOCK(inp); 1067 error = 0; 1068 break; 1069 case SO_REUSEPORT: 1070 INP_WLOCK(inp); 1071 if ((so->so_options & SO_REUSEPORT) != 0) 1072 inp->inp_flags2 |= INP_REUSEPORT; 1073 else 1074 inp->inp_flags2 &= ~INP_REUSEPORT; 1075 INP_WUNLOCK(inp); 1076 error = 0; 1077 break; 1078 case SO_REUSEPORT_LB: 1079 INP_WLOCK(inp); 1080 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1081 inp->inp_flags2 |= INP_REUSEPORT_LB; 1082 else 1083 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1084 INP_WUNLOCK(inp); 1085 error = 0; 1086 break; 1087 case SO_SETFIB: 1088 INP_WLOCK(inp); 1089 inp->inp_inc.inc_fibnum = so->so_fibnum; 1090 INP_WUNLOCK(inp); 1091 error = 0; 1092 break; 1093 case SO_MAX_PACING_RATE: 1094 #ifdef RATELIMIT 1095 INP_WLOCK(inp); 1096 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1097 INP_WUNLOCK(inp); 1098 error = 0; 1099 #else 1100 error = EOPNOTSUPP; 1101 #endif 1102 break; 1103 default: 1104 break; 1105 } 1106 } 1107 return (error); 1108 } 1109 1110 switch (sopt->sopt_dir) { 1111 case SOPT_SET: 1112 switch (sopt->sopt_name) { 1113 case IP_OPTIONS: 1114 #ifdef notyet 1115 case IP_RETOPTS: 1116 #endif 1117 { 1118 struct mbuf *m; 1119 if (sopt->sopt_valsize > MLEN) { 1120 error = EMSGSIZE; 1121 break; 1122 } 1123 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1124 if (m == NULL) { 1125 error = ENOBUFS; 1126 break; 1127 } 1128 m->m_len = sopt->sopt_valsize; 1129 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1130 m->m_len); 1131 if (error) { 1132 m_free(m); 1133 break; 1134 } 1135 INP_WLOCK(inp); 1136 error = ip_pcbopts(inp, sopt->sopt_name, m); 1137 INP_WUNLOCK(inp); 1138 return (error); 1139 } 1140 1141 case IP_BINDANY: 1142 if (sopt->sopt_td != NULL) { 1143 error = priv_check(sopt->sopt_td, 1144 PRIV_NETINET_BINDANY); 1145 if (error) 1146 break; 1147 } 1148 /* FALLTHROUGH */ 1149 case IP_BINDMULTI: 1150 #ifdef RSS 1151 case IP_RSS_LISTEN_BUCKET: 1152 #endif 1153 case IP_TOS: 1154 case IP_TTL: 1155 case IP_MINTTL: 1156 case IP_RECVOPTS: 1157 case IP_RECVRETOPTS: 1158 case IP_ORIGDSTADDR: 1159 case IP_RECVDSTADDR: 1160 case IP_RECVTTL: 1161 case IP_RECVIF: 1162 case IP_ONESBCAST: 1163 case IP_DONTFRAG: 1164 case IP_RECVTOS: 1165 case IP_RECVFLOWID: 1166 #ifdef RSS 1167 case IP_RECVRSSBUCKETID: 1168 #endif 1169 error = sooptcopyin(sopt, &optval, sizeof optval, 1170 sizeof optval); 1171 if (error) 1172 break; 1173 1174 switch (sopt->sopt_name) { 1175 case IP_TOS: 1176 inp->inp_ip_tos = optval; 1177 break; 1178 1179 case IP_TTL: 1180 inp->inp_ip_ttl = optval; 1181 break; 1182 1183 case IP_MINTTL: 1184 if (optval >= 0 && optval <= MAXTTL) 1185 inp->inp_ip_minttl = optval; 1186 else 1187 error = EINVAL; 1188 break; 1189 1190 #define OPTSET(bit) do { \ 1191 INP_WLOCK(inp); \ 1192 if (optval) \ 1193 inp->inp_flags |= bit; \ 1194 else \ 1195 inp->inp_flags &= ~bit; \ 1196 INP_WUNLOCK(inp); \ 1197 } while (0) 1198 1199 #define OPTSET2(bit, val) do { \ 1200 INP_WLOCK(inp); \ 1201 if (val) \ 1202 inp->inp_flags2 |= bit; \ 1203 else \ 1204 inp->inp_flags2 &= ~bit; \ 1205 INP_WUNLOCK(inp); \ 1206 } while (0) 1207 1208 case IP_RECVOPTS: 1209 OPTSET(INP_RECVOPTS); 1210 break; 1211 1212 case IP_RECVRETOPTS: 1213 OPTSET(INP_RECVRETOPTS); 1214 break; 1215 1216 case IP_RECVDSTADDR: 1217 OPTSET(INP_RECVDSTADDR); 1218 break; 1219 1220 case IP_ORIGDSTADDR: 1221 OPTSET2(INP_ORIGDSTADDR, optval); 1222 break; 1223 1224 case IP_RECVTTL: 1225 OPTSET(INP_RECVTTL); 1226 break; 1227 1228 case IP_RECVIF: 1229 OPTSET(INP_RECVIF); 1230 break; 1231 1232 case IP_ONESBCAST: 1233 OPTSET(INP_ONESBCAST); 1234 break; 1235 case IP_DONTFRAG: 1236 OPTSET(INP_DONTFRAG); 1237 break; 1238 case IP_BINDANY: 1239 OPTSET(INP_BINDANY); 1240 break; 1241 case IP_RECVTOS: 1242 OPTSET(INP_RECVTOS); 1243 break; 1244 case IP_BINDMULTI: 1245 OPTSET2(INP_BINDMULTI, optval); 1246 break; 1247 case IP_RECVFLOWID: 1248 OPTSET2(INP_RECVFLOWID, optval); 1249 break; 1250 #ifdef RSS 1251 case IP_RSS_LISTEN_BUCKET: 1252 if ((optval >= 0) && 1253 (optval < rss_getnumbuckets())) { 1254 inp->inp_rss_listen_bucket = optval; 1255 OPTSET2(INP_RSS_BUCKET_SET, 1); 1256 } else { 1257 error = EINVAL; 1258 } 1259 break; 1260 case IP_RECVRSSBUCKETID: 1261 OPTSET2(INP_RECVRSSBUCKETID, optval); 1262 break; 1263 #endif 1264 } 1265 break; 1266 #undef OPTSET 1267 #undef OPTSET2 1268 1269 /* 1270 * Multicast socket options are processed by the in_mcast 1271 * module. 1272 */ 1273 case IP_MULTICAST_IF: 1274 case IP_MULTICAST_VIF: 1275 case IP_MULTICAST_TTL: 1276 case IP_MULTICAST_LOOP: 1277 case IP_ADD_MEMBERSHIP: 1278 case IP_DROP_MEMBERSHIP: 1279 case IP_ADD_SOURCE_MEMBERSHIP: 1280 case IP_DROP_SOURCE_MEMBERSHIP: 1281 case IP_BLOCK_SOURCE: 1282 case IP_UNBLOCK_SOURCE: 1283 case IP_MSFILTER: 1284 case MCAST_JOIN_GROUP: 1285 case MCAST_LEAVE_GROUP: 1286 case MCAST_JOIN_SOURCE_GROUP: 1287 case MCAST_LEAVE_SOURCE_GROUP: 1288 case MCAST_BLOCK_SOURCE: 1289 case MCAST_UNBLOCK_SOURCE: 1290 error = inp_setmoptions(inp, sopt); 1291 break; 1292 1293 case IP_PORTRANGE: 1294 error = sooptcopyin(sopt, &optval, sizeof optval, 1295 sizeof optval); 1296 if (error) 1297 break; 1298 1299 INP_WLOCK(inp); 1300 switch (optval) { 1301 case IP_PORTRANGE_DEFAULT: 1302 inp->inp_flags &= ~(INP_LOWPORT); 1303 inp->inp_flags &= ~(INP_HIGHPORT); 1304 break; 1305 1306 case IP_PORTRANGE_HIGH: 1307 inp->inp_flags &= ~(INP_LOWPORT); 1308 inp->inp_flags |= INP_HIGHPORT; 1309 break; 1310 1311 case IP_PORTRANGE_LOW: 1312 inp->inp_flags &= ~(INP_HIGHPORT); 1313 inp->inp_flags |= INP_LOWPORT; 1314 break; 1315 1316 default: 1317 error = EINVAL; 1318 break; 1319 } 1320 INP_WUNLOCK(inp); 1321 break; 1322 1323 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1324 case IP_IPSEC_POLICY: 1325 if (IPSEC_ENABLED(ipv4)) { 1326 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1327 break; 1328 } 1329 /* FALLTHROUGH */ 1330 #endif /* IPSEC */ 1331 1332 default: 1333 error = ENOPROTOOPT; 1334 break; 1335 } 1336 break; 1337 1338 case SOPT_GET: 1339 switch (sopt->sopt_name) { 1340 case IP_OPTIONS: 1341 case IP_RETOPTS: 1342 INP_RLOCK(inp); 1343 if (inp->inp_options) { 1344 struct mbuf *options; 1345 1346 options = m_copym(inp->inp_options, 0, 1347 M_COPYALL, M_NOWAIT); 1348 INP_RUNLOCK(inp); 1349 if (options != NULL) { 1350 error = sooptcopyout(sopt, 1351 mtod(options, char *), 1352 options->m_len); 1353 m_freem(options); 1354 } else 1355 error = ENOMEM; 1356 } else { 1357 INP_RUNLOCK(inp); 1358 sopt->sopt_valsize = 0; 1359 } 1360 break; 1361 1362 case IP_TOS: 1363 case IP_TTL: 1364 case IP_MINTTL: 1365 case IP_RECVOPTS: 1366 case IP_RECVRETOPTS: 1367 case IP_ORIGDSTADDR: 1368 case IP_RECVDSTADDR: 1369 case IP_RECVTTL: 1370 case IP_RECVIF: 1371 case IP_PORTRANGE: 1372 case IP_ONESBCAST: 1373 case IP_DONTFRAG: 1374 case IP_BINDANY: 1375 case IP_RECVTOS: 1376 case IP_BINDMULTI: 1377 case IP_FLOWID: 1378 case IP_FLOWTYPE: 1379 case IP_RECVFLOWID: 1380 #ifdef RSS 1381 case IP_RSSBUCKETID: 1382 case IP_RECVRSSBUCKETID: 1383 #endif 1384 switch (sopt->sopt_name) { 1385 1386 case IP_TOS: 1387 optval = inp->inp_ip_tos; 1388 break; 1389 1390 case IP_TTL: 1391 optval = inp->inp_ip_ttl; 1392 break; 1393 1394 case IP_MINTTL: 1395 optval = inp->inp_ip_minttl; 1396 break; 1397 1398 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1399 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1400 1401 case IP_RECVOPTS: 1402 optval = OPTBIT(INP_RECVOPTS); 1403 break; 1404 1405 case IP_RECVRETOPTS: 1406 optval = OPTBIT(INP_RECVRETOPTS); 1407 break; 1408 1409 case IP_RECVDSTADDR: 1410 optval = OPTBIT(INP_RECVDSTADDR); 1411 break; 1412 1413 case IP_ORIGDSTADDR: 1414 optval = OPTBIT2(INP_ORIGDSTADDR); 1415 break; 1416 1417 case IP_RECVTTL: 1418 optval = OPTBIT(INP_RECVTTL); 1419 break; 1420 1421 case IP_RECVIF: 1422 optval = OPTBIT(INP_RECVIF); 1423 break; 1424 1425 case IP_PORTRANGE: 1426 if (inp->inp_flags & INP_HIGHPORT) 1427 optval = IP_PORTRANGE_HIGH; 1428 else if (inp->inp_flags & INP_LOWPORT) 1429 optval = IP_PORTRANGE_LOW; 1430 else 1431 optval = 0; 1432 break; 1433 1434 case IP_ONESBCAST: 1435 optval = OPTBIT(INP_ONESBCAST); 1436 break; 1437 case IP_DONTFRAG: 1438 optval = OPTBIT(INP_DONTFRAG); 1439 break; 1440 case IP_BINDANY: 1441 optval = OPTBIT(INP_BINDANY); 1442 break; 1443 case IP_RECVTOS: 1444 optval = OPTBIT(INP_RECVTOS); 1445 break; 1446 case IP_FLOWID: 1447 optval = inp->inp_flowid; 1448 break; 1449 case IP_FLOWTYPE: 1450 optval = inp->inp_flowtype; 1451 break; 1452 case IP_RECVFLOWID: 1453 optval = OPTBIT2(INP_RECVFLOWID); 1454 break; 1455 #ifdef RSS 1456 case IP_RSSBUCKETID: 1457 retval = rss_hash2bucket(inp->inp_flowid, 1458 inp->inp_flowtype, 1459 &rss_bucket); 1460 if (retval == 0) 1461 optval = rss_bucket; 1462 else 1463 error = EINVAL; 1464 break; 1465 case IP_RECVRSSBUCKETID: 1466 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1467 break; 1468 #endif 1469 case IP_BINDMULTI: 1470 optval = OPTBIT2(INP_BINDMULTI); 1471 break; 1472 } 1473 error = sooptcopyout(sopt, &optval, sizeof optval); 1474 break; 1475 1476 /* 1477 * Multicast socket options are processed by the in_mcast 1478 * module. 1479 */ 1480 case IP_MULTICAST_IF: 1481 case IP_MULTICAST_VIF: 1482 case IP_MULTICAST_TTL: 1483 case IP_MULTICAST_LOOP: 1484 case IP_MSFILTER: 1485 error = inp_getmoptions(inp, sopt); 1486 break; 1487 1488 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1489 case IP_IPSEC_POLICY: 1490 if (IPSEC_ENABLED(ipv4)) { 1491 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1492 break; 1493 } 1494 /* FALLTHROUGH */ 1495 #endif /* IPSEC */ 1496 1497 default: 1498 error = ENOPROTOOPT; 1499 break; 1500 } 1501 break; 1502 } 1503 return (error); 1504 } 1505 1506 /* 1507 * Routine called from ip_output() to loop back a copy of an IP multicast 1508 * packet to the input queue of a specified interface. Note that this 1509 * calls the output routine of the loopback "driver", but with an interface 1510 * pointer that might NOT be a loopback interface -- evil, but easier than 1511 * replicating that code here. 1512 */ 1513 static void 1514 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1515 { 1516 struct ip *ip; 1517 struct mbuf *copym; 1518 1519 /* 1520 * Make a deep copy of the packet because we're going to 1521 * modify the pack in order to generate checksums. 1522 */ 1523 copym = m_dup(m, M_NOWAIT); 1524 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1525 copym = m_pullup(copym, hlen); 1526 if (copym != NULL) { 1527 /* If needed, compute the checksum and mark it as valid. */ 1528 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1529 in_delayed_cksum(copym); 1530 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1531 copym->m_pkthdr.csum_flags |= 1532 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1533 copym->m_pkthdr.csum_data = 0xffff; 1534 } 1535 /* 1536 * We don't bother to fragment if the IP length is greater 1537 * than the interface's MTU. Can this possibly matter? 1538 */ 1539 ip = mtod(copym, struct ip *); 1540 ip->ip_sum = 0; 1541 ip->ip_sum = in_cksum(copym, hlen); 1542 if_simloop(ifp, copym, AF_INET, 0); 1543 } 1544 } 1545