1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_ipsec.h" 39 #include "opt_kern_tls.h" 40 #include "opt_mbuf_stress_test.h" 41 #include "opt_ratelimit.h" 42 #include "opt_route.h" 43 #include "opt_rss.h" 44 #include "opt_sctp.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/ktls.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/priv.h> 54 #include <sys/proc.h> 55 #include <sys/protosw.h> 56 #include <sys/rmlock.h> 57 #include <sys/sdt.h> 58 #include <sys/socket.h> 59 #include <sys/socketvar.h> 60 #include <sys/sysctl.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_vlan_var.h> 66 #include <net/if_llatbl.h> 67 #include <net/ethernet.h> 68 #include <net/netisr.h> 69 #include <net/pfil.h> 70 #include <net/route.h> 71 #include <net/route/nhop.h> 72 #include <net/rss_config.h> 73 #include <net/vnet.h> 74 75 #include <netinet/in.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_kdtrace.h> 78 #include <netinet/in_systm.h> 79 #include <netinet/ip.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_rss.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip_var.h> 85 #include <netinet/ip_options.h> 86 87 #include <netinet/udp.h> 88 #include <netinet/udp_var.h> 89 90 #if defined(SCTP) || defined(SCTP_SUPPORT) 91 #include <netinet/sctp.h> 92 #include <netinet/sctp_crc32.h> 93 #endif 94 95 #include <netipsec/ipsec_support.h> 96 97 #include <machine/in_cksum.h> 98 99 #include <security/mac/mac_framework.h> 100 101 #ifdef MBUF_STRESS_TEST 102 static int mbuf_frag_size = 0; 103 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, 104 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); 105 #endif 106 107 static void ip_mloopback(struct ifnet *, const struct mbuf *, int); 108 109 extern int in_mcast_loop; 110 extern struct protosw inetsw[]; 111 112 static inline int 113 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, 114 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) 115 { 116 struct m_tag *fwd_tag = NULL; 117 struct mbuf *m; 118 struct in_addr odst; 119 struct ip *ip; 120 int pflags = PFIL_OUT; 121 122 if (flags & IP_FORWARDING) 123 pflags |= PFIL_FWD; 124 125 m = *mp; 126 ip = mtod(m, struct ip *); 127 128 /* Run through list of hooks for output packets. */ 129 odst.s_addr = ip->ip_dst.s_addr; 130 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { 131 case PFIL_DROPPED: 132 *error = EACCES; 133 /* FALLTHROUGH */ 134 case PFIL_CONSUMED: 135 return 1; /* Finished */ 136 case PFIL_PASS: 137 *error = 0; 138 } 139 m = *mp; 140 ip = mtod(m, struct ip *); 141 142 /* See if destination IP address was changed by packet filter. */ 143 if (odst.s_addr != ip->ip_dst.s_addr) { 144 m->m_flags |= M_SKIP_FIREWALL; 145 /* If destination is now ourself drop to ip_input(). */ 146 if (in_localip(ip->ip_dst)) { 147 m->m_flags |= M_FASTFWD_OURS; 148 if (m->m_pkthdr.rcvif == NULL) 149 m->m_pkthdr.rcvif = V_loif; 150 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 151 m->m_pkthdr.csum_flags |= 152 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 153 m->m_pkthdr.csum_data = 0xffff; 154 } 155 m->m_pkthdr.csum_flags |= 156 CSUM_IP_CHECKED | CSUM_IP_VALID; 157 #if defined(SCTP) || defined(SCTP_SUPPORT) 158 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 159 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 160 #endif 161 *error = netisr_queue(NETISR_IP, m); 162 return 1; /* Finished */ 163 } 164 165 bzero(dst, sizeof(*dst)); 166 dst->sin_family = AF_INET; 167 dst->sin_len = sizeof(*dst); 168 dst->sin_addr = ip->ip_dst; 169 170 return -1; /* Reloop */ 171 } 172 /* See if fib was changed by packet filter. */ 173 if ((*fibnum) != M_GETFIB(m)) { 174 m->m_flags |= M_SKIP_FIREWALL; 175 *fibnum = M_GETFIB(m); 176 return -1; /* Reloop for FIB change */ 177 } 178 179 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ 180 if (m->m_flags & M_FASTFWD_OURS) { 181 if (m->m_pkthdr.rcvif == NULL) 182 m->m_pkthdr.rcvif = V_loif; 183 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 184 m->m_pkthdr.csum_flags |= 185 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 186 m->m_pkthdr.csum_data = 0xffff; 187 } 188 #if defined(SCTP) || defined(SCTP_SUPPORT) 189 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 190 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 191 #endif 192 m->m_pkthdr.csum_flags |= 193 CSUM_IP_CHECKED | CSUM_IP_VALID; 194 195 *error = netisr_queue(NETISR_IP, m); 196 return 1; /* Finished */ 197 } 198 /* Or forward to some other address? */ 199 if ((m->m_flags & M_IP_NEXTHOP) && 200 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { 201 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); 202 m->m_flags |= M_SKIP_FIREWALL; 203 m->m_flags &= ~M_IP_NEXTHOP; 204 m_tag_delete(m, fwd_tag); 205 206 return -1; /* Reloop for CHANGE of dst */ 207 } 208 209 return 0; 210 } 211 212 static int 213 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, 214 const struct sockaddr_in *gw, struct route *ro, bool stamp_tag) 215 { 216 #ifdef KERN_TLS 217 struct ktls_session *tls = NULL; 218 #endif 219 struct m_snd_tag *mst; 220 int error; 221 222 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 223 mst = NULL; 224 225 #ifdef KERN_TLS 226 /* 227 * If this is an unencrypted TLS record, save a reference to 228 * the record. This local reference is used to call 229 * ktls_output_eagain after the mbuf has been freed (thus 230 * dropping the mbuf's reference) in if_output. 231 */ 232 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 233 tls = ktls_hold(m->m_next->m_epg_tls); 234 mst = tls->snd_tag; 235 236 /* 237 * If a TLS session doesn't have a valid tag, it must 238 * have had an earlier ifp mismatch, so drop this 239 * packet. 240 */ 241 if (mst == NULL) { 242 error = EAGAIN; 243 goto done; 244 } 245 /* 246 * Always stamp tags that include NIC ktls. 247 */ 248 stamp_tag = true; 249 } 250 #endif 251 #ifdef RATELIMIT 252 if (inp != NULL && mst == NULL) { 253 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 254 (inp->inp_snd_tag != NULL && 255 inp->inp_snd_tag->ifp != ifp)) 256 in_pcboutput_txrtlmt(inp, ifp, m); 257 258 if (inp->inp_snd_tag != NULL) 259 mst = inp->inp_snd_tag; 260 } 261 #endif 262 if (stamp_tag && mst != NULL) { 263 KASSERT(m->m_pkthdr.rcvif == NULL, 264 ("trying to add a send tag to a forwarded packet")); 265 if (mst->ifp != ifp) { 266 error = EAGAIN; 267 goto done; 268 } 269 270 /* stamp send tag on mbuf */ 271 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 272 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 273 } 274 275 error = (*ifp->if_output)(ifp, m, (const struct sockaddr *)gw, ro); 276 277 done: 278 /* Check for route change invalidating send tags. */ 279 #ifdef KERN_TLS 280 if (tls != NULL) { 281 if (error == EAGAIN) 282 error = ktls_output_eagain(inp, tls); 283 ktls_free(tls); 284 } 285 #endif 286 #ifdef RATELIMIT 287 if (error == EAGAIN) 288 in_pcboutput_eagain(inp); 289 #endif 290 return (error); 291 } 292 293 /* rte<>ro_flags translation */ 294 static inline void 295 rt_update_ro_flags(struct route *ro) 296 { 297 int nh_flags = ro->ro_nh->nh_flags; 298 299 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); 300 301 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; 302 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; 303 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; 304 } 305 306 /* 307 * IP output. The packet in mbuf chain m contains a skeletal IP 308 * header (with len, off, ttl, proto, tos, src, dst). 309 * The mbuf chain containing the packet will be freed. 310 * The mbuf opt, if present, will not be freed. 311 * If route ro is present and has ro_rt initialized, route lookup would be 312 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 313 * then result of route lookup is stored in ro->ro_rt. 314 * 315 * In the IP forwarding case, the packet will arrive with options already 316 * inserted, so must have a NULL opt pointer. 317 */ 318 int 319 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, 320 struct ip_moptions *imo, struct inpcb *inp) 321 { 322 struct rm_priotracker in_ifa_tracker; 323 struct ip *ip; 324 struct ifnet *ifp = NULL; /* keep compiler happy */ 325 struct mbuf *m0; 326 int hlen = sizeof (struct ip); 327 int mtu = 0; 328 int error = 0; 329 int vlan_pcp = -1; 330 struct sockaddr_in *dst, sin; 331 const struct sockaddr_in *gw; 332 struct in_ifaddr *ia = NULL; 333 struct in_addr src; 334 int isbroadcast; 335 uint16_t ip_len, ip_off; 336 uint32_t fibnum; 337 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 338 int no_route_but_check_spd = 0; 339 #endif 340 341 M_ASSERTPKTHDR(m); 342 NET_EPOCH_ASSERT(); 343 344 if (inp != NULL) { 345 INP_LOCK_ASSERT(inp); 346 M_SETFIB(m, inp->inp_inc.inc_fibnum); 347 if ((flags & IP_NODEFAULTFLOWID) == 0) { 348 m->m_pkthdr.flowid = inp->inp_flowid; 349 M_HASHTYPE_SET(m, inp->inp_flowtype); 350 } 351 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 352 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 353 INP_2PCP_SHIFT; 354 #ifdef NUMA 355 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 356 #endif 357 } 358 359 if (opt) { 360 int len = 0; 361 m = ip_insertoptions(m, opt, &len); 362 if (len != 0) 363 hlen = len; /* ip->ip_hl is updated above */ 364 } 365 ip = mtod(m, struct ip *); 366 ip_len = ntohs(ip->ip_len); 367 ip_off = ntohs(ip->ip_off); 368 369 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 370 ip->ip_v = IPVERSION; 371 ip->ip_hl = hlen >> 2; 372 ip_fillid(ip); 373 } else { 374 /* Header already set, fetch hlen from there */ 375 hlen = ip->ip_hl << 2; 376 } 377 if ((flags & IP_FORWARDING) == 0) 378 IPSTAT_INC(ips_localout); 379 380 /* 381 * dst/gw handling: 382 * 383 * gw is readonly but can point either to dst OR rt_gateway, 384 * therefore we need restore gw if we're redoing lookup. 385 */ 386 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 387 if (ro != NULL) 388 dst = (struct sockaddr_in *)&ro->ro_dst; 389 else 390 dst = &sin; 391 if (ro == NULL || ro->ro_nh == NULL) { 392 bzero(dst, sizeof(*dst)); 393 dst->sin_family = AF_INET; 394 dst->sin_len = sizeof(*dst); 395 dst->sin_addr = ip->ip_dst; 396 } 397 gw = dst; 398 again: 399 /* 400 * Validate route against routing table additions; 401 * a better/more specific route might have been added. 402 */ 403 if (inp != NULL && ro != NULL && ro->ro_nh != NULL) 404 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); 405 /* 406 * If there is a cached route, 407 * check that it is to the same destination 408 * and is still up. If not, free it and try again. 409 * The address family should also be checked in case of sharing the 410 * cache with IPv6. 411 * Also check whether routing cache needs invalidation. 412 */ 413 if (ro != NULL && ro->ro_nh != NULL && 414 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || 415 dst->sin_addr.s_addr != ip->ip_dst.s_addr)) 416 RO_INVALIDATE_CACHE(ro); 417 ia = NULL; 418 /* 419 * If routing to interface only, short circuit routing lookup. 420 * The use of an all-ones broadcast address implies this; an 421 * interface is specified by the broadcast address of an interface, 422 * or the destination address of a ptp interface. 423 */ 424 if (flags & IP_SENDONES) { 425 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), 426 M_GETFIB(m)))) == NULL && 427 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 428 M_GETFIB(m)))) == NULL) { 429 IPSTAT_INC(ips_noroute); 430 error = ENETUNREACH; 431 goto bad; 432 } 433 ip->ip_dst.s_addr = INADDR_BROADCAST; 434 dst->sin_addr = ip->ip_dst; 435 ifp = ia->ia_ifp; 436 mtu = ifp->if_mtu; 437 ip->ip_ttl = 1; 438 isbroadcast = 1; 439 src = IA_SIN(ia)->sin_addr; 440 } else if (flags & IP_ROUTETOIF) { 441 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), 442 M_GETFIB(m)))) == NULL && 443 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, 444 M_GETFIB(m)))) == NULL) { 445 IPSTAT_INC(ips_noroute); 446 error = ENETUNREACH; 447 goto bad; 448 } 449 ifp = ia->ia_ifp; 450 mtu = ifp->if_mtu; 451 ip->ip_ttl = 1; 452 isbroadcast = ifp->if_flags & IFF_BROADCAST ? 453 in_ifaddr_broadcast(dst->sin_addr, ia) : 0; 454 src = IA_SIN(ia)->sin_addr; 455 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && 456 imo != NULL && imo->imo_multicast_ifp != NULL) { 457 /* 458 * Bypass the normal routing lookup for multicast 459 * packets if the interface is specified. 460 */ 461 ifp = imo->imo_multicast_ifp; 462 mtu = ifp->if_mtu; 463 IFP_TO_IA(ifp, ia, &in_ifa_tracker); 464 isbroadcast = 0; /* fool gcc */ 465 /* Interface may have no addresses. */ 466 if (ia != NULL) 467 src = IA_SIN(ia)->sin_addr; 468 else 469 src.s_addr = INADDR_ANY; 470 } else if (ro != NULL) { 471 if (ro->ro_nh == NULL) { 472 /* 473 * We want to do any cloning requested by the link 474 * layer, as this is probably required in all cases 475 * for correct operation (as it is for ARP). 476 */ 477 uint32_t flowid; 478 flowid = m->m_pkthdr.flowid; 479 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, 480 NHR_REF, flowid); 481 482 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { 483 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 484 /* 485 * There is no route for this packet, but it is 486 * possible that a matching SPD entry exists. 487 */ 488 no_route_but_check_spd = 1; 489 goto sendit; 490 #endif 491 IPSTAT_INC(ips_noroute); 492 error = EHOSTUNREACH; 493 goto bad; 494 } 495 } 496 ia = ifatoia(ro->ro_nh->nh_ifa); 497 ifp = ro->ro_nh->nh_ifp; 498 counter_u64_add(ro->ro_nh->nh_pksent, 1); 499 rt_update_ro_flags(ro); 500 if (ro->ro_nh->nh_flags & NHF_GATEWAY) 501 gw = &ro->ro_nh->gw4_sa; 502 if (ro->ro_nh->nh_flags & NHF_HOST) 503 isbroadcast = (ro->ro_nh->nh_flags & NHF_BROADCAST); 504 else if (ifp->if_flags & IFF_BROADCAST) 505 isbroadcast = in_ifaddr_broadcast(gw->sin_addr, ia); 506 else 507 isbroadcast = 0; 508 if (ro->ro_nh->nh_flags & NHF_HOST) 509 mtu = ro->ro_nh->nh_mtu; 510 else 511 mtu = ifp->if_mtu; 512 src = IA_SIN(ia)->sin_addr; 513 } else { 514 struct nhop_object *nh; 515 516 nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_NONE, 517 m->m_pkthdr.flowid); 518 if (nh == NULL) { 519 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 520 /* 521 * There is no route for this packet, but it is 522 * possible that a matching SPD entry exists. 523 */ 524 no_route_but_check_spd = 1; 525 goto sendit; 526 #endif 527 IPSTAT_INC(ips_noroute); 528 error = EHOSTUNREACH; 529 goto bad; 530 } 531 ifp = nh->nh_ifp; 532 mtu = nh->nh_mtu; 533 /* 534 * We are rewriting here dst to be gw actually, contradicting 535 * comment at the beginning of the function. However, in this 536 * case we are always dealing with on stack dst. 537 * In case if pfil(9) sends us back to beginning of the 538 * function, the dst would be rewritten by ip_output_pfil(). 539 */ 540 MPASS(dst == &sin); 541 if (nh->nh_flags & NHF_GATEWAY) 542 dst->sin_addr = nh->gw4_sa.sin_addr; 543 ia = ifatoia(nh->nh_ifa); 544 src = IA_SIN(ia)->sin_addr; 545 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == 546 (NHF_HOST | NHF_BROADCAST)) || 547 ((ifp->if_flags & IFF_BROADCAST) && 548 in_ifaddr_broadcast(dst->sin_addr, ia))); 549 } 550 551 /* Catch a possible divide by zero later. */ 552 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", 553 __func__, mtu, ro, 554 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); 555 556 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 557 m->m_flags |= M_MCAST; 558 /* 559 * IP destination address is multicast. Make sure "gw" 560 * still points to the address in "ro". (It may have been 561 * changed to point to a gateway address, above.) 562 */ 563 gw = dst; 564 /* 565 * See if the caller provided any multicast options 566 */ 567 if (imo != NULL) { 568 ip->ip_ttl = imo->imo_multicast_ttl; 569 if (imo->imo_multicast_vif != -1) 570 ip->ip_src.s_addr = 571 ip_mcast_src ? 572 ip_mcast_src(imo->imo_multicast_vif) : 573 INADDR_ANY; 574 } else 575 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 576 /* 577 * Confirm that the outgoing interface supports multicast. 578 */ 579 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { 580 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 581 IPSTAT_INC(ips_noroute); 582 error = ENETUNREACH; 583 goto bad; 584 } 585 } 586 /* 587 * If source address not specified yet, use address 588 * of outgoing interface. 589 */ 590 if (ip->ip_src.s_addr == INADDR_ANY) 591 ip->ip_src = src; 592 593 if ((imo == NULL && in_mcast_loop) || 594 (imo && imo->imo_multicast_loop)) { 595 /* 596 * Loop back multicast datagram if not expressly 597 * forbidden to do so, even if we are not a member 598 * of the group; ip_input() will filter it later, 599 * thus deferring a hash lookup and mutex acquisition 600 * at the expense of a cheap copy using m_copym(). 601 */ 602 ip_mloopback(ifp, m, hlen); 603 } else { 604 /* 605 * If we are acting as a multicast router, perform 606 * multicast forwarding as if the packet had just 607 * arrived on the interface to which we are about 608 * to send. The multicast forwarding function 609 * recursively calls this function, using the 610 * IP_FORWARDING flag to prevent infinite recursion. 611 * 612 * Multicasts that are looped back by ip_mloopback(), 613 * above, will be forwarded by the ip_input() routine, 614 * if necessary. 615 */ 616 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { 617 /* 618 * If rsvp daemon is not running, do not 619 * set ip_moptions. This ensures that the packet 620 * is multicast and not just sent down one link 621 * as prescribed by rsvpd. 622 */ 623 if (!V_rsvp_on) 624 imo = NULL; 625 if (ip_mforward && 626 ip_mforward(ip, ifp, m, imo) != 0) { 627 m_freem(m); 628 goto done; 629 } 630 } 631 } 632 633 /* 634 * Multicasts with a time-to-live of zero may be looped- 635 * back, above, but must not be transmitted on a network. 636 * Also, multicasts addressed to the loopback interface 637 * are not sent -- the above call to ip_mloopback() will 638 * loop back a copy. ip_input() will drop the copy if 639 * this host does not belong to the destination group on 640 * the loopback interface. 641 */ 642 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { 643 m_freem(m); 644 goto done; 645 } 646 647 goto sendit; 648 } 649 650 /* 651 * If the source address is not specified yet, use the address 652 * of the outoing interface. 653 */ 654 if (ip->ip_src.s_addr == INADDR_ANY) 655 ip->ip_src = src; 656 657 /* 658 * Look for broadcast address and 659 * verify user is allowed to send 660 * such a packet. 661 */ 662 if (isbroadcast) { 663 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 664 error = EADDRNOTAVAIL; 665 goto bad; 666 } 667 if ((flags & IP_ALLOWBROADCAST) == 0) { 668 error = EACCES; 669 goto bad; 670 } 671 /* don't allow broadcast messages to be fragmented */ 672 if (ip_len > mtu) { 673 error = EMSGSIZE; 674 goto bad; 675 } 676 m->m_flags |= M_BCAST; 677 } else { 678 m->m_flags &= ~M_BCAST; 679 } 680 681 sendit: 682 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 683 if (IPSEC_ENABLED(ipv4)) { 684 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { 685 if (error == EINPROGRESS) 686 error = 0; 687 goto done; 688 } 689 } 690 /* 691 * Check if there was a route for this packet; return error if not. 692 */ 693 if (no_route_but_check_spd) { 694 IPSTAT_INC(ips_noroute); 695 error = EHOSTUNREACH; 696 goto bad; 697 } 698 /* Update variables that are affected by ipsec4_output(). */ 699 ip = mtod(m, struct ip *); 700 hlen = ip->ip_hl << 2; 701 #endif /* IPSEC */ 702 703 /* Jump over all PFIL processing if hooks are not active. */ 704 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { 705 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, 706 &error)) { 707 case 1: /* Finished */ 708 goto done; 709 710 case 0: /* Continue normally */ 711 ip = mtod(m, struct ip *); 712 break; 713 714 case -1: /* Need to try again */ 715 /* Reset everything for a new round */ 716 if (ro != NULL) { 717 RO_NHFREE(ro); 718 ro->ro_prepend = NULL; 719 } 720 gw = dst; 721 ip = mtod(m, struct ip *); 722 goto again; 723 } 724 } 725 726 if (vlan_pcp > -1) 727 EVL_APPLY_PRI(m, vlan_pcp); 728 729 /* IN_LOOPBACK must not appear on the wire - RFC1122. */ 730 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 731 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 732 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 733 IPSTAT_INC(ips_badaddr); 734 error = EADDRNOTAVAIL; 735 goto bad; 736 } 737 } 738 739 m->m_pkthdr.csum_flags |= CSUM_IP; 740 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 741 m = mb_unmapped_to_ext(m); 742 if (m == NULL) { 743 IPSTAT_INC(ips_odropped); 744 error = ENOBUFS; 745 goto bad; 746 } 747 in_delayed_cksum(m); 748 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 749 } else if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 750 m = mb_unmapped_to_ext(m); 751 if (m == NULL) { 752 IPSTAT_INC(ips_odropped); 753 error = ENOBUFS; 754 goto bad; 755 } 756 } 757 #if defined(SCTP) || defined(SCTP_SUPPORT) 758 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 759 m = mb_unmapped_to_ext(m); 760 if (m == NULL) { 761 IPSTAT_INC(ips_odropped); 762 error = ENOBUFS; 763 goto bad; 764 } 765 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 766 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 767 } 768 #endif 769 770 /* 771 * If small enough for interface, or the interface will take 772 * care of the fragmentation for us, we can just send directly. 773 * Note that if_vxlan could have requested TSO even though the outer 774 * frame is UDP. It is correct to not fragment such datagrams and 775 * instead just pass them on to the driver. 776 */ 777 if (ip_len <= mtu || 778 (m->m_pkthdr.csum_flags & ifp->if_hwassist & 779 (CSUM_TSO | CSUM_INNER_TSO)) != 0) { 780 ip->ip_sum = 0; 781 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 782 ip->ip_sum = in_cksum(m, hlen); 783 m->m_pkthdr.csum_flags &= ~CSUM_IP; 784 } 785 786 /* 787 * Record statistics for this interface address. 788 * With CSUM_TSO the byte/packet count will be slightly 789 * incorrect because we count the IP+TCP headers only 790 * once instead of for every generated packet. 791 */ 792 if (!(flags & IP_FORWARDING) && ia) { 793 if (m->m_pkthdr.csum_flags & 794 (CSUM_TSO | CSUM_INNER_TSO)) 795 counter_u64_add(ia->ia_ifa.ifa_opackets, 796 m->m_pkthdr.len / m->m_pkthdr.tso_segsz); 797 else 798 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 799 800 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); 801 } 802 #ifdef MBUF_STRESS_TEST 803 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) 804 m = m_fragment(m, M_NOWAIT, mbuf_frag_size); 805 #endif 806 /* 807 * Reset layer specific mbuf flags 808 * to avoid confusing lower layers. 809 */ 810 m_clrprotoflags(m); 811 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); 812 error = ip_output_send(inp, ifp, m, gw, ro, 813 (flags & IP_NO_SND_TAG_RL) ? false : true); 814 goto done; 815 } 816 817 /* Balk when DF bit is set or the interface didn't support TSO. */ 818 if ((ip_off & IP_DF) || 819 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { 820 error = EMSGSIZE; 821 IPSTAT_INC(ips_cantfrag); 822 goto bad; 823 } 824 825 /* 826 * Too large for interface; fragment if possible. If successful, 827 * on return, m will point to a list of packets to be sent. 828 */ 829 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); 830 if (error) 831 goto bad; 832 for (; m; m = m0) { 833 m0 = m->m_nextpkt; 834 m->m_nextpkt = 0; 835 if (error == 0) { 836 /* Record statistics for this interface address. */ 837 if (ia != NULL) { 838 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 839 counter_u64_add(ia->ia_ifa.ifa_obytes, 840 m->m_pkthdr.len); 841 } 842 /* 843 * Reset layer specific mbuf flags 844 * to avoid confusing upper layers. 845 */ 846 m_clrprotoflags(m); 847 848 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, 849 mtod(m, struct ip *), NULL); 850 error = ip_output_send(inp, ifp, m, gw, ro, true); 851 } else 852 m_freem(m); 853 } 854 855 if (error == 0) 856 IPSTAT_INC(ips_fragmented); 857 858 done: 859 return (error); 860 bad: 861 m_freem(m); 862 goto done; 863 } 864 865 /* 866 * Create a chain of fragments which fit the given mtu. m_frag points to the 867 * mbuf to be fragmented; on return it points to the chain with the fragments. 868 * Return 0 if no error. If error, m_frag may contain a partially built 869 * chain of fragments that should be freed by the caller. 870 * 871 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) 872 */ 873 int 874 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, 875 u_long if_hwassist_flags) 876 { 877 int error = 0; 878 int hlen = ip->ip_hl << 2; 879 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ 880 int off; 881 struct mbuf *m0 = *m_frag; /* the original packet */ 882 int firstlen; 883 struct mbuf **mnext; 884 int nfrags; 885 uint16_t ip_len, ip_off; 886 887 ip_len = ntohs(ip->ip_len); 888 ip_off = ntohs(ip->ip_off); 889 890 if (ip_off & IP_DF) { /* Fragmentation not allowed */ 891 IPSTAT_INC(ips_cantfrag); 892 return EMSGSIZE; 893 } 894 895 /* 896 * Must be able to put at least 8 bytes per fragment. 897 */ 898 if (len < 8) 899 return EMSGSIZE; 900 901 /* 902 * If the interface will not calculate checksums on 903 * fragmented packets, then do it here. 904 */ 905 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 906 m0 = mb_unmapped_to_ext(m0); 907 if (m0 == NULL) { 908 error = ENOBUFS; 909 IPSTAT_INC(ips_odropped); 910 goto done; 911 } 912 in_delayed_cksum(m0); 913 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 914 } 915 #if defined(SCTP) || defined(SCTP_SUPPORT) 916 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { 917 m0 = mb_unmapped_to_ext(m0); 918 if (m0 == NULL) { 919 error = ENOBUFS; 920 IPSTAT_INC(ips_odropped); 921 goto done; 922 } 923 sctp_delayed_cksum(m0, hlen); 924 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 925 } 926 #endif 927 if (len > PAGE_SIZE) { 928 /* 929 * Fragment large datagrams such that each segment 930 * contains a multiple of PAGE_SIZE amount of data, 931 * plus headers. This enables a receiver to perform 932 * page-flipping zero-copy optimizations. 933 * 934 * XXX When does this help given that sender and receiver 935 * could have different page sizes, and also mtu could 936 * be less than the receiver's page size ? 937 */ 938 int newlen; 939 940 off = MIN(mtu, m0->m_pkthdr.len); 941 942 /* 943 * firstlen (off - hlen) must be aligned on an 944 * 8-byte boundary 945 */ 946 if (off < hlen) 947 goto smart_frag_failure; 948 off = ((off - hlen) & ~7) + hlen; 949 newlen = (~PAGE_MASK) & mtu; 950 if ((newlen + sizeof (struct ip)) > mtu) { 951 /* we failed, go back the default */ 952 smart_frag_failure: 953 newlen = len; 954 off = hlen + len; 955 } 956 len = newlen; 957 958 } else { 959 off = hlen + len; 960 } 961 962 firstlen = off - hlen; 963 mnext = &m0->m_nextpkt; /* pointer to next packet */ 964 965 /* 966 * Loop through length of segment after first fragment, 967 * make new header and copy data of each part and link onto chain. 968 * Here, m0 is the original packet, m is the fragment being created. 969 * The fragments are linked off the m_nextpkt of the original 970 * packet, which after processing serves as the first fragment. 971 */ 972 for (nfrags = 1; off < ip_len; off += len, nfrags++) { 973 struct ip *mhip; /* ip header on the fragment */ 974 struct mbuf *m; 975 int mhlen = sizeof (struct ip); 976 977 m = m_gethdr(M_NOWAIT, MT_DATA); 978 if (m == NULL) { 979 error = ENOBUFS; 980 IPSTAT_INC(ips_odropped); 981 goto done; 982 } 983 /* 984 * Make sure the complete packet header gets copied 985 * from the originating mbuf to the newly created 986 * mbuf. This also ensures that existing firewall 987 * classification(s), VLAN tags and so on get copied 988 * to the resulting fragmented packet(s): 989 */ 990 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 991 m_free(m); 992 error = ENOBUFS; 993 IPSTAT_INC(ips_odropped); 994 goto done; 995 } 996 /* 997 * In the first mbuf, leave room for the link header, then 998 * copy the original IP header including options. The payload 999 * goes into an additional mbuf chain returned by m_copym(). 1000 */ 1001 m->m_data += max_linkhdr; 1002 mhip = mtod(m, struct ip *); 1003 *mhip = *ip; 1004 if (hlen > sizeof (struct ip)) { 1005 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 1006 mhip->ip_v = IPVERSION; 1007 mhip->ip_hl = mhlen >> 2; 1008 } 1009 m->m_len = mhlen; 1010 /* XXX do we need to add ip_off below ? */ 1011 mhip->ip_off = ((off - hlen) >> 3) + ip_off; 1012 if (off + len >= ip_len) 1013 len = ip_len - off; 1014 else 1015 mhip->ip_off |= IP_MF; 1016 mhip->ip_len = htons((u_short)(len + mhlen)); 1017 m->m_next = m_copym(m0, off, len, M_NOWAIT); 1018 if (m->m_next == NULL) { /* copy failed */ 1019 m_free(m); 1020 error = ENOBUFS; /* ??? */ 1021 IPSTAT_INC(ips_odropped); 1022 goto done; 1023 } 1024 m->m_pkthdr.len = mhlen + len; 1025 #ifdef MAC 1026 mac_netinet_fragment(m0, m); 1027 #endif 1028 mhip->ip_off = htons(mhip->ip_off); 1029 mhip->ip_sum = 0; 1030 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1031 mhip->ip_sum = in_cksum(m, mhlen); 1032 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1033 } 1034 *mnext = m; 1035 mnext = &m->m_nextpkt; 1036 } 1037 IPSTAT_ADD(ips_ofragments, nfrags); 1038 1039 /* 1040 * Update first fragment by trimming what's been copied out 1041 * and updating header. 1042 */ 1043 m_adj(m0, hlen + firstlen - ip_len); 1044 m0->m_pkthdr.len = hlen + firstlen; 1045 ip->ip_len = htons((u_short)m0->m_pkthdr.len); 1046 ip->ip_off = htons(ip_off | IP_MF); 1047 ip->ip_sum = 0; 1048 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { 1049 ip->ip_sum = in_cksum(m0, hlen); 1050 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 1051 } 1052 1053 done: 1054 *m_frag = m0; 1055 return error; 1056 } 1057 1058 void 1059 in_delayed_cksum(struct mbuf *m) 1060 { 1061 struct ip *ip; 1062 struct udphdr *uh; 1063 uint16_t cklen, csum, offset; 1064 1065 ip = mtod(m, struct ip *); 1066 offset = ip->ip_hl << 2 ; 1067 1068 if (m->m_pkthdr.csum_flags & CSUM_UDP) { 1069 /* if udp header is not in the first mbuf copy udplen */ 1070 if (offset + sizeof(struct udphdr) > m->m_len) { 1071 m_copydata(m, offset + offsetof(struct udphdr, 1072 uh_ulen), sizeof(cklen), (caddr_t)&cklen); 1073 cklen = ntohs(cklen); 1074 } else { 1075 uh = (struct udphdr *)mtodo(m, offset); 1076 cklen = ntohs(uh->uh_ulen); 1077 } 1078 csum = in_cksum_skip(m, cklen + offset, offset); 1079 if (csum == 0) 1080 csum = 0xffff; 1081 } else { 1082 cklen = ntohs(ip->ip_len); 1083 csum = in_cksum_skip(m, cklen, offset); 1084 } 1085 offset += m->m_pkthdr.csum_data; /* checksum offset */ 1086 1087 if (offset + sizeof(csum) > m->m_len) 1088 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 1089 else 1090 *(u_short *)mtodo(m, offset) = csum; 1091 } 1092 1093 /* 1094 * IP socket option processing. 1095 */ 1096 int 1097 ip_ctloutput(struct socket *so, struct sockopt *sopt) 1098 { 1099 struct inpcb *inp = sotoinpcb(so); 1100 int error, optval; 1101 #ifdef RSS 1102 uint32_t rss_bucket; 1103 int retval; 1104 #endif 1105 1106 error = optval = 0; 1107 if (sopt->sopt_level != IPPROTO_IP) { 1108 error = EINVAL; 1109 1110 if (sopt->sopt_level == SOL_SOCKET && 1111 sopt->sopt_dir == SOPT_SET) { 1112 switch (sopt->sopt_name) { 1113 case SO_REUSEADDR: 1114 INP_WLOCK(inp); 1115 if ((so->so_options & SO_REUSEADDR) != 0) 1116 inp->inp_flags2 |= INP_REUSEADDR; 1117 else 1118 inp->inp_flags2 &= ~INP_REUSEADDR; 1119 INP_WUNLOCK(inp); 1120 error = 0; 1121 break; 1122 case SO_REUSEPORT: 1123 INP_WLOCK(inp); 1124 if ((so->so_options & SO_REUSEPORT) != 0) 1125 inp->inp_flags2 |= INP_REUSEPORT; 1126 else 1127 inp->inp_flags2 &= ~INP_REUSEPORT; 1128 INP_WUNLOCK(inp); 1129 error = 0; 1130 break; 1131 case SO_REUSEPORT_LB: 1132 INP_WLOCK(inp); 1133 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1134 inp->inp_flags2 |= INP_REUSEPORT_LB; 1135 else 1136 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1137 INP_WUNLOCK(inp); 1138 error = 0; 1139 break; 1140 case SO_SETFIB: 1141 INP_WLOCK(inp); 1142 inp->inp_inc.inc_fibnum = so->so_fibnum; 1143 INP_WUNLOCK(inp); 1144 error = 0; 1145 break; 1146 case SO_MAX_PACING_RATE: 1147 #ifdef RATELIMIT 1148 INP_WLOCK(inp); 1149 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1150 INP_WUNLOCK(inp); 1151 error = 0; 1152 #else 1153 error = EOPNOTSUPP; 1154 #endif 1155 break; 1156 default: 1157 break; 1158 } 1159 } 1160 return (error); 1161 } 1162 1163 switch (sopt->sopt_dir) { 1164 case SOPT_SET: 1165 switch (sopt->sopt_name) { 1166 case IP_OPTIONS: 1167 #ifdef notyet 1168 case IP_RETOPTS: 1169 #endif 1170 { 1171 struct mbuf *m; 1172 if (sopt->sopt_valsize > MLEN) { 1173 error = EMSGSIZE; 1174 break; 1175 } 1176 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 1177 if (m == NULL) { 1178 error = ENOBUFS; 1179 break; 1180 } 1181 m->m_len = sopt->sopt_valsize; 1182 error = sooptcopyin(sopt, mtod(m, char *), m->m_len, 1183 m->m_len); 1184 if (error) { 1185 m_free(m); 1186 break; 1187 } 1188 INP_WLOCK(inp); 1189 error = ip_pcbopts(inp, sopt->sopt_name, m); 1190 INP_WUNLOCK(inp); 1191 return (error); 1192 } 1193 1194 case IP_BINDANY: 1195 if (sopt->sopt_td != NULL) { 1196 error = priv_check(sopt->sopt_td, 1197 PRIV_NETINET_BINDANY); 1198 if (error) 1199 break; 1200 } 1201 /* FALLTHROUGH */ 1202 case IP_BINDMULTI: 1203 #ifdef RSS 1204 case IP_RSS_LISTEN_BUCKET: 1205 #endif 1206 case IP_TOS: 1207 case IP_TTL: 1208 case IP_MINTTL: 1209 case IP_RECVOPTS: 1210 case IP_RECVRETOPTS: 1211 case IP_ORIGDSTADDR: 1212 case IP_RECVDSTADDR: 1213 case IP_RECVTTL: 1214 case IP_RECVIF: 1215 case IP_ONESBCAST: 1216 case IP_DONTFRAG: 1217 case IP_RECVTOS: 1218 case IP_RECVFLOWID: 1219 #ifdef RSS 1220 case IP_RECVRSSBUCKETID: 1221 #endif 1222 case IP_VLAN_PCP: 1223 error = sooptcopyin(sopt, &optval, sizeof optval, 1224 sizeof optval); 1225 if (error) 1226 break; 1227 1228 switch (sopt->sopt_name) { 1229 case IP_TOS: 1230 inp->inp_ip_tos = optval; 1231 break; 1232 1233 case IP_TTL: 1234 inp->inp_ip_ttl = optval; 1235 break; 1236 1237 case IP_MINTTL: 1238 if (optval >= 0 && optval <= MAXTTL) 1239 inp->inp_ip_minttl = optval; 1240 else 1241 error = EINVAL; 1242 break; 1243 1244 #define OPTSET(bit) do { \ 1245 INP_WLOCK(inp); \ 1246 if (optval) \ 1247 inp->inp_flags |= bit; \ 1248 else \ 1249 inp->inp_flags &= ~bit; \ 1250 INP_WUNLOCK(inp); \ 1251 } while (0) 1252 1253 #define OPTSET2(bit, val) do { \ 1254 INP_WLOCK(inp); \ 1255 if (val) \ 1256 inp->inp_flags2 |= bit; \ 1257 else \ 1258 inp->inp_flags2 &= ~bit; \ 1259 INP_WUNLOCK(inp); \ 1260 } while (0) 1261 1262 case IP_RECVOPTS: 1263 OPTSET(INP_RECVOPTS); 1264 break; 1265 1266 case IP_RECVRETOPTS: 1267 OPTSET(INP_RECVRETOPTS); 1268 break; 1269 1270 case IP_RECVDSTADDR: 1271 OPTSET(INP_RECVDSTADDR); 1272 break; 1273 1274 case IP_ORIGDSTADDR: 1275 OPTSET2(INP_ORIGDSTADDR, optval); 1276 break; 1277 1278 case IP_RECVTTL: 1279 OPTSET(INP_RECVTTL); 1280 break; 1281 1282 case IP_RECVIF: 1283 OPTSET(INP_RECVIF); 1284 break; 1285 1286 case IP_ONESBCAST: 1287 OPTSET(INP_ONESBCAST); 1288 break; 1289 case IP_DONTFRAG: 1290 OPTSET(INP_DONTFRAG); 1291 break; 1292 case IP_BINDANY: 1293 OPTSET(INP_BINDANY); 1294 break; 1295 case IP_RECVTOS: 1296 OPTSET(INP_RECVTOS); 1297 break; 1298 case IP_BINDMULTI: 1299 OPTSET2(INP_BINDMULTI, optval); 1300 break; 1301 case IP_RECVFLOWID: 1302 OPTSET2(INP_RECVFLOWID, optval); 1303 break; 1304 #ifdef RSS 1305 case IP_RSS_LISTEN_BUCKET: 1306 if ((optval >= 0) && 1307 (optval < rss_getnumbuckets())) { 1308 inp->inp_rss_listen_bucket = optval; 1309 OPTSET2(INP_RSS_BUCKET_SET, 1); 1310 } else { 1311 error = EINVAL; 1312 } 1313 break; 1314 case IP_RECVRSSBUCKETID: 1315 OPTSET2(INP_RECVRSSBUCKETID, optval); 1316 break; 1317 #endif 1318 case IP_VLAN_PCP: 1319 if ((optval >= -1) && (optval <= 1320 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1321 if (optval == -1) { 1322 INP_WLOCK(inp); 1323 inp->inp_flags2 &= 1324 ~(INP_2PCP_SET | 1325 INP_2PCP_MASK); 1326 INP_WUNLOCK(inp); 1327 } else { 1328 INP_WLOCK(inp); 1329 inp->inp_flags2 |= 1330 INP_2PCP_SET; 1331 inp->inp_flags2 &= 1332 ~INP_2PCP_MASK; 1333 inp->inp_flags2 |= 1334 optval << INP_2PCP_SHIFT; 1335 INP_WUNLOCK(inp); 1336 } 1337 } else 1338 error = EINVAL; 1339 break; 1340 } 1341 break; 1342 #undef OPTSET 1343 #undef OPTSET2 1344 1345 /* 1346 * Multicast socket options are processed by the in_mcast 1347 * module. 1348 */ 1349 case IP_MULTICAST_IF: 1350 case IP_MULTICAST_VIF: 1351 case IP_MULTICAST_TTL: 1352 case IP_MULTICAST_LOOP: 1353 case IP_ADD_MEMBERSHIP: 1354 case IP_DROP_MEMBERSHIP: 1355 case IP_ADD_SOURCE_MEMBERSHIP: 1356 case IP_DROP_SOURCE_MEMBERSHIP: 1357 case IP_BLOCK_SOURCE: 1358 case IP_UNBLOCK_SOURCE: 1359 case IP_MSFILTER: 1360 case MCAST_JOIN_GROUP: 1361 case MCAST_LEAVE_GROUP: 1362 case MCAST_JOIN_SOURCE_GROUP: 1363 case MCAST_LEAVE_SOURCE_GROUP: 1364 case MCAST_BLOCK_SOURCE: 1365 case MCAST_UNBLOCK_SOURCE: 1366 error = inp_setmoptions(inp, sopt); 1367 break; 1368 1369 case IP_PORTRANGE: 1370 error = sooptcopyin(sopt, &optval, sizeof optval, 1371 sizeof optval); 1372 if (error) 1373 break; 1374 1375 INP_WLOCK(inp); 1376 switch (optval) { 1377 case IP_PORTRANGE_DEFAULT: 1378 inp->inp_flags &= ~(INP_LOWPORT); 1379 inp->inp_flags &= ~(INP_HIGHPORT); 1380 break; 1381 1382 case IP_PORTRANGE_HIGH: 1383 inp->inp_flags &= ~(INP_LOWPORT); 1384 inp->inp_flags |= INP_HIGHPORT; 1385 break; 1386 1387 case IP_PORTRANGE_LOW: 1388 inp->inp_flags &= ~(INP_HIGHPORT); 1389 inp->inp_flags |= INP_LOWPORT; 1390 break; 1391 1392 default: 1393 error = EINVAL; 1394 break; 1395 } 1396 INP_WUNLOCK(inp); 1397 break; 1398 1399 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1400 case IP_IPSEC_POLICY: 1401 if (IPSEC_ENABLED(ipv4)) { 1402 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1403 break; 1404 } 1405 /* FALLTHROUGH */ 1406 #endif /* IPSEC */ 1407 1408 default: 1409 error = ENOPROTOOPT; 1410 break; 1411 } 1412 break; 1413 1414 case SOPT_GET: 1415 switch (sopt->sopt_name) { 1416 case IP_OPTIONS: 1417 case IP_RETOPTS: 1418 INP_RLOCK(inp); 1419 if (inp->inp_options) { 1420 struct mbuf *options; 1421 1422 options = m_copym(inp->inp_options, 0, 1423 M_COPYALL, M_NOWAIT); 1424 INP_RUNLOCK(inp); 1425 if (options != NULL) { 1426 error = sooptcopyout(sopt, 1427 mtod(options, char *), 1428 options->m_len); 1429 m_freem(options); 1430 } else 1431 error = ENOMEM; 1432 } else { 1433 INP_RUNLOCK(inp); 1434 sopt->sopt_valsize = 0; 1435 } 1436 break; 1437 1438 case IP_TOS: 1439 case IP_TTL: 1440 case IP_MINTTL: 1441 case IP_RECVOPTS: 1442 case IP_RECVRETOPTS: 1443 case IP_ORIGDSTADDR: 1444 case IP_RECVDSTADDR: 1445 case IP_RECVTTL: 1446 case IP_RECVIF: 1447 case IP_PORTRANGE: 1448 case IP_ONESBCAST: 1449 case IP_DONTFRAG: 1450 case IP_BINDANY: 1451 case IP_RECVTOS: 1452 case IP_BINDMULTI: 1453 case IP_FLOWID: 1454 case IP_FLOWTYPE: 1455 case IP_RECVFLOWID: 1456 #ifdef RSS 1457 case IP_RSSBUCKETID: 1458 case IP_RECVRSSBUCKETID: 1459 #endif 1460 case IP_VLAN_PCP: 1461 switch (sopt->sopt_name) { 1462 case IP_TOS: 1463 optval = inp->inp_ip_tos; 1464 break; 1465 1466 case IP_TTL: 1467 optval = inp->inp_ip_ttl; 1468 break; 1469 1470 case IP_MINTTL: 1471 optval = inp->inp_ip_minttl; 1472 break; 1473 1474 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1475 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) 1476 1477 case IP_RECVOPTS: 1478 optval = OPTBIT(INP_RECVOPTS); 1479 break; 1480 1481 case IP_RECVRETOPTS: 1482 optval = OPTBIT(INP_RECVRETOPTS); 1483 break; 1484 1485 case IP_RECVDSTADDR: 1486 optval = OPTBIT(INP_RECVDSTADDR); 1487 break; 1488 1489 case IP_ORIGDSTADDR: 1490 optval = OPTBIT2(INP_ORIGDSTADDR); 1491 break; 1492 1493 case IP_RECVTTL: 1494 optval = OPTBIT(INP_RECVTTL); 1495 break; 1496 1497 case IP_RECVIF: 1498 optval = OPTBIT(INP_RECVIF); 1499 break; 1500 1501 case IP_PORTRANGE: 1502 if (inp->inp_flags & INP_HIGHPORT) 1503 optval = IP_PORTRANGE_HIGH; 1504 else if (inp->inp_flags & INP_LOWPORT) 1505 optval = IP_PORTRANGE_LOW; 1506 else 1507 optval = 0; 1508 break; 1509 1510 case IP_ONESBCAST: 1511 optval = OPTBIT(INP_ONESBCAST); 1512 break; 1513 case IP_DONTFRAG: 1514 optval = OPTBIT(INP_DONTFRAG); 1515 break; 1516 case IP_BINDANY: 1517 optval = OPTBIT(INP_BINDANY); 1518 break; 1519 case IP_RECVTOS: 1520 optval = OPTBIT(INP_RECVTOS); 1521 break; 1522 case IP_FLOWID: 1523 optval = inp->inp_flowid; 1524 break; 1525 case IP_FLOWTYPE: 1526 optval = inp->inp_flowtype; 1527 break; 1528 case IP_RECVFLOWID: 1529 optval = OPTBIT2(INP_RECVFLOWID); 1530 break; 1531 #ifdef RSS 1532 case IP_RSSBUCKETID: 1533 retval = rss_hash2bucket(inp->inp_flowid, 1534 inp->inp_flowtype, 1535 &rss_bucket); 1536 if (retval == 0) 1537 optval = rss_bucket; 1538 else 1539 error = EINVAL; 1540 break; 1541 case IP_RECVRSSBUCKETID: 1542 optval = OPTBIT2(INP_RECVRSSBUCKETID); 1543 break; 1544 #endif 1545 case IP_BINDMULTI: 1546 optval = OPTBIT2(INP_BINDMULTI); 1547 break; 1548 case IP_VLAN_PCP: 1549 if (OPTBIT2(INP_2PCP_SET)) { 1550 optval = (inp->inp_flags2 & 1551 INP_2PCP_MASK) >> INP_2PCP_SHIFT; 1552 } else { 1553 optval = -1; 1554 } 1555 break; 1556 } 1557 error = sooptcopyout(sopt, &optval, sizeof optval); 1558 break; 1559 1560 /* 1561 * Multicast socket options are processed by the in_mcast 1562 * module. 1563 */ 1564 case IP_MULTICAST_IF: 1565 case IP_MULTICAST_VIF: 1566 case IP_MULTICAST_TTL: 1567 case IP_MULTICAST_LOOP: 1568 case IP_MSFILTER: 1569 error = inp_getmoptions(inp, sopt); 1570 break; 1571 1572 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1573 case IP_IPSEC_POLICY: 1574 if (IPSEC_ENABLED(ipv4)) { 1575 error = IPSEC_PCBCTL(ipv4, inp, sopt); 1576 break; 1577 } 1578 /* FALLTHROUGH */ 1579 #endif /* IPSEC */ 1580 1581 default: 1582 error = ENOPROTOOPT; 1583 break; 1584 } 1585 break; 1586 } 1587 return (error); 1588 } 1589 1590 /* 1591 * Routine called from ip_output() to loop back a copy of an IP multicast 1592 * packet to the input queue of a specified interface. Note that this 1593 * calls the output routine of the loopback "driver", but with an interface 1594 * pointer that might NOT be a loopback interface -- evil, but easier than 1595 * replicating that code here. 1596 */ 1597 static void 1598 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) 1599 { 1600 struct ip *ip; 1601 struct mbuf *copym; 1602 1603 /* 1604 * Make a deep copy of the packet because we're going to 1605 * modify the pack in order to generate checksums. 1606 */ 1607 copym = m_dup(m, M_NOWAIT); 1608 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) 1609 copym = m_pullup(copym, hlen); 1610 if (copym != NULL) { 1611 /* If needed, compute the checksum and mark it as valid. */ 1612 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1613 in_delayed_cksum(copym); 1614 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 1615 copym->m_pkthdr.csum_flags |= 1616 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1617 copym->m_pkthdr.csum_data = 0xffff; 1618 } 1619 /* 1620 * We don't bother to fragment if the IP length is greater 1621 * than the interface's MTU. Can this possibly matter? 1622 */ 1623 ip = mtod(copym, struct ip *); 1624 ip->ip_sum = 0; 1625 ip->ip_sum = in_cksum(copym, hlen); 1626 if_simloop(ifp, copym, AF_INET, 0); 1627 } 1628 } 1629