xref: /freebsd/sys/netinet/ip_output.c (revision 61afd5bb22d787b0641523e7b9b95c964d669bd5)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34  *	$Id: ip_output.c,v 1.45 1996/11/11 04:56:19 fenner Exp $
35  */
36 
37 #define _IP_VHL
38 
39 #include <sys/param.h>
40 #include <sys/queue.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/errno.h>
45 #include <sys/protosw.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 
49 #include <net/if.h>
50 #include <net/route.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/ip.h>
55 #include <netinet/in_pcb.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip_var.h>
58 
59 #ifdef vax
60 #include <machine/mtpr.h>
61 #endif
62 #include <machine/in_cksum.h>
63 
64 #if !defined(COMPAT_IPFW) || COMPAT_IPFW == 1
65 #undef COMPAT_IPFW
66 #define COMPAT_IPFW 1
67 #else
68 #undef COMPAT_IPFW
69 #endif
70 
71 u_short ip_id;
72 
73 static struct mbuf *ip_insertoptions __P((struct mbuf *, struct mbuf *, int *));
74 static void	ip_mloopback
75 	__P((struct ifnet *, struct mbuf *, struct sockaddr_in *));
76 static int	ip_getmoptions
77 	__P((int, struct ip_moptions *, struct mbuf **));
78 static int	ip_optcopy __P((struct ip *, struct ip *));
79 static int	ip_pcbopts __P((struct mbuf **, struct mbuf *));
80 static int	ip_setmoptions
81 	__P((int, struct ip_moptions **, struct mbuf *));
82 
83 extern	struct protosw inetsw[];
84 
85 /*
86  * IP output.  The packet in mbuf chain m contains a skeletal IP
87  * header (with len, off, ttl, proto, tos, src, dst).
88  * The mbuf chain containing the packet will be freed.
89  * The mbuf opt, if present, will not be freed.
90  */
91 int
92 ip_output(m0, opt, ro, flags, imo)
93 	struct mbuf *m0;
94 	struct mbuf *opt;
95 	struct route *ro;
96 	int flags;
97 	struct ip_moptions *imo;
98 {
99 	struct ip *ip, *mhip;
100 	struct ifnet *ifp;
101 	struct mbuf *m = m0;
102 	int hlen = sizeof (struct ip);
103 	int len, off, error = 0;
104 	struct sockaddr_in *dst;
105 	struct in_ifaddr *ia;
106 	int isbroadcast;
107 
108 #ifdef	DIAGNOSTIC
109 	if ((m->m_flags & M_PKTHDR) == 0)
110 		panic("ip_output no HDR");
111 	if (!ro)
112 		panic("ip_output no route, proto = %d",
113 		      mtod(m, struct ip *)->ip_p);
114 #endif
115 	if (opt) {
116 		m = ip_insertoptions(m, opt, &len);
117 		hlen = len;
118 	}
119 	ip = mtod(m, struct ip *);
120 	/*
121 	 * Fill in IP header.
122 	 */
123 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
124 		ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
125 		ip->ip_off &= IP_DF;
126 		ip->ip_id = htons(ip_id++);
127 		ipstat.ips_localout++;
128 	} else {
129 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
130 	}
131 
132 	dst = (struct sockaddr_in *)&ro->ro_dst;
133 	/*
134 	 * If there is a cached route,
135 	 * check that it is to the same destination
136 	 * and is still up.  If not, free it and try again.
137 	 */
138 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
139 	   dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
140 		RTFREE(ro->ro_rt);
141 		ro->ro_rt = (struct rtentry *)0;
142 	}
143 	if (ro->ro_rt == 0) {
144 		dst->sin_family = AF_INET;
145 		dst->sin_len = sizeof(*dst);
146 		dst->sin_addr = ip->ip_dst;
147 	}
148 	/*
149 	 * If routing to interface only,
150 	 * short circuit routing lookup.
151 	 */
152 #define ifatoia(ifa)	((struct in_ifaddr *)(ifa))
153 #define sintosa(sin)	((struct sockaddr *)(sin))
154 	if (flags & IP_ROUTETOIF) {
155 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
156 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
157 			ipstat.ips_noroute++;
158 			error = ENETUNREACH;
159 			goto bad;
160 		}
161 		ifp = ia->ia_ifp;
162 		ip->ip_ttl = 1;
163 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
164 	} else {
165 		/*
166 		 * If this is the case, we probably don't want to allocate
167 		 * a protocol-cloned route since we didn't get one from the
168 		 * ULP.  This lets TCP do its thing, while not burdening
169 		 * forwarding or ICMP with the overhead of cloning a route.
170 		 * Of course, we still want to do any cloning requested by
171 		 * the link layer, as this is probably required in all cases
172 		 * for correct operation (as it is for ARP).
173 		 */
174 		if (ro->ro_rt == 0)
175 			rtalloc_ign(ro, RTF_PRCLONING);
176 		if (ro->ro_rt == 0) {
177 			ipstat.ips_noroute++;
178 			error = EHOSTUNREACH;
179 			goto bad;
180 		}
181 		ia = ifatoia(ro->ro_rt->rt_ifa);
182 		ifp = ro->ro_rt->rt_ifp;
183 		ro->ro_rt->rt_use++;
184 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
185 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
186 		if (ro->ro_rt->rt_flags & RTF_HOST)
187 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
188 		else
189 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
190 	}
191 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
192 		struct in_multi *inm;
193 
194 		m->m_flags |= M_MCAST;
195 		/*
196 		 * IP destination address is multicast.  Make sure "dst"
197 		 * still points to the address in "ro".  (It may have been
198 		 * changed to point to a gateway address, above.)
199 		 */
200 		dst = (struct sockaddr_in *)&ro->ro_dst;
201 		/*
202 		 * See if the caller provided any multicast options
203 		 */
204 		if (imo != NULL) {
205 			ip->ip_ttl = imo->imo_multicast_ttl;
206 			if (imo->imo_multicast_ifp != NULL)
207 				ifp = imo->imo_multicast_ifp;
208 			if (imo->imo_multicast_vif != -1)
209 				ip->ip_src.s_addr =
210 				    ip_mcast_src(imo->imo_multicast_vif);
211 		} else
212 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
213 		/*
214 		 * Confirm that the outgoing interface supports multicast.
215 		 */
216 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
217 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
218 				ipstat.ips_noroute++;
219 				error = ENETUNREACH;
220 				goto bad;
221 			}
222 		}
223 		/*
224 		 * If source address not specified yet, use address
225 		 * of outgoing interface.
226 		 */
227 		if (ip->ip_src.s_addr == INADDR_ANY) {
228 			register struct in_ifaddr *ia;
229 
230 			for (ia = in_ifaddrhead.tqh_first; ia;
231 			     ia = ia->ia_link.tqe_next)
232 				if (ia->ia_ifp == ifp) {
233 					ip->ip_src = IA_SIN(ia)->sin_addr;
234 					break;
235 				}
236 		}
237 
238 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
239 		if (inm != NULL &&
240 		   (imo == NULL || imo->imo_multicast_loop)) {
241 			/*
242 			 * If we belong to the destination multicast group
243 			 * on the outgoing interface, and the caller did not
244 			 * forbid loopback, loop back a copy.
245 			 */
246 			ip_mloopback(ifp, m, dst);
247 		}
248 		else {
249 			/*
250 			 * If we are acting as a multicast router, perform
251 			 * multicast forwarding as if the packet had just
252 			 * arrived on the interface to which we are about
253 			 * to send.  The multicast forwarding function
254 			 * recursively calls this function, using the
255 			 * IP_FORWARDING flag to prevent infinite recursion.
256 			 *
257 			 * Multicasts that are looped back by ip_mloopback(),
258 			 * above, will be forwarded by the ip_input() routine,
259 			 * if necessary.
260 			 */
261 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
262 				/*
263 				 * Check if rsvp daemon is running. If not, don't
264 				 * set ip_moptions. This ensures that the packet
265 				 * is multicast and not just sent down one link
266 				 * as prescribed by rsvpd.
267 				 */
268 				if (!rsvp_on)
269 				  imo = NULL;
270 				if (ip_mforward(ip, ifp, m, imo) != 0) {
271 					m_freem(m);
272 					goto done;
273 				}
274 			}
275 		}
276 
277 		/*
278 		 * Multicasts with a time-to-live of zero may be looped-
279 		 * back, above, but must not be transmitted on a network.
280 		 * Also, multicasts addressed to the loopback interface
281 		 * are not sent -- the above call to ip_mloopback() will
282 		 * loop back a copy if this host actually belongs to the
283 		 * destination group on the loopback interface.
284 		 */
285 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
286 			m_freem(m);
287 			goto done;
288 		}
289 
290 		goto sendit;
291 	}
292 #ifndef notdef
293 	/*
294 	 * If source address not specified yet, use address
295 	 * of outgoing interface.
296 	 */
297 	if (ip->ip_src.s_addr == INADDR_ANY)
298 		ip->ip_src = IA_SIN(ia)->sin_addr;
299 #endif
300 	/*
301 	 * Verify that we have any chance at all of being able to queue
302 	 *      the packet or packet fragments
303 	 */
304 	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
305 		ifp->if_snd.ifq_maxlen) {
306 			error = ENOBUFS;
307 			goto bad;
308 	}
309 
310 	/*
311 	 * Look for broadcast address and
312 	 * and verify user is allowed to send
313 	 * such a packet.
314 	 */
315 	if (isbroadcast) {
316 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
317 			error = EADDRNOTAVAIL;
318 			goto bad;
319 		}
320 		if ((flags & IP_ALLOWBROADCAST) == 0) {
321 			error = EACCES;
322 			goto bad;
323 		}
324 		/* don't allow broadcast messages to be fragmented */
325 		if ((u_short)ip->ip_len > ifp->if_mtu) {
326 			error = EMSGSIZE;
327 			goto bad;
328 		}
329 		m->m_flags |= M_BCAST;
330 	} else {
331 		m->m_flags &= ~M_BCAST;
332 	}
333 
334 sendit:
335         /*
336 	 * IpHack's section.
337 	 * - Xlate: translate packet's addr/port (NAT).
338 	 * - Firewall: deny/allow
339 	 * - Wrap: fake packet's addr/port <unimpl.>
340 	 * - Encapsulate: put it in another IP and send out. <unimp.>
341 	 */
342 
343 #ifdef COMPAT_IPFW
344         if (ip_nat_ptr && !(*ip_nat_ptr)(&ip, &m, ifp, IP_NAT_OUT)) {
345 		error = EACCES;
346 		goto done;
347 	}
348 
349 	/*
350 	 * Check with the firewall...
351 	 */
352 	if (ip_fw_chk_ptr) {
353 		int action;
354 
355 #ifdef IPDIVERT
356 		action = (*ip_fw_chk_ptr)(&ip,
357 				hlen, ifp, (~0 << 16) | ip_divert_ignore, &m);
358 #else
359 		action = (*ip_fw_chk_ptr)(&ip, hlen, ifp, (~0 << 16), &m);
360 #endif
361 		if (action == -1) {
362 			error = EACCES;		/* XXX is this appropriate? */
363 			goto done;
364 		} else if (action != 0) {
365 #ifdef IPDIVERT
366 			ip_divert_port = action;	/* divert to port */
367 			(*inetsw[ip_protox[IPPROTO_DIVERT]].pr_input)(m, 0);
368 			goto done;
369 #else
370 			m_freem(m);	/* ipfw says divert, but we can't */
371 			goto done;
372 #endif
373 		}
374 	}
375 #endif /* COMPAT_IPFW */
376 
377 	/*
378 	 * If small enough for interface, can just send directly.
379 	 */
380 	if ((u_short)ip->ip_len <= ifp->if_mtu) {
381 		ip->ip_len = htons((u_short)ip->ip_len);
382 		ip->ip_off = htons((u_short)ip->ip_off);
383 		ip->ip_sum = 0;
384 		if (ip->ip_vhl == IP_VHL_BORING) {
385 			ip->ip_sum = in_cksum_hdr(ip);
386 		} else {
387 			ip->ip_sum = in_cksum(m, hlen);
388 		}
389 		error = (*ifp->if_output)(ifp, m,
390 				(struct sockaddr *)dst, ro->ro_rt);
391 		goto done;
392 	}
393 	/*
394 	 * Too large for interface; fragment if possible.
395 	 * Must be able to put at least 8 bytes per fragment.
396 	 */
397 	if (ip->ip_off & IP_DF) {
398 		error = EMSGSIZE;
399 		/*
400 		 * This case can happen if the user changed the MTU
401 		 * of an interface after enabling IP on it.  Because
402 		 * most netifs don't keep track of routes pointing to
403 		 * them, there is no way for one to update all its
404 		 * routes when the MTU is changed.
405 		 */
406 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST))
407 		    && !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU)
408 		    && (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
409 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
410 		}
411 		ipstat.ips_cantfrag++;
412 		goto bad;
413 	}
414 	len = (ifp->if_mtu - hlen) &~ 7;
415 	if (len < 8) {
416 		error = EMSGSIZE;
417 		goto bad;
418 	}
419 
420     {
421 	int mhlen, firstlen = len;
422 	struct mbuf **mnext = &m->m_nextpkt;
423 
424 	/*
425 	 * Loop through length of segment after first fragment,
426 	 * make new header and copy data of each part and link onto chain.
427 	 */
428 	m0 = m;
429 	mhlen = sizeof (struct ip);
430 	for (off = hlen + len; off < (u_short)ip->ip_len; off += len) {
431 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
432 		if (m == 0) {
433 			error = ENOBUFS;
434 			ipstat.ips_odropped++;
435 			goto sendorfree;
436 		}
437 		m->m_data += max_linkhdr;
438 		mhip = mtod(m, struct ip *);
439 		*mhip = *ip;
440 		if (hlen > sizeof (struct ip)) {
441 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
442 			mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
443 		}
444 		m->m_len = mhlen;
445 		mhip->ip_off = ((off - hlen) >> 3) + (ip->ip_off & ~IP_MF);
446 		if (ip->ip_off & IP_MF)
447 			mhip->ip_off |= IP_MF;
448 		if (off + len >= (u_short)ip->ip_len)
449 			len = (u_short)ip->ip_len - off;
450 		else
451 			mhip->ip_off |= IP_MF;
452 		mhip->ip_len = htons((u_short)(len + mhlen));
453 		m->m_next = m_copy(m0, off, len);
454 		if (m->m_next == 0) {
455 			(void) m_free(m);
456 			error = ENOBUFS;	/* ??? */
457 			ipstat.ips_odropped++;
458 			goto sendorfree;
459 		}
460 		m->m_pkthdr.len = mhlen + len;
461 		m->m_pkthdr.rcvif = (struct ifnet *)0;
462 		mhip->ip_off = htons((u_short)mhip->ip_off);
463 		mhip->ip_sum = 0;
464 		if (mhip->ip_vhl == IP_VHL_BORING) {
465 			mhip->ip_sum = in_cksum_hdr(mhip);
466 		} else {
467 			mhip->ip_sum = in_cksum(m, mhlen);
468 		}
469 		*mnext = m;
470 		mnext = &m->m_nextpkt;
471 		ipstat.ips_ofragments++;
472 	}
473 	/*
474 	 * Update first fragment by trimming what's been copied out
475 	 * and updating header, then send each fragment (in order).
476 	 */
477 	m = m0;
478 	m_adj(m, hlen + firstlen - (u_short)ip->ip_len);
479 	m->m_pkthdr.len = hlen + firstlen;
480 	ip->ip_len = htons((u_short)m->m_pkthdr.len);
481 	ip->ip_off = htons((u_short)(ip->ip_off | IP_MF));
482 	ip->ip_sum = 0;
483 	if (ip->ip_vhl == IP_VHL_BORING) {
484 		ip->ip_sum = in_cksum_hdr(ip);
485 	} else {
486 		ip->ip_sum = in_cksum(m, hlen);
487 	}
488 sendorfree:
489 	for (m = m0; m; m = m0) {
490 		m0 = m->m_nextpkt;
491 		m->m_nextpkt = 0;
492 		if (error == 0)
493 			error = (*ifp->if_output)(ifp, m,
494 			    (struct sockaddr *)dst, ro->ro_rt);
495 		else
496 			m_freem(m);
497 	}
498 
499 	if (error == 0)
500 		ipstat.ips_fragmented++;
501     }
502 done:
503 	return (error);
504 bad:
505 	m_freem(m0);
506 	goto done;
507 }
508 
509 /*
510  * Insert IP options into preformed packet.
511  * Adjust IP destination as required for IP source routing,
512  * as indicated by a non-zero in_addr at the start of the options.
513  *
514  * XXX This routine assumes that the packet has no options in place.
515  */
516 static struct mbuf *
517 ip_insertoptions(m, opt, phlen)
518 	register struct mbuf *m;
519 	struct mbuf *opt;
520 	int *phlen;
521 {
522 	register struct ipoption *p = mtod(opt, struct ipoption *);
523 	struct mbuf *n;
524 	register struct ip *ip = mtod(m, struct ip *);
525 	unsigned optlen;
526 
527 	optlen = opt->m_len - sizeof(p->ipopt_dst);
528 	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET)
529 		return (m);		/* XXX should fail */
530 	if (p->ipopt_dst.s_addr)
531 		ip->ip_dst = p->ipopt_dst;
532 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
533 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
534 		if (n == 0)
535 			return (m);
536 		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
537 		m->m_len -= sizeof(struct ip);
538 		m->m_data += sizeof(struct ip);
539 		n->m_next = m;
540 		m = n;
541 		m->m_len = optlen + sizeof(struct ip);
542 		m->m_data += max_linkhdr;
543 		(void)memcpy(mtod(m, void *), ip, sizeof(struct ip));
544 	} else {
545 		m->m_data -= optlen;
546 		m->m_len += optlen;
547 		m->m_pkthdr.len += optlen;
548 		ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
549 	}
550 	ip = mtod(m, struct ip *);
551 	bcopy(p->ipopt_list, ip + 1, optlen);
552 	*phlen = sizeof(struct ip) + optlen;
553 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
554 	ip->ip_len += optlen;
555 	return (m);
556 }
557 
558 /*
559  * Copy options from ip to jp,
560  * omitting those not copied during fragmentation.
561  */
562 static int
563 ip_optcopy(ip, jp)
564 	struct ip *ip, *jp;
565 {
566 	register u_char *cp, *dp;
567 	int opt, optlen, cnt;
568 
569 	cp = (u_char *)(ip + 1);
570 	dp = (u_char *)(jp + 1);
571 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
572 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
573 		opt = cp[0];
574 		if (opt == IPOPT_EOL)
575 			break;
576 		if (opt == IPOPT_NOP) {
577 			/* Preserve for IP mcast tunnel's LSRR alignment. */
578 			*dp++ = IPOPT_NOP;
579 			optlen = 1;
580 			continue;
581 		} else
582 			optlen = cp[IPOPT_OLEN];
583 		/* bogus lengths should have been caught by ip_dooptions */
584 		if (optlen > cnt)
585 			optlen = cnt;
586 		if (IPOPT_COPIED(opt)) {
587 			bcopy(cp, dp, optlen);
588 			dp += optlen;
589 		}
590 	}
591 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
592 		*dp++ = IPOPT_EOL;
593 	return (optlen);
594 }
595 
596 /*
597  * IP socket option processing.
598  */
599 int
600 ip_ctloutput(op, so, level, optname, mp)
601 	int op;
602 	struct socket *so;
603 	int level, optname;
604 	struct mbuf **mp;
605 {
606 	register struct inpcb *inp = sotoinpcb(so);
607 	register struct mbuf *m = *mp;
608 	register int optval = 0;
609 	int error = 0;
610 
611 	if (level != IPPROTO_IP) {
612 		error = EINVAL;
613 		if (op == PRCO_SETOPT && *mp)
614 			(void) m_free(*mp);
615 	} else switch (op) {
616 
617 	case PRCO_SETOPT:
618 		switch (optname) {
619 		case IP_OPTIONS:
620 #ifdef notyet
621 		case IP_RETOPTS:
622 			return (ip_pcbopts(optname, &inp->inp_options, m));
623 #else
624 			return (ip_pcbopts(&inp->inp_options, m));
625 #endif
626 
627 		case IP_TOS:
628 		case IP_TTL:
629 		case IP_RECVOPTS:
630 		case IP_RECVRETOPTS:
631 		case IP_RECVDSTADDR:
632 		case IP_RECVIF:
633 			if (m == 0 || m->m_len != sizeof(int))
634 				error = EINVAL;
635 			else {
636 				optval = *mtod(m, int *);
637 				switch (optname) {
638 
639 				case IP_TOS:
640 					inp->inp_ip.ip_tos = optval;
641 					break;
642 
643 				case IP_TTL:
644 					inp->inp_ip.ip_ttl = optval;
645 					break;
646 #define	OPTSET(bit) \
647 	if (optval) \
648 		inp->inp_flags |= bit; \
649 	else \
650 		inp->inp_flags &= ~bit;
651 
652 				case IP_RECVOPTS:
653 					OPTSET(INP_RECVOPTS);
654 					break;
655 
656 				case IP_RECVRETOPTS:
657 					OPTSET(INP_RECVRETOPTS);
658 					break;
659 
660 				case IP_RECVDSTADDR:
661 					OPTSET(INP_RECVDSTADDR);
662 					break;
663 
664 				case IP_RECVIF:
665 					OPTSET(INP_RECVIF);
666 					break;
667 				}
668 			}
669 			break;
670 #undef OPTSET
671 
672 		case IP_MULTICAST_IF:
673 		case IP_MULTICAST_VIF:
674 		case IP_MULTICAST_TTL:
675 		case IP_MULTICAST_LOOP:
676 		case IP_ADD_MEMBERSHIP:
677 		case IP_DROP_MEMBERSHIP:
678 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
679 			break;
680 
681 		case IP_PORTRANGE:
682 			if (m == 0 || m->m_len != sizeof(int))
683 				error = EINVAL;
684 			else {
685 				optval = *mtod(m, int *);
686 
687 				switch (optval) {
688 
689 				case IP_PORTRANGE_DEFAULT:
690 					inp->inp_flags &= ~(INP_LOWPORT);
691 					inp->inp_flags &= ~(INP_HIGHPORT);
692 					break;
693 
694 				case IP_PORTRANGE_HIGH:
695 					inp->inp_flags &= ~(INP_LOWPORT);
696 					inp->inp_flags |= INP_HIGHPORT;
697 					break;
698 
699 				case IP_PORTRANGE_LOW:
700 					inp->inp_flags &= ~(INP_HIGHPORT);
701 					inp->inp_flags |= INP_LOWPORT;
702 					break;
703 
704 				default:
705 					error = EINVAL;
706 					break;
707 				}
708 			}
709 			break;
710 
711 		default:
712 			error = ENOPROTOOPT;
713 			break;
714 		}
715 		if (m)
716 			(void)m_free(m);
717 		break;
718 
719 	case PRCO_GETOPT:
720 		switch (optname) {
721 		case IP_OPTIONS:
722 		case IP_RETOPTS:
723 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
724 			if (inp->inp_options) {
725 				m->m_len = inp->inp_options->m_len;
726 				bcopy(mtod(inp->inp_options, void *),
727 				    mtod(m, void *), m->m_len);
728 			} else
729 				m->m_len = 0;
730 			break;
731 
732 		case IP_TOS:
733 		case IP_TTL:
734 		case IP_RECVOPTS:
735 		case IP_RECVRETOPTS:
736 		case IP_RECVDSTADDR:
737 		case IP_RECVIF:
738 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
739 			m->m_len = sizeof(int);
740 			switch (optname) {
741 
742 			case IP_TOS:
743 				optval = inp->inp_ip.ip_tos;
744 				break;
745 
746 			case IP_TTL:
747 				optval = inp->inp_ip.ip_ttl;
748 				break;
749 
750 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
751 
752 			case IP_RECVOPTS:
753 				optval = OPTBIT(INP_RECVOPTS);
754 				break;
755 
756 			case IP_RECVRETOPTS:
757 				optval = OPTBIT(INP_RECVRETOPTS);
758 				break;
759 
760 			case IP_RECVDSTADDR:
761 				optval = OPTBIT(INP_RECVDSTADDR);
762 				break;
763 
764 			case IP_RECVIF:
765 				optval = OPTBIT(INP_RECVIF);
766 				break;
767 			}
768 			*mtod(m, int *) = optval;
769 			break;
770 
771 		case IP_MULTICAST_IF:
772 		case IP_MULTICAST_VIF:
773 		case IP_MULTICAST_TTL:
774 		case IP_MULTICAST_LOOP:
775 		case IP_ADD_MEMBERSHIP:
776 		case IP_DROP_MEMBERSHIP:
777 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
778 			break;
779 
780 		case IP_PORTRANGE:
781 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
782 			m->m_len = sizeof(int);
783 
784 			if (inp->inp_flags & INP_HIGHPORT)
785 				optval = IP_PORTRANGE_HIGH;
786 			else if (inp->inp_flags & INP_LOWPORT)
787 				optval = IP_PORTRANGE_LOW;
788 			else
789 				optval = 0;
790 
791 			*mtod(m, int *) = optval;
792 			break;
793 
794 		default:
795 			error = ENOPROTOOPT;
796 			break;
797 		}
798 		break;
799 	}
800 	return (error);
801 }
802 
803 /*
804  * Set up IP options in pcb for insertion in output packets.
805  * Store in mbuf with pointer in pcbopt, adding pseudo-option
806  * with destination address if source routed.
807  */
808 static int
809 #ifdef notyet
810 ip_pcbopts(optname, pcbopt, m)
811 	int optname;
812 #else
813 ip_pcbopts(pcbopt, m)
814 #endif
815 	struct mbuf **pcbopt;
816 	register struct mbuf *m;
817 {
818 	register cnt, optlen;
819 	register u_char *cp;
820 	u_char opt;
821 
822 	/* turn off any old options */
823 	if (*pcbopt)
824 		(void)m_free(*pcbopt);
825 	*pcbopt = 0;
826 	if (m == (struct mbuf *)0 || m->m_len == 0) {
827 		/*
828 		 * Only turning off any previous options.
829 		 */
830 		if (m)
831 			(void)m_free(m);
832 		return (0);
833 	}
834 
835 #ifndef	vax
836 	if (m->m_len % sizeof(long))
837 		goto bad;
838 #endif
839 	/*
840 	 * IP first-hop destination address will be stored before
841 	 * actual options; move other options back
842 	 * and clear it when none present.
843 	 */
844 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
845 		goto bad;
846 	cnt = m->m_len;
847 	m->m_len += sizeof(struct in_addr);
848 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
849 	ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt);
850 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
851 
852 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
853 		opt = cp[IPOPT_OPTVAL];
854 		if (opt == IPOPT_EOL)
855 			break;
856 		if (opt == IPOPT_NOP)
857 			optlen = 1;
858 		else {
859 			optlen = cp[IPOPT_OLEN];
860 			if (optlen <= IPOPT_OLEN || optlen > cnt)
861 				goto bad;
862 		}
863 		switch (opt) {
864 
865 		default:
866 			break;
867 
868 		case IPOPT_LSRR:
869 		case IPOPT_SSRR:
870 			/*
871 			 * user process specifies route as:
872 			 *	->A->B->C->D
873 			 * D must be our final destination (but we can't
874 			 * check that since we may not have connected yet).
875 			 * A is first hop destination, which doesn't appear in
876 			 * actual IP option, but is stored before the options.
877 			 */
878 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
879 				goto bad;
880 			m->m_len -= sizeof(struct in_addr);
881 			cnt -= sizeof(struct in_addr);
882 			optlen -= sizeof(struct in_addr);
883 			cp[IPOPT_OLEN] = optlen;
884 			/*
885 			 * Move first hop before start of options.
886 			 */
887 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
888 			    sizeof(struct in_addr));
889 			/*
890 			 * Then copy rest of options back
891 			 * to close up the deleted entry.
892 			 */
893 			ovbcopy((caddr_t)(&cp[IPOPT_OFFSET+1] +
894 			    sizeof(struct in_addr)),
895 			    (caddr_t)&cp[IPOPT_OFFSET+1],
896 			    (unsigned)cnt + sizeof(struct in_addr));
897 			break;
898 		}
899 	}
900 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
901 		goto bad;
902 	*pcbopt = m;
903 	return (0);
904 
905 bad:
906 	(void)m_free(m);
907 	return (EINVAL);
908 }
909 
910 /*
911  * Set the IP multicast options in response to user setsockopt().
912  */
913 static int
914 ip_setmoptions(optname, imop, m)
915 	int optname;
916 	struct ip_moptions **imop;
917 	struct mbuf *m;
918 {
919 	register int error = 0;
920 	u_char loop;
921 	register int i;
922 	struct in_addr addr;
923 	register struct ip_mreq *mreq;
924 	register struct ifnet *ifp;
925 	register struct ip_moptions *imo = *imop;
926 	struct route ro;
927 	register struct sockaddr_in *dst;
928 	int s;
929 
930 	if (imo == NULL) {
931 		/*
932 		 * No multicast option buffer attached to the pcb;
933 		 * allocate one and initialize to default values.
934 		 */
935 		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
936 		    M_WAITOK);
937 
938 		if (imo == NULL)
939 			return (ENOBUFS);
940 		*imop = imo;
941 		imo->imo_multicast_ifp = NULL;
942 		imo->imo_multicast_vif = -1;
943 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
944 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
945 		imo->imo_num_memberships = 0;
946 	}
947 
948 	switch (optname) {
949 	/* store an index number for the vif you wanna use in the send */
950 	case IP_MULTICAST_VIF:
951 		if (!legal_vif_num) {
952 			error = EOPNOTSUPP;
953 			break;
954 		}
955 		if (m == NULL || m->m_len != sizeof(int)) {
956 			error = EINVAL;
957 			break;
958 		}
959 		i = *(mtod(m, int *));
960 		if (!legal_vif_num(i) && (i != -1)) {
961 			error = EINVAL;
962 			break;
963 		}
964 		imo->imo_multicast_vif = i;
965 		break;
966 
967 	case IP_MULTICAST_IF:
968 		/*
969 		 * Select the interface for outgoing multicast packets.
970 		 */
971 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
972 			error = EINVAL;
973 			break;
974 		}
975 		addr = *(mtod(m, struct in_addr *));
976 		/*
977 		 * INADDR_ANY is used to remove a previous selection.
978 		 * When no interface is selected, a default one is
979 		 * chosen every time a multicast packet is sent.
980 		 */
981 		if (addr.s_addr == INADDR_ANY) {
982 			imo->imo_multicast_ifp = NULL;
983 			break;
984 		}
985 		/*
986 		 * The selected interface is identified by its local
987 		 * IP address.  Find the interface and confirm that
988 		 * it supports multicasting.
989 		 */
990 		s = splimp();
991 		INADDR_TO_IFP(addr, ifp);
992 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
993 			splx(s);
994 			error = EADDRNOTAVAIL;
995 			break;
996 		}
997 		imo->imo_multicast_ifp = ifp;
998 		splx(s);
999 		break;
1000 
1001 	case IP_MULTICAST_TTL:
1002 		/*
1003 		 * Set the IP time-to-live for outgoing multicast packets.
1004 		 */
1005 		if (m == NULL || m->m_len != 1) {
1006 			error = EINVAL;
1007 			break;
1008 		}
1009 		imo->imo_multicast_ttl = *(mtod(m, u_char *));
1010 		break;
1011 
1012 	case IP_MULTICAST_LOOP:
1013 		/*
1014 		 * Set the loopback flag for outgoing multicast packets.
1015 		 * Must be zero or one.
1016 		 */
1017 		if (m == NULL || m->m_len != 1 ||
1018 		   (loop = *(mtod(m, u_char *))) > 1) {
1019 			error = EINVAL;
1020 			break;
1021 		}
1022 		imo->imo_multicast_loop = loop;
1023 		break;
1024 
1025 	case IP_ADD_MEMBERSHIP:
1026 		/*
1027 		 * Add a multicast group membership.
1028 		 * Group must be a valid IP multicast address.
1029 		 */
1030 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1031 			error = EINVAL;
1032 			break;
1033 		}
1034 		mreq = mtod(m, struct ip_mreq *);
1035 		if (!IN_MULTICAST(ntohl(mreq->imr_multiaddr.s_addr))) {
1036 			error = EINVAL;
1037 			break;
1038 		}
1039 		s = splimp();
1040 		/*
1041 		 * If no interface address was provided, use the interface of
1042 		 * the route to the given multicast address.
1043 		 */
1044 		if (mreq->imr_interface.s_addr == INADDR_ANY) {
1045 			bzero((caddr_t)&ro, sizeof(ro));
1046 			dst = (struct sockaddr_in *)&ro.ro_dst;
1047 			dst->sin_len = sizeof(*dst);
1048 			dst->sin_family = AF_INET;
1049 			dst->sin_addr = mreq->imr_multiaddr;
1050 			rtalloc(&ro);
1051 			if (ro.ro_rt == NULL) {
1052 				error = EADDRNOTAVAIL;
1053 				splx(s);
1054 				break;
1055 			}
1056 			ifp = ro.ro_rt->rt_ifp;
1057 			rtfree(ro.ro_rt);
1058 		}
1059 		else {
1060 			INADDR_TO_IFP(mreq->imr_interface, ifp);
1061 		}
1062 
1063 		/*
1064 		 * See if we found an interface, and confirm that it
1065 		 * supports multicast.
1066 		 */
1067 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1068 			error = EADDRNOTAVAIL;
1069 			splx(s);
1070 			break;
1071 		}
1072 		/*
1073 		 * See if the membership already exists or if all the
1074 		 * membership slots are full.
1075 		 */
1076 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1077 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1078 			    imo->imo_membership[i]->inm_addr.s_addr
1079 						== mreq->imr_multiaddr.s_addr)
1080 				break;
1081 		}
1082 		if (i < imo->imo_num_memberships) {
1083 			error = EADDRINUSE;
1084 			splx(s);
1085 			break;
1086 		}
1087 		if (i == IP_MAX_MEMBERSHIPS) {
1088 			error = ETOOMANYREFS;
1089 			splx(s);
1090 			break;
1091 		}
1092 		/*
1093 		 * Everything looks good; add a new record to the multicast
1094 		 * address list for the given interface.
1095 		 */
1096 		if ((imo->imo_membership[i] =
1097 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1098 			error = ENOBUFS;
1099 			splx(s);
1100 			break;
1101 		}
1102 		++imo->imo_num_memberships;
1103 		splx(s);
1104 		break;
1105 
1106 	case IP_DROP_MEMBERSHIP:
1107 		/*
1108 		 * Drop a multicast group membership.
1109 		 * Group must be a valid IP multicast address.
1110 		 */
1111 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1112 			error = EINVAL;
1113 			break;
1114 		}
1115 		mreq = mtod(m, struct ip_mreq *);
1116 		if (!IN_MULTICAST(ntohl(mreq->imr_multiaddr.s_addr))) {
1117 			error = EINVAL;
1118 			break;
1119 		}
1120 
1121 		s = splimp();
1122 		/*
1123 		 * If an interface address was specified, get a pointer
1124 		 * to its ifnet structure.
1125 		 */
1126 		if (mreq->imr_interface.s_addr == INADDR_ANY)
1127 			ifp = NULL;
1128 		else {
1129 			INADDR_TO_IFP(mreq->imr_interface, ifp);
1130 			if (ifp == NULL) {
1131 				error = EADDRNOTAVAIL;
1132 				splx(s);
1133 				break;
1134 			}
1135 		}
1136 		/*
1137 		 * Find the membership in the membership array.
1138 		 */
1139 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1140 			if ((ifp == NULL ||
1141 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1142 			     imo->imo_membership[i]->inm_addr.s_addr ==
1143 			     mreq->imr_multiaddr.s_addr)
1144 				break;
1145 		}
1146 		if (i == imo->imo_num_memberships) {
1147 			error = EADDRNOTAVAIL;
1148 			splx(s);
1149 			break;
1150 		}
1151 		/*
1152 		 * Give up the multicast address record to which the
1153 		 * membership points.
1154 		 */
1155 		in_delmulti(imo->imo_membership[i]);
1156 		/*
1157 		 * Remove the gap in the membership array.
1158 		 */
1159 		for (++i; i < imo->imo_num_memberships; ++i)
1160 			imo->imo_membership[i-1] = imo->imo_membership[i];
1161 		--imo->imo_num_memberships;
1162 		splx(s);
1163 		break;
1164 
1165 	default:
1166 		error = EOPNOTSUPP;
1167 		break;
1168 	}
1169 
1170 	/*
1171 	 * If all options have default values, no need to keep the mbuf.
1172 	 */
1173 	if (imo->imo_multicast_ifp == NULL &&
1174 	    imo->imo_multicast_vif == -1 &&
1175 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1176 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1177 	    imo->imo_num_memberships == 0) {
1178 		free(*imop, M_IPMOPTS);
1179 		*imop = NULL;
1180 	}
1181 
1182 	return (error);
1183 }
1184 
1185 /*
1186  * Return the IP multicast options in response to user getsockopt().
1187  */
1188 static int
1189 ip_getmoptions(optname, imo, mp)
1190 	int optname;
1191 	register struct ip_moptions *imo;
1192 	register struct mbuf **mp;
1193 {
1194 	u_char *ttl;
1195 	u_char *loop;
1196 	struct in_addr *addr;
1197 	struct in_ifaddr *ia;
1198 
1199 	*mp = m_get(M_WAIT, MT_SOOPTS);
1200 
1201 	switch (optname) {
1202 
1203 	case IP_MULTICAST_VIF:
1204 		if (imo != NULL)
1205 			*(mtod(*mp, int *)) = imo->imo_multicast_vif;
1206 		else
1207 			*(mtod(*mp, int *)) = -1;
1208 		(*mp)->m_len = sizeof(int);
1209 		return(0);
1210 
1211 	case IP_MULTICAST_IF:
1212 		addr = mtod(*mp, struct in_addr *);
1213 		(*mp)->m_len = sizeof(struct in_addr);
1214 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1215 			addr->s_addr = INADDR_ANY;
1216 		else {
1217 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1218 			addr->s_addr = (ia == NULL) ? INADDR_ANY
1219 					: IA_SIN(ia)->sin_addr.s_addr;
1220 		}
1221 		return (0);
1222 
1223 	case IP_MULTICAST_TTL:
1224 		ttl = mtod(*mp, u_char *);
1225 		(*mp)->m_len = 1;
1226 		*ttl = (imo == NULL) ? IP_DEFAULT_MULTICAST_TTL
1227 				     : imo->imo_multicast_ttl;
1228 		return (0);
1229 
1230 	case IP_MULTICAST_LOOP:
1231 		loop = mtod(*mp, u_char *);
1232 		(*mp)->m_len = 1;
1233 		*loop = (imo == NULL) ? IP_DEFAULT_MULTICAST_LOOP
1234 				      : imo->imo_multicast_loop;
1235 		return (0);
1236 
1237 	default:
1238 		return (EOPNOTSUPP);
1239 	}
1240 }
1241 
1242 /*
1243  * Discard the IP multicast options.
1244  */
1245 void
1246 ip_freemoptions(imo)
1247 	register struct ip_moptions *imo;
1248 {
1249 	register int i;
1250 
1251 	if (imo != NULL) {
1252 		for (i = 0; i < imo->imo_num_memberships; ++i)
1253 			in_delmulti(imo->imo_membership[i]);
1254 		free(imo, M_IPMOPTS);
1255 	}
1256 }
1257 
1258 /*
1259  * Routine called from ip_output() to loop back a copy of an IP multicast
1260  * packet to the input queue of a specified interface.  Note that this
1261  * calls the output routine of the loopback "driver", but with an interface
1262  * pointer that might NOT be a loopback interface -- evil, but easier than
1263  * replicating that code here.
1264  */
1265 static void
1266 ip_mloopback(ifp, m, dst)
1267 	struct ifnet *ifp;
1268 	register struct mbuf *m;
1269 	register struct sockaddr_in *dst;
1270 {
1271 	register struct ip *ip;
1272 	struct mbuf *copym;
1273 
1274 	copym = m_copy(m, 0, M_COPYALL);
1275 	if (copym != NULL) {
1276 		/*
1277 		 * We don't bother to fragment if the IP length is greater
1278 		 * than the interface's MTU.  Can this possibly matter?
1279 		 */
1280 		ip = mtod(copym, struct ip *);
1281 		ip->ip_len = htons((u_short)ip->ip_len);
1282 		ip->ip_off = htons((u_short)ip->ip_off);
1283 		ip->ip_sum = 0;
1284 		if (ip->ip_vhl == IP_VHL_BORING) {
1285 			ip->ip_sum = in_cksum_hdr(ip);
1286 		} else {
1287 			ip->ip_sum = in_cksum(copym,
1288 					      IP_VHL_HL(ip->ip_vhl) << 2);
1289 		}
1290 		/*
1291 		 * NB:
1292 		 * We can't simply call ip_input() directly because
1293 		 * the ip_mforward() depends on the `input interface'
1294 		 * being set to something unreasonable so that we don't
1295 		 * attempt to forward the looped-back copy.
1296 		 * It's also not clear whether there are any lingering
1297 		 * reentrancy problems in other areas which might be
1298 		 * exposed by this code.  For the moment, we'll err
1299 		 * on the side of safety by continuing to abuse
1300 		 * loinput().
1301 		 */
1302 #ifdef notdef
1303 		copym->m_pkthdr.rcvif = &loif[0];
1304 		ip_input(copym)
1305 #else
1306 		(void) looutput(ifp, copym, (struct sockaddr *)dst, NULL);
1307 #endif
1308 	}
1309 }
1310