xref: /freebsd/sys/netinet/ip_output.c (revision 5608fd23c27fa1e8ee595d7b678cbfd35d657fbe)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_inet.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipsec.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mpath.h"
40 #include "opt_route.h"
41 #include "opt_sctp.h"
42 #include "opt_rss.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/protosw.h>
52 #include <sys/sdt.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/sysctl.h>
56 #include <sys/ucred.h>
57 
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_llatbl.h>
61 #include <net/netisr.h>
62 #include <net/pfil.h>
63 #include <net/route.h>
64 #include <net/flowtable.h>
65 #ifdef RADIX_MPATH
66 #include <net/radix_mpath.h>
67 #endif
68 #include <net/vnet.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_kdtrace.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/in_rss.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/ip_options.h>
79 #ifdef SCTP
80 #include <netinet/sctp.h>
81 #include <netinet/sctp_crc32.h>
82 #endif
83 
84 #ifdef IPSEC
85 #include <netinet/ip_ipsec.h>
86 #include <netipsec/ipsec.h>
87 #endif /* IPSEC*/
88 
89 #include <machine/in_cksum.h>
90 
91 #include <security/mac/mac_framework.h>
92 
93 VNET_DEFINE(u_short, ip_id);
94 
95 #ifdef MBUF_STRESS_TEST
96 static int mbuf_frag_size = 0;
97 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
98 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
99 #endif
100 
101 static void	ip_mloopback
102 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
103 
104 
105 extern int in_mcast_loop;
106 extern	struct protosw inetsw[];
107 
108 /*
109  * IP output.  The packet in mbuf chain m contains a skeletal IP
110  * header (with len, off, ttl, proto, tos, src, dst).
111  * The mbuf chain containing the packet will be freed.
112  * The mbuf opt, if present, will not be freed.
113  * If route ro is present and has ro_rt initialized, route lookup would be
114  * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
115  * then result of route lookup is stored in ro->ro_rt.
116  *
117  * In the IP forwarding case, the packet will arrive with options already
118  * inserted, so must have a NULL opt pointer.
119  */
120 int
121 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
122     struct ip_moptions *imo, struct inpcb *inp)
123 {
124 	struct ip *ip;
125 	struct ifnet *ifp = NULL;	/* keep compiler happy */
126 	struct mbuf *m0;
127 	int hlen = sizeof (struct ip);
128 	int mtu;
129 	int error = 0;
130 	struct sockaddr_in *dst;
131 	const struct sockaddr_in *gw;
132 	struct in_ifaddr *ia;
133 	int isbroadcast;
134 	uint16_t ip_len, ip_off;
135 	struct route iproute;
136 	struct rtentry *rte;	/* cache for ro->ro_rt */
137 	struct in_addr odst;
138 	struct m_tag *fwd_tag = NULL;
139 	int have_ia_ref;
140 #ifdef IPSEC
141 	int no_route_but_check_spd = 0;
142 #endif
143 	M_ASSERTPKTHDR(m);
144 
145 	if (inp != NULL) {
146 		INP_LOCK_ASSERT(inp);
147 		M_SETFIB(m, inp->inp_inc.inc_fibnum);
148 		if (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
149 			m->m_pkthdr.flowid = inp->inp_flowid;
150 			M_HASHTYPE_SET(m, inp->inp_flowtype);
151 			m->m_flags |= M_FLOWID;
152 		}
153 	}
154 
155 	if (ro == NULL) {
156 		ro = &iproute;
157 		bzero(ro, sizeof (*ro));
158 	}
159 
160 #ifdef FLOWTABLE
161 	if (ro->ro_rt == NULL)
162 		(void )flowtable_lookup(AF_INET, m, ro);
163 #endif
164 
165 	if (opt) {
166 		int len = 0;
167 		m = ip_insertoptions(m, opt, &len);
168 		if (len != 0)
169 			hlen = len; /* ip->ip_hl is updated above */
170 	}
171 	ip = mtod(m, struct ip *);
172 	ip_len = ntohs(ip->ip_len);
173 	ip_off = ntohs(ip->ip_off);
174 
175 	/*
176 	 * Fill in IP header.  If we are not allowing fragmentation,
177 	 * then the ip_id field is meaningless, but we don't set it
178 	 * to zero.  Doing so causes various problems when devices along
179 	 * the path (routers, load balancers, firewalls, etc.) illegally
180 	 * disable DF on our packet.  Note that a 16-bit counter
181 	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
182 	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
183 	 * for Counting NATted Hosts", Proc. IMW'02, available at
184 	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
185 	 */
186 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
187 		ip->ip_v = IPVERSION;
188 		ip->ip_hl = hlen >> 2;
189 		ip->ip_id = ip_newid();
190 		IPSTAT_INC(ips_localout);
191 	} else {
192 		/* Header already set, fetch hlen from there */
193 		hlen = ip->ip_hl << 2;
194 	}
195 
196 	/*
197 	 * dst/gw handling:
198 	 *
199 	 * dst can be rewritten but always points to &ro->ro_dst.
200 	 * gw is readonly but can point either to dst OR rt_gateway,
201 	 * therefore we need restore gw if we're redoing lookup.
202 	 */
203 	gw = dst = (struct sockaddr_in *)&ro->ro_dst;
204 again:
205 	ia = NULL;
206 	have_ia_ref = 0;
207 	/*
208 	 * If there is a cached route, check that it is to the same
209 	 * destination and is still up.  If not, free it and try again.
210 	 * The address family should also be checked in case of sharing
211 	 * the cache with IPv6.
212 	 */
213 	rte = ro->ro_rt;
214 	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
215 		    rte->rt_ifp == NULL ||
216 		    !RT_LINK_IS_UP(rte->rt_ifp) ||
217 			  dst->sin_family != AF_INET ||
218 			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
219 		RO_RTFREE(ro);
220 		ro->ro_lle = NULL;
221 		rte = NULL;
222 		gw = dst;
223 	}
224 	if (rte == NULL && fwd_tag == NULL) {
225 		bzero(dst, sizeof(*dst));
226 		dst->sin_family = AF_INET;
227 		dst->sin_len = sizeof(*dst);
228 		dst->sin_addr = ip->ip_dst;
229 	}
230 	/*
231 	 * If routing to interface only, short circuit routing lookup.
232 	 * The use of an all-ones broadcast address implies this; an
233 	 * interface is specified by the broadcast address of an interface,
234 	 * or the destination address of a ptp interface.
235 	 */
236 	if (flags & IP_SENDONES) {
237 		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
238 		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
239 			IPSTAT_INC(ips_noroute);
240 			error = ENETUNREACH;
241 			goto bad;
242 		}
243 		have_ia_ref = 1;
244 		ip->ip_dst.s_addr = INADDR_BROADCAST;
245 		dst->sin_addr = ip->ip_dst;
246 		ifp = ia->ia_ifp;
247 		ip->ip_ttl = 1;
248 		isbroadcast = 1;
249 	} else if (flags & IP_ROUTETOIF) {
250 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
251 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0))) == NULL) {
252 			IPSTAT_INC(ips_noroute);
253 			error = ENETUNREACH;
254 			goto bad;
255 		}
256 		have_ia_ref = 1;
257 		ifp = ia->ia_ifp;
258 		ip->ip_ttl = 1;
259 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
260 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
261 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
262 		/*
263 		 * Bypass the normal routing lookup for multicast
264 		 * packets if the interface is specified.
265 		 */
266 		ifp = imo->imo_multicast_ifp;
267 		IFP_TO_IA(ifp, ia);
268 		if (ia)
269 			have_ia_ref = 1;
270 		isbroadcast = 0;	/* fool gcc */
271 	} else {
272 		/*
273 		 * We want to do any cloning requested by the link layer,
274 		 * as this is probably required in all cases for correct
275 		 * operation (as it is for ARP).
276 		 */
277 		if (rte == NULL) {
278 #ifdef RADIX_MPATH
279 			rtalloc_mpath_fib(ro,
280 			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
281 			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
282 #else
283 			in_rtalloc_ign(ro, 0,
284 			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
285 #endif
286 			rte = ro->ro_rt;
287 		}
288 		if (rte == NULL ||
289 		    rte->rt_ifp == NULL ||
290 		    !RT_LINK_IS_UP(rte->rt_ifp)) {
291 #ifdef IPSEC
292 			/*
293 			 * There is no route for this packet, but it is
294 			 * possible that a matching SPD entry exists.
295 			 */
296 			no_route_but_check_spd = 1;
297 			mtu = 0; /* Silence GCC warning. */
298 			goto sendit;
299 #endif
300 			IPSTAT_INC(ips_noroute);
301 			error = EHOSTUNREACH;
302 			goto bad;
303 		}
304 		ia = ifatoia(rte->rt_ifa);
305 		ifp = rte->rt_ifp;
306 		counter_u64_add(rte->rt_pksent, 1);
307 		if (rte->rt_flags & RTF_GATEWAY)
308 			gw = (struct sockaddr_in *)rte->rt_gateway;
309 		if (rte->rt_flags & RTF_HOST)
310 			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
311 		else
312 			isbroadcast = in_broadcast(gw->sin_addr, ifp);
313 	}
314 	/*
315 	 * Calculate MTU.  If we have a route that is up, use that,
316 	 * otherwise use the interface's MTU.
317 	 */
318 	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) {
319 		/*
320 		 * This case can happen if the user changed the MTU
321 		 * of an interface after enabling IP on it.  Because
322 		 * most netifs don't keep track of routes pointing to
323 		 * them, there is no way for one to update all its
324 		 * routes when the MTU is changed.
325 		 */
326 		if (rte->rt_mtu > ifp->if_mtu)
327 			rte->rt_mtu = ifp->if_mtu;
328 		mtu = rte->rt_mtu;
329 	} else {
330 		mtu = ifp->if_mtu;
331 	}
332 	/* Catch a possible divide by zero later. */
333 	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
334 	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
335 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
336 		m->m_flags |= M_MCAST;
337 		/*
338 		 * IP destination address is multicast.  Make sure "gw"
339 		 * still points to the address in "ro".  (It may have been
340 		 * changed to point to a gateway address, above.)
341 		 */
342 		gw = dst;
343 		/*
344 		 * See if the caller provided any multicast options
345 		 */
346 		if (imo != NULL) {
347 			ip->ip_ttl = imo->imo_multicast_ttl;
348 			if (imo->imo_multicast_vif != -1)
349 				ip->ip_src.s_addr =
350 				    ip_mcast_src ?
351 				    ip_mcast_src(imo->imo_multicast_vif) :
352 				    INADDR_ANY;
353 		} else
354 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
355 		/*
356 		 * Confirm that the outgoing interface supports multicast.
357 		 */
358 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
359 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
360 				IPSTAT_INC(ips_noroute);
361 				error = ENETUNREACH;
362 				goto bad;
363 			}
364 		}
365 		/*
366 		 * If source address not specified yet, use address
367 		 * of outgoing interface.
368 		 */
369 		if (ip->ip_src.s_addr == INADDR_ANY) {
370 			/* Interface may have no addresses. */
371 			if (ia != NULL)
372 				ip->ip_src = IA_SIN(ia)->sin_addr;
373 		}
374 
375 		if ((imo == NULL && in_mcast_loop) ||
376 		    (imo && imo->imo_multicast_loop)) {
377 			/*
378 			 * Loop back multicast datagram if not expressly
379 			 * forbidden to do so, even if we are not a member
380 			 * of the group; ip_input() will filter it later,
381 			 * thus deferring a hash lookup and mutex acquisition
382 			 * at the expense of a cheap copy using m_copym().
383 			 */
384 			ip_mloopback(ifp, m, dst, hlen);
385 		} else {
386 			/*
387 			 * If we are acting as a multicast router, perform
388 			 * multicast forwarding as if the packet had just
389 			 * arrived on the interface to which we are about
390 			 * to send.  The multicast forwarding function
391 			 * recursively calls this function, using the
392 			 * IP_FORWARDING flag to prevent infinite recursion.
393 			 *
394 			 * Multicasts that are looped back by ip_mloopback(),
395 			 * above, will be forwarded by the ip_input() routine,
396 			 * if necessary.
397 			 */
398 			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
399 				/*
400 				 * If rsvp daemon is not running, do not
401 				 * set ip_moptions. This ensures that the packet
402 				 * is multicast and not just sent down one link
403 				 * as prescribed by rsvpd.
404 				 */
405 				if (!V_rsvp_on)
406 					imo = NULL;
407 				if (ip_mforward &&
408 				    ip_mforward(ip, ifp, m, imo) != 0) {
409 					m_freem(m);
410 					goto done;
411 				}
412 			}
413 		}
414 
415 		/*
416 		 * Multicasts with a time-to-live of zero may be looped-
417 		 * back, above, but must not be transmitted on a network.
418 		 * Also, multicasts addressed to the loopback interface
419 		 * are not sent -- the above call to ip_mloopback() will
420 		 * loop back a copy. ip_input() will drop the copy if
421 		 * this host does not belong to the destination group on
422 		 * the loopback interface.
423 		 */
424 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
425 			m_freem(m);
426 			goto done;
427 		}
428 
429 		goto sendit;
430 	}
431 
432 	/*
433 	 * If the source address is not specified yet, use the address
434 	 * of the outoing interface.
435 	 */
436 	if (ip->ip_src.s_addr == INADDR_ANY) {
437 		/* Interface may have no addresses. */
438 		if (ia != NULL) {
439 			ip->ip_src = IA_SIN(ia)->sin_addr;
440 		}
441 	}
442 
443 	/*
444 	 * Both in the SMP world, pre-emption world if_transmit() world,
445 	 * the following code doesn't really function as intended any further.
446 	 *
447 	 * + There can and will be multiple CPUs running this code path
448 	 *   in parallel, and we do no lock holding when checking the
449 	 *   queue depth;
450 	 * + And since other threads can be running concurrently, even if
451 	 *   we do pass this check, another thread may queue some frames
452 	 *   before this thread does and it will end up partially or fully
453 	 *   failing to send anyway;
454 	 * + if_transmit() based drivers don't necessarily set ifq_len
455 	 *   at all.
456 	 *
457 	 * This should be replaced with a method of pushing an entire list
458 	 * of fragment frames to the driver and have the driver decide
459 	 * whether it can queue or not queue the entire set.
460 	 */
461 #if 0
462 	/*
463 	 * Verify that we have any chance at all of being able to queue the
464 	 * packet or packet fragments, unless ALTQ is enabled on the given
465 	 * interface in which case packetdrop should be done by queueing.
466 	 */
467 	n = ip_len / mtu + 1; /* how many fragments ? */
468 	if (
469 #ifdef ALTQ
470 	    (!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
471 #endif /* ALTQ */
472 	    (ifp->if_snd.ifq_len + n) >= ifp->if_snd.ifq_maxlen ) {
473 		error = ENOBUFS;
474 		IPSTAT_INC(ips_odropped);
475 		ifp->if_snd.ifq_drops += n;
476 		goto bad;
477 	}
478 #endif
479 
480 	/*
481 	 * Look for broadcast address and
482 	 * verify user is allowed to send
483 	 * such a packet.
484 	 */
485 	if (isbroadcast) {
486 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
487 			error = EADDRNOTAVAIL;
488 			goto bad;
489 		}
490 		if ((flags & IP_ALLOWBROADCAST) == 0) {
491 			error = EACCES;
492 			goto bad;
493 		}
494 		/* don't allow broadcast messages to be fragmented */
495 		if (ip_len > mtu) {
496 			error = EMSGSIZE;
497 			goto bad;
498 		}
499 		m->m_flags |= M_BCAST;
500 	} else {
501 		m->m_flags &= ~M_BCAST;
502 	}
503 
504 sendit:
505 #ifdef IPSEC
506 	switch(ip_ipsec_output(&m, inp, &flags, &error)) {
507 	case 1:
508 		goto bad;
509 	case -1:
510 		goto done;
511 	case 0:
512 	default:
513 		break;	/* Continue with packet processing. */
514 	}
515 	/*
516 	 * Check if there was a route for this packet; return error if not.
517 	 */
518 	if (no_route_but_check_spd) {
519 		IPSTAT_INC(ips_noroute);
520 		error = EHOSTUNREACH;
521 		goto bad;
522 	}
523 	/* Update variables that are affected by ipsec4_output(). */
524 	ip = mtod(m, struct ip *);
525 	hlen = ip->ip_hl << 2;
526 #endif /* IPSEC */
527 
528 	/* Jump over all PFIL processing if hooks are not active. */
529 	if (!PFIL_HOOKED(&V_inet_pfil_hook))
530 		goto passout;
531 
532 	/* Run through list of hooks for output packets. */
533 	odst.s_addr = ip->ip_dst.s_addr;
534 	error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
535 	if (error != 0 || m == NULL)
536 		goto done;
537 
538 	ip = mtod(m, struct ip *);
539 
540 	/* See if destination IP address was changed by packet filter. */
541 	if (odst.s_addr != ip->ip_dst.s_addr) {
542 		m->m_flags |= M_SKIP_FIREWALL;
543 		/* If destination is now ourself drop to ip_input(). */
544 		if (in_localip(ip->ip_dst)) {
545 			m->m_flags |= M_FASTFWD_OURS;
546 			if (m->m_pkthdr.rcvif == NULL)
547 				m->m_pkthdr.rcvif = V_loif;
548 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
549 				m->m_pkthdr.csum_flags |=
550 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
551 				m->m_pkthdr.csum_data = 0xffff;
552 			}
553 			m->m_pkthdr.csum_flags |=
554 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
555 #ifdef SCTP
556 			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
557 				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
558 #endif
559 			error = netisr_queue(NETISR_IP, m);
560 			goto done;
561 		} else {
562 			if (have_ia_ref)
563 				ifa_free(&ia->ia_ifa);
564 			goto again;	/* Redo the routing table lookup. */
565 		}
566 	}
567 
568 	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
569 	if (m->m_flags & M_FASTFWD_OURS) {
570 		if (m->m_pkthdr.rcvif == NULL)
571 			m->m_pkthdr.rcvif = V_loif;
572 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
573 			m->m_pkthdr.csum_flags |=
574 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
575 			m->m_pkthdr.csum_data = 0xffff;
576 		}
577 #ifdef SCTP
578 		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
579 			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
580 #endif
581 		m->m_pkthdr.csum_flags |=
582 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
583 
584 		error = netisr_queue(NETISR_IP, m);
585 		goto done;
586 	}
587 	/* Or forward to some other address? */
588 	if ((m->m_flags & M_IP_NEXTHOP) &&
589 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
590 		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
591 		m->m_flags |= M_SKIP_FIREWALL;
592 		m->m_flags &= ~M_IP_NEXTHOP;
593 		m_tag_delete(m, fwd_tag);
594 		if (have_ia_ref)
595 			ifa_free(&ia->ia_ifa);
596 		goto again;
597 	}
598 
599 passout:
600 	/* 127/8 must not appear on wire - RFC1122. */
601 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
602 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
603 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
604 			IPSTAT_INC(ips_badaddr);
605 			error = EADDRNOTAVAIL;
606 			goto bad;
607 		}
608 	}
609 
610 	m->m_pkthdr.csum_flags |= CSUM_IP;
611 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
612 		in_delayed_cksum(m);
613 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
614 	}
615 #ifdef SCTP
616 	if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
617 		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
618 		m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
619 	}
620 #endif
621 
622 	/*
623 	 * If small enough for interface, or the interface will take
624 	 * care of the fragmentation for us, we can just send directly.
625 	 */
626 	if (ip_len <= mtu ||
627 	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
628 	    ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
629 		ip->ip_sum = 0;
630 		if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
631 			ip->ip_sum = in_cksum(m, hlen);
632 			m->m_pkthdr.csum_flags &= ~CSUM_IP;
633 		}
634 
635 		/*
636 		 * Record statistics for this interface address.
637 		 * With CSUM_TSO the byte/packet count will be slightly
638 		 * incorrect because we count the IP+TCP headers only
639 		 * once instead of for every generated packet.
640 		 */
641 		if (!(flags & IP_FORWARDING) && ia) {
642 			if (m->m_pkthdr.csum_flags & CSUM_TSO)
643 				counter_u64_add(ia->ia_ifa.ifa_opackets,
644 				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz);
645 			else
646 				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
647 
648 			counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len);
649 		}
650 #ifdef MBUF_STRESS_TEST
651 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
652 			m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
653 #endif
654 		/*
655 		 * Reset layer specific mbuf flags
656 		 * to avoid confusing lower layers.
657 		 */
658 		m_clrprotoflags(m);
659 		IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
660 		error = (*ifp->if_output)(ifp, m,
661 		    (const struct sockaddr *)gw, ro);
662 		goto done;
663 	}
664 
665 	/* Balk when DF bit is set or the interface didn't support TSO. */
666 	if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
667 		error = EMSGSIZE;
668 		IPSTAT_INC(ips_cantfrag);
669 		goto bad;
670 	}
671 
672 	/*
673 	 * Too large for interface; fragment if possible. If successful,
674 	 * on return, m will point to a list of packets to be sent.
675 	 */
676 	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
677 	if (error)
678 		goto bad;
679 	for (; m; m = m0) {
680 		m0 = m->m_nextpkt;
681 		m->m_nextpkt = 0;
682 		if (error == 0) {
683 			/* Record statistics for this interface address. */
684 			if (ia != NULL) {
685 				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
686 				counter_u64_add(ia->ia_ifa.ifa_obytes,
687 				    m->m_pkthdr.len);
688 			}
689 			/*
690 			 * Reset layer specific mbuf flags
691 			 * to avoid confusing upper layers.
692 			 */
693 			m_clrprotoflags(m);
694 
695 			IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
696 			error = (*ifp->if_output)(ifp, m,
697 			    (const struct sockaddr *)gw, ro);
698 		} else
699 			m_freem(m);
700 	}
701 
702 	if (error == 0)
703 		IPSTAT_INC(ips_fragmented);
704 
705 done:
706 	if (ro == &iproute)
707 		RO_RTFREE(ro);
708 	if (have_ia_ref)
709 		ifa_free(&ia->ia_ifa);
710 	return (error);
711 bad:
712 	m_freem(m);
713 	goto done;
714 }
715 
716 /*
717  * Create a chain of fragments which fit the given mtu. m_frag points to the
718  * mbuf to be fragmented; on return it points to the chain with the fragments.
719  * Return 0 if no error. If error, m_frag may contain a partially built
720  * chain of fragments that should be freed by the caller.
721  *
722  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
723  */
724 int
725 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
726     u_long if_hwassist_flags)
727 {
728 	int error = 0;
729 	int hlen = ip->ip_hl << 2;
730 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
731 	int off;
732 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
733 	int firstlen;
734 	struct mbuf **mnext;
735 	int nfrags;
736 	uint16_t ip_len, ip_off;
737 
738 	ip_len = ntohs(ip->ip_len);
739 	ip_off = ntohs(ip->ip_off);
740 
741 	if (ip_off & IP_DF) {	/* Fragmentation not allowed */
742 		IPSTAT_INC(ips_cantfrag);
743 		return EMSGSIZE;
744 	}
745 
746 	/*
747 	 * Must be able to put at least 8 bytes per fragment.
748 	 */
749 	if (len < 8)
750 		return EMSGSIZE;
751 
752 	/*
753 	 * If the interface will not calculate checksums on
754 	 * fragmented packets, then do it here.
755 	 */
756 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
757 		in_delayed_cksum(m0);
758 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
759 	}
760 #ifdef SCTP
761 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
762 		sctp_delayed_cksum(m0, hlen);
763 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
764 	}
765 #endif
766 	if (len > PAGE_SIZE) {
767 		/*
768 		 * Fragment large datagrams such that each segment
769 		 * contains a multiple of PAGE_SIZE amount of data,
770 		 * plus headers. This enables a receiver to perform
771 		 * page-flipping zero-copy optimizations.
772 		 *
773 		 * XXX When does this help given that sender and receiver
774 		 * could have different page sizes, and also mtu could
775 		 * be less than the receiver's page size ?
776 		 */
777 		int newlen;
778 		struct mbuf *m;
779 
780 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
781 			off += m->m_len;
782 
783 		/*
784 		 * firstlen (off - hlen) must be aligned on an
785 		 * 8-byte boundary
786 		 */
787 		if (off < hlen)
788 			goto smart_frag_failure;
789 		off = ((off - hlen) & ~7) + hlen;
790 		newlen = (~PAGE_MASK) & mtu;
791 		if ((newlen + sizeof (struct ip)) > mtu) {
792 			/* we failed, go back the default */
793 smart_frag_failure:
794 			newlen = len;
795 			off = hlen + len;
796 		}
797 		len = newlen;
798 
799 	} else {
800 		off = hlen + len;
801 	}
802 
803 	firstlen = off - hlen;
804 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
805 
806 	/*
807 	 * Loop through length of segment after first fragment,
808 	 * make new header and copy data of each part and link onto chain.
809 	 * Here, m0 is the original packet, m is the fragment being created.
810 	 * The fragments are linked off the m_nextpkt of the original
811 	 * packet, which after processing serves as the first fragment.
812 	 */
813 	for (nfrags = 1; off < ip_len; off += len, nfrags++) {
814 		struct ip *mhip;	/* ip header on the fragment */
815 		struct mbuf *m;
816 		int mhlen = sizeof (struct ip);
817 
818 		m = m_gethdr(M_NOWAIT, MT_DATA);
819 		if (m == NULL) {
820 			error = ENOBUFS;
821 			IPSTAT_INC(ips_odropped);
822 			goto done;
823 		}
824 		m->m_flags |= (m0->m_flags & M_MCAST);
825 		/*
826 		 * In the first mbuf, leave room for the link header, then
827 		 * copy the original IP header including options. The payload
828 		 * goes into an additional mbuf chain returned by m_copym().
829 		 */
830 		m->m_data += max_linkhdr;
831 		mhip = mtod(m, struct ip *);
832 		*mhip = *ip;
833 		if (hlen > sizeof (struct ip)) {
834 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
835 			mhip->ip_v = IPVERSION;
836 			mhip->ip_hl = mhlen >> 2;
837 		}
838 		m->m_len = mhlen;
839 		/* XXX do we need to add ip_off below ? */
840 		mhip->ip_off = ((off - hlen) >> 3) + ip_off;
841 		if (off + len >= ip_len)
842 			len = ip_len - off;
843 		else
844 			mhip->ip_off |= IP_MF;
845 		mhip->ip_len = htons((u_short)(len + mhlen));
846 		m->m_next = m_copym(m0, off, len, M_NOWAIT);
847 		if (m->m_next == NULL) {	/* copy failed */
848 			m_free(m);
849 			error = ENOBUFS;	/* ??? */
850 			IPSTAT_INC(ips_odropped);
851 			goto done;
852 		}
853 		m->m_pkthdr.len = mhlen + len;
854 		m->m_pkthdr.rcvif = NULL;
855 #ifdef MAC
856 		mac_netinet_fragment(m0, m);
857 #endif
858 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
859 		mhip->ip_off = htons(mhip->ip_off);
860 		mhip->ip_sum = 0;
861 		if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
862 			mhip->ip_sum = in_cksum(m, mhlen);
863 			m->m_pkthdr.csum_flags &= ~CSUM_IP;
864 		}
865 		*mnext = m;
866 		mnext = &m->m_nextpkt;
867 	}
868 	IPSTAT_ADD(ips_ofragments, nfrags);
869 
870 	/*
871 	 * Update first fragment by trimming what's been copied out
872 	 * and updating header.
873 	 */
874 	m_adj(m0, hlen + firstlen - ip_len);
875 	m0->m_pkthdr.len = hlen + firstlen;
876 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
877 	ip->ip_off = htons(ip_off | IP_MF);
878 	ip->ip_sum = 0;
879 	if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
880 		ip->ip_sum = in_cksum(m0, hlen);
881 		m0->m_pkthdr.csum_flags &= ~CSUM_IP;
882 	}
883 
884 done:
885 	*m_frag = m0;
886 	return error;
887 }
888 
889 void
890 in_delayed_cksum(struct mbuf *m)
891 {
892 	struct ip *ip;
893 	uint16_t csum, offset, ip_len;
894 
895 	ip = mtod(m, struct ip *);
896 	offset = ip->ip_hl << 2 ;
897 	ip_len = ntohs(ip->ip_len);
898 	csum = in_cksum_skip(m, ip_len, offset);
899 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
900 		csum = 0xffff;
901 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
902 
903 	/* find the mbuf in the chain where the checksum starts*/
904 	while ((m != NULL) && (offset >= m->m_len)) {
905 		offset -= m->m_len;
906 		m = m->m_next;
907 	}
908 	KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain."));
909 	KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs."));
910 	*(u_short *)(m->m_data + offset) = csum;
911 }
912 
913 /*
914  * IP socket option processing.
915  */
916 int
917 ip_ctloutput(struct socket *so, struct sockopt *sopt)
918 {
919 	struct	inpcb *inp = sotoinpcb(so);
920 	int	error, optval;
921 #ifdef	RSS
922 	uint32_t rss_bucket;
923 	int retval;
924 #endif
925 
926 	error = optval = 0;
927 	if (sopt->sopt_level != IPPROTO_IP) {
928 		error = EINVAL;
929 
930 		if (sopt->sopt_level == SOL_SOCKET &&
931 		    sopt->sopt_dir == SOPT_SET) {
932 			switch (sopt->sopt_name) {
933 			case SO_REUSEADDR:
934 				INP_WLOCK(inp);
935 				if ((so->so_options & SO_REUSEADDR) != 0)
936 					inp->inp_flags2 |= INP_REUSEADDR;
937 				else
938 					inp->inp_flags2 &= ~INP_REUSEADDR;
939 				INP_WUNLOCK(inp);
940 				error = 0;
941 				break;
942 			case SO_REUSEPORT:
943 				INP_WLOCK(inp);
944 				if ((so->so_options & SO_REUSEPORT) != 0)
945 					inp->inp_flags2 |= INP_REUSEPORT;
946 				else
947 					inp->inp_flags2 &= ~INP_REUSEPORT;
948 				INP_WUNLOCK(inp);
949 				error = 0;
950 				break;
951 			case SO_SETFIB:
952 				INP_WLOCK(inp);
953 				inp->inp_inc.inc_fibnum = so->so_fibnum;
954 				INP_WUNLOCK(inp);
955 				error = 0;
956 				break;
957 			default:
958 				break;
959 			}
960 		}
961 		return (error);
962 	}
963 
964 	switch (sopt->sopt_dir) {
965 	case SOPT_SET:
966 		switch (sopt->sopt_name) {
967 		case IP_OPTIONS:
968 #ifdef notyet
969 		case IP_RETOPTS:
970 #endif
971 		{
972 			struct mbuf *m;
973 			if (sopt->sopt_valsize > MLEN) {
974 				error = EMSGSIZE;
975 				break;
976 			}
977 			m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
978 			if (m == NULL) {
979 				error = ENOBUFS;
980 				break;
981 			}
982 			m->m_len = sopt->sopt_valsize;
983 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
984 					    m->m_len);
985 			if (error) {
986 				m_free(m);
987 				break;
988 			}
989 			INP_WLOCK(inp);
990 			error = ip_pcbopts(inp, sopt->sopt_name, m);
991 			INP_WUNLOCK(inp);
992 			return (error);
993 		}
994 
995 		case IP_BINDANY:
996 			if (sopt->sopt_td != NULL) {
997 				error = priv_check(sopt->sopt_td,
998 				    PRIV_NETINET_BINDANY);
999 				if (error)
1000 					break;
1001 			}
1002 			/* FALLTHROUGH */
1003 		case IP_BINDMULTI:
1004 #ifdef	RSS
1005 		case IP_RSS_LISTEN_BUCKET:
1006 #endif
1007 		case IP_TOS:
1008 		case IP_TTL:
1009 		case IP_MINTTL:
1010 		case IP_RECVOPTS:
1011 		case IP_RECVRETOPTS:
1012 		case IP_RECVDSTADDR:
1013 		case IP_RECVTTL:
1014 		case IP_RECVIF:
1015 		case IP_FAITH:
1016 		case IP_ONESBCAST:
1017 		case IP_DONTFRAG:
1018 		case IP_RECVTOS:
1019 			error = sooptcopyin(sopt, &optval, sizeof optval,
1020 					    sizeof optval);
1021 			if (error)
1022 				break;
1023 
1024 			switch (sopt->sopt_name) {
1025 			case IP_TOS:
1026 				inp->inp_ip_tos = optval;
1027 				break;
1028 
1029 			case IP_TTL:
1030 				inp->inp_ip_ttl = optval;
1031 				break;
1032 
1033 			case IP_MINTTL:
1034 				if (optval >= 0 && optval <= MAXTTL)
1035 					inp->inp_ip_minttl = optval;
1036 				else
1037 					error = EINVAL;
1038 				break;
1039 
1040 #define	OPTSET(bit) do {						\
1041 	INP_WLOCK(inp);							\
1042 	if (optval)							\
1043 		inp->inp_flags |= bit;					\
1044 	else								\
1045 		inp->inp_flags &= ~bit;					\
1046 	INP_WUNLOCK(inp);						\
1047 } while (0)
1048 
1049 #define	OPTSET2(bit, val) do {						\
1050 	INP_WLOCK(inp);							\
1051 	if (val)							\
1052 		inp->inp_flags2 |= bit;					\
1053 	else								\
1054 		inp->inp_flags2 &= ~bit;				\
1055 	INP_WUNLOCK(inp);						\
1056 } while (0)
1057 
1058 			case IP_RECVOPTS:
1059 				OPTSET(INP_RECVOPTS);
1060 				break;
1061 
1062 			case IP_RECVRETOPTS:
1063 				OPTSET(INP_RECVRETOPTS);
1064 				break;
1065 
1066 			case IP_RECVDSTADDR:
1067 				OPTSET(INP_RECVDSTADDR);
1068 				break;
1069 
1070 			case IP_RECVTTL:
1071 				OPTSET(INP_RECVTTL);
1072 				break;
1073 
1074 			case IP_RECVIF:
1075 				OPTSET(INP_RECVIF);
1076 				break;
1077 
1078 			case IP_FAITH:
1079 				OPTSET(INP_FAITH);
1080 				break;
1081 
1082 			case IP_ONESBCAST:
1083 				OPTSET(INP_ONESBCAST);
1084 				break;
1085 			case IP_DONTFRAG:
1086 				OPTSET(INP_DONTFRAG);
1087 				break;
1088 			case IP_BINDANY:
1089 				OPTSET(INP_BINDANY);
1090 				break;
1091 			case IP_RECVTOS:
1092 				OPTSET(INP_RECVTOS);
1093 				break;
1094 			case IP_BINDMULTI:
1095 				OPTSET2(INP_BINDMULTI, optval);
1096 				break;
1097 #ifdef	RSS
1098 			case IP_RSS_LISTEN_BUCKET:
1099 				if ((optval >= 0) &&
1100 				    (optval < rss_getnumbuckets())) {
1101 					inp->inp_rss_listen_bucket = optval;
1102 					OPTSET2(INP_RSS_BUCKET_SET, 1);
1103 				} else {
1104 					error = EINVAL;
1105 				}
1106 				break;
1107 #endif
1108 			}
1109 			break;
1110 #undef OPTSET
1111 #undef OPTSET2
1112 
1113 		/*
1114 		 * Multicast socket options are processed by the in_mcast
1115 		 * module.
1116 		 */
1117 		case IP_MULTICAST_IF:
1118 		case IP_MULTICAST_VIF:
1119 		case IP_MULTICAST_TTL:
1120 		case IP_MULTICAST_LOOP:
1121 		case IP_ADD_MEMBERSHIP:
1122 		case IP_DROP_MEMBERSHIP:
1123 		case IP_ADD_SOURCE_MEMBERSHIP:
1124 		case IP_DROP_SOURCE_MEMBERSHIP:
1125 		case IP_BLOCK_SOURCE:
1126 		case IP_UNBLOCK_SOURCE:
1127 		case IP_MSFILTER:
1128 		case MCAST_JOIN_GROUP:
1129 		case MCAST_LEAVE_GROUP:
1130 		case MCAST_JOIN_SOURCE_GROUP:
1131 		case MCAST_LEAVE_SOURCE_GROUP:
1132 		case MCAST_BLOCK_SOURCE:
1133 		case MCAST_UNBLOCK_SOURCE:
1134 			error = inp_setmoptions(inp, sopt);
1135 			break;
1136 
1137 		case IP_PORTRANGE:
1138 			error = sooptcopyin(sopt, &optval, sizeof optval,
1139 					    sizeof optval);
1140 			if (error)
1141 				break;
1142 
1143 			INP_WLOCK(inp);
1144 			switch (optval) {
1145 			case IP_PORTRANGE_DEFAULT:
1146 				inp->inp_flags &= ~(INP_LOWPORT);
1147 				inp->inp_flags &= ~(INP_HIGHPORT);
1148 				break;
1149 
1150 			case IP_PORTRANGE_HIGH:
1151 				inp->inp_flags &= ~(INP_LOWPORT);
1152 				inp->inp_flags |= INP_HIGHPORT;
1153 				break;
1154 
1155 			case IP_PORTRANGE_LOW:
1156 				inp->inp_flags &= ~(INP_HIGHPORT);
1157 				inp->inp_flags |= INP_LOWPORT;
1158 				break;
1159 
1160 			default:
1161 				error = EINVAL;
1162 				break;
1163 			}
1164 			INP_WUNLOCK(inp);
1165 			break;
1166 
1167 #ifdef IPSEC
1168 		case IP_IPSEC_POLICY:
1169 		{
1170 			caddr_t req;
1171 			struct mbuf *m;
1172 
1173 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1174 				break;
1175 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1176 				break;
1177 			req = mtod(m, caddr_t);
1178 			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1179 			    m->m_len, (sopt->sopt_td != NULL) ?
1180 			    sopt->sopt_td->td_ucred : NULL);
1181 			m_freem(m);
1182 			break;
1183 		}
1184 #endif /* IPSEC */
1185 
1186 		default:
1187 			error = ENOPROTOOPT;
1188 			break;
1189 		}
1190 		break;
1191 
1192 	case SOPT_GET:
1193 		switch (sopt->sopt_name) {
1194 		case IP_OPTIONS:
1195 		case IP_RETOPTS:
1196 			if (inp->inp_options)
1197 				error = sooptcopyout(sopt,
1198 						     mtod(inp->inp_options,
1199 							  char *),
1200 						     inp->inp_options->m_len);
1201 			else
1202 				sopt->sopt_valsize = 0;
1203 			break;
1204 
1205 		case IP_TOS:
1206 		case IP_TTL:
1207 		case IP_MINTTL:
1208 		case IP_RECVOPTS:
1209 		case IP_RECVRETOPTS:
1210 		case IP_RECVDSTADDR:
1211 		case IP_RECVTTL:
1212 		case IP_RECVIF:
1213 		case IP_PORTRANGE:
1214 		case IP_FAITH:
1215 		case IP_ONESBCAST:
1216 		case IP_DONTFRAG:
1217 		case IP_BINDANY:
1218 		case IP_RECVTOS:
1219 		case IP_BINDMULTI:
1220 		case IP_FLOWID:
1221 		case IP_FLOWTYPE:
1222 #ifdef	RSS
1223 		case IP_RSSBUCKETID:
1224 #endif
1225 			switch (sopt->sopt_name) {
1226 
1227 			case IP_TOS:
1228 				optval = inp->inp_ip_tos;
1229 				break;
1230 
1231 			case IP_TTL:
1232 				optval = inp->inp_ip_ttl;
1233 				break;
1234 
1235 			case IP_MINTTL:
1236 				optval = inp->inp_ip_minttl;
1237 				break;
1238 
1239 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1240 #define	OPTBIT2(bit)	(inp->inp_flags2 & bit ? 1 : 0)
1241 
1242 			case IP_RECVOPTS:
1243 				optval = OPTBIT(INP_RECVOPTS);
1244 				break;
1245 
1246 			case IP_RECVRETOPTS:
1247 				optval = OPTBIT(INP_RECVRETOPTS);
1248 				break;
1249 
1250 			case IP_RECVDSTADDR:
1251 				optval = OPTBIT(INP_RECVDSTADDR);
1252 				break;
1253 
1254 			case IP_RECVTTL:
1255 				optval = OPTBIT(INP_RECVTTL);
1256 				break;
1257 
1258 			case IP_RECVIF:
1259 				optval = OPTBIT(INP_RECVIF);
1260 				break;
1261 
1262 			case IP_PORTRANGE:
1263 				if (inp->inp_flags & INP_HIGHPORT)
1264 					optval = IP_PORTRANGE_HIGH;
1265 				else if (inp->inp_flags & INP_LOWPORT)
1266 					optval = IP_PORTRANGE_LOW;
1267 				else
1268 					optval = 0;
1269 				break;
1270 
1271 			case IP_FAITH:
1272 				optval = OPTBIT(INP_FAITH);
1273 				break;
1274 
1275 			case IP_ONESBCAST:
1276 				optval = OPTBIT(INP_ONESBCAST);
1277 				break;
1278 			case IP_DONTFRAG:
1279 				optval = OPTBIT(INP_DONTFRAG);
1280 				break;
1281 			case IP_BINDANY:
1282 				optval = OPTBIT(INP_BINDANY);
1283 				break;
1284 			case IP_RECVTOS:
1285 				optval = OPTBIT(INP_RECVTOS);
1286 				break;
1287 			case IP_FLOWID:
1288 				optval = inp->inp_flowid;
1289 				break;
1290 			case IP_FLOWTYPE:
1291 				optval = inp->inp_flowtype;
1292 				break;
1293 #ifdef	RSS
1294 			case IP_RSSBUCKETID:
1295 				retval = rss_hash2bucket(inp->inp_flowid,
1296 				    inp->inp_flowtype,
1297 				    &rss_bucket);
1298 				if (retval == 0)
1299 					optval = rss_bucket;
1300 				else
1301 					error = EINVAL;
1302 				break;
1303 #endif
1304 			case IP_BINDMULTI:
1305 				optval = OPTBIT2(INP_BINDMULTI);
1306 				break;
1307 			}
1308 			error = sooptcopyout(sopt, &optval, sizeof optval);
1309 			break;
1310 
1311 		/*
1312 		 * Multicast socket options are processed by the in_mcast
1313 		 * module.
1314 		 */
1315 		case IP_MULTICAST_IF:
1316 		case IP_MULTICAST_VIF:
1317 		case IP_MULTICAST_TTL:
1318 		case IP_MULTICAST_LOOP:
1319 		case IP_MSFILTER:
1320 			error = inp_getmoptions(inp, sopt);
1321 			break;
1322 
1323 #ifdef IPSEC
1324 		case IP_IPSEC_POLICY:
1325 		{
1326 			struct mbuf *m = NULL;
1327 			caddr_t req = NULL;
1328 			size_t len = 0;
1329 
1330 			if (m != 0) {
1331 				req = mtod(m, caddr_t);
1332 				len = m->m_len;
1333 			}
1334 			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1335 			if (error == 0)
1336 				error = soopt_mcopyout(sopt, m); /* XXX */
1337 			if (error == 0)
1338 				m_freem(m);
1339 			break;
1340 		}
1341 #endif /* IPSEC */
1342 
1343 		default:
1344 			error = ENOPROTOOPT;
1345 			break;
1346 		}
1347 		break;
1348 	}
1349 	return (error);
1350 }
1351 
1352 /*
1353  * Routine called from ip_output() to loop back a copy of an IP multicast
1354  * packet to the input queue of a specified interface.  Note that this
1355  * calls the output routine of the loopback "driver", but with an interface
1356  * pointer that might NOT be a loopback interface -- evil, but easier than
1357  * replicating that code here.
1358  */
1359 static void
1360 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1361     int hlen)
1362 {
1363 	register struct ip *ip;
1364 	struct mbuf *copym;
1365 
1366 	/*
1367 	 * Make a deep copy of the packet because we're going to
1368 	 * modify the pack in order to generate checksums.
1369 	 */
1370 	copym = m_dup(m, M_NOWAIT);
1371 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1372 		copym = m_pullup(copym, hlen);
1373 	if (copym != NULL) {
1374 		/* If needed, compute the checksum and mark it as valid. */
1375 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1376 			in_delayed_cksum(copym);
1377 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1378 			copym->m_pkthdr.csum_flags |=
1379 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1380 			copym->m_pkthdr.csum_data = 0xffff;
1381 		}
1382 		/*
1383 		 * We don't bother to fragment if the IP length is greater
1384 		 * than the interface's MTU.  Can this possibly matter?
1385 		 */
1386 		ip = mtod(copym, struct ip *);
1387 		ip->ip_sum = 0;
1388 		ip->ip_sum = in_cksum(copym, hlen);
1389 #if 1 /* XXX */
1390 		if (dst->sin_family != AF_INET) {
1391 			printf("ip_mloopback: bad address family %d\n",
1392 						dst->sin_family);
1393 			dst->sin_family = AF_INET;
1394 		}
1395 #endif
1396 		if_simloop(ifp, copym, dst->sin_family, 0);
1397 	}
1398 }
1399