1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_ipfw.h" 37 #include "opt_ipsec.h" 38 #include "opt_mbuf_stress_test.h" 39 #include "opt_mpath.h" 40 #include "opt_route.h" 41 #include "opt_sctp.h" 42 #include "opt_rss.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/protosw.h> 52 #include <sys/sdt.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/sysctl.h> 56 #include <sys/ucred.h> 57 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #include <net/if_llatbl.h> 61 #include <net/netisr.h> 62 #include <net/pfil.h> 63 #include <net/route.h> 64 #include <net/flowtable.h> 65 #ifdef RADIX_MPATH 66 #include <net/radix_mpath.h> 67 #endif 68 #include <net/vnet.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_kdtrace.h> 72 #include <netinet/in_systm.h> 73 #include <netinet/ip.h> 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_rss.h> 76 #include <netinet/in_var.h> 77 #include <netinet/ip_var.h> 78 #include <netinet/ip_options.h> 79 #ifdef SCTP 80 #include <netinet/sctp.h> 81 #include <netinet/sctp_crc32.h> 82 #endif 83 84 #ifdef IPSEC 85 #include <netinet/ip_ipsec.h> 86 #include <netipsec/ipsec.h> 87 #endif /* IPSEC*/ 88 89 #include <machine/in_cksum.h> 90 91 #include <security/mac/mac_framework.h> 92 93 VNET_DEFINE(u_short, ip_id); 94 95 #ifdef MBUF_STRESS_TEST 96 static int mbuf_frag_size = 0; 97 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 98 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 99 #endif 100 101 static void ip_mloopback 102 (struct ifnet *, struct mbuf *, struct sockaddr_in *, int); 103 104 105 extern int in_mcast_loop; 106 extern struct protosw inetsw[]; 107 108 /* 109 * IP output. The packet in mbuf chain m contains a skeletal IP 110 * header (with len, off, ttl, proto, tos, src, dst). 111 * The mbuf chain containing the packet will be freed. 112 * The mbuf opt, if present, will not be freed. 113 * If route ro is present and has ro_rt initialized, route lookup would be 114 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 115 * then result of route lookup is stored in ro->ro_rt. 116 * 117 * In the IP forwarding case, the packet will arrive with options already 118 * inserted, so must have a NULL opt pointer. 119 */ 120 int 121 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 122 struct ip_moptions *imo, struct inpcb *inp) 123 { 124 struct ip *ip; 125 struct ifnet *ifp = NULL; /* keep compiler happy */ 126 struct mbuf *m0; 127 int hlen = sizeof (struct ip); 128 int mtu; 129 int error = 0; 130 struct sockaddr_in *dst; 131 const struct sockaddr_in *gw; 132 struct in_ifaddr *ia; 133 int isbroadcast; 134 uint16_t ip_len, ip_off; 135 struct route iproute; 136 struct rtentry *rte; /* cache for ro->ro_rt */ 137 struct in_addr odst; 138 struct m_tag *fwd_tag = NULL; 139 uint32_t fibnum; 140 int have_ia_ref; 141 int needfiblookup; 142 #ifdef IPSEC 143 int no_route_but_check_spd = 0; 144 #endif 145 M_ASSERTPKTHDR(m); 146 147 if (inp != NULL) { 148 INP_LOCK_ASSERT(inp); 149 M_SETFIB(m, inp->inp_inc.inc_fibnum); 150 if (((flags & IP_NODEFAULTFLOWID) == 0) && 151 inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) { 152 m->m_pkthdr.flowid = inp->inp_flowid; 153 M_HASHTYPE_SET(m, inp->inp_flowtype); 154 m->m_flags |= M_FLOWID; 155 } 156 } 157 158 if (ro == NULL) { 159 ro = &iproute; 160 bzero(ro, sizeof (*ro)); 161 } 162 163 #ifdef FLOWTABLE 164 if (ro->ro_rt == NULL) 165 (void )flowtable_lookup(AF_INET, m, ro); 166 #endif 167 168 if (opt) { 169 int len = 0; 170 m = ip_insertoptions(m, opt, &len); 171 if (len != 0) 172 hlen = len; /* ip->ip_hl is updated above */ 173 } 174 ip = mtod(m, struct ip *); 175 ip_len = ntohs(ip->ip_len); 176 ip_off = ntohs(ip->ip_off); 177 178 /* 179 * Fill in IP header. If we are not allowing fragmentation, 180 * then the ip_id field is meaningless, but we don't set it 181 * to zero. Doing so causes various problems when devices along 182 * the path (routers, load balancers, firewalls, etc.) illegally 183 * disable DF on our packet. Note that a 16-bit counter 184 * will wrap around in less than 10 seconds at 100 Mbit/s on a 185 * medium with MTU 1500. See Steven M. Bellovin, "A Technique 186 * for Counting NATted Hosts", Proc. IMW'02, available at 187 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>. 188 */ 189 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 190 ip->ip_v = IPVERSION; 191 ip->ip_hl = hlen >> 2; 192 ip->ip_id = ip_newid(); 193 IPSTAT_INC(ips_localout); 194 } else { 195 /* Header already set, fetch hlen from there */ 196 hlen = ip->ip_hl << 2; 197 } 198 199 /* 200 * dst/gw handling: 201 * 202 * dst can be rewritten but always points to &ro->ro_dst. 203 * gw is readonly but can point either to dst OR rt_gateway, 204 * therefore we need restore gw if we're redoing lookup. 205 */ 206 gw = dst = (struct sockaddr_in *)&ro->ro_dst; 207 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 208 again: 209 ia = NULL; 210 have_ia_ref = 0; 211 /* 212 * If there is a cached route, check that it is to the same 213 * destination and is still up. If not, free it and try again. 214 * The address family should also be checked in case of sharing 215 * the cache with IPv6. 216 */ 217 rte = ro->ro_rt; 218 if (rte && ((rte->rt_flags & RTF_UP) == 0 || 219 rte->rt_ifp == NULL || 220 !RT_LINK_IS_UP(rte->rt_ifp) || 221 dst->sin_family != AF_INET || 222 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) { 223 RO_RTFREE(ro); 224 ro->ro_lle = NULL; 225 rte = NULL; 226 gw = dst; 227 } 228 if (rte == NULL && fwd_tag == NULL) { 229 bzero(dst, sizeof(*dst)); 230 dst->sin_family = AF_INET; 231 dst->sin_len = sizeof(*dst); 232 dst->sin_addr = ip->ip_dst; 233 } 234 /* 235 * If routing to interface only, short circuit routing lookup. 236 * The use of an all-ones broadcast address implies this; an 237 * interface is specified by the broadcast address of an interface, 238 * or the destination address of a ptp interface. 239 */ 240 if (flags & IP_SENDONES) { 241 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 242 M_GETFIB(m)))) == NULL && 243 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 244 M_GETFIB(m)))) == NULL) { 245 IPSTAT_INC(ips_noroute); 246 error = ENETUNREACH; 247 goto bad; 248 } 249 have_ia_ref = 1; 250 ip->ip_dst.s_addr = INADDR_BROADCAST; 251 dst->sin_addr = ip->ip_dst; 252 ifp = ia->ia_ifp; 253 ip->ip_ttl = 1; 254 isbroadcast = 1; 255 } else if (flags & IP_ROUTETOIF) { 256 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 257 M_GETFIB(m)))) == NULL && 258 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 259 M_GETFIB(m)))) == NULL) { 260 IPSTAT_INC(ips_noroute); 261 error = ENETUNREACH; 262 goto bad; 263 } 264 have_ia_ref = 1; 265 ifp = ia->ia_ifp; 266 ip->ip_ttl = 1; 267 isbroadcast = in_broadcast(dst->sin_addr, ifp); 268 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 269 imo != NULL && imo->imo_multicast_ifp != NULL) { 270 /* 271 * Bypass the normal routing lookup for multicast 272 * packets if the interface is specified. 273 */ 274 ifp = imo->imo_multicast_ifp; 275 IFP_TO_IA(ifp, ia); 276 if (ia) 277 have_ia_ref = 1; 278 isbroadcast = 0; /* fool gcc */ 279 } else { 280 /* 281 * We want to do any cloning requested by the link layer, 282 * as this is probably required in all cases for correct 283 * operation (as it is for ARP). 284 */ 285 if (rte == NULL) { 286 #ifdef RADIX_MPATH 287 rtalloc_mpath_fib(ro, 288 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 289 fibnum); 290 #else 291 in_rtalloc_ign(ro, 0, fibnum); 292 #endif 293 rte = ro->ro_rt; 294 } 295 if (rte == NULL || 296 rte->rt_ifp == NULL || 297 !RT_LINK_IS_UP(rte->rt_ifp)) { 298 #ifdef IPSEC 299 /* 300 * There is no route for this packet, but it is 301 * possible that a matching SPD entry exists. 302 */ 303 no_route_but_check_spd = 1; 304 mtu = 0; /* Silence GCC warning. */ 305 goto sendit; 306 #endif 307 IPSTAT_INC(ips_noroute); 308 error = EHOSTUNREACH; 309 goto bad; 310 } 311 ia = ifatoia(rte->rt_ifa); 312 ifp = rte->rt_ifp; 313 counter_u64_add(rte->rt_pksent, 1); 314 if (rte->rt_flags & RTF_GATEWAY) 315 gw = (struct sockaddr_in *)rte->rt_gateway; 316 if (rte->rt_flags & RTF_HOST) 317 isbroadcast = (rte->rt_flags & RTF_BROADCAST); 318 else 319 isbroadcast = in_broadcast(gw->sin_addr, ifp); 320 } 321 /* 322 * Calculate MTU. If we have a route that is up, use that, 323 * otherwise use the interface's MTU. 324 */ 325 if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) { 326 /* 327 * This case can happen if the user changed the MTU 328 * of an interface after enabling IP on it. Because 329 * most netifs don't keep track of routes pointing to 330 * them, there is no way for one to update all its 331 * routes when the MTU is changed. 332 */ 333 if (rte->rt_mtu > ifp->if_mtu) 334 rte->rt_mtu = ifp->if_mtu; 335 mtu = rte->rt_mtu; 336 } else { 337 mtu = ifp->if_mtu; 338 } 339 /* Catch a possible divide by zero later. */ 340 KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p", 341 __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp)); 342 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 343 m->m_flags |= M_MCAST; 344 /* 345 * IP destination address is multicast. Make sure "gw" 346 * still points to the address in "ro". (It may have been 347 * changed to point to a gateway address, above.) 348 */ 349 gw = dst; 350 /* 351 * See if the caller provided any multicast options 352 */ 353 if (imo != NULL) { 354 ip->ip_ttl = imo->imo_multicast_ttl; 355 if (imo->imo_multicast_vif != -1) 356 ip->ip_src.s_addr = 357 ip_mcast_src ? 358 ip_mcast_src(imo->imo_multicast_vif) : 359 INADDR_ANY; 360 } else 361 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 362 /* 363 * Confirm that the outgoing interface supports multicast. 364 */ 365 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 366 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 367 IPSTAT_INC(ips_noroute); 368 error = ENETUNREACH; 369 goto bad; 370 } 371 } 372 /* 373 * If source address not specified yet, use address 374 * of outgoing interface. 375 */ 376 if (ip->ip_src.s_addr == INADDR_ANY) { 377 /* Interface may have no addresses. */ 378 if (ia != NULL) 379 ip->ip_src = IA_SIN(ia)->sin_addr; 380 } 381 382 if ((imo == NULL && in_mcast_loop) || 383 (imo && imo->imo_multicast_loop)) { 384 /* 385 * Loop back multicast datagram if not expressly 386 * forbidden to do so, even if we are not a member 387 * of the group; ip_input() will filter it later, 388 * thus deferring a hash lookup and mutex acquisition 389 * at the expense of a cheap copy using m_copym(). 390 */ 391 ip_mloopback(ifp, m, dst, hlen); 392 } else { 393 /* 394 * If we are acting as a multicast router, perform 395 * multicast forwarding as if the packet had just 396 * arrived on the interface to which we are about 397 * to send. The multicast forwarding function 398 * recursively calls this function, using the 399 * IP_FORWARDING flag to prevent infinite recursion. 400 * 401 * Multicasts that are looped back by ip_mloopback(), 402 * above, will be forwarded by the ip_input() routine, 403 * if necessary. 404 */ 405 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 406 /* 407 * If rsvp daemon is not running, do not 408 * set ip_moptions. This ensures that the packet 409 * is multicast and not just sent down one link 410 * as prescribed by rsvpd. 411 */ 412 if (!V_rsvp_on) 413 imo = NULL; 414 if (ip_mforward && 415 ip_mforward(ip, ifp, m, imo) != 0) { 416 m_freem(m); 417 goto done; 418 } 419 } 420 } 421 422 /* 423 * Multicasts with a time-to-live of zero may be looped- 424 * back, above, but must not be transmitted on a network. 425 * Also, multicasts addressed to the loopback interface 426 * are not sent -- the above call to ip_mloopback() will 427 * loop back a copy. ip_input() will drop the copy if 428 * this host does not belong to the destination group on 429 * the loopback interface. 430 */ 431 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 432 m_freem(m); 433 goto done; 434 } 435 436 goto sendit; 437 } 438 439 /* 440 * If the source address is not specified yet, use the address 441 * of the outoing interface. 442 */ 443 if (ip->ip_src.s_addr == INADDR_ANY) { 444 /* Interface may have no addresses. */ 445 if (ia != NULL) { 446 ip->ip_src = IA_SIN(ia)->sin_addr; 447 } 448 } 449 450 /* 451 * Look for broadcast address and 452 * verify user is allowed to send 453 * such a packet. 454 */ 455 if (isbroadcast) { 456 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 457 error = EADDRNOTAVAIL; 458 goto bad; 459 } 460 if ((flags & IP_ALLOWBROADCAST) == 0) { 461 error = EACCES; 462 goto bad; 463 } 464 /* don't allow broadcast messages to be fragmented */ 465 if (ip_len > mtu) { 466 error = EMSGSIZE; 467 goto bad; 468 } 469 m->m_flags |= M_BCAST; 470 } else { 471 m->m_flags &= ~M_BCAST; 472 } 473 474 sendit: 475 #ifdef IPSEC 476 switch(ip_ipsec_output(&m, inp, &flags, &error)) { 477 case 1: 478 goto bad; 479 case -1: 480 goto done; 481 case 0: 482 default: 483 break; /* Continue with packet processing. */ 484 } 485 /* 486 * Check if there was a route for this packet; return error if not. 487 */ 488 if (no_route_but_check_spd) { 489 IPSTAT_INC(ips_noroute); 490 error = EHOSTUNREACH; 491 goto bad; 492 } 493 /* Update variables that are affected by ipsec4_output(). */ 494 ip = mtod(m, struct ip *); 495 hlen = ip->ip_hl << 2; 496 #endif /* IPSEC */ 497 498 /* Jump over all PFIL processing if hooks are not active. */ 499 if (!PFIL_HOOKED(&V_inet_pfil_hook)) 500 goto passout; 501 502 /* Run through list of hooks for output packets. */ 503 odst.s_addr = ip->ip_dst.s_addr; 504 error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp); 505 if (error != 0 || m == NULL) 506 goto done; 507 508 ip = mtod(m, struct ip *); 509 needfiblookup = 0; 510 511 /* See if destination IP address was changed by packet filter. */ 512 if (odst.s_addr != ip->ip_dst.s_addr) { 513 m->m_flags |= M_SKIP_FIREWALL; 514 /* If destination is now ourself drop to ip_input(). */ 515 if (in_localip(ip->ip_dst)) { 516 m->m_flags |= M_FASTFWD_OURS; 517 if (m->m_pkthdr.rcvif == NULL) 518 m->m_pkthdr.rcvif = V_loif; 519 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 520 m->m_pkthdr.csum_flags |= 521 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 522 m->m_pkthdr.csum_data = 0xffff; 523 } 524 m->m_pkthdr.csum_flags |= 525 CSUM_IP_CHECKED | CSUM_IP_VALID; 526 #ifdef SCTP 527 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 528 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 529 #endif 530 error = netisr_queue(NETISR_IP, m); 531 goto done; 532 } else { 533 if (have_ia_ref) 534 ifa_free(&ia->ia_ifa); 535 needfiblookup = 1; /* Redo the routing table lookup. */ 536 } 537 } 538 /* See if fib was changed by packet filter. */ 539 if (fibnum != M_GETFIB(m)) { 540 m->m_flags |= M_SKIP_FIREWALL; 541 fibnum = M_GETFIB(m); 542 RO_RTFREE(ro); 543 needfiblookup = 1; 544 } 545 if (needfiblookup) 546 goto again; 547 548 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 549 if (m->m_flags & M_FASTFWD_OURS) { 550 if (m->m_pkthdr.rcvif == NULL) 551 m->m_pkthdr.rcvif = V_loif; 552 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 553 m->m_pkthdr.csum_flags |= 554 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 555 m->m_pkthdr.csum_data = 0xffff; 556 } 557 #ifdef SCTP 558 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 559 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 560 #endif 561 m->m_pkthdr.csum_flags |= 562 CSUM_IP_CHECKED | CSUM_IP_VALID; 563 564 error = netisr_queue(NETISR_IP, m); 565 goto done; 566 } 567 /* Or forward to some other address? */ 568 if ((m->m_flags & M_IP_NEXTHOP) && 569 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 570 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 571 m->m_flags |= M_SKIP_FIREWALL; 572 m->m_flags &= ~M_IP_NEXTHOP; 573 m_tag_delete(m, fwd_tag); 574 if (have_ia_ref) 575 ifa_free(&ia->ia_ifa); 576 goto again; 577 } 578 579 passout: 580 /* 127/8 must not appear on wire - RFC1122. */ 581 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 582 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 583 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 584 IPSTAT_INC(ips_badaddr); 585 error = EADDRNOTAVAIL; 586 goto bad; 587 } 588 } 589 590 m->m_pkthdr.csum_flags |= CSUM_IP; 591 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 592 in_delayed_cksum(m); 593 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 594 } 595 #ifdef SCTP 596 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 597 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 598 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 599 } 600 #endif 601 602 /* 603 * If small enough for interface, or the interface will take 604 * care of the fragmentation for us, we can just send directly. 605 */ 606 if (ip_len <= mtu || 607 (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 608 ip->ip_sum = 0; 609 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 610 ip->ip_sum = in_cksum(m, hlen); 611 m->m_pkthdr.csum_flags &= ~CSUM_IP; 612 } 613 614 /* 615 * Record statistics for this interface address. 616 * With CSUM_TSO the byte/packet count will be slightly 617 * incorrect because we count the IP+TCP headers only 618 * once instead of for every generated packet. 619 */ 620 if (!(flags & IP_FORWARDING) && ia) { 621 if (m->m_pkthdr.csum_flags & CSUM_TSO) 622 counter_u64_add(ia->ia_ifa.ifa_opackets, 623 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 624 else 625 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 626 627 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 628 } 629 #ifdef MBUF_STRESS_TEST 630 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 631 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 632 #endif 633 /* 634 * Reset layer specific mbuf flags 635 * to avoid confusing lower layers. 636 */ 637 m_clrprotoflags(m); 638 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 639 error = (*ifp->if_output)(ifp, m, 640 (const struct sockaddr *)gw, ro); 641 goto done; 642 } 643 644 /* Balk when DF bit is set or the interface didn't support TSO. */ 645 if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { 646 error = EMSGSIZE; 647 IPSTAT_INC(ips_cantfrag); 648 goto bad; 649 } 650 651 /* 652 * Too large for interface; fragment if possible. If successful, 653 * on return, m will point to a list of packets to be sent. 654 */ 655 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 656 if (error) 657 goto bad; 658 for (; m; m = m0) { 659 m0 = m->m_nextpkt; 660 m->m_nextpkt = 0; 661 if (error == 0) { 662 /* Record statistics for this interface address. */ 663 if (ia != NULL) { 664 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 665 counter_u64_add(ia->ia_ifa.ifa_obytes, 666 m->m_pkthdr.len); 667 } 668 /* 669 * Reset layer specific mbuf flags 670 * to avoid confusing upper layers. 671 */ 672 m_clrprotoflags(m); 673 674 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 675 error = (*ifp->if_output)(ifp, m, 676 (const struct sockaddr *)gw, ro); 677 } else 678 m_freem(m); 679 } 680 681 if (error == 0) 682 IPSTAT_INC(ips_fragmented); 683 684 done: 685 if (ro == &iproute) 686 RO_RTFREE(ro); 687 if (have_ia_ref) 688 ifa_free(&ia->ia_ifa); 689 return (error); 690 bad: 691 m_freem(m); 692 goto done; 693 } 694 695 /* 696 * Create a chain of fragments which fit the given mtu. m_frag points to the 697 * mbuf to be fragmented; on return it points to the chain with the fragments. 698 * Return 0 if no error. If error, m_frag may contain a partially built 699 * chain of fragments that should be freed by the caller. 700 * 701 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 702 */ 703 int 704 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 705 u_long if_hwassist_flags) 706 { 707 int error = 0; 708 int hlen = ip->ip_hl << 2; 709 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 710 int off; 711 struct mbuf *m0 = *m_frag; /* the original packet */ 712 int firstlen; 713 struct mbuf **mnext; 714 int nfrags; 715 uint16_t ip_len, ip_off; 716 717 ip_len = ntohs(ip->ip_len); 718 ip_off = ntohs(ip->ip_off); 719 720 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 721 IPSTAT_INC(ips_cantfrag); 722 return EMSGSIZE; 723 } 724 725 /* 726 * Must be able to put at least 8 bytes per fragment. 727 */ 728 if (len < 8) 729 return EMSGSIZE; 730 731 /* 732 * If the interface will not calculate checksums on 733 * fragmented packets, then do it here. 734 */ 735 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 736 in_delayed_cksum(m0); 737 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 738 } 739 #ifdef SCTP 740 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 741 sctp_delayed_cksum(m0, hlen); 742 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 743 } 744 #endif 745 if (len > PAGE_SIZE) { 746 /* 747 * Fragment large datagrams such that each segment 748 * contains a multiple of PAGE_SIZE amount of data, 749 * plus headers. This enables a receiver to perform 750 * page-flipping zero-copy optimizations. 751 * 752 * XXX When does this help given that sender and receiver 753 * could have different page sizes, and also mtu could 754 * be less than the receiver's page size ? 755 */ 756 int newlen; 757 struct mbuf *m; 758 759 for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next) 760 off += m->m_len; 761 762 /* 763 * firstlen (off - hlen) must be aligned on an 764 * 8-byte boundary 765 */ 766 if (off < hlen) 767 goto smart_frag_failure; 768 off = ((off - hlen) & ~7) + hlen; 769 newlen = (~PAGE_MASK) & mtu; 770 if ((newlen + sizeof (struct ip)) > mtu) { 771 /* we failed, go back the default */ 772 smart_frag_failure: 773 newlen = len; 774 off = hlen + len; 775 } 776 len = newlen; 777 778 } else { 779 off = hlen + len; 780 } 781 782 firstlen = off - hlen; 783 mnext = &m0->m_nextpkt; /* pointer to next packet */ 784 785 /* 786 * Loop through length of segment after first fragment, 787 * make new header and copy data of each part and link onto chain. 788 * Here, m0 is the original packet, m is the fragment being created. 789 * The fragments are linked off the m_nextpkt of the original 790 * packet, which after processing serves as the first fragment. 791 */ 792 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 793 struct ip *mhip; /* ip header on the fragment */ 794 struct mbuf *m; 795 int mhlen = sizeof (struct ip); 796 797 m = m_gethdr(M_NOWAIT, MT_DATA); 798 if (m == NULL) { 799 error = ENOBUFS; 800 IPSTAT_INC(ips_odropped); 801 goto done; 802 } 803 m->m_flags |= (m0->m_flags & M_MCAST); 804 /* 805 * In the first mbuf, leave room for the link header, then 806 * copy the original IP header including options. The payload 807 * goes into an additional mbuf chain returned by m_copym(). 808 */ 809 m->m_data += max_linkhdr; 810 mhip = mtod(m, struct ip *); 811 *mhip = *ip; 812 if (hlen > sizeof (struct ip)) { 813 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 814 mhip->ip_v = IPVERSION; 815 mhip->ip_hl = mhlen >> 2; 816 } 817 m->m_len = mhlen; 818 /* XXX do we need to add ip_off below ? */ 819 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 820 if (off + len >= ip_len) 821 len = ip_len - off; 822 else 823 mhip->ip_off |= IP_MF; 824 mhip->ip_len = htons((u_short)(len + mhlen)); 825 m->m_next = m_copym(m0, off, len, M_NOWAIT); 826 if (m->m_next == NULL) { /* copy failed */ 827 m_free(m); 828 error = ENOBUFS; /* ??? */ 829 IPSTAT_INC(ips_odropped); 830 goto done; 831 } 832 m->m_pkthdr.len = mhlen + len; 833 m->m_pkthdr.rcvif = NULL; 834 #ifdef MAC 835 mac_netinet_fragment(m0, m); 836 #endif 837 m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags; 838 mhip->ip_off = htons(mhip->ip_off); 839 mhip->ip_sum = 0; 840 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 841 mhip->ip_sum = in_cksum(m, mhlen); 842 m->m_pkthdr.csum_flags &= ~CSUM_IP; 843 } 844 *mnext = m; 845 mnext = &m->m_nextpkt; 846 } 847 IPSTAT_ADD(ips_ofragments, nfrags); 848 849 /* 850 * Update first fragment by trimming what's been copied out 851 * and updating header. 852 */ 853 m_adj(m0, hlen + firstlen - ip_len); 854 m0->m_pkthdr.len = hlen + firstlen; 855 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 856 ip->ip_off = htons(ip_off | IP_MF); 857 ip->ip_sum = 0; 858 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 859 ip->ip_sum = in_cksum(m0, hlen); 860 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 861 } 862 863 done: 864 *m_frag = m0; 865 return error; 866 } 867 868 void 869 in_delayed_cksum(struct mbuf *m) 870 { 871 struct ip *ip; 872 uint16_t csum, offset, ip_len; 873 874 ip = mtod(m, struct ip *); 875 offset = ip->ip_hl << 2 ; 876 ip_len = ntohs(ip->ip_len); 877 csum = in_cksum_skip(m, ip_len, offset); 878 if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0) 879 csum = 0xffff; 880 offset += m->m_pkthdr.csum_data; /* checksum offset */ 881 882 /* find the mbuf in the chain where the checksum starts*/ 883 while ((m != NULL) && (offset >= m->m_len)) { 884 offset -= m->m_len; 885 m = m->m_next; 886 } 887 KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain.")); 888 KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs.")); 889 *(u_short *)(m->m_data + offset) = csum; 890 } 891 892 /* 893 * IP socket option processing. 894 */ 895 int 896 ip_ctloutput(struct socket *so, struct sockopt *sopt) 897 { 898 struct inpcb *inp = sotoinpcb(so); 899 int error, optval; 900 #ifdef RSS 901 uint32_t rss_bucket; 902 int retval; 903 #endif 904 905 error = optval = 0; 906 if (sopt->sopt_level != IPPROTO_IP) { 907 error = EINVAL; 908 909 if (sopt->sopt_level == SOL_SOCKET && 910 sopt->sopt_dir == SOPT_SET) { 911 switch (sopt->sopt_name) { 912 case SO_REUSEADDR: 913 INP_WLOCK(inp); 914 if ((so->so_options & SO_REUSEADDR) != 0) 915 inp->inp_flags2 |= INP_REUSEADDR; 916 else 917 inp->inp_flags2 &= ~INP_REUSEADDR; 918 INP_WUNLOCK(inp); 919 error = 0; 920 break; 921 case SO_REUSEPORT: 922 INP_WLOCK(inp); 923 if ((so->so_options & SO_REUSEPORT) != 0) 924 inp->inp_flags2 |= INP_REUSEPORT; 925 else 926 inp->inp_flags2 &= ~INP_REUSEPORT; 927 INP_WUNLOCK(inp); 928 error = 0; 929 break; 930 case SO_SETFIB: 931 INP_WLOCK(inp); 932 inp->inp_inc.inc_fibnum = so->so_fibnum; 933 INP_WUNLOCK(inp); 934 error = 0; 935 break; 936 default: 937 break; 938 } 939 } 940 return (error); 941 } 942 943 switch (sopt->sopt_dir) { 944 case SOPT_SET: 945 switch (sopt->sopt_name) { 946 case IP_OPTIONS: 947 #ifdef notyet 948 case IP_RETOPTS: 949 #endif 950 { 951 struct mbuf *m; 952 if (sopt->sopt_valsize > MLEN) { 953 error = EMSGSIZE; 954 break; 955 } 956 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 957 if (m == NULL) { 958 error = ENOBUFS; 959 break; 960 } 961 m->m_len = sopt->sopt_valsize; 962 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 963 m->m_len); 964 if (error) { 965 m_free(m); 966 break; 967 } 968 INP_WLOCK(inp); 969 error = ip_pcbopts(inp, sopt->sopt_name, m); 970 INP_WUNLOCK(inp); 971 return (error); 972 } 973 974 case IP_BINDANY: 975 if (sopt->sopt_td != NULL) { 976 error = priv_check(sopt->sopt_td, 977 PRIV_NETINET_BINDANY); 978 if (error) 979 break; 980 } 981 /* FALLTHROUGH */ 982 case IP_BINDMULTI: 983 #ifdef RSS 984 case IP_RSS_LISTEN_BUCKET: 985 #endif 986 case IP_TOS: 987 case IP_TTL: 988 case IP_MINTTL: 989 case IP_RECVOPTS: 990 case IP_RECVRETOPTS: 991 case IP_RECVDSTADDR: 992 case IP_RECVTTL: 993 case IP_RECVIF: 994 case IP_ONESBCAST: 995 case IP_DONTFRAG: 996 case IP_RECVTOS: 997 case IP_RECVFLOWID: 998 #ifdef RSS 999 case IP_RECVRSSBUCKETID: 1000 #endif 1001 error = sooptcopyin(sopt, &optval, sizeof optval, 1002 sizeof optval); 1003 if (error) 1004 break; 1005 1006 switch (sopt->sopt_name) { 1007 case IP_TOS: 1008 inp->inp_ip_tos = optval; 1009 break; 1010 1011 case IP_TTL: 1012 inp->inp_ip_ttl = optval; 1013 break; 1014 1015 case IP_MINTTL: 1016 if (optval >= 0 && optval <= MAXTTL) 1017 inp->inp_ip_minttl = optval; 1018 else 1019 error = EINVAL; 1020 break; 1021 1022 #define OPTSET(bit) do { \ 1023 INP_WLOCK(inp); \ 1024 if (optval) \ 1025 inp->inp_flags |= bit; \ 1026 else \ 1027 inp->inp_flags &= ~bit; \ 1028 INP_WUNLOCK(inp); \ 1029 } while (0) 1030 1031 #define OPTSET2(bit, val) do { \ 1032 INP_WLOCK(inp); \ 1033 if (val) \ 1034 inp->inp_flags2 |= bit; \ 1035 else \ 1036 inp->inp_flags2 &= ~bit; \ 1037 INP_WUNLOCK(inp); \ 1038 } while (0) 1039 1040 case IP_RECVOPTS: 1041 OPTSET(INP_RECVOPTS); 1042 break; 1043 1044 case IP_RECVRETOPTS: 1045 OPTSET(INP_RECVRETOPTS); 1046 break; 1047 1048 case IP_RECVDSTADDR: 1049 OPTSET(INP_RECVDSTADDR); 1050 break; 1051 1052 case IP_RECVTTL: 1053 OPTSET(INP_RECVTTL); 1054 break; 1055 1056 case IP_RECVIF: 1057 OPTSET(INP_RECVIF); 1058 break; 1059 1060 case IP_ONESBCAST: 1061 OPTSET(INP_ONESBCAST); 1062 break; 1063 case IP_DONTFRAG: 1064 OPTSET(INP_DONTFRAG); 1065 break; 1066 case IP_BINDANY: 1067 OPTSET(INP_BINDANY); 1068 break; 1069 case IP_RECVTOS: 1070 OPTSET(INP_RECVTOS); 1071 break; 1072 case IP_BINDMULTI: 1073 OPTSET2(INP_BINDMULTI, optval); 1074 break; 1075 case IP_RECVFLOWID: 1076 OPTSET2(INP_RECVFLOWID, optval); 1077 break; 1078 #ifdef RSS 1079 case IP_RSS_LISTEN_BUCKET: 1080 if ((optval >= 0) && 1081 (optval < rss_getnumbuckets())) { 1082 inp->inp_rss_listen_bucket = optval; 1083 OPTSET2(INP_RSS_BUCKET_SET, 1); 1084 } else { 1085 error = EINVAL; 1086 } 1087 break; 1088 case IP_RECVRSSBUCKETID: 1089 OPTSET2(INP_RECVRSSBUCKETID, optval); 1090 break; 1091 #endif 1092 } 1093 break; 1094 #undef OPTSET 1095 #undef OPTSET2 1096 1097 /* 1098 * Multicast socket options are processed by the in_mcast 1099 * module. 1100 */ 1101 case IP_MULTICAST_IF: 1102 case IP_MULTICAST_VIF: 1103 case IP_MULTICAST_TTL: 1104 case IP_MULTICAST_LOOP: 1105 case IP_ADD_MEMBERSHIP: 1106 case IP_DROP_MEMBERSHIP: 1107 case IP_ADD_SOURCE_MEMBERSHIP: 1108 case IP_DROP_SOURCE_MEMBERSHIP: 1109 case IP_BLOCK_SOURCE: 1110 case IP_UNBLOCK_SOURCE: 1111 case IP_MSFILTER: 1112 case MCAST_JOIN_GROUP: 1113 case MCAST_LEAVE_GROUP: 1114 case MCAST_JOIN_SOURCE_GROUP: 1115 case MCAST_LEAVE_SOURCE_GROUP: 1116 case MCAST_BLOCK_SOURCE: 1117 case MCAST_UNBLOCK_SOURCE: 1118 error = inp_setmoptions(inp, sopt); 1119 break; 1120 1121 case IP_PORTRANGE: 1122 error = sooptcopyin(sopt, &optval, sizeof optval, 1123 sizeof optval); 1124 if (error) 1125 break; 1126 1127 INP_WLOCK(inp); 1128 switch (optval) { 1129 case IP_PORTRANGE_DEFAULT: 1130 inp->inp_flags &= ~(INP_LOWPORT); 1131 inp->inp_flags &= ~(INP_HIGHPORT); 1132 break; 1133 1134 case IP_PORTRANGE_HIGH: 1135 inp->inp_flags &= ~(INP_LOWPORT); 1136 inp->inp_flags |= INP_HIGHPORT; 1137 break; 1138 1139 case IP_PORTRANGE_LOW: 1140 inp->inp_flags &= ~(INP_HIGHPORT); 1141 inp->inp_flags |= INP_LOWPORT; 1142 break; 1143 1144 default: 1145 error = EINVAL; 1146 break; 1147 } 1148 INP_WUNLOCK(inp); 1149 break; 1150 1151 #ifdef IPSEC 1152 case IP_IPSEC_POLICY: 1153 { 1154 caddr_t req; 1155 struct mbuf *m; 1156 1157 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1158 break; 1159 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1160 break; 1161 req = mtod(m, caddr_t); 1162 error = ipsec_set_policy(inp, sopt->sopt_name, req, 1163 m->m_len, (sopt->sopt_td != NULL) ? 1164 sopt->sopt_td->td_ucred : NULL); 1165 m_freem(m); 1166 break; 1167 } 1168 #endif /* IPSEC */ 1169 1170 default: 1171 error = ENOPROTOOPT; 1172 break; 1173 } 1174 break; 1175 1176 case SOPT_GET: 1177 switch (sopt->sopt_name) { 1178 case IP_OPTIONS: 1179 case IP_RETOPTS: 1180 if (inp->inp_options) 1181 error = sooptcopyout(sopt, 1182 mtod(inp->inp_options, 1183 char *), 1184 inp->inp_options->m_len); 1185 else 1186 sopt->sopt_valsize = 0; 1187 break; 1188 1189 case IP_TOS: 1190 case IP_TTL: 1191 case IP_MINTTL: 1192 case IP_RECVOPTS: 1193 case IP_RECVRETOPTS: 1194 case IP_RECVDSTADDR: 1195 case IP_RECVTTL: 1196 case IP_RECVIF: 1197 case IP_PORTRANGE: 1198 case IP_ONESBCAST: 1199 case IP_DONTFRAG: 1200 case IP_BINDANY: 1201 case IP_RECVTOS: 1202 case IP_BINDMULTI: 1203 case IP_FLOWID: 1204 case IP_FLOWTYPE: 1205 case IP_RECVFLOWID: 1206 #ifdef RSS 1207 case IP_RSSBUCKETID: 1208 case IP_RECVRSSBUCKETID: 1209 #endif 1210 switch (sopt->sopt_name) { 1211 1212 case IP_TOS: 1213 optval = inp->inp_ip_tos; 1214 break; 1215 1216 case IP_TTL: 1217 optval = inp->inp_ip_ttl; 1218 break; 1219 1220 case IP_MINTTL: 1221 optval = inp->inp_ip_minttl; 1222 break; 1223 1224 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1225 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1226 1227 case IP_RECVOPTS: 1228 optval = OPTBIT(INP_RECVOPTS); 1229 break; 1230 1231 case IP_RECVRETOPTS: 1232 optval = OPTBIT(INP_RECVRETOPTS); 1233 break; 1234 1235 case IP_RECVDSTADDR: 1236 optval = OPTBIT(INP_RECVDSTADDR); 1237 break; 1238 1239 case IP_RECVTTL: 1240 optval = OPTBIT(INP_RECVTTL); 1241 break; 1242 1243 case IP_RECVIF: 1244 optval = OPTBIT(INP_RECVIF); 1245 break; 1246 1247 case IP_PORTRANGE: 1248 if (inp->inp_flags & INP_HIGHPORT) 1249 optval = IP_PORTRANGE_HIGH; 1250 else if (inp->inp_flags & INP_LOWPORT) 1251 optval = IP_PORTRANGE_LOW; 1252 else 1253 optval = 0; 1254 break; 1255 1256 case IP_ONESBCAST: 1257 optval = OPTBIT(INP_ONESBCAST); 1258 break; 1259 case IP_DONTFRAG: 1260 optval = OPTBIT(INP_DONTFRAG); 1261 break; 1262 case IP_BINDANY: 1263 optval = OPTBIT(INP_BINDANY); 1264 break; 1265 case IP_RECVTOS: 1266 optval = OPTBIT(INP_RECVTOS); 1267 break; 1268 case IP_FLOWID: 1269 optval = inp->inp_flowid; 1270 break; 1271 case IP_FLOWTYPE: 1272 optval = inp->inp_flowtype; 1273 break; 1274 case IP_RECVFLOWID: 1275 optval = OPTBIT2(INP_RECVFLOWID); 1276 break; 1277 #ifdef RSS 1278 case IP_RSSBUCKETID: 1279 retval = rss_hash2bucket(inp->inp_flowid, 1280 inp->inp_flowtype, 1281 &rss_bucket); 1282 if (retval == 0) 1283 optval = rss_bucket; 1284 else 1285 error = EINVAL; 1286 break; 1287 case IP_RECVRSSBUCKETID: 1288 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1289 break; 1290 #endif 1291 case IP_BINDMULTI: 1292 optval = OPTBIT2(INP_BINDMULTI); 1293 break; 1294 } 1295 error = sooptcopyout(sopt, &optval, sizeof optval); 1296 break; 1297 1298 /* 1299 * Multicast socket options are processed by the in_mcast 1300 * module. 1301 */ 1302 case IP_MULTICAST_IF: 1303 case IP_MULTICAST_VIF: 1304 case IP_MULTICAST_TTL: 1305 case IP_MULTICAST_LOOP: 1306 case IP_MSFILTER: 1307 error = inp_getmoptions(inp, sopt); 1308 break; 1309 1310 #ifdef IPSEC 1311 case IP_IPSEC_POLICY: 1312 { 1313 struct mbuf *m = NULL; 1314 caddr_t req = NULL; 1315 size_t len = 0; 1316 1317 if (m != 0) { 1318 req = mtod(m, caddr_t); 1319 len = m->m_len; 1320 } 1321 error = ipsec_get_policy(sotoinpcb(so), req, len, &m); 1322 if (error == 0) 1323 error = soopt_mcopyout(sopt, m); /* XXX */ 1324 if (error == 0) 1325 m_freem(m); 1326 break; 1327 } 1328 #endif /* IPSEC */ 1329 1330 default: 1331 error = ENOPROTOOPT; 1332 break; 1333 } 1334 break; 1335 } 1336 return (error); 1337 } 1338 1339 /* 1340 * Routine called from ip_output() to loop back a copy of an IP multicast 1341 * packet to the input queue of a specified interface. Note that this 1342 * calls the output routine of the loopback "driver", but with an interface 1343 * pointer that might NOT be a loopback interface -- evil, but easier than 1344 * replicating that code here. 1345 */ 1346 static void 1347 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst, 1348 int hlen) 1349 { 1350 register struct ip *ip; 1351 struct mbuf *copym; 1352 1353 /* 1354 * Make a deep copy of the packet because we're going to 1355 * modify the pack in order to generate checksums. 1356 */ 1357 copym = m_dup(m, M_NOWAIT); 1358 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1359 copym = m_pullup(copym, hlen); 1360 if (copym != NULL) { 1361 /* If needed, compute the checksum and mark it as valid. */ 1362 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1363 in_delayed_cksum(copym); 1364 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1365 copym->m_pkthdr.csum_flags |= 1366 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1367 copym->m_pkthdr.csum_data = 0xffff; 1368 } 1369 /* 1370 * We don't bother to fragment if the IP length is greater 1371 * than the interface's MTU. Can this possibly matter? 1372 */ 1373 ip = mtod(copym, struct ip *); 1374 ip->ip_sum = 0; 1375 ip->ip_sum = in_cksum(copym, hlen); 1376 #if 1 /* XXX */ 1377 if (dst->sin_family != AF_INET) { 1378 printf("ip_mloopback: bad address family %d\n", 1379 dst->sin_family); 1380 dst->sin_family = AF_INET; 1381 } 1382 #endif 1383 if_simloop(ifp, copym, dst->sin_family, 0); 1384 } 1385 } 1386